MEASURABLE BROOKS’S THEOREM FOR DIRECTED
GRAPHS

CECELIA HIGGINS

ABSTRACT. We prove a descriptive version of Brooks’s theorem for directed
graphs. In particular, we show that, if D is a Borel directed graph on a
standard Borel space X such that the maximum degree of each vertex is at
most d > 3, then unless D contains the complete symmetric directed graph
on d + 1 vertices, D admits a p-measurable d-dicoloring with respect to any
Borel probability measure p on X, and D admits a 7-Baire-measurable d-
dicoloring with respect to any Polish topology 7 compatible with the Borel
structure on X. We also prove a definable version of Gallai’s theorem on
list dicolorings for directed graphs by showing that any Borel directed graph
of bounded degree whose connected components are not Gallai trees is Borel
degree-list-dicolorable.

1. INTRODUCTION

A classical graph theory result states that, for a finite undirected graph G such
that each vertex has degree at most d, there is a proper (d + 1)-coloring of G. The
proof is a simple greedy algorithm argument; each vertex receives the first color
that has not already been assigned to any of its neighbors. It is easy to see that
this upper bound is sharp: For d = 2, if G is an odd cycle, then each vertex of G
has degree 2, but the chromatic number of G is 3; for d > 3, if G is the complete
graph on d + 1 vertices, then each vertex of G has degree d, but the chromatic
number of G is d + 1.

However, these obvious obstructions to a smaller upper bound on the chromatic
number are the only obstructions. A 1941 theorem of Brooks characterizes the
graphs such that each vertex has degree at most d which have proper d-colorings
as exactly the graphs which do not contain odd cycles or complete graphs.

Theorem 1.1 ([Bro4l]). Let G be a finite undirected graph such that each vertex
has degree at most d. If d = 2, assume G has no odd cycles; if d > 3, assume
G does not contain the complete graph on d + 1 vertices. Then there is a proper
d-coloring of G.

Suppose we wish to impose an additional requirement on the proper coloring:
Consider a function L which assigns to each vertex x of G a list L(x) of colors.
An L-list-coloring of G is a proper coloring ¢ of G such that ¢(z) € L(z) for all
vertices x of G. We say that G is degree-list-colorable if, for any function L such
that |L(z)| > deg(z) for all vertices x, there is an L-list coloring of G. Note that,
when L(z) = {0,1,...,d — 1} for all vertices « of G, then G is L-list-colorable if
and only if G has a proper d-coloring.
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Recall that a set S of vertices of G is biconnected if the induced subgraph G[5]
of G is connected and the induced subgraphs G[S \ {s}] are connected for each
s € 8. A block in G is a maximal biconnected set of vertices of G. A Gallai
tree is a connected graph in which each block induces either an odd cycle or a
complete graph. Results obtained independently by Borodin and Erdds, Rubin,
and Taylor characterize the finite undirected graphs which are degree-list-colorable
as the graphs whose connected components are not Gallai trees. The following
theorem is typically referred to as Gallai’s theorem.

Theorem 1.2 ([Bor77], [ERT79]). Let G be a finite undirected graph. Then G is
degree-list-colorable if and only if no connected component of G is a Gallai tree.

Brooks’s proof of Theorem 1.1 and the proofs of Borodin and Erddés, Rubin, and
Taylor of Theorem 1.2 all use classical techniques and do not immediately generalize
to the descriptive setting. Indeed, results of Marks ([Marl6]) demonstrate that
Brooks’s theorem fails in the Borel context. However, in 2016, Conley, Marks, and
Tucker-Drob gave both a measurable version of Brooks’s theorem and a definable
version of Gallai’s theorem.

Theorem 1.3 ([CMTIG], Theorem 1.2). Let G be an undirected Borel graph on a
standard Borel space X such that each vertex has degree at most d > 3. Assume G
does not contain the complete graph on d + 1 vertices. Then:

(1) For any Borel probability measure u on X, there is a p-measurable proper
d-coloring of G.

(2) For any Polish topology T compatible with the Borel structure on X, there
s a T-Baire-measurable proper d-coloring of G.

Theorem 1.4 ([CMTI0], Theorem 1.4). Let G be a locally finite undirected Borel
graph on a standard Borel space X. Assume that no connected component of G is
a Gallai tree. Then G is Borel degree-list-colorable.

In this paper, we show that the two theorems above have analogues for directed
graphs (or digraphs), in which each edge between vertices has an orientation. The
coloring problem of interest in the digraph setting is the problem of producing a
dicoloring, an assignment of colors to vertices so that no directed cycle, that is, a
sequence (g, Z1,...,T, = o) of vertices in which z; has an out-oriented edge to
x;41 for each i < d, is monochromatic. The notion of dicoloring was introduced
first by Neumann-Lara ([NL82]) in 1982 and again by Mohar ([Moh03]) in 2003,
and it has since been studied extensively.

Consider a digraph D such that each vertex has mazimum degree at most d, so
that each vertex has at most d out-oriented neighbors and at most d in-oriented
neighbors. Then a simple greedy algorithm argument demonstrates that the dichro-
matic number of D, which is the least number of colors needed to produce a dicol-
oring of D, is less than or equal to d + 1 (see [AA22] for a complete proof). As
in the undirected setting, this bound is sharp: For d = 1, if D is a directed cycle,
then the maximum degree of each vertex of D is 1, but the dichromatic number of
D is 2; for d = 2, if D is the symmetrization of an undirected odd cycle — that is, if
D is obtained by replacing each edge of an undirected odd cycle with both an out-
oriented edge and an in-oriented edge — then each vertex of D has maximum degree
2, but the dichromatic number of D is 3; and for d > 3, if D is the symmetrization
of the complete graph on d+ 1 vertices, then each vertex of D has maximum degree
d, but the dichromatic number of D is d + 1.
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The following theorem, which was first stated by Mohar in 2010 and later proved
in full by Harutyunyan and Mohar in 2011, parallels Brooks’s theorem by character-
izing the obstructions to having a smaller upper bound on the dichromatic number.

Theorem 1.5 ([Mohl0], Theorem 2.3; [HM11]). Let D be a finite directed graph
such that each vertex has maximum degree at most d. If d = 1, assume D has no
directed cycles; if d = 2, assume D does not contain the symmetrization of any
undirected odd cycles; and if d > 3, assume D does not contain the symmetrization

of the undirected complete graph on d 4+ 1 vertices. Then there is a d-dicoloring of
D.

Our main result is a measurable version of this theorem. In particular, we show
the following.

Theorem 1.6. Let D be a Borel directed graph on a standard Borel space X.
Suppose there is d > 3 such that the maximum degree of x is at most d for allz € X,
and assume D does not contain the symmetrization of the undirected complete graph
on d+ 1 vertices. Then:

(1) For any Borel probability measure p on X, there is a p-measurable d-
dicoloring of D.

(2) For any Polish topology T compatible with the Borel structure on X, there
is a T-Baire-measurable d-dicoloring of D.

Also in 2011, Harutyunyan and Mohar proved a digraph version of Gallai’s theo-
rem. If L is a function which assigns to each vertex x of D a list L(x) of colors, then
an L-list-dicoloring of D is a dicoloring ¢ of D such that ¢(z) € L(zx) for all vertices
x. We say that D is degree-list-dicolorable if, for any function L such that |L(z)| is
greater than or equal to the maximum degree of x for all vertices x of D, there is an
L-list-dicoloring of D. In the digraph context, a Gallai tree is a connected digraph
each of whose blocks induces a dicycle, the symmetrization of an undirected odd
cycle, or the symmetrization of an undirected complete graph. A digraph is then
degree-list-dicolorable if none of its connected components is a Gallai tree.

Theorem 1.7 ([HM11], Theorem 2.1). Let D be a finite directed graph. If no
connected component of D is a Gallai tree, then D is degree-list-dicolorable.

We prove the following definable version of this result for digraphs of bounded
degree.

Theorem 1.8. Let D be a Borel directed graph of bounded degree on a standard
Borel space X. Assume that no connected component of D is a Gallai tree. Then
D is Borel degree-list-dicolorable.

In future work, we would like to better understand the implications of this result
for descriptive digraph combinatorics more generally. In particular, although the
problem of producing a dicoloring is not a locally checkable labeling problem in gen-
eral, we are interested in studying possible connections between descriptive digraph
combinatorics and LOCAL algorithms; this may lead to extensions of Bernshteyn’s
work ([Ber23]).

2. PRELIMINARIES

We begin by recalling the basic terminology and notation for directed graphs,
some of which was mentioned already in the introduction. A directed graph (or
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digraph) D is a pair D = (X, A), where X is a set, called the vertex set, and
A C X2 is an irreflexive relation. The elements of A are called arcs.

Throughout the rest of this section, let D = (X, A) be a directed graph on a
set X. Let x € X. An element y € X is an out-neighbor of x if there is an arc
from x to y. The set of out-neighbors of z is denoted N*(z). An element y € X
is an in-neighbor of x if there is an arc from y to x. The set of in-neighbors of x is
denoted N~ (z).

The out-degree of x, denoted d*(zx), is defined by d*(z) = |[NT(x)|. The in-
degree of x, denoted d~(z), is defined by d~(z) = |[N~(z)|. The mazimum degree
of x, denoted d™**(z), is defined by d™*(x) = max{d*(z),d (z)}. The minimum
degree of z, denoted d™*(x), is defined by d™i"(x) = min{d " (z),d™ (z)}. Note that
it is possible that N*(z) N N~ (z) # 0.

The mazimum side of x, denoted N™3*(z), is defined by N™(z) = NT(z)
if INT(x)] > |[N~(z)| and N™*(x) = N~ (z) otherwise. The minimum side of
x, denoted N™(z), is defined by N™*(z) = N*t(z) if [INT(x)| < |[N~(z)| and
N®in(r) = N~ (z) otherwise.

Let D' = (X', A’) be a sub-digraph of D, that is, a digraph such that X’ C X
and A’ C A. Then for each z € A’, we write d}, (z) for the out-degree of z in D',
dp, (x) for the in-degree of z in D’, d5?*(x) for the maximum degree of z in D/,
and dBi"(z) for the minimum degree of x in D'.

A directed cycle (or dicycle) in D is a set C = (xg,z1,...,x)) of vertices of D
such that zo = xy, there is an arc from x; to x;4; for each ¢ < k, and z; # x; for
all i,j < k with ¢ #£ j. If k = 2, then C is called a digon. A d-dicoloring of D is
a function ¢ : X — {0,1,...,d — 1} such that, for any dicycle C' in D, there are
points z, 2’ € C such that ¢(z) # c¢(2’). The dichromatic number of D, denoted
Y(D), is the least d € N such that there is a d-dicoloring of D.

Let Y be a set, and let [Y]<>° denote the collection of finite subsets of Y. A
(Y -)list assignment is a function L : X — [Y]|<*°. Then D is L-(list-)dicolorable
if there is a dicoloring ¢ of D such that c¢(z) € L(x) for each z € X. We say that
D is degree-list-dicolorable if, for each list assignment L such that |L(x)| > d™**(x)
for all x € X, D is L-dicolorable, and we say that D is (degree-plus-one)-list-
dicolorable if, for each list assignment L such that |L(z)| > d™**(x) for all z € X,
D is L-dicolorable.

Given an undirected graph G, we may replace each edge of G with a digon to
obtain a directed graph. Precisely, the digraph D = (X, A) is the symmetrization
of the undirected graph G = (X, E) if, for all z,y € X, {z,y} € F if and only
if (x,y) € A and (y,z) € A. Note that, if D is the symmetrization of G, then
X (D) = x(G). The digraph D is a symmetric cycle if D is the symmetrization of
an undirected cyclic graph. The graph D is a complete symmetric digraph if it is
the symmetrization of an undirected complete graph.

Conversely, by forgetting the orientations of the arcs in D, we obtain an undi-
rected graph, called the underlying graph D of D. The vertex set of D is X, and
two vertices x,y € X are adjacent in D if and only if either (z,y) € A or (y,z) € A.

Many definitions from the theory of undirected graphs may now be imported to
the digraph context. In particular, we say that D is locally finite if D is locally
finite, D is locally countable if D is locally countable, and D is of bounded degree if
D is of bounded degree. Also, we say D is connected if D is connected. If S C X
and |S| > 2, then S is biconnected if the induced sub-digraph D[S] is connected



MEASURABLE BROOKS’S THEOREM FOR DIRECTED GRAPHS 5

and the induced sub-digraphs D[S \ {s}] are connected for all s € S. A block in D
is a maximal biconnected set in D. A connected component C of D is a Gallai tree
if each block in D[C] induces a dicycle, a (finite) odd symmetric cycle, or a (finite)
complete symmetric digraph.

Throughout, we consider descriptive versions of the combinatorial notions for
digraphs. For the fundamentals of descriptive set theory, we refer the reader to
[Kec95].

Definition 2.1. Let X be a standard Borel space. A Borel digraph on X is a
digraph D = (X, A), where A is Borel in the product topology on X2. If Y is a
Polish space, then a dicoloring ¢ : X — Y of D is a Borel dicoloring if c is a
Borel function. The Borel dichromatic number of D, denoted 7 B(D), is the
least d € N such that there is a Borel d-dicoloring of D.

A Borel (Y-)list assignment is a Borel function L : X — [Y]<°°. We say that
D is Borel degree-list-dicolorable if, for any Borel list assignment L such that
|L(z)| > d™®(x) for all x € X, D is Borel L-dicolorable. We say that D is Borel
(degree-plus-one)-list-dicolorable if, for any Borel list assignment L such that
|L(z)| > d™**(z) for all x € X, D is Borel L-dicolorable.

3. DEFINABLE DIGRAPH COMBINATORICS

In this section, we prove some initial results on the definable combinatorics of
digraphs. We show first that, if the minimum degree of each vertex in a locally
countable digraph is at most d, then the Borel dichromatic number is at most d+ 1.
The proof of the following proposition is similar to the proof of Proposition 4.6 in
[KST99).

Proposition 3.1. Let d € N, and let D be a locally countable Borel digraph on a
standard Borel space X . Suppose d™"(z) < d for allz € X. Then YB(D) <d+1.

Proof. We proceed by induction on d. Suppose d = 0; then D has no dicycles, and
so clearly there is a Borel dicoloring of D with just one color.

Now let d > 0. Assume that, for any locally countable Borel digraph D’ on a
standard Borel space X', if d™"(z) < d for all z € X', then ¥ p(D’) < d + 1.
Suppose now d™"(z) < d+ 1 for all z € X. Since the underlying graph D of
D is locally countable, it follows from Proposition 4.3 in [KST99] that there is a
countable Borel proper coloring ¢ of D. Now define Ay = {z € X : ¢(z) = 0}, and,
having defined A,,, let A,,+1 = {x € X : ¢(z) = n+1 and N™"(2)N(AgU---UA,) =
0}. Write A = U, ey An. Then A is Borel. We claim A contains no dicycles.

Otherwise, let C' = (zg,21,...,2r = o) be a dicycle in A. If k = 2, then assume
without loss of generality that ¢(zo) > c¢(x1). Then N™(z0) N A,y # 0, so that
ro ¢ Ac(z,), a contradiction. If k > 2, then let o = max{c(xo), c(x1),...,c(xr_1)}.

Then for some i < k, ¢(z;) = a. If N™(z;) = NT(z;), then since c(z;) > c(zi41)
and since ;41 € Ac(g,,)s Ti ¢ Ac(a,), a contradiction. Similarly, if N™In () =
N~ (x;), then since c¢(z;) > c(x;-1) and since ;1 € Ac(y, ), Ti & Ac(a,)-

We claim also that, for each # € X, either € A or there is y € N™"(z) N A.
If 2 ¢ A, then @ ¢ A.y), so c(x) > 0 and N™"(z) N (Ag U -+ U Acz)_1) #
(). Therefore, er“i[“X\ Al () < d. So by the inductive hypothesis, there is a Borel
dicoloring ¢’ : (X \ A) — {0,...,d} of D[X \ A]. Now define a Borel dicoloring ¢
of Dby co(z) = (z)if e € X\ Aand ¢o(z) =d+1if z € A O



6 CECELIA HIGGINS

Next, we show that any locally finite Borel digraph is Borel (degree-plus-one)-
list-dicolorable. For the proof, we first separate the vertex set of the underlying
graph into countably many independent sets Ag, A1,.... Then we list-dicolor the
independent sets in order, beginning with Ay. After we have list-dicolored Ag U
-+ U A, we update the list assignments of each vertex z € A, 11 by removing the
colors which appear among both the out-neighbors and the in-neighbors of x.

Theorem 3.2. Let D be a locally finite Borel digraph on a standard Borel space
X. LetY be Polish, and let L : X — [Y]<* be a Borel list assignment such that
|L(z)| > d™®*(z) for all x € X. Then D has a Borel L-dicoloring. In particular,
D is Borel (degree-plus-one)-list-dicolorable.

Proof. Since D is locally finite, by Proposition 4.3 in [KST99], there is a countable
Borel proper coloring ¢ of D. For each n € N, define 4, = {z € X : ¢(z) = n}.
Now let <y be a Borel linear ordering on Y, and define ¢y : Ag — Y by letting
¢o(z) be the <y-least element of L(z) for each x € Ay.

For each ¢ € N, write B; = Uj<i Aj. Let n > 0, and assume that, for each i < n,
there are a list assignment L; : A; — [Y]<°° and a Borel function ¢; : B; — Y such
that the following conditions obtain:

Lo(x) = L(z) for all z € Ay;

¢i | Bj =cj for all j <i;

¢; is a Borel L-dicoloring of D[B;];

Lit1(z) = L(z) \ {a € Y : there exist y, 2z € B; such that y € N*(z),2 €
N~ (x), and ¢;(y) = ¢i(z) = o} for all x € A;11; and

* |Lit1(x)| > dpix g, () for all 2 € Ajpy.

We proceed to define a list assignment L, 41 : Ap+1 — [Y]<° and a Borel function
Cn+1 : Bpny1 — Y such that:
(1) epg1 [ Bi=¢; for all i <n;
(2) c¢py1 is a Borel L-dicoloring of D[B1];
(3) Lypti1(z) = L(z) \ {« € Y : there exist y,z € B, such that y € N*(z),2 €
N~ (z), and ¢, (y) = cn(z) = a} for all z € A,,41; and
(4) |Lpy1(x)] > dgf[")’;\Bn](x) forall z € A, 11.

Let x € A, 41, and define L, 1(x) as in (3) above. Note that
dpix\p,) () = max{d" (z) — [N (2) N Bu|,d" (z) — [N (z) N Bn}
and that
Lo (2)] > |L(2)| — min{| N (2) N By, N (z) N Bal}-

Without loss of generality, assume max{d*(z) — |[N*(z) N By,|,d”(z) — [N~ (z) N
By|} = dt(xz) — [NT(2) N By|. Then

dt(z) — INT(2) N B,| < d™(z) — |[NT(z) N B,
<L) — 1 - |N*(z) 1 Byl
< |L(x)| =1 —min{|NT(2) N B,|, N~ (z) N B,|}
< |Lnya ()] = 1.
So, d‘B?)’;\Bn}(a:) < |Lpt1(x)|. In particular, |L,+1(z)| > 1. Then for any « € By,41,

we may define ¢, 1(x) = ¢, (2) if © ¢ A,tq and ¢,11(2) = @, where « is the <y-
least element of L,i1(z), if x € A,41. It is then easy to check that conditions
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(1), (3), and (4) above are satisfied by L,11 and ¢,41. To see that condition (2)
is satisfied, assume for contradiction that there is a ¢, 1-monochromatic dicycle
C = (xg,x1,...,2, = x0) In Bpy1. If &k = 2, then without loss of generality,
assume ¢(xg) > c(z1). Then z1 € NT(x9) NN~ (20) N Ac(ay), 50 that L, (zo)
does not contain ¢, 1(x1), which is a contradiction since c¢,41(zg) = cpy1(z1). If
k > 2, then there is i < k such that c¢(z;) > c(x;—1) and ¢(z;) > ¢(z;41). Then if we
set @ = cpy1(®i—1) = cny1(@it1), we have a ¢ Le(s,)(2;), which is a contradiction
since ¢py1(x;) = a.

Now define ¢’ : X — Y by ¢/ = J,cycn- Then ¢’ is a Borel L-dicoloring of
D. ]

4. MEASURABLE BROOKS’S THEOREM FOR DICOLORINGS

In this section, we prove Theorem and Theorem The proofs rely heav-
ily on the one-ended spanning forest technique developed by Conley, Marks, and
Tucker-Drob in [CMTI6]. Recall that, if f is a function on a set X, then f is
one-ended if there is no sequence (z,)nen such that, for each n € N, f(z,11) = xp.
Note that one-ended functions do not have fixed points.

We first show that, if a digraph D of bounded degree admits a Borel one-ended
function, then D is Borel degree-list-dicolorable. The proof combines the proof of
Theorem with the proof of Lemma 3.9 in [CMTI6]: First, given a Borel one-
ended function f, we separate the graph into layers using the ranks provided by f.
Within each layer, we then construct a finite sequence of sets that are independent
in the underlying graph and that cover the entire layer. Then we list-dicolor the
independent sets in order, removing from the list-assignment of each vertex in the
subsequent independent set the colors which appear already among both its out-
neighbors and its in-neighbors.

Theorem 4.1. Let D be a Borel digraph of bounded degree on a standard Borel
space X with no isolated vertices, let B C X be Borel, and let f : B — X be a
one-ended Borel function whose graph is contained in D. Let d € N be such that
d™>(z) < d for all x € X. Let'Y be Polish, and let L : X — [Y]<*> be a Borel
list assignment such that |L(x)| > d™**(x) for all x € B. Then D[B] has a Borel
L-dicoloring. In particular, D is Borel degree-list-dicolorable.

Proof. For each n € N, write f*[B] = {& € X : there exist z1,22,...,2, €
B such that f(x1) = z and f(x;41) = x; for all i <n}. Let B, = Bn (f"[B]\
f"T1B]). Note that, if n # m, then B, N By, = 0. We claim that B = (J,,c Bn-
Assume for contradiction that there is € B\ U, cy B". Then x € f"[B] for all
n € N. So the set fN(z) = {y € B : for some n > 1, there are x1,2s,...,7,_1 €
B such that f(x1) =z, f(zi41) = x; for all i <n, and f(y) = z,—1} is an infinite,
finitely branching tree with root z. By Konig’s lemma, there is an infinite branch
(Yn)nen through f~N(x). Then for each n € N, f(yn11) = yn, contradicting that f
is one-ended.

We proceed to L-dicolor B one layer at a time. First, we color By. Note that
D[Bo] is an undirected graph in which each vertex has degree at most 2d, since
d™*(z) < d for all € B. So, by Proposition 4.2 in [KST99], there is a Borel
maximal D-independent set BY C By. Now, let 0 < i < 2d — 1, and suppose Bg -
By has been defined for each j < ¢ such that Bg is a Borel maximal lND-independent
set in By \ (BJUBAU---UBJ™"). Then let B5™ be a Borel maximal D-independent
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set in By \ (BUBJU- - -UB}). Finally, note that, if z € By\ (BJUBjU---UB24™1),

then dmaéo\(BouBlu B2~ 1)]( 2) = 0. Then B3? = By \ (Bf UBjU--- U Bgd_l)

is a Borel D- independent set. For each i < 2d, write Byt = 0 if i = 0 and
By =,.; B} if i > 0, and write B5' =, BJ.

Now note that, for each = € By, dg?go]( x) = 0. Since D has no isolated vertices,
and since |L(z)| > dE**(x) for each z € X, it follows that \L( )] > 1 for each
z € BY. So, by Theorem [3.2] there is a Borel I- dlcolormg ¢y of D[BY]. Now let
1 < i < 2d, and suppose Borel L-dicolorings ¢ : Bs? — Y have been defined for
all 7 <1 so that the following conditions hold:

o If j/ < j, then & | (BS7') = ¢} ; and
e For any 1 < j < and for any = € B 0, if  has an out neighbor y € B<]
and an in-neighbor z € By with o = ¢ ' (y) = ¢! (2), then ¢, (z) # o

Then for each x € Bé“, let
Lit (x) = L(z) \ {a € Y : there are y, z € B5' such that c}(y) = cf(z) = a}.
Then, since = has at least one neighbor, namely f(x), not contained in By, we have
LT (@) 2 [L(2)] = (d™(x) — 1)
> d™ () = (d™(z) — 1)
=1,

so that 0 = dm?}ﬂ]( x) < |LiT(xz)|. Therefore, again by Theorem there is a

Borel Li"!-dicoloring ¢ of D[B{*!]. Define ¢i™ : BS'"™ — Y by c”‘l( ) = c(x) if
x € Bt and ¢t (x) = ¢f(x) otherwise. Finally, define ¢y = c2%.

We now proceed to dicolor By. The procedure is similar to that for dicoloring
By; we construct D—independent sets BY B}, ..., B%d as above and color one set at
a time to obtain a coloring ¢; of D[B;]. However, in this case, if z € BY, then

LY(z) = L(x) \ {o € Y :there exist y, 2 € By such that y € N (z), 2 € N~ (),
and ¢o(y) = co(2) = a}.

Then since x has at least one neighbor, namely f(z), not in By, we have 0 =
dg?gol( z) < |LY(z)|, so that D[BY] may be L{-dicolored. The sets Bz, Bs,... are
dicolored similarly by functions co, c3, .. ..

Now let ¢ = J,cy¢n- Then c is Borel. Assume for contradiction that there
is a c-monochromatic cycle C' = (xg,x1,...,2x = xo) in D. If k = 2, then let
n € N be maximal with C' N B,, # (), and let j < 2d be maximal with C'N BJ, # ().
Without loss of generality, suppose o € Bi. Then z; ¢ Bj. So, c(z1) ¢ L (o), a
contradiction since ¢(zo) = ¢(z1). If & > 2, then again let n € N be maximal with
CNB, # 0, and let j < 2d be maximal with C N BJ # (). Then there is i < k
such that x; € BJ. It follows that z;_1,7;11 ¢ BJ. Then either x;_1 € B,, for
some m < m, or T;_1 € Bﬁ: for some j' < j, and similarly for z;,1. In any case,
it follows that o = ¢(z;_1) = ¢(z441) is not an element of L7 (;), a contradiction
since ¢(x;) = a. Thus, ¢ is a Borel L-dicoloring of D. O

We will use the following proposition of Conley, Marks, and Tucker-Drob to
construct one-ended Borel functions. For a graph G on a set X and for A C X, we
use the notation [A]s to denote the set of all points € X such that « has a path
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through G to some point of A. For a vertex z of G, we write [z]g for [{z}]q. Also,
if D is a digraph, then we write [A]p for [A] 5.

Proposition 4.2 ([CMT16], Proposition 3.1). Let G be a locally finite Borel graph
on a standard Borel space X, and let A C X be Borel. Then there is a one-ended
Borel function f : ([Alg \ A) — [A]¢ whose graph is contained in G.

Our next step towards proving Theorem is to show that digraphs of bounded
degree are Borel degree-list-dicolorable on connected components which contain
vertices whose minimum degree is smaller than the maximum degree. To construct
the dicoloring, we first reserve a set of small-minimum-degree vertices that is inde-
pendent in the underlying graph and dicolor the vertices outside of this reserved set
using a one-ended function. Then, since each reserved vertex has small minimum
degree, there is at least one color in its list of available colors which does not appear
among both the out-neighbors and the in-neighbors of the vertex; then the initial
dicoloring can be extended to this vertex. The proof resembles the first part of the
proof of Theorem 1.2 in [CMTT6].

Proposition 4.3. Let D be a Borel digraph of bounded degree on a standard Borel
space X, and let B = {z € X : d™"(x) < d™(x)}. Then D|[B]p] is Borel
degree-list-dicolorable.

Proof. Let Y be Polish, and let L : X — [Y]<* be a list assignment such that
|L(z)| > d™®*(z) for each x € X. Since D is of bounded degree, the underlying
graph D is also of bounded degree. Therefore, by Proposition 4.2 in [KST99], there
is a Borel maximal D-independent set B’ C B. Since [B']lp = [B]p, by Proposition
there is a one-ended Borel function f : ([B]p \ B’) — [B]p whose graph is
contained in D. Then by Theorem 4.1, D[[B]p \ B’] has a Borel L-dicoloring.
Now we extend ¢ to a function ¢ : [B]p — Y by letting ¢/(z) = ¢(x) if = ¢ B';
if z € B, then let <y be a Borel linear ordering of Y, and define ¢/(x) to be the
<y-least color @ € L(z) such that there are no y € N*(z) N ([B]p \ B’) and 2z €
N~ (z)N([B]p\B’) with c¢(y) = ¢(z) = a. Such an « exists since d™"(z) < d™**(z),
so that at most d™**(x) — 1 colors from L(x) appear in ¢[NT(x)]N¢[N~(x)]. Then
¢’ is a Borel L-dicoloring of D[[B]p]. O

From now on, we say that D is Eulerian if, for each vertex, its in-degree and
out-degree are the same. So, the proposition above demonstrates that, if D is a
bounded-degree Borel digraph that is not Eulerian, then D is Borel degree-list-
dicolorable.

As a corollary to the proof of Proposition we obtain the following.

Corollary 4.4. Let D be a Borel digraph on a standard Borel space X, and let d
be such that d™™(x) < d for allz € X. Let B = {z € X : d™"(z) < d}. Then
DI[B]p] is Borel d-dicolorable.

Proof. Take B’ and c¢ as in the proof of the previous proposition, and let L(z) =
{0,1,...,d — 1} for all z € X. Then extend ¢ to a function ¢ on X by setting
d(z) = c(x) for all z ¢ B’; for each x € B’, let ¢/(z) = a, where « is the least color
such that « does not belong to both N*(z) N ([B]p \ B’) and N~ (z) N ([B]p \ B').
Such an « exists since d™"(x) < d. d

Next we work towards proving Theorem [I.8] which will be used in the proof of
Theorem In particular, we show that digraphs of bounded degree are Borel
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degree-list-dicolorable on connected components which are not Gallai trees. The
proof is similar to the proof of Theorem 4.1 in [CMTI16]. The argument again
involves reserving a set B” of points that belong to biconnected sets which do not
induce dicycles, odd symmetric cycles, or complete symmetric digraphs and which
are sufficiently well-separated in the underlying graph. Once a degree-list-dicoloring
a of the points outside B” has been constructed, the points of B” will be colored in
a two-step procedure: First, the values of a are changed on certain neighborhoods
of the points in B”; then, the dicoloring that results from changing a on these
neighborhoods will be extended until all points are colored. The separation between
the points of B” will guarantee that the alterations made to a do not interfere with
one another.

The biconnected sets to which the points of B” will belong will be required to
have the following form.

Definition 4.5. Let D be a digraph on aset X. Let G = (zg, z1,..., 25 = x0) € X
be a cycle in D, so that, for each i < k, x; is D-adjacent to 241 and, for all ¢, j < k,
x; # x5 if i # j. Then G is a good cycle if the following two conditions hold:
(1) There is some orientation of the arcs in G that does not yield a dicycle; and
(2) DI[G] is not an odd symmetric cycle or a complete symmetric digraph.

The following proposition can be deduced from the proof of Lemma 2.1 in
[HM11]. It shows that any “good” biconnected set of size at least 3 contains a
good cycle.

Proposition 4.6 ([HMII)). Let D be an FEulerian digraph on a set X, and let
M C X be a finite biconnected set in D such that |M| > 3 and M does not induce
a dicycle, an odd symmetric cycle, or a complete symmetric digraph. Then there is
a good cycle contained in M.

Consider an Eulerian digraph D. Let L be a list assignment such that |L(z)| >
d™a*(x) for all vertices x, and assume that all vertices of D except one vertex xg
have been L-dicolored according to a function c. If |L(zg)| > d, or if |L(zg)| = d
and the number of colors in L(z() that appear among both the in-neighbors and
the out-neighbors of xg is less than d, then the coloring ¢ may be extended to zg by
defining ¢(zp) to be the least color in L(xy) which does not appear among both the
out-neighbors and the in-neighbors of xy. Otherwise, the following proposition of
Harutyunyan and Mohar shows that, by uncoloring any neighbor y of z¢ and then
coloring xo with the color that y previously had, we obtain a new L-dicoloring ¢’
of DIX\ {y}].

Proposition 4.7 ([HM11], Lemma 2.2). Let D be an Eulerian digraph on a set X,
and let L be a list assignment such that |L(z)| > d™**(z) for allz € X. Letxg € X,
and suppose ¢ is an L-dicoloring of D[X \ {zo}] such that, for each a € L(xo), xo
has both an out-neighbor and an in-neighbor of color a.. Let y be a neighbor of xg,
and define ¢ on X \ {y} by /(x0) = c(y) and ¢'(z) = ¢(2) if z # xo. Then ' is an
L-dicoloring of D[X \ {y}].

The final result that we need before proving Theorem can be deduced from
Lemmas 2.4 and 2.5 in [HMII]. It shows that, if G is a good cycle and all vertices
of D except one vertex in G have been L-dicolored, then by repeatedly uncoloring
and then coloring pairwise adjacent vertices in G as in the statement of Proposition
we reach a vertex y € G for which some element of L(y) does not appear among
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both the out-neighbors and the in-neighbors of y. At this stage, the L-dicoloring
may be extended to y.

Proposition 4.8 ([HM11]). Let D be an Eulerian digraph on a set X, and let L
be a list assignment for D such that |L(z)| > d™**(x) for allx € X. Let G C X be
a good cycle. Let x € G, and suppose that there is an L-dicoloring a of D[X \ {z}].
Then there are a sequence (x = xo,T1,...,%) of vertices in G and a sequence
(a =ap,a1,...,ar) of functions such that, for each i < k:
(1) z; is D-adjacent to Tix1;
(2) a; is an L-dicoloring of D[X \ {x;}], and ay is an L-dicoloring of D[X \
{z1});
(3) For each a € L(x;), « € a;[N~ (z;)] Na;[NT(z;)];
(4) a;y1 is obtained from a; by uncoloring x;11 and coloring x; with a;(x;1+1)
(i.e., through an application of Proposition ; and
(5) There is some color a € L(xy) such that either o ¢ ar[N~(xy)] or a ¢
ag[NT(xy)].

Finally, recall that the boundary of a set S in the digraph D = (X, A), denoted
08, is the set 9S = {x € X : ¢ S but there exists y € S such that z D y}.
Now we prove Theorem [I.8] We restate the theorem here for convenience.

Theorem 4.9. Let D be a Borel digraph of bounded degree on a standard Borel
space X. Let L be a Borel list assignment for D such that |L(z)| > d™®(z) for all
x € X, andlet B={x € X : D[[z]p] is not a Gallai tree}. Then D[B] has a Borel
L-dicoloring. That is, D[B] is Borel degree-list-dicolorable.

Proof. Note that, by Theorem we may assume that d™®(z) = d™"(z) for all
r € X, that is, that D is Eulerian.

Throughout the proof, fix d € N such that d™**(z) < d for all z € X. Also, we
shall call a biconnected set S bad if the sub-digraph that S induces is a dicycle, an
odd symmetric cycle, or a complete symmetric digraph. For technical reasons, we
assume first that each block of D[B] which is not bad has cardinality at least 3.
We shall explain at the end of the proof that there is a Borel L-dicoloring of the
connected components of D[B] which have non-digon blocks of cardinality 2.

Let

[Ep]=> ={S € [X]=>°: S is contained in a connected component of D},
and let

A =1{S € [Ep]=> :each connected component of D[S] contains a block of cardinality
at least 3 which is not bad}.
Define G; to be the intersection graph on [Ep|<®°, so that S,T € [Ep|<> are

Gr-adjacent if and only if S # T and SNT # (). Then by Proposition 2 of [CM16],
there is a countable Borel proper coloring ¢y of G;. Let now

A" ={S € A:c;(SUBS) < ¢/ (TUAT) for all T € A in the same D-component as S},

and define B’ = J A’

We next prove several claims about B’. First, we need the following.

Claim 1. Let x € X. Then D[[z]p] is not a Gallai tree if and only if there is
a finite connected set T' C [x]p such that the induced sub-digraph D[T] contains a
block of cardinality at least 3 which is not bad.
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Proof of Claim 1. (=) Suppose D[[z]p] is not a Gallai tree. Then there is a
block in [z]p that does not induce a dicycle, an odd symmetric cycle, or a complete
symmetric digraph. If there is a finite such block M in [z]p, then since M has
cardinality at least 3 by the assumption at the beginning of the proof, we may take
T = M in the statement of the claim.

Otherwise, there is an infinite block M in [z]p. Now we take inspiration from the
proof of Lemma 2.1 in [HMI11]. Let y,z € M be such that d(y, z) > d+ 2; such y, z
exist because M is an infinite connected subset of a locally finite graph. Since M is
biconnected, it follows from a classical result of Whitney ([Whi32a], [Whi32b]) that
there are two internally-vertex-disjoint paths Py, P; from y to z. Note that each of
Py, Py has length at least d+2. Again since the (d+2)-neighborhood of PyU P, is a
finite set in a locally finite graph, there is some v € M such that d(v, PpUP;) > d+2.
Since M is connected, there is a path @ = (y = qo,q1,- .., qx = v) through M from
Yy to v.

Case 1: @) contains some point of Py U P; besides y. Let i < k be maximal such
that ¢; # y and ¢; € Py U P;, and write ¥’ = ¢q;. Since M is biconnected, there is a
path R = (y = ro,71,...,7 = v) through M from y to v that is internally-vertex-
disjoint from Q. Let j < I be maximal such that r; € Py U Pi, and write y” = r;.
Then 4/, y” are distinct points of Py U P;, and there are three internally-vertex-
disjoint paths from y’ to y”’: These are the two paths Sy, S1 arising from the fact
that ', 3" are distinct points of the cycle Py U Py, together with the concatenation
Sy of the sub-path of @ from 3’ to v and the sub-path of R from v to y”. Notice
that the length of Sy and the length of at least one of Sy, S are at least d + 2. So,
two of the three paths Sy, S1, 52 form a cycle C of even length with cardinality at
least d + 2. Since each vertex of D has maximum degree at most d, the induced
sub-digraph D[C] is not a complete symmetric digraph. So, if D[C] is not a dicycle,
then we may take T'= C' in the statement of Claim 1. If D[C] is a dicycle, then we
may take T = S() U Sl U SQ.

Case 2: The only point of Py U P; in @ is y. Again since M is connected, there
is a path R through M from z to v. If R contains some point of Py U P, besides z,
then we may proceed as in Case 1 by replacing y with z and @ with R. Otherwise,
there are three internally-vertex-disjoint paths Py, P;, and RU @ (with repetitions
removed) between y and z. Note that each of these paths has length at least d + 2.
Then we may again proceed as in Case 1 by replacing Sy, S1, Sz with Py, P, RUQ.

(<) Suppose there is a finite connected set T' C [z]|p such that D[T] contains
a block M of size at least 3 which is not bad. If there is an infinite block in
[#]p which contains M, then clearly D[[z]p] is not a Gallai tree, and the proof is
complete. If the only blocks in [z]p which contain M are finite, then since M has
cardinality at least 3, there is no block in D containing M that induces a dicycle,
an odd symmetric cycle, or a complete symmetric digraph. So D[[z]|p] is again not
a Gallai tree. [

Now we claim B’ C B. Let x € B’. Then there is S € A’ such that x € S.
Because each connected component of D[S] contains a block of size at least 3 which
is not bad, it follows from Claim 1 that D[[z]p] is not a Gallai tree. So z € B.
Furthermore, Claim 1 implies that each connected component of D[B] meets B’.

Next, we show that each connected component of D[B’] is finite. Let x € B’;
then there is some S € A’ such that x € S. We claim [z]pp C (SUOS), which is a
finite set. Assume for contradiction that there is some y € B’ such that y ¢ SUJS,
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but there is a path (z = xg,z1,...,ox = y) through D[B’] from x to y. Since
y ¢ SUIS and = € S, there is i < k such that x; € 95 and x;41 ¢ SUJIS. Let
T € A’ be such that ;41 € T. Then (SUS) N (T'UAJT) contains x;, so that
cr(SUOS) # ¢;(T'UIT). This is a contradiction since S,T € A’ belong to the
same connected component of D.

Note now that each connected component C' of D[B’] contains a biconnected set
M of size at least 3 that is not bad. Let <x be a Borel linear ordering of X; then
we define M¢ to be the lexicographically least such M, assuming without loss of
generality that the elements of any finite subset of X are listed in increasing order
according to <x. Further, we may assume that, if C,C’ are distinct connected
components of D[B’], then M¢ and Mg are such that (M¢c U OMe) N (Me: U
OMc:) = 0; this is because, if S C C and T C C’ are elements of A’, then
SUIS #TuUadT, so that (SUIS)N(TUIT) = 0.

For each connected component C' of D[B’], by Proposition there is a good
cycle G in M¢; let Go be the lexicographically least such cycle according to
<x, and let x¢c be the <x-least element of G¢. Finally, set B” = {x € X :
there is a connected component C' of D[B’] such that x = z¢}. Then B” is Borel,
and [B"]p = [B']p = B.

So, by Proposition there is a one-ended Borel function from (B\ B”) to B.
Then by Theorem ere is a Borel L-dicoloring a of D[B\ B"].

We proceed to define a Borel L-dicoloring ¢’ of D[B]. For each z € B,
let C' be the connected component of D[B’] witnessing x € B”, and let (z =
X0, X1, ..., %), (@ = ag,ai,...,a;) be as in Proposition this proposition may
be applied since G¢ is a good cycle and x = ¢ € G¢. Then the L-dicoloring
ar may be extended to xy, since there is some color a € L(xy) such that either
a ¢ ap[N~(zy)] or a ¢ ax[NT(zy)]; write ac for this extension of aj. Then define
a:B—=Y bydx)=ac(z)if x € Ge and d'(x) = a(x) if x ¢ G¢ for any C.

We claim that o’ is a dicoloring of D[B]. It is enough to show the following.

Claim 2. Let z,y € B” be distinct. Let ¢ be a dicoloring of D[X \ {xz,y}]
such that, for each @ € L(z), @ € ¢[N~(2)] N ¢[N*(z)], and for each f € L(y),
B € c[N~(y)]Nc[NT(y)]. Let 2’ be a neighbor of z, and let 3’ be a neighbor of y.
Then the function ¢’ defined on X\ {z’,4'} by ¢(2) = ¢(2) if z # z,y, (z) = ('),
and ¢'(y) = c¢(y') is an L-dicoloring of D[X \ {2/, y'}].

Proof of Claim 2. Note first that, since z,y € B” are distinct, then if C,C’
are the connected components of B’ witnessing that z,y € B”, respectively, then
(Ge UIGe) N (Ger UG ) = 0. Now assume for contradiction that there is a
c’-monochromatic dicycle K. Then K cannot contain =’ or 3/, since these vertices
are uncolored. Further, K must contain either = or y; otherwise, there is a c-
monochromatic dicycle, contradicting that c is a dicoloring. Suppose z € K. Then
d(z) = c¢(a’). Since, for each o € L(z), @ € ¢[N~(x)] N ¢[NT(z)], and since
(G UOGe) N (Ger UIGer) = () so that y and 4’ are not neighbors of x, it follows
that there is exactly one neighbor z of = such that ¢/(x) = ¢/(z). Therefore, any
dicycle passing through x either contains points of different colors or contains an
uncolored point. So, no dicycle containing z is monochromatic. A similar argument
shows that no dicycle containing y is monochromatic. [

This completes the proof in the case where each block of D[B] that is not bad has
cardinality at least 3. For the other case, let By = {x € X : [z]p has a non-digon block of cardinality 2}.
As above, take a Borel set A’ of non-digon blocks in By such that, if M, M’ are
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elements of A’ with M UdM # M’ UOM’, then (M UOM) N (M'UOM’) = () and
such that A" meets each connected component of D[By]. Then set B’ =JA’. Use
a Borel linear ordering to select from each connected component C' of B’ a point z¢
that belongs to a non-digon block of cardinality 2, and collect these points x¢ into
a set B”. Then use Theorem [4.1|to produce a Borel L-dicoloring a of D[B, \ B"].
To color the points of B”, note that, if z € B”, then there is some neighbor y of =
such that {z,y} is a maximal biconnected set that is not a digon. In particular, no
dicycle contains both = and y. So, if L(z) contains a(y), then a may be extended
to x by setting a(z) = a(y). Otherwise, there is some color in L(z) which does not
appear among both the out-neighbors and the in-neighbors of =, and so again a
can be extended to x by setting a(x) to be the least such color. O

Now we have nearly all the tools required to prove Theorem [I.6] We next need
a result of [CMT16] which shows that, modulo a null set or a meager set, an
undirected acyclic graph in which no connected component has 0 or 2 ends admits
a one-ended Borel function. Recall that, if G is a locally finite graph on a set X,
then a set B C X is G-invariant if, whenever z € B and there is a path from
z to y through G, then y € B. If D is a digraph on X, then we say B C X
is D-invariant if B is D-invariant. A ray in G is an infinite sequence (2, )nen of
pairwise-adjacent vertices in G such that z,, # x,, whenever n # m. Two rays
ro,T1 in G are end-equivalent if, whenever S C X is finite, rp and r; eventually lie
in the same connected component of G[X \ S]|. End-equivalence is an equivalence
relation on the set of rays; the equivalence classes are called ends.

Theorem 4.10 ([CMT16], Theorem 1.5). Let G be a locally finite acyclic graph
on a standard Borel space X. Assume no connected component of G has either O
or 2 ends.

(1) For any Borel probability measure u on X, there are a u-conull, G-invariant
Borel set B and a one-ended Borel function f : B — X whose graph is
contained in G.

(2) For any Polish topology T compatible with the Borel structure on X, there
are a T-comeager, G-invariant Borel set B and a one-ended Borel function
f: B — X whose graph is contained in G.

The proof of the following theorem resembles the proof of Theorem 4.2 in
[CMT16].

Theorem 4.11. Let D be a Borel digraph of bounded degree on a standard Borel
space X. Assume that D has no finite connected components that are Gallai trees
and no infinite connected components that are 2-ended Gallai trees. Then:

(1) For any Borel probability measure p on X, there is a p-conull, D-invariant
Borel set B such that D[B] is Borel degree-list-dicolorable.

(2) For any Polish topology T compatible with the Borel structure on X, there
is a T-comeager, D-invariant Borel set B such that D[B] is Borel degree-
list-dicolorable.

Proof. We prove (1); the proof of (2) proceeds in the same way.

Let L be a list assignment such that |L(z)| > d™**(x) for all x € X. By the
assumptions in the theorem statement together with Theorem [£.9] we may assume
without loss of generality that each connected component of D is an infinite Gallai
tree that does not have 2 ends. Then each block in D induces a finite dicycle,
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a finite odd symmetric cycle, or a finite complete symmetric digraph. So, in the
underlying graph D, each block induces either a cyclic graph or a complete graph.

Now let E denote the set of edges of D. Note that each element of F is contained
in a unique block. We now create a subset ' C E as follows. Let <x be a
Borel linear ordering of X, and let <g be a Borel linear ordering of F. From
each block of D that induces a cyclic graph, remove the < pg-least edge; from each
block M of D that induces a complete graph of cardinality at least 3, write M =
{zo,x1,..., 21} in ascending order according to <x, and then delete all edges of
M except {xq,z1}, {z1,22},...,{zK, xo} before also deleting the <pg-least edge in
the list {xo,x1}, {x1,22}, ..., {xk,z0}. Now define a sub-digraph D’ of D whose
vertex set is X and whose arc set is A’, where (z,y) € A" if and only if (z,y) € A
and {z,y} € E'.

We prove several claims about D’. Note first that, if =,y are adjacent in D,
then there is a path from z to y through D’; indeed, the edge between x and y
in the underlying graph D determines a unique block M. If M has cardinality 2,
then the edge {x,y} belongs to E’. Otherwise, if D[M] is a cycle, then there is a
path through M from z to y which does not contain the edge {z,y}; if D[M] is a
complete graph, then D’ [M] is a cycle missing just one edge, so that again there is
a path through M from z to y which does not contain the edge {x,y}. This implies
that no connected component of D’ is 0-ended, since no connected component of
D is 0-ended. This also implies that, if B C X is D’-invariant, then B is also
D-invariant.

Next, to see that D’ is acyclic, note that any cycle C in D induces either a cyclic
graph or a complete graph. If C induces a cyclic graph, then some edge of C is
deleted in passing from D to D’. If C induces a complete graph, then let M be the
maximal complete graph containing C. Then at least one of the edges of M that
is removed in passing to D’ is an edge of C.

Finally, to see that no connected component of D’ is 2-ended, note first that the
number of ends in a connected component of D is less than or equal to the number
of ends in the corresponding connected component of D’. Suppose now that there
are two rays r, 7’ in the same connected component of D’ such that, for some finite
set S C X, r\ S and '\ S do not eventually lie in the same connected component
of D'[ X\ S]. Let T = SU|{M € [Ep]<> : M is a block containing a point of S}.
Then it is easy to prove that r \ T and ' \ T do not eventually lie in the same
connected component of D[X \ T]. So, since no connected component of D is
2-ended, no connected component of D’ is 2-ended.

It now follows from Theorem that there are a p-conull, D’-invariant Borel
set B and a one-ended Borel function f : B — X whose graph is contained in D’.
Note that B is D-invariant by the claim above and that the graph of f is contained
in D. By Theorem D[B] has a Borel L-dicoloring. O

Finally, we prove Theorem We restate the theorem here for convenience.

Theorem 4.12. Let D be a Borel digraph on a standard Borel space X. Suppose
there is d > 3 such that d™**(z) < d for all z € X, and assume D does not contain
the complete symmetric digraph on d + 1 vertices. Then:

(1) For any Borel probability measure p on X, there is a p-measurable d-
dicoloring of D.
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(2) For any Polish topology T compatible with the Borel structure on X, there
18 a T-Baire-measurable d-dicoloring of D.

Proof. By Corollary we may assume that d™*(z) = d™"(z) = d for all x € X.
Note that, if all the vertices in a finite Gallai tree have out-degree and in-degree
equal to d, then the Gallai tree is the complete symmetric digraph on d vertices.
Also, if all the vertices in an infinite 2-ended Gallai tree have out-degree and in-
degree equal to d, then either d = 1 and the tree is a one-directional bi-infinite line,
or d = 2 and the tree is a symmetric bi-infinite line. Since d > 3, it follows from
Theorem that D has a (u- or 7-)measurable d-dicoloring. ]

5. FUTURE DIRECTIONS

Here we outline a potential connection between descriptive digraph combina-
torics and LOCAL algorithms. Bernshteyn’s seminal paper [Ber23] reveals a deep
connection between descriptive graph combinatorics and LOCAL coloring algo-
rithms, which are efficient distributed algorithms for graph coloring. In particular,
deterministic LOCAL coloring algorithms can be used to produce Borel graph col-
orings ([Ber23], Theorem 2.10), and randomized LOCAL coloring algorithms can be
used to produce (p- or Baire-)measurable graph colorings ([Ber23], Theorem 2.14).

The main tool in the proof of the latter result is a measurable version of the
Lowvdsz local lemma, an important theorem of probability theory. Let p < 1, and
consider a set S of events, each of which has probability at most p. Suppose that
each event in S depends on only a small number d of other events in S. If p and d
satisfy a certain relationship (in particular, if ep(d 4+ 1) < 1), then the local lemma
ensures that the probability that none of the events in S occurs is nonzero. In the
graph coloring context, we may, loosely speaking, take S to be the set of events
in which some vertex in a graph shares a color with one of its neighbors; for a
graph of bounded degree, each such event has probability bounded away from 1.
Furthermore, due to the local nature of the problem of producing a proper coloring,
each event in S depends on only a small number of other events in S. Bernshteyn’s
measurable local lemma then ensures the existence of a measurable coloring in
which none of the events obtains, that is, a measurable proper coloring.

We would like to explore whether there is a digraph version of Bernshteyn’s
result that randomized LOCAL algorithms yield measurable graph colorings. One
strategy would be to attempt to apply the measurable local lemma to obtain mea-
surable dicolorings. However, unlike the problem of producing a proper coloring,
the problem of producing a dicoloring is not a local problem; directed cycles can
be arbitrarily long. So, a direct application of the measurable local lemma is not
possible. Instead, we ask the following question.

Question 5.1. Is there an extension of Bernshteyn’s measurable local lemma that
is amenable to digraph combinatorics?
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