The Weird and Wonderful World of Large Cardinals

Cecelia Higgins

November 5, 2020
The set theoretic universe, denoted V, is the arena in which set theory (and, by extension, all of mathematics) takes place.
The set theoretic universe, denoted V, is the arena in which set theory (and, by extension, all of mathematics) takes place.

To describe its construction, we need the following definitions.

- An ordinal is a transitive set that is well ordered by the membership relation \in.
- The collection of all ordinals is a proper class, denoted Ord.
- If $\alpha, \beta \in$ Ord, then we write $\alpha < \beta$ for $\beta \in \alpha$.
- For any ordinal α, its ordinal successor $\alpha + 1$ is defined as $\{\alpha\}$.
- An ordinal is a limit ordinal if it is nonempty and is not a successor ordinal.

Examples

The first several ordinals are: \emptyset, $\{\emptyset\}$, $\{\emptyset, \{\emptyset\}\}$, $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$, ...

To set theorists, these ordinals are, respectively, the natural numbers 0, 1, 2, ...

The least limit ordinal, denoted ω, is exactly the set of natural numbers.
The set theoretic universe, denoted V, is the arena in which set theory (and, by extension, all of mathematics) takes place.

To describe its construction, we need the following definitions.

Definitions

A set X is **transitive** if, whenever $a \in X$ and $b \in a$, $b \in X$.

Examples

The first several ordinals are: $\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \ldots$. To set theorists, these ordinals are, respectively, the natural numbers $0, 1, 2, \ldots$. The least limit ordinal, denoted ω, is exactly the set of natural numbers.
The Universe (No, Not the Physical One)

- The set theoretic universe, denoted \(V \), is the arena in which set theory (and, by extension, all of mathematics) takes place.
- To describe its construction, we need the following definitions.

Definitions

A set \(X \) is **transitive** if, whenever \(a \in X \) and \(b \in a \), \(b \in X \).

An **ordinal** is a transitive set that is well ordered by the membership relation \(\in \). The collection of all ordinals is a proper class, denoted \(\text{Ord} \). If \(\alpha, \beta \in \text{Ord} \), then we write \(\alpha < \beta \) for \(\alpha \in \beta \).
The set theoretic universe, denoted V, is the arena in which set theory (and, by extension, all of mathematics) takes place. To describe its construction, we need the following definitions.

Definitions

A set X is **transitive** if, whenever $a \in X$ and $b \in a$, $b \in X$.

An **ordinal** is a transitive set that is well ordered by the membership relation \in. The collection of all ordinals is a proper class, denoted Ord. If $\alpha, \beta \in \text{Ord}$, then we write $\alpha < \beta$ for $\alpha \in \beta$.

For any ordinal α, its **ordinal successor** $\alpha + 1$ is defined to be $\alpha \cup \{\alpha\}$. An ordinal λ is a **limit ordinal** if it is nonempty and is not a successor ordinal.
The set theoretic universe, denoted V, is the arena in which set theory (and, by extension, all of mathematics) takes place. To describe its construction, we need the following definitions.

Definitions

A set X is **transitive** if, whenever $a \in X$ and $b \in a$, $b \in X$. An **ordinal** is a transitive set that is well ordered by the membership relation \in. The collection of all ordinals is a proper class, denoted Ord. If $\alpha, \beta \in \text{Ord}$, then we write $\alpha < \beta$ for $\alpha \in \beta$.

For any ordinal α, its **ordinal successor** $\alpha + 1$ is defined to be $\alpha \cup \{\alpha\}$. An ordinal λ is a **limit ordinal** if it is nonempty and is not a successor ordinal.

Examples

The first several ordinals are: $\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \ldots$. To set theorists, these ordinals are, respectively, the natural numbers $0, 1, 2, \ldots$.
The set theoretic universe, denoted V, is the arena in which set theory (and, by extension, all of mathematics) takes place. To describe its construction, we need the following definitions.

Definitions

A set X is **transitive** if, whenever $a \in X$ and $b \in a$, $b \in X$. An **ordinal** is a transitive set that is well ordered by the membership relation \in. The collection of all ordinals is a proper class, denoted Ord. If $\alpha, \beta \in \text{Ord}$, then we write $\alpha < \beta$ for $\alpha \in \beta$.

For any ordinal α, its **ordinal successor** $\alpha + 1$ is defined to be $\alpha \cup \{\alpha\}$. An ordinal λ is a **limit ordinal** if it is nonempty and is not a successor ordinal.

Examples

The first several ordinals are: $\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \ldots$. To set theorists, these ordinals are, respectively, the natural numbers $0, 1, 2, \ldots$. The least limit ordinal, denoted ω, is exactly the set of natural numbers.
We can now describe the construction of the universe.
We can now describe the construction of the universe.

Definition

The universe is constructed in stages as follows:

\[V_0 = \emptyset, \]

For all ordinals \(\alpha \), \(V_{\alpha+1} = \mathcal{P}(V_\alpha) \),

For all limit ordinals \(\lambda \), \(V_\lambda = \bigcup_{\alpha < \lambda} V_\alpha \),

\[V = \bigcup_{\alpha \in \text{Ord}} V_\alpha. \]
Let’s focus our attention on one particular stage of V – the ωth stage, V_ω.
Let’s focus our attention on one particular stage of V – the ωth stage, V_ω.

Definition

A set X is **hereditarily finite** if X is finite; its elements are finite; the elements of its elements are finite;
Let’s focus our attention on one particular stage of V – the ωth stage, V_ω.

Definition

A set X is **hereditarily finite** if X is finite; its elements are finite; the elements of its elements are finite; . . .

Fact

The set of all hereditarily finite sets is precisely V_ω.

If you are an ordinal living in V_ω, the world of hereditarily finite sets, what does ω “look like” to you? Perhaps a better question is: How might you (and your other finite ordinal friends) try and “reach” ω?
Life in the World of Hereditarily Finite Sets

If you are an ordinal living in V_ω, the world of hereditarily finite sets, what does ω “look like” to you? Perhaps a better question is: How might you (and your other finite ordinal friends) try and “reach” ω?

Facts

It is not possible to reach ω from below by taking power sets. To be precise: If $n < \omega$, then $2^n < \omega$.
If you are an ordinal living in V_ω, the world of hereditarily finite sets, what does ω “look like” to you? Perhaps a better question is: How might you (and your other finite ordinal friends) try and “reach” ω?

Facts

It is not possible to reach ω from below by taking power sets. To be precise: If $n < \omega$, then $2^n < \omega$.

It is not possible to reach ω from below by taking finite increasing sequences. To be precise: If $\{n_1, \ldots, n_k\}$ is a finite sequence of finite ordinals, then $\sup_{1 \leq i \leq k} n_i < \omega$.
If you are an ordinal living in V_ω, the world of hereditarily finite sets, what does ω “look like” to you? Perhaps a better question is: How might you (and your other finite ordinal friends) try and “reach” ω?

Facts

- It is not possible to reach ω from below by taking power sets. To be precise: If $n < \omega$, then $2^n < \omega$.
- It is not possible to reach ω from below by taking finite increasing sequences. To be precise: If $\{n_1, \ldots, n_k\}$ is a finite sequence of finite ordinals, then $\sup_{1 \leq i \leq k} n_i < \omega$.

Thus, we may view ω as being “inaccessible” from V_ω.
We now isolate the special properties of ω discussed on the previous slide.
We now isolate the special properties of ω discussed on the previous slide.

Definitions

An ordinal κ is a **cardinal** if, for each ordinal $\alpha < \kappa$, there does not exist a surjection $f : \alpha \rightarrow \kappa$.

These properties correspond to axioms of ZFC; strong limitness corresponds to the power set axiom, and regularity corresponds to the replacement scheme. These are two of the “harder” axioms to ask a stage V^{κ} of V to satisfy; under weaker assumptions on κ (e.g. uncountability), all the other axioms of ZFC hold in V^{κ}. Therefore, if κ is an uncountable regular strong limit cardinal, then V^{κ} is a model of ZFC.
We now isolate the special properties of \(\omega \) discussed on the previous slide.

Definitions

An ordinal \(\kappa \) is a **cardinal** if, for each ordinal \(\alpha < \kappa \), there does not exist a surjection \(f : \alpha \to \kappa \).

A cardinal \(\kappa \) is a **strong limit cardinal** if, for all ordinals \(\alpha < \kappa \), \(2^\alpha < \kappa \).
We now isolate the special properties of ω discussed on the previous slide.

Definitions

An ordinal κ is a **cardinal** if, for each ordinal $\alpha < \kappa$, there does not exist a surjection $f : \alpha \to \kappa$.

A cardinal κ is a **strong limit cardinal** if, for all ordinals $\alpha < \kappa$, $2^\alpha < \kappa$.

A cardinal κ is **regular** if, for each ordinal $\lambda < \kappa$, if $\langle \alpha_\xi : \xi < \lambda \rangle$ is an increasing sequence of ordinals $\alpha_\xi < \kappa$ having length λ, $\sup_{\xi < \lambda} \alpha_\xi < \kappa$.
We now isolate the special properties of ω discussed on the previous slide.

Definitions

An ordinal κ is a **cardinal** if, for each ordinal $\alpha < \kappa$, there does not exist a surjection $f : \alpha \to \kappa$.

A cardinal κ is a **strong limit cardinal** if, for all ordinals $\alpha < \kappa$, $2^\alpha < \kappa$.

A cardinal κ is **regular** if, for each ordinal $\lambda < \kappa$, if $\langle \alpha_\xi : \xi < \lambda \rangle$ is an increasing sequence of ordinals $\alpha_\xi < \kappa$ having length λ, $\sup_{\xi < \lambda} \alpha_\xi < \kappa$.

These properties correspond to axioms of ZFC; strong limitness corresponds to the power set axiom, and regularity corresponds to the replacement scheme.
We now isolate the special properties of \(\omega \) discussed on the previous slide.

Definitions

An ordinal \(\kappa \) is a **cardinal** if, for each ordinal \(\alpha < \kappa \), there does not exist a surjection \(f : \alpha \to \kappa \).

A cardinal \(\kappa \) is a **strong limit cardinal** if, for all ordinals \(\alpha < \kappa \), \(2^\alpha < \kappa \).

A cardinal \(\kappa \) is **regular** if, for each ordinal \(\lambda < \kappa \), if \(\langle \alpha_\xi : \xi < \lambda \rangle \) is an increasing sequence of ordinals \(\alpha_\xi < \kappa \) having length \(\lambda \), \(\sup_{\xi < \lambda} \alpha_\xi < \kappa \).

These properties correspond to axioms of ZFC; strong limitness corresponds to the power set axiom, and regularity corresponds to the replacement scheme. These are two of the “harder” axioms to ask a stage \(V_\alpha \) of \(V \) to satisfy; under weaker assumptions on \(\alpha \) (e.g. uncountability), all the other axioms of ZFC hold in \(V_\alpha \).
We now isolate the special properties of ω discussed on the previous slide.

Definitions

An ordinal κ is a **cardinal** if, for each ordinal $\alpha < \kappa$, there does not exist a surjection $f : \alpha \to \kappa$.

A cardinal κ is a **strong limit cardinal** if, for all ordinals $\alpha < \kappa$, $2^\alpha < \kappa$.

A cardinal κ is **regular** if, for each ordinal $\lambda < \kappa$, if $\langle \alpha_\xi : \xi < \lambda \rangle$ is an increasing sequence of ordinals $\alpha_\xi < \kappa$ having length λ, $\sup_{\xi < \lambda} \alpha_\xi < \kappa$.

These properties correspond to axioms of ZFC; strong limitness corresponds to the power set axiom, and regularity corresponds to the replacement scheme. These are two of the “harder” axioms to ask a stage V_α of V to satisfy; under weaker assumptions on α (e.g. uncountability), all the other axioms of ZFC hold in V_α.

Therefore, if κ is an uncountable regular strong limit cardinal, then V_κ is a model of ZFC.
If κ is a cardinal such that V_κ is a model of ZFC, then we say that κ is a large cardinal.
If κ is a cardinal such that V_κ is a model of ZFC, then we say that κ is a large cardinal.

Due to the second incompleteness theorem, it is not possible to prove the existence of any large cardinal from within ZFC.
The Smallest Large Cardinals

- If κ is a cardinal such that V_κ is a model of ZFC, then we say that κ is a large cardinal.
- Due to the second incompleteness theorem, it is not possible to prove the existence of any large cardinal from within ZFC.

Definition

A cardinal κ is **strongly inaccessible** if κ is a regular uncountable strong limit cardinal.
If κ is a cardinal such that V_κ is a model of ZFC, then we say that κ is a large cardinal.

Due to the second incompleteness theorem, it is not possible to prove the existence of any large cardinal from within ZFC.

Definition

A cardinal κ is **strongly inaccessible** if κ is a regular uncountable strong limit cardinal.

So strongly inaccessible cardinals are large cardinals.
If κ is a cardinal such that V_κ is a model of ZFC, then we say that κ is a **large cardinal**.

Due to the second incompleteness theorem, it is not possible to prove the existence of any large cardinal from within ZFC.

Definition

A cardinal κ is **strongly inaccessible** if κ is a regular uncountable strong limit cardinal.

So strongly inaccessible cardinals are large cardinals. There are many more large cardinal properties, many of which are of great interest to set theorists.
Set theorists care about large cardinals because:
Set theorists care about large cardinals because:

- They are the focal point of the inner model problem, one of the biggest open problems in the field today.

- They have important implications for determinacy.

- They have meaningful interactions with forcing.

Here are some areas of math outside set theory for which large cardinals have implications:

- **Algebraic topology**: Vopenka’s principle, which is considered a large cardinal principle. (See “Implications of large-cardinal principles in homotopical localization”, by Casacuberta, Scevenels, and Smith.)

- **Measure theory**: Measurable cardinals.
Set theorists care about large cardinals because:

- They are the focal point of the inner model problem, one of the biggest open problems in the field today.
- They have important implications for determinacy.
Set theorists care about large cardinals because:

- They are the focal point of the inner model problem, one of the biggest open problems in the field today.
- They have important implications for determinacy.
- They have meaningful interactions with forcing.
Some Motivation

- Set theorists care about large cardinals because:
 - They are the focal point of the inner model problem, one of the biggest open problems in the field today.
 - They have important implications for determinacy.
 - They have meaningful interactions with forcing.
- Here are some areas of math outside set theory for which large cardinals have implications:
Set theorists care about large cardinals because:
- They are the focal point of the inner model problem, one of the biggest open problems in the field today.
- They have important implications for determinacy.
- They have meaningful interactions with forcing.

Here are some areas of math outside set theory for which large cardinals have implications:
- Algebraic topology: Vopěnka’s principle, which is considered a large cardinal principle. (See “Implications of large-cardinal principles in homotopical localization”, by Casacuberta, Scevenels, and Smith.)
Set theorists care about large cardinals because:

- They are the focal point of the inner model problem, one of the biggest open problems in the field today.
- They have important implications for determinacy.
- They have meaningful interactions with forcing.

Here are some areas of math outside set theory for which large cardinals have implications:

- Algebraic topology: Vopěnka’s principle, which is considered a large cardinal principle. (See “Implications of large-cardinal principles in homotopical localization”, by Casacuberta, Scevenels, and Smith.)
- Measure theory: Measurable cardinals.
For the remainder of this talk, we'll focus on proving a beautiful theorem about large cardinals known as Scott’s theorem.
For the remainder of this talk, we’ll focus on proving a beautiful theorem about large cardinals known as Scott’s theorem.

Theorem (Scott)

If there exists a measurable cardinal, then $V \neq L$.
To explain the theorem statement, we’ll introduce some further definitions.
To explain the theorem statement, we’ll introduce some further definitions.

Definitions

An **inner model** is a transitive proper class containing \(\text{Ord} \) as a subclass and satisfying all the axioms of ZFC.
Where We’re Headed

To explain the theorem statement, we’ll introduce some further definitions.

Definitions

An **inner model** is a transitive proper class containing Ord as a subclass and satisfying all the axioms of ZFC. The minimal inner model of ZFC is denoted L.
We’ll now need the following definition.
We’ll now need the following definition.

Definition

A cardinal κ is **measurable** if it is uncountable and there exists a nonprincipal, κ-complete ultrafilter on κ.

The crux of the proof of Scott’s theorem will be to show that any measurable cardinal is the critical point of an elementary embedding of the universe V into some inner model.
An **ultrafilter** on a set I is a collection of ‘large’ (measure-one) subsets of I.
An ultrafilter on a set I is a collection of ‘large’ (measure-one) subsets of I.

Definition

Let I be a set. A set $\mathcal{U} \subseteq \mathcal{P}(I)$ is a filter on I if:

1. $\emptyset \notin \mathcal{U}$ and $I \in \mathcal{U}$,
2. If $X \in \mathcal{U}$ and $X \subseteq Y \subseteq I$, then $Y \in \mathcal{U}$,
3. If $X, Y \in \mathcal{U}$, then $X \setminus Y \in \mathcal{U}$.

The ultrafilter \mathcal{U} is an ultrafilter if, for all $X \subseteq I$, either $X \in \mathcal{U}$ or $I \setminus X \in \mathcal{U}$.

The ultrafilter \mathcal{U} is \mathfrak{c}-complete for a cardinal \mathfrak{c} if, for all cardinals $\mathfrak{a} < \mathfrak{c}$, if $\{A_\alpha : \alpha < \mathfrak{a}\}$ is a collection of sets in \mathcal{U}, then $\bigcup \{A_\alpha : \alpha < \mathfrak{a}\} \in \mathcal{U}$.
Measurables and Ultrafilters and Embeddings (Oh My!)

- An **ultrafilter** on a set I is a collection of ‘large’ (measure-one) subsets of I.

Definition

Let I be a set. A set $U \subseteq \mathcal{P}(I)$ is a **filter** on I if:

- $\emptyset \notin U$;
An ultrafilter on a set I is a collection of ‘large’ (measure-one) subsets of I.

Definition

Let I be a set. A set $\mathcal{U} \subseteq \mathcal{P}(I)$ is a filter on I if:

- $\emptyset \notin \mathcal{U}$;
- $I \in \mathcal{U}$;
An **ultrafilter** on a set I is a collection of ‘large’ (measure-one) subsets of I.

Definition

Let I be a set. A set $U \subseteq \mathcal{P}(I)$ is a **filter** on I if:

- $\emptyset \notin U$;
- $I \in U$;
- If $X \in U$ and $X \subseteq Y$, then $Y \in U$;
An **ultrafilter** on a set I is a collection of ‘large’ (measure-one) subsets of I.

Definition

Let I be a set. A set $U \subseteq \mathcal{P}(I)$ is a **filter** on I if:

- $\emptyset \notin U$;
- $I \in U$;
- If $X \in U$ and $X \subseteq Y$, then $Y \in U$;
- If $X, Y \in U$, then $X \cap Y \in U$.
• An **ultrafilter** on a set I is a collection of ‘large’ (measure-one) subsets of I.

Definition

Let I be a set. A set $U \subseteq \mathcal{P}(I)$ is a **filter** on I if:

- $\emptyset \notin U$;
- $I \in U$;
- If $X \in U$ and $X \subseteq Y$, then $Y \in U$;
- If $X, Y \in U$, then $X \cap Y \in U$.

The filter U is an **ultrafilter** if, for all $X \subseteq I$, either $X \in U$ or $I \setminus X \in U$.
An **ultrafilter** on a set \(I \) is a collection of ‘large’ (measure-one) subsets of \(I \).

Definition

Let \(I \) be a set. A set \(U \subseteq \mathcal{P}(I) \) is a **filter** on \(I \) if:

- \(\emptyset \notin U \);
- \(I \in U \);
- If \(X \in U \) and \(X \subseteq Y \), then \(Y \in U \);
- If \(X, Y \in U \), then \(X \cap Y \in U \).

The filter \(U \) is an **ultrafilter** if, for all \(X \subseteq I \), either \(X \in U \) or \(I \setminus X \in U \).

The ultrafilter \(U \) is **principal** if there exists some \(X \subseteq I \) such that \(U = \{ Y \subseteq I : X \subseteq Y \} \).
An ultrafilter on a set I is a collection of ‘large’ (measure-one) subsets of I.

Definition

Let I be a set. A set $U \subseteq \mathcal{P}(I)$ is a filter on I if:

- $\emptyset \notin U$;
- $I \in U$;
- If $X \in U$ and $X \subseteq Y$, then $Y \in U$;
- If $X, Y \in U$, then $X \cap Y \in U$.

The filter U is an ultrafilter if, for all $X \subseteq I$, either $X \in U$ or $I \setminus X \in U$. The ultrafilter U is principal if there exists some $X \subseteq I$ such that $U = \{ Y \subseteq I : X \subseteq Y \}$.

The ultrafilter U is κ-complete for a cardinal κ if, for all cardinals $\lambda < \kappa$, if $\{ A_\alpha : \alpha < \lambda \}$ is a collection of sets in U, then $\bigcap_{\alpha<\lambda} A_\alpha \in U$.

Cecelia Higgins
Large Cardinals
November 5, 2020 12 / 22
Although inner models are not “true” models, they share important properties with models. In particular, inner models can have opinions about whether or not certain statements in the language of set theory are true.
Although inner models are not “true” models, they share important properties with models. In particular, inner models can have opinions about whether or not certain statements in the language of set theory are true. If M is an inner model, if $\varphi(x_1, \ldots, x_n)$ is a formula in the language of set theory with free (unquantified) variables x_1, \ldots, x_n, and if m_1, \ldots, m_n are sets in M, then we write $M \models \varphi(m_1, \ldots, m_n)$ when M thinks that the statement φ is true of m_1, \ldots, m_n.

An elementary embedding is a truth-preserving injection between inner models.

Definition

Let M_1, M_2 be inner models. Then the class function $j: M_1 \rightarrow M_2$ is an elementary embedding if, for all formulas $\varphi(x_1, \ldots, x_n)$ in the language of set theory and for all sets $a_1, \ldots, a_n \in M_1$, $M_1 \models \varphi(a_1, \ldots, a_n)$ if and only if $M_2 \models \varphi(j(a_1), \ldots, j(a_n))$.

Cecelia Higgins
Large Cardinals
November 5, 2020
Although inner models are not “true” models, they share important properties with models. In particular, inner models can have opinions about whether or not certain statements in the language of set theory are true. If M is an inner model, if $\varphi(x_1, \ldots, x_n)$ is a formula in the language of set theory with free (unquantified) variables x_1, \ldots, x_n, and if m_1, \ldots, m_n are sets in M, then we write $M \models \varphi(m_1, \ldots, m_n)$ when M thinks that the statement φ is true of m_1, \ldots, m_n.

An elementary embedding is a truth-preserving injection between inner models.
Although inner models are not “true” models, they share important properties with models. In particular, inner models can have opinions about whether or not certain statements in the language of set theory are true. If M is an inner model, if $\varphi(x_1, \ldots, x_n)$ is a formula in the language of set theory with free (unquantified) variables x_1, \ldots, x_n, and if m_1, \ldots, m_n are sets in M, then we write $M \models \varphi(m_1, \ldots, m_n)$ when M thinks that the statement φ is true of m_1, \ldots, m_n.

An **elementary embedding** is a truth-preserving injection between inner models.

Definition

Let M_1, M_2 be inner models. Then the class function $j : M_1 \rightarrow M_2$ is an **elementary embedding** if, for all formulas $\varphi(x_1, \ldots, x_n)$ in the language of set theory and for all sets $a_1, \ldots, a_n \in M_1$, $M_1 \models \varphi(a_1, \ldots, a_n)$ if and only if $M_2 \models \varphi(j(a_1), \ldots, j(a_n))$.
If $j : V \rightarrow M$ is a nontrivial elementary embedding, then it is not hard to show that j must move an ordinal.
- If $j : V \rightarrow M$ is a nontrivial elementary embedding, then it is not hard to show that j must move an ordinal.

Definition

If $j : V \rightarrow M$ is a nontrivial elementary embedding, then the least ordinal moved by j is called the **critical point** of j.
An Ultra-Powerful Construction

To prove that measurable cardinals are the critical points of elementary embeddings, we need to find an appropriate inner model in which to embed V. To that end, we will consider the following important construction.
To prove that measurable cardinals are the critical points of elementary embeddings, we need to find an appropriate inner model in which to embed V. To that end, we will consider the following important construction. Let’s fix a measurable cardinal κ and a nonprincipal, κ-complete ultrafilter \mathcal{U} on κ.
Consider the proper class C consisting of all functions having domain
$$\kappa = \{\alpha \in \text{Ord} : \alpha < \kappa\}.$$
Consider the proper class C consisting of all functions having domain $\kappa = \{\alpha \in \text{Ord} : \alpha < \kappa\}$. Define an equivalence relation $=^*$ on C by $f =^* g$ if $\{\alpha < \kappa : f(\alpha) = g(\alpha)\} \in \mathcal{U}$.
Consider the proper class C consisting of all functions having domain $\kappa = \{\alpha \in \text{Ord} : \alpha < \kappa\}$. Define an equivalence relation $=^*$ on C by $f =^* g$ if $\{\alpha < \kappa : f(\alpha) = g(\alpha)\} \in \mathcal{U}$. Since the equivalence classes under $=^*$ may be proper classes, we make the following modification:

$$[f]_\mathcal{U} = \{g \in C : g =^* f \text{ and } \forall h (h =^* f \rightarrow \text{rank}(h) \geq \text{rank}(g))\}.$$
Consider the proper class C consisting of all functions having domain $\kappa = \{\alpha \in \text{Ord} : \alpha < \kappa\}$. Define an equivalence relation \equiv^* on C by $f \equiv^* g$ if $\{\alpha < \kappa : f(\alpha) = g(\alpha)\} \in \mathcal{U}$. Since the equivalence classes under \equiv^* may be proper classes, we make the following modification:

$$[f]_{\mathcal{U}} = \{g \in C : g \equiv^* f \text{ and } \forall h(h \equiv^* f \rightarrow \text{rank}(h) \geq \text{rank}(g))\}.$$

Define also a binary relation \in^* on the collection of modified equivalence classes by $[f]_{\mathcal{U}} \in^* [g]_{\mathcal{U}}$ if $\{\alpha < \kappa : f(\alpha) \in g(\alpha)\} \in \mathcal{U}$.
Consider the proper class C consisting of all functions having domain
$\kappa = \{ \alpha \in \text{Ord} : \alpha < \kappa \}$. Define an equivalence relation \equiv^* on C by
$f \equiv^* g$ if $\{ \alpha < \kappa : f(\alpha) = g(\alpha) \} \in \mathcal{U}$. Since the equivalence classes
under \equiv^* may be proper classes, we make the following modification:

$$[f]_\mathcal{U} = \{ g \in C : g \equiv^* f \text{ and } \forall h (h \equiv^* f \rightarrow \text{rank}(h) \geq \text{rank}(g)) \}.$$

Define also a binary relation \in^* on the collection of modified equivalence classes by $[f]_\mathcal{U} \in^* [g]_\mathcal{U}$ if $\{ \alpha < \kappa : f(\alpha) \in g(\alpha) \} \in \mathcal{U}$.

The ultrapower of V by \mathcal{U}, denoted $\text{Ult}(V, \mathcal{U})$, is the proper class consisting of the modified equivalence classes $[f]_\mathcal{U}$ for all $f \in C$, equipped with the binary relation \in^*.
We would like to view $\text{Ult}(V, U)$ as an inner model. However, inner models must be **transitive**.
We would like to view Ult(V, \mathcal{U}) as an inner model. However, inner models must be transitive.

Using κ-completeness of \mathcal{U}, we can show that \in^* is a well-founded relation.
We would like to view $\text{Ult}(V, \mathcal{U})$ as an inner model. However, inner models must be transitive.

Using κ-completeness of \mathcal{U}, we can show that \in^* is a well-founded relation. There is a theorem of set theory, called the Mostowski collapsing lemma, that therefore enables us to conclude the following:
We would like to view $\text{Ult}(\mathcal{V}, \mathcal{U})$ as an inner model. However, inner models must be **transitive**.

Using κ-completeness of \mathcal{U}, we can show that \in^* is a well-founded relation. There is a theorem of set theory, called the Mostowski collapsing lemma, that therefore enables us to conclude the following:

There is a transitive proper class M isomorphic to $\text{Ult}(\mathcal{V}, \mathcal{U})$.
We would like to view Ult(V, U) as an inner model. However, inner models must be **transitive**.

Using κ-completeness of U, we can show that \in^* is a well-founded relation. There is a theorem of set theory, called the Mostowski collapsing lemma, that therefore enables us to conclude the following:

There is a transitive proper class M isomorphic to Ult(V, U).

The isomorphism $\pi : \text{Ult}(V, U) \rightarrow M$ can be defined by transfinite recursion as follows:

$$\pi([f]) = \{\pi([g]) : [g] \in^* [f]\}.$$
Now, we’ll construct the elementary embedding $j : V \rightarrow M$.
Now, we’ll construct the elementary embedding $j : V \to M$.

For each set a, we define the constant function on a, denoted c_a, to be the function defined on κ by $c_a(\alpha) = a$ for all $\alpha < \kappa$.
Now, we’ll construct the elementary embedding $j : V \to M$.

For each set a, we define the constant function on a, denoted c_a, to be the function defined on κ by $c_a(\alpha) = a$ for all $\alpha < \kappa$.

So let’s define $j : V \to M$ by $j(a) = \pi([c_a])$.
Now, we’ll construct the elementary embedding $j : V \rightarrow M$.

For each set a, we define the constant function on a, denoted c_a, to be the function defined on κ by $c_a(\alpha) = a$ for all $\alpha < \kappa$.

So let’s define $j : V \rightarrow M$ by $j(a) = \pi([c_a])$. We claim that j is a nontrivial elementary embedding with critical point κ.
To see that j is an elementary embedding, we’ll need the following:

Theorem (Łoś)

Let $\varphi(x_1, \ldots, x_n)$ be any formula in the language of set theory, and let f_1, \ldots, f_n be functions with domain \mathbb{V}. Then $\text{Ult}(V, U)|= \varphi(f_1, \ldots, f_n)$ if $\{\varphi(<\mathbb{V} >): \varphi(f_1(<\mathbb{V} >), \ldots, f_n(<\mathbb{V} >))}\in U$.

Since $\text{Ult}(V, U)$ is isomorphic to M via φ, we have as a consequence $M|= \varphi(\varphi(f_1), \ldots, \varphi(f_n))$ if $\{\varphi(<\mathbb{V} >): \varphi(c_{a_1}, \ldots, c_{a_n})\}\in U$.

So, let a_1, \ldots, a_n be sets. Then $M|= \varphi(j(a_1), \ldots, j(a_n))$ if $M|= \varphi(\varphi(c_{a_1}), \ldots, \varphi(c_{a_n}))$ if $\{\varphi(<\mathbb{V} >): \varphi(a_1, \ldots, a_n)\}\in U$.
To see that \(j \) is an elementary embedding, we’ll need the following:

Theorem (Łoś)

Let \(\varphi(x_1, \ldots, x_n) \) be any formula in the language of set theory, and let \(f_1, \ldots, f_n \) be functions with domain \(\kappa \). Then

\[
\text{Ult}(V, \mathcal{U}) \models \varphi([f_1], \ldots, [f_n]) \iff \{ \alpha < \kappa : \varphi(f_1(\alpha), \ldots, f_n(\alpha)) \} \in \mathcal{U}.
\]
To see that \(j \) is an elementary embedding, we’ll need the following:

Theorem (Łoś)

Let \(\varphi(x_1, \ldots, x_n) \) be any formula in the language of set theory, and let \(f_1, \ldots, f_n \) be functions with domain \(\kappa \). Then

\[
\text{Ult}(V, \mathcal{U}) \models \varphi([f_1], \ldots, [f_n]) \iff \{ \alpha < \kappa : \varphi(f_1(\alpha), \ldots, f_n(\alpha)) \} \in \mathcal{U}.
\]

Since \(\text{Ult}(V, \mathcal{U}) \) is isomorphic to \(M \) via \(\pi \), we have as a consequence

\[
M \models \varphi(\pi([f_1]), \ldots, \pi([f_n])) \iff \{ \alpha < \kappa : \varphi(f_1(\alpha), \ldots, f_n(\alpha)) \} \in \mathcal{U}.
\]
The Elementary Embedding

To see that j is an elementary embedding, we’ll need the following:

Theorem (Łoś)

Let $\varphi(x_1, \ldots, x_n)$ be any formula in the language of set theory, and let f_1, \ldots, f_n be functions with domain κ. Then

$$\text{Ult}(V, U) \models \varphi([f_1], \ldots, [f_n]) \iff \{\alpha < \kappa : \varphi(f_1(\alpha), \ldots, f_n(\alpha))\} \in U.$$

Since $\text{Ult}(V, U)$ is isomorphic to M via π, we have as a consequence

$$M \models \varphi(\pi([f_1]), \ldots, \pi([f_n])) \iff \{\alpha < \kappa : \varphi(f_1(\alpha), \ldots, f_n(\alpha))\} \in U.$$

So, let a_1, \ldots, a_n be sets. Then
The Elementary Embedding

- To see that \(j \) is an elementary embedding, we’ll need the following:

Theorem (Łoś)

Let \(\varphi(x_1, \ldots, x_n) \) be any formula in the language of set theory, and let \(f_1, \ldots, f_n \) be functions with domain \(\kappa \). Then

\[
\text{Ult}(V, \mathcal{U}) \models \varphi([f_1], \ldots, [f_n]) \iff \{ \alpha < \kappa : \varphi(f_1(\alpha), \ldots, f_n(\alpha)) \} \in \mathcal{U}.
\]

- Since \(\text{Ult}(V, \mathcal{U}) \) is isomorphic to \(M \) via \(\pi \), we have as a consequence

\[
M \models \varphi(\pi([f_1]), \ldots, \pi([f_n])) \iff \{ \alpha < \kappa : \varphi(f_1(\alpha), \ldots, f_n(\alpha)) \} \in \mathcal{U}.
\]

- So, let \(a_1, \ldots, a_n \) be sets. Then

\[
M \models \varphi(j(a_1), \ldots, j(a_n)) \iff \begin{align*}
& M \models \varphi(\pi([c_{a_1}]), \ldots, \pi([c_{a_n}])) \\
& \text{iff} \quad \{ \alpha < \kappa : \varphi(c_{a_1}(\alpha), \ldots, c_{a_n}(\alpha)) \} \in \mathcal{U} \\
& \text{iff} \quad \{ \alpha < \kappa : \varphi(a_1, \ldots, a_n) \} \in \mathcal{U} \\
& \text{iff} \quad \varphi(a_1, \ldots, a_n).
\end{align*}
\]
Next, we’ll show that j does not move any ordinals beneath κ.
Next, we’ll show that \(j \) does not move any ordinals beneath \(\kappa \). Let’s fix an ordinal \(\alpha < \kappa \) and assume that, for all \(\beta < \alpha \), \(j(\beta) = \beta \).

We have
\[
j(\alpha) = \pi(\langle 0, \beta, \pi(\langle 0, \beta, \rangle) \rangle)
= \{ \pi(\langle 0, \beta, \rangle) : [\alpha] \in [\kappa]_j \}.
\]

If \([\alpha] \in [\kappa]_j \), then
\[
\{ \sigma < n : \tau(\sigma) \in 2^\beta \} \subseteq m.
\]

So
\[
\bigcup \{ \sigma < n : \tau(\sigma) \in 2^\beta \} \subseteq m.
\]

By \(\kappa \)-completeness, there is some \(\delta < \delta \) such that
\[
\{ \sigma < n : \tau(\sigma) = 2^\beta \} \subseteq m.
\]

So \([\alpha] \in [\kappa]_j\).

Thus
\[
\pi(\langle 0, \beta, \rangle) = \pi(\langle 0, \beta, \rangle) = \delta \text{ since } \delta < \kappa.
\]
Finally, we’ll show that $j(\kappa) \neq \kappa$.

Define $d : \kappa \to \kappa$ by $d(\gamma) = \gamma$. Then for each $\gamma < \kappa$,

$$\{ \xi < \kappa : \gamma < d(\xi) \}$$

is unbounded.

Since κ is κ-complete and nonprincipally

$$\{ \xi < \kappa : \gamma < d(\xi) \}$$

is ill-founded,

so $[\gamma] \in \mathcal{F}([d])$. Thus, for all $\gamma < \kappa$,

$$\pi([\gamma]) = \gamma \in \pi([d]).$$

So $\kappa \leq \pi([d])$. However, we also have

$$\{ \xi < \kappa : d(\xi) < \kappa \}$$

is ill-founded,

so $[d] \in \mathcal{F}([\kappa])$. Thus

$$\pi([d]) \subseteq \pi([\kappa]) = j(\kappa).$$

Then $\kappa < j(\kappa)$.

We can now give the proof of Scott’s theorem in just a few lines.

To show: If there exists a measurable cardinal, then $V = L$.

Assume for contradiction that a measurable exists but $V = L$. Let κ be the least measurable, and let $\mathcal{U}_\kappa = (V, \kappa)$, M, and $j: V \to M$ be as before.

Then since $V = \kappa$ is the least measurable, we have $M = j(\kappa)$ is the least measurable.

But by minimality of L, $V = M$. So $V = j(\kappa)$ is the least measurable.

But $j(\kappa) > \kappa$.