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Abstract. A meromorphic solution to the Burgers equation with complex viscosity is analysed.
The equation is linearized via the Cole—Hopf transform which allows for a careful study of the
behaviour of the singularities of the solution. The asymptotic behaviour of the solution as the
dispersion coefficient tends to zero is derived. For small dispersion, the time evolution of the
poles is found by numerically solving a truncated infinite-dimensional Calogero-type dynamical
system. The initial data are provided by high-order asymptotic approximations of the poles at the
critical time ¢, for the dispersionless solution via the method of steepest descents. The solution
is reconstructed using the pole expansion and the location of the poles. The oscillations observed
via the singularities are compared to those obtained by a classical stationary phase analysis of
the solution as the dispersion parameter 0*. A uniform asymptotic expansion as— 0"

of the dispersive solution is derived in terms of the Pearcey integral in a neighbourhood of the
caustic. A continuum limit of the pole expansion and the Calogero system is obtained, yielding
a new integral representation of the solution to the inviscid Burgers equation.

AMS classification scheme numbers: 35A20, 35A40, 35B40, 35Q53, 41A60

1. Introduction

Many nonlinear dispersive systems exhibit rapid oscillations in their spatial-temporal
dependence in the regime of small dispersion. Examples include partial differential equations
(PDEs) such as the Korteweg—de Vries (KdV) equation, the nonlineab&oclger equation
[16,17,24], and finite-difference equations such as the Lax—Wendroff method (see also
[25]). Although a fascinating mathematical phenomenon, these oscillations are generally
quite difficult to describe and control and are an obstacle to the efficiency of numerical
and analytical methods. A complete analysis of oscillations would include a slowly varying
description of their shape, amplitude, wavelength and phase. However, these features have
been successfully analysed only for a few completely integrable systems such as the KdV
equation.
The Burgers equation with an imaginary ‘viscosity’ coefficient ie, given by

oy W %Y

Jat T 0x - e ax2’
was first described by Dobrokhot@t al in [15]. It is perhaps the simplest example of a
nonlinear dispersive equation but has received surprisingly little attention. This equation
has the same linear parf(— iey, ) as the Scliddinger equation, and as such can be

e=>0 (1.1)
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referred to as the Scbdinger equation with convective nonlinearity. We do not know of
any applications in which this equation arises, and it does not seem to have a Hamiltonian
structure. Moreover, the system is nonlinearly ill posed at least for certain complex values
of v, since singularities can occur in finite time. Nevertheless, we believe that this equation
is an interesting mathematical prototype for dispersive (imaginagr mixed dissipative—
dispersive systems (compley. In particular, this work demonstrates the coexistence of
concentration and oscillations in the dispersive dynamics. Such phenomena were seen in
numerical simulations of the ID focusing nonlinear Sitinger equation [22] but the validity

of those numerics could not be established. For an introductory discussion on dispersive
phenomena, see [33].

In this paper, we present a numerical and analytic study of solutions to (1.1) for complex
values ofv. The solution to equation (1.1) can be solved using the Cole—Hopf nonlinear
transform which yields an integral representation involving the heat kernel. For small
[v] = €, the resulting formula fonp, can be approximated using ttgtationary phase
method. A new method used to compute the solution is found thrqadg dynamics
This method is based on obtaining the time-dependent locations of the complex poles of the
functiony,, by solving an infinite system of coupled ordinary differential equations (ODES).
The solutiony,, is then found by computing its Mittag—Leffler expansion which involves
the position of the poles. One can also computedirectly through afinite-difference
method at least for times before a pole hits the real axis. Finally, in the zero-dispersion (or
zero-viscosity limit)y — 0, the poles coalesce onto a branch cut, and the zero-dispersion
solution is described bigranch-cut dynamicsThis method may be of general interest as a
new (to the best of our knowledge) method for solving the inviscid Burgers equation.

These methods will be formulated in general, but they will be numerically evaluated
for a special choice of initial data, namely the cubic polynomial

W(x,0) = 4x> — x/1, (1.2)

which is chosen for its generic features for the inviscid equation [3, 18, 29]. In these initial
data,z, is positive and corresponds to the time of first singularity formation for the inviscid
problem. The cube root singularity found at the origirr at ¢, is known to be a generic
singularity for the inviscid Burgers equation. It is due to the coalescence of two conjugate
branch points of order two in the complex plane [3, 4, 8, 18]. Moreover both casef

andv # 0 can be completely analysed and, in the casg O, there is an instantaneous
generation at > 0 of a countable set of complex spatial simple poles. For these initial
data, the small-dispersior (~ 0") stationary phase approximation of the solution and its
zeros can be evaluated rather explicitly, at least:ferz,.

There are three main points to this work. First, in the purely dispersive case in which
is imaginary and small, the solutiap, of (1.1) develops rapid oscillations. Second, these
oscillations are caused by the presence of complex polgsnhich have moved close to the
real axis. This result, which is clearly demonstrated below through comparison of the pole
dynamics with the solution on the real axis, is important in providing a tangible cause for
the formation of the oscillations. Third, the branch-cut dynamics provide a slowly varying
but incomplete description of the pole locations. Although we have not yet succeeded in
deriving a slowly varying description of the oscillations themselves, we believe that the
branch-cut dynamics represent a promising start.

In order to investigate the positions of the poles, we derive a Calogero-type infinite-
dimensional dynamical system by replacing the pole expansion of the solution into the
PDE (see [10, 11] for the origin of such a method). We then solve numerically a truncated
version of this system, where the initial data are generated by asymptotic and numerical
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approximations of the poles at the inviscid pre-shock tigne

The numerical resolution of the stationary solution of a Calogero dynamical system has
previously been used [31] to obtain the stationary positions of the poles of the solution to a
flame front equation. In the case> 0, the poles are fixed to the imaginary axis and move
towards the origin untit ~ t,, after which they turn around and move awayr ascreases
[29, I]. When dispersion is added, i@ = argv # 0, the poles are no longer confined to the
imaginary axis and evolve in the complex plane describing intricate motions. Wheiz
(e > 0)is a purely dispersive coefficient, the poles spiral around the real axis. The proximity
of the poles to the real axis generates oscillations which are observed by reconstructing the
solution numerically via the pole expansion and the pole dynamics. Another approach for
tracking complex singularities based on spectral methods can be found in [30].

2. Integral representation, pole expansion and pole dynamics for > 0

We recall some results that have been derived in [29]. In this case wg, let u, to

be consistent with the familiar notation that is used in the classical Burgers equation (see
[6,7]). Forv > 0, the Cole—Hopf transform, = —2v 9, log(¢,) linearizes equation (3.1)

into the diffusion equation fop, (see [12,21]). Thus the solution is given by

uy(x, 1) = ; — 200, l0g(E,(x, 1)), (2.1a)

B x. 1) = / exp{w(;’}x)}dz, (2.10)

o0

wherew(z, x) is the phase function defined by

*(x X
w(z, x) = / ( T uo(n)) dp ="z +az? - 2%
o \r 1 t

andoe = (r —t,)/(2tt,) € R. The functionE,(x, ¢t) has the following properties for fixed
t,v>0:

(i) It is an even entire function af.

(ii) Its ordera = 4/3.

(iii) Its genush = 1.

(iv) It has infinitely many conjugate and opposite zeros on the imaginary axis.

(v) The order of convergence of the zeros is the ordex= 4/3, i.e. Ve > 0,
> la, "t < 4o0.

The fact that the zeros are imaginary has been proved dlyaH27]. Combining
these propertiesE, (x, t) has an infinite product representation in terms of its zeros which
we denote byx = +a, = =+iB,. Since these zeros satisfy the convergence criteria
Y, B2 <+oocand), Bt = +oo, we have

0 2

E,(x,t) =C,(t 1+-—>— 2.28

(0 0,!1( ﬂf(w)) @2
oo 1,2 .4 \/& o? Ol2

C,(t) =E,QO,t) = / g @y )dy = — e’ K1/4<), (22b)
N 2 160

whereC, (t,) = v¥/427%41(1/4), K,(z) is the modified Bessel function of the second kind
(see [1] for the definition o, (z)), and K1/4(z) = O(z~Y/4) asz — 0. After logarithmic
differentiation of E,,, using (2.L) and (2.2), the singular part of the solution being the ratio
of two entire functions with zeros is meromorphic. Thus we find an infinite pole expansion
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of Mittag—Leffler type for the solution which converges uniformly on compact sets for
away from the poles = +if,:

x U x o 4vx
p(x, 1) = — — = — —_—, 2.3
u (-x ) P P P ;xz—i-ﬁf(t,v) ( )
whereU, (x, t) is the spatially singular part of the viscous solution defined by
> dvx
Ux,t) =x—tu,(x,t) =t —-. 2.4
(x, 1) =x —tuy(x,1) ;xz—l—ﬁf(t,v) (2.4)
Note thatu, can be expressed in a more symmetric way as
X > 1
yx,)=—-2 - 25
D DY PR 29
n#0
where we use the convention that, = —8,. Let
. dB,
VneN* =N\(0}, B, = d—ﬁt, (2.6)

then we replace the full Mittag—Leffler (pole) expansion found in (2.3) in the PDE
u;, + uu, = vu,,. Using partial fraction expansions, we find (see [29] for more details)
. ) o 2
o=l Yy P @.7)
t ,3” =1 :31 - ﬂn

I#n
Similarly to (2.5), there is a more symmetric formulation to the dynamical system (2.7)
given by

. By = 1
, = — — 2 . 2.8
‘B t v;oﬁl_ﬁn ( )

I#n,0

Note that the pole expansion (2.5) and the dynamical system (2.8) represent a general
solution to the Burgers equation which is independent of the initial data.
Multiplying (2.7) by 8, and introducing the variable

B, v)
yn(t’ V) = Tv (29)
we have)", y, ! < +oo, and system (2.7) becomes independent:of
. 00
Yo Vn 1
Vn € N¥, =414y, . (2.10)
2 t 12:1: Vi — Vn

I#n

3. Integral representation, pole expansion and pole dynamics foreC*

In the analysis that follows, we take advantage of the complete integrability of the Burgers
model of a one-dimensional fluid and allow for the viscosity coefficietd take complex
values of the form = €€, € > 0 and|d| < 7/2. Theny = Y, (x, 1) satisfies

P A

+
R T xeR,t>0veCT, (3.1)

where
Ct={veCst |v|>0andlargv| <7/2l ={v | Rv >0,v#0}. (3.2
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We can express this complex PDE as a system of two real coupled PDE$.=Ldt, +iy,
where, = %Y andy, = IY; then (3.1) becomes

Wg > ( P —Y, ) ( Wg ) < cosy —sinf ) ( Wg )
+ Oy = ) Ox . 3.3
< W, g, g g, “\ sing  cosy g, (33)
When this coefficient is purely imaginary, = i€, ¢ > 0, (3.3) can be thought of as the

nonlinear Schidinger equation with convective nonlinearity:

P LU 32L|J
7"““7 3x2’

From the integral defmmon of, (x,t) in (2.1p), one can extend the domain of validity
to complex values of. Letv = e€? € C* then

0 —i6
E,(x,1) = Ecgo(x,1) = / exp{l(fy +ay® — y“) } dy. (3.5)

xeC,t>0,e>0. (3.4)

o0
It is straightforward that, in order for the integral (3.5) to remain convergent, we must have
Mv >0, i.e.|0] < w/2. This can be verified by using Jordan’s lemma and deforming the
contour of integration along the ray ayg= 6/4 for 0 < 6 < /2 so thatE,(x, t) can be
written as

E,(x, 1) = 69/4/

& 1
exp{ o ( ye 30/4 4 qe0/22 ) } dy. (3.6)

Thus in the range & 0 < 7/2, the functionE, (x, r) is again an entire function of of
orderi = 4/3, and as such it also has infinitely many zeros [2, 5]. Noticing the symmetry
relation

Ey(x,t) = E,(x,1), 3.7)

we can extend the domain of validity of representation (3.6) to the raHg€ 7/2. The
even parity ofE, (x, t) as a function ofc is preserved so that

E,(—x,1) = E\(x, 1). (3.8)

The zeros ofE, (x, t) therefore come in opposite paits = +a,(¢, v), with the property
that, for each fixed > 0 and fixedv € C*,

1 1
; lan| =T ; W < oo

The infinite product representation &f, is now

oo x2
E,(x,1) = Cv(t)’!:[l<1— 20 V)), (3.9)

so that the Mittag—Leffler (pole) expansion becomes

X \IJ (x t) X
=- - = 3.10
W, (x, 1) Z g T 2<¢ o (3.10)
where the spatially singular part of the pole expansion is given by
W, (x, 1) =x — 1, (x, t)_tzm (3.11)
As in (2.5),y, can be expressed in a more symmetric way as
X e 1
=—-=-2 _ A2
by, 1) = - v;x_an(t’ - (3.12)

n#0
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Letting 8, = —ia, in (2.7), one finds the associated Calogero dynamical system for arbitrary
v e Ct. Let

a, = E’ a_p, = —da
then

. a, v . 2a, .

an_7—a—2v;W, Vn e N*. (3.13)

l#n
As in (2.8), one can express (3.13) in a more symmetric way as
a, > 1
= — —2 , Vn € N*, 3.14
a p v Z n e ( )

ap, —a

I=—0cc
1#n,0

Note finally that the pole expansion (3.12) and the dynamical system (3.14) represent a
general solution to the Burgers equation which is independent of the initial data.

One can further simplify (3.13) by multiplying both sides by and introducing the
variable

(3.15)

The corresponding system of ODEs (3.13) becomes freesaf that

1dk, Kk, Ky > 1
e ) , Vn € N*. 3.16
2 dt 2 t * — Ky — K e ( )

I#n

4. Exact pole locations att, for v € C*

At t =1, sincea = 0, we have forlx| < oo
oa [ 1(x _isoa 4
E,(x,t,) =¢€ expy — | —e y—y*)¢dy. (4.2)
oo 2¢ \ ¢,

Thus using Blya’s [27] theorem once more, the zerosif(x, t,) denoted byta, (z,, v) are
located on the ray arg = 30/4+m /2, with absolute valugz, (t., v)| = B.(t., €) > 0, where
+iB,(t., €) is thenth ordered zero of, (x, t,) on the imaginary axis. For = e€? € C*,
the zeros ofE, (x, t) are thus located at the complex positions

x = ta,(ty, v = €€?) = £%/4iB,(t,, €), Vn e N*. 4.2)

See figure 1 for the positions of the poles at z,.
Thus, in order to describe the asymptotic behaviour of the zeras, of, #.), we place
ourselves on the ray axg= 39/4 + /2, so that at the pre-shock timg lettingv = e€?,

—0Q

= ei8/4Ee (lﬂv t*)

() ()
a 4z, 2¢ \ 41, ’

where we have used the change of variable

1/3
y = (ft) z, (4.3)
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Im x
v=g exp(if)
tzt*

O(v) fork~1/v

T

Inviscid branch cut: ------
Inviscid branch point: x; ©
Viscous poles: e

Figure 1. Inviscid branch point, branch cuts and viscous poles at 1, for v = |v|€?
(181 < 7/2).

and the functionF' () is defined as

Fao= [ e (4.4)
Once the zero$u, ;2 , of F(u) are found, the magnitudé, of the zerostifg, of E.(i8, t.)
are given by the relation

B = Bi(ty. €) = 4, (2ep)**. (4.5)
Thus, from (4.2), the zeros df, (x, t,) are located at
x = ai(t,, v) = £33 (1., €) = £3/%4t, (2e i) ¥4 (4.6)

Using the method of steepest descents described in [13], it is shown in [28] thaththe
ordered large zerp, of F(u) is given as follows.

Property 4.1 Let

2
0)
= " (k—1/3), k>1,

W= k=13
and

. 1 7 5 53143

660 = 1+ 1 (1 g (1 72 (1 12 (1 13000,))))

then

1
wi =G (,u,(co)) + O(k6> ask — +oo.
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5. Asymptotic analysis of ¥, (x, t) for v = i€, ase— 0", t > t,

Whenv = i€, € > 0, we evaluate the asymptotic behaviour &f ase — 0% using the
stationary phase method. We find that all three saddle points are relevant within the caustic
x| < |xs(®)] — 8/2, wheres§ > 0 and wheretx,(¢) are the second-order branch points of

the inviscid solution [29, I]. For a discussion on such caustics, see [23, 26]. When,

x € (=00, —x;(t) — 8/2) U (x,(1) +8/2, 00), v = i€, € — 0T, the same analysis holds and

one recovers the characteristic solution outside the caustic consisting of one relevant saddle
point. The transition from within the caustic to outside is not uniform as the asymptotic
behaviour at the caustic = +x,(z) is degenerate (two saddle points have coalesced).

5.1. Asymptotic expansion within the caustie (—x‘y(t) +6/2, x5(t) — 8/2), §>0

The causticx = x,(¢) corresponds to the envelope of the characteristics of the inviscid
Burgers solution and is also determined by the system of equations

O0=w,(z,x) =x/t + 2az — 478,
0=w,.(z,x) =20 — 1272,

wherew(z, x) is the phase function of the integrand in the definitiorEpfx, 7). This system
represents the conditions for the phase functiorio have saddle points of multiplicity
two, thereby yielding a curve in thex, t) plane on which two saddles of multiplicity one
coalesce into a saddle of multiplicity two. From the second equation in (5.1), we find
Zeaustic(t) = £4/a/6 and, from the first,

(5.1)

3/2
o
X = Xcaustic = t(4zcaustic(t)3 - Zazcaustic(t)) = Ft <3> = FX5 (l), (52)

wherex, (1) = i(3t,)~¥?(t,—1)%¥?t~%? is the second-order branch point of the dispersionless
solution described in [29, 1]. Here we are only concerned with the dominant behaviour of
E;c, thus we retain only the first term:

_ _ —Arie w(zy, x)

ase — 0T, with

3
W(Zx(x, 1), X) = ;Z,g + oezxz - zf = Z;Z“’ + %zf, (5.4a)
wz(zs(x, 1), x) =0, wzz(zs(x, 1), x) =2a — 1223. (5.4b)

The values of the saddle points = z,(x, r) of (3.6) are determined by the three roots of
the first equation in system (5.1), i.e. the first equation ofyb.Zhey are specifically

o=wA+w’B
n=0’A+wB (5.5)
22=A+DB

with w = /3 and

A, 1) = 8) Y3 x + /x2 — x2,

B(x,t) = (8t)_1/3,3/x — /X% —x2

(5.6)
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Note that all three saddle points are real when; € R and the discriminanh = xz—xsz <

0, that is|x| < |x,(#)], and in this cased = B [29, appendix B]. Therefore we haye € R,
w(zs, x) € R, andw,,(z;, x) = 200 — 12252 € R. Hence all three terms in the summation
signs are oscillatory and equally relevant. Note, however, that the expansion derived for
E;. is only valid within |x| < |x] and, in order to get an expansion uniformly valid across

x = +x, one needs to derive a uniform expansion as presented in [15]. This analysis is
similar in spirit to the one of Jiret al [22 (section 2.2)] and that of [15]. The dominant
behaviour of the solution, (x,¢) is found from the Cole—Hopf representation, so that
within the caustidx| < |x,| — §/2, following the derivation presented in [29 (I, section 3)],

we find that

w(zs,X

Zq 01,2%s€ 2 /V W, (2, X
w(zy,x)

2 5=012€ 7 [V Wz (25, X)

w(zs,x)

Z 012Zse S ——arg(w;z(«.g,x))|wzz(zhx)|—1/2
w(zs.,x)
Y 01p€ BRIy (7, )|~/

Since w,,(z;, x) € R, we have that am@,.(z;, x)) = (7/2)(1 — sgnw,(zs, x))), and
therefore the small-dispersion behaviour of the solution is found from (3.10).

Property 5.1 Ase — 0" for x € (—x,(t) + 8/2, x,(t) — 8§/2), 8 > 0, 1 > 1, the spatially
singular part of the solution to the Burgers equation is approximated by
Zx—O 12 Zsefiw(z,y,x)+i‘lng(w;z(z.\-,x))|w Z(Z“ x)|*1/2

Wie(x, 1) = - i + O(e).
- 0128 2Ew(zs X)+ 7 SgN(we (25, x))lwh(zs,x” 1/2

Vie(x, 1) = + O(e)

+ O(e).

The asymptotic behaviour of the solution is then found from the relation
Wic(x,t
LIJig(x’ t) = ; - #’
Thus the presence of three competing oscillatory terms in the asymptotic behavidyr of
is reminiscent of the oscillations observed in the solutign Such oscillations are also
seen in the pole dynamics in section 7.2.

5.1.1. Long-time asymptotics of the stationary phase solution within the caustithis
section we approximate the stationary phase formula in property 5.1 for small values of
8§ = x/t and find the approximate pole positions for large time. First we claim that the
stationary phase formula is valid in a complex neighbourhood ef 0 independent of
€ = |v|. A full extension of this formula to the complex plane is difficult to determine
because of the possibility of Stokes lines [26]. Across a Stokes line a stationary point loses
its accessibility, i.e. the ability to deform the integration contour to the steepest descent path
through the stationary point is lost. The point= 0 does not lie on a Stokes line, however,
so that all three stationary points are accessible in a neighbourhooe=df.

Now we can expand the three solutions- yq, y4+, y— of w, = 0, and the corresponding
values ofw andwy,, in powers ofs = x /¢ for fixed value ofa = (¢t —1,)/(2tt,) aséd — O:

Yo =—5- ° 1 o)
Ol § 82 3 53
40[ ﬁﬁ‘*‘ ( ) (5.7)
s 8 3
o(s°
\f . 5/232ﬁ+ (8%)
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+ 8[ + — 4083 (5.8)

Ot
4
a? \/‘
Rl — 4+ 0(°
2 + — + 0%

woyy = 20 + O(8?)

2
Wiy = —da — 35\/; +0(5% (5.9)

2
w_yy = —da + 33\/; +0(8?)

The stationary phase formula is much more sensitive to the valuetbéin to the value of
w,yy, and its leading order form is determined by the terms up @ @ w and up to @1)
in wyy. In particular the leading order form for the denominaiiis (for v = i¢)

D = E: _ v 91"5/2”
s=01,— ¥ Wsyy

i . - . ,
— \/:{ _ ||w0yy|_1/2e_ iwg/2¢ + |w+yy|—1/2e—lw+/2€ + |w7yy|—1/2e—lw,/2€}

= _ Ii {_|\/é_lr_ e_iw+/2€ + e—iw,/Zs}
2\ ||

1 i€ 8 (07 P2
=_ | —{-iv2+2cos gle/be
2 |a|{ v2s (kﬁ) }

The zeros oD, i.e. the poles for the Burgers solution, are solutidrs x /¢ of the equation

cos(i@) ﬁé"‘z/‘“ (5.10)

Note that, if§ is a solution of (5.10), then so is§ and$ + eain with

2
s = a2, (5.11)

The solutions of (5.10) are

8§ =085 =+e <(xo + iyo)\/f + nal) (5.12)

and (xo, yo) are a particular solution of the equations

2
/2 cogxp) coshyp = — sin (;)

2
V2 sin(xg) sinhyg = — cos(‘ég).
One can easily show that there is a unique solutian yo) up to translation and reflection
as in (5.12). This shows that to leading order the poles of the dispersive Burgers equation
lie on two staggered horizontal linear arrays with spaciag
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1.55 10-3 v=00001#1
1k
0.5
E of
~0.5+
-1k
e T R B S S
Rex x 107
Figure 2. Jaj(t, v) versusfa;(z, v). Time evolution inC of g;(r, v), j = —4,---,4 for

v=105xiand N (number of poles}= 10°. tinisial =15 = 1 andtsinq = 1.25. Typical time
stepdr ~ 1073, ngeps = 175. Time-stepping tolerance: 19 < LRT < 10~* (where LRT is
local relative tolerance).

5.2.x € (—x,(t) — 8/2,x,(t) +8/2)°,8 > 0,v =€, e > 0F,t > 1,

The inviscid limit is found in a straightforward manner in this case; only one saddle point
is relevant, so that the asymptotic limit derived in section 5.1 reduces to

Wi (x, 1) = W(x, 1)+ Oe) ase — 0T,

where W (x, t) = z4(x, ) is the spatially singular part of the dispersionless solution (see
section 6 of [29, 1] for more details). Thus the solution outside the caustic behaves according
to the following property.

Property 5.2 Asv — O* for x € (—x,(t) — 8/2, x,(t) + 8/2), § > 0, t > t,, the solution
to the Burgers equation is given by

‘D'e y W(x,
LIJ,AG(XJ)=§—¥=§—¥+O(G) ase — 0t

‘I’(.X,t) ZZS*(-xat)v Tgx . ERU)(ZS*,X) = <n?)a1X2$RU)(ZS,X).

5.3. Uniform asymptotic expansion as— O for ¢ > ¢, across the caustie = £x,(z) via
Pearcey integral

Following the notation of Kaminski [23], we introduce the Pearcey integral from which
one can derive a uniform asymptotic expansion with two coalescing saddle points (see also
[32]). Let

+oo
P(X,Y) = / eI(L¢4/4+Xu2/2+Yu) du (513)

o]
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X 10" v= 0000151

Figure 3. Close-up of figure 2.

denote the Pearcey integral. In the arbitrary ca$e< /2, lettingy — (—iv/2)Y*u =
€3 /8(v/2)Y4 y, one can expresEB.q (x, t) in terms of P(X, Y)

ed?\V* a 7/ 1\Y4
Eg(x,)=[—) PlX= ——0/402 y="|(_"_) e'@/&3/4)
@0 ( 2 > ( V2e 21 \ 2¢3

In particular for6 = 0 (v = € € R), we have (cf. equation (3.12) in [29, I])

e\ V4 o v/ 1\ YA
E.(x,t)=[—= PlX= _—_é&*y="|_". e in/8)
wn=(5) (=7 (o)

Foro = /2 (v =ie), from (3.5) we can expresBi.(x, t) as

+o00 |
Eic(x,1) =/ exw{ze (y“—ayz— fy)}dy

_(6)1/4/+°°ex i u4_ o u2_x 1\Y4 q
=) L. p(4 V2 2 2(2)) )
e\ 1/4 —a —x 1\
=) r(xen= preno=51(5) ) o

Clearly a smalle asymptotic ofEj. is equivalent to a combined asymptotic expansion of
the Pearcey integral a¥|, |Y| — 4oo. The caustic ofP(X, Y) and the corresponding
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Figure 4. Ja;(t, v) versusfa;(z, v). Time evolution inC of g;(t, v), j = —4,---,4 for
v=10%and N = 10°. tiniriat = tx = 1 anditfina = 2. nyeps = 280. Typical time step
8t ~ 3 x 1073, Time-stepping tolerance: 18 < LRT < 1074,

caustic ofEj.(x, t) is given by

_ 2 32 _
Y @( X)) < x = +x,(t) e R for ¢t > t,. (5.15)
Hence the uniform asymptotic behaviour &f. in a neighbourhood of the caustic is
found from the one ofP(—X, (2/+/27 — 1)X%?) as X — +o0, wheret = 0 at the
caustic, andr # 0 away from it [23]. This amounts to a uniform expansion valid for
Ix £ x, ()] < |82(t; 1) wheredy(t) = 8.(t;1) = F(V27/2)|x,(t)|r. This expansion is
also valid outside of these intervals centred abbui(z); however, the region of interest is
the neighbourhood of the caustic. Indeed one only needs to use the asymptotic expansion
of the Airy function and its derivative to find the results obtained in sections 5.1 and 5.2.
From (3.11) and (5.14) we have that

Wie (x, 1) = 12i€ 0, 10g(Eie(x, 1))

—a —x/ 1\Y*
= t2ie 9, log [P(X(e; 1) = E Y(e;x,t) = 2t(2€3) ):| .

X = X(e; 1), Y=Y(t)=Y(e; x = £x,(t) — 6+(t;1),1),

Let
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Figure 5. Close-up of figure 4.

whereé &+ (t; 1) — 0 ast — 0, so that
\I/i€<x = dx, (1) — 8u(T: 1), t) — 12i€ 3, log (P (X, Y))

= —12ie 9, log (P( — X, (2/v/27— r)x3/2)) /?i )
T

Let P(1) = P( — X, (2/v/27 - r)X3/2> then, sinceds./dt = F+/27x,(1)/2, we have

4tie  P.(1)
V27x,(1) P(¥)°

\Ili6<x — +x,(1) — 84(1: 1), t) -+

Following the notation presented in [29], let

375/6

po(1) =381+ 0(1), o) = ==~ (1+0(x), ¢()=3"°r(1+0()),
and

f = fon=" Y +< 2 r)

= v, = — — — _ = v,
4 2 "\ 27

and thewv;,i = 1,2,3 are the saddle points of (v; r) determined by the equation
fo(vi; T) =0, so thatf (v;; T) = —v?/4+ (2/+/27— 1)3v;/4. Thev; are specifically

) = — 2 sin( + (1) v2(1) = - sin(@ ()

1 - \/é 3 E) 2 - \/§ £

v3(7) = %sin(’; ~¢(@).
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Figure 6. Sa;(t, v) versusia;(z, v). Time evolution inC of g;(t, v), j = —4,---,4 for
v =103 and N = 10°. tiisiat = t« = 1 andting = 4. nyeps = 80. Typical time step
8t = 0.05. Time-stepping tolerance: 19 < LRT < 10~%.
where
1 . big
¢ =¢(1) = E%arcsm(l—r\/27/2), telR, ¢ < 5
Since
—a iX? a?
X=—— = =i— = X 2=0(),
 2€ 2 4e

then according to the expansion of the Pearcey integral presented by Kaminski [23], we
have proved the following property.

Property 5.3 The uniform asymptotic expansionas> 0" of Wi (x = %x,(z) —8+(z;1), 1)
in a neighbourhood of the caustias= +x,(¢) is

3 (x,()\Y? o2
\I/ie<x = dx, (1) — 84 (: 1), ,) _ i\zf <x. ( )) [[vz + vglef £ @ F )

t

2n Ai(—x4/3 2 Al (—x Y3
X pO(T)W I(— ¢(m) + C]O(T)iXT/G (= ¢(1)
1/2 ;
2o T 1+1
+2v, € <3v% - 1) Y172

/|:e| %[f(vzH-f(vs)] {pO(T)XZ?LT/GAi(_XA/Sg(T))
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Figure 7. Jaj(t, v) versusfa;(z, v). Time evolution inC of g;(t, v), j = —4,---,4 for

v =102 and N = 10°. fiirjis = tx = 1 andtfina = 5. nyeps = 48. Typical time step
5t = 0.1. Time-stepping tolerance: 18 < LRT < 10~4.

27 ] 4/3 '£2f(v1) T 2 1 + i
‘HIO(T)iXT/GA' (=X"3¢ () + €= 3,1)%7_1 iz

+0(¢) ase — 0.

5.3.1. Behaviour at the caustias= +x,(r) At the causticst = £x,(¢), T =0,

¢(0) =7/6, v1(0) = —2/+/3, v2(0) = v3(0) = 1/v/3,
fi;0) = —v2/4+v;/24/3,  f(vz0) = f(v3;0) = —2/3,  f(v1;0) = 1/12

Since X = O(e~%?), the dominant term as — Ot in both the numerator and the
denominator of¥;, is obviously the term containing the factdf~Y/6. Therefore the
dominant behaviour o;. (+x,(z), ¢) reduces to the simple form

Wie(xs (1), 1) = £ —-

3 /x, 1/3
V3 (x f’)) (2(0) + v3(0)) + O(e)

1/3
=4 (xst(t)> +0O(¢) ase — 0Ot.
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Figure 8. %, (x, 1) versusx from the pole dynamics for = 104 and N = 10° at
t=1, 105 11, 1.15.

6. Continuum limit of the pole expansion and the Calogero dynamical system

From the equation for the pole dynamics and the Mittag—Leffler expansion of the non-zero
dispersion solution, one can obtain a set of equations for the inviscid limit which give a new
representation of the solution to the inviscid Burgers equation. Recall the pole expansion

X = dvx x > 1
== - = — — 2 , 6.1a
W, (x. 1) t ;xz—a,f(t, v) ot vn;ox—an (6.13)
n#0
and the pole dynamic&in € N*,
a, v o 1 an o 1
=" _ayg, - _9 : 6.1b
¢ t o oay va; 3—a12 t v,;can—al (6.1
I#n I1#n,0
Define the complex mag (¢, v, t) as
a,(t,v) = F(' =vn,v,1): Z* x Rt x Rt - C, a_, = —a,. (6.2)
At ¢, we have [29 (I, section 4.1)]
an(t, v) = F(,) =vn, v, t,) = i4t, v
=i4t, Qu(caan+co+er/n+-- )

= i4t, (c_1(2vn) + co2v + c1(20)%/(2vn) + - )7
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Figure 9. |, (x, 1) versusx. Comparison of pole dynamics (—) and stationary phase
approximation {- - - - - ) for v = 1073 and N = 10°. Projection of pole locations on the real
axis (+) atr =1, 2, 3, 4.

Then introduce the map

f({,f)zf(é‘,o,t):RxR+—>C, f(—{,t)=—f(§,t), (63)

where the continuous variable corresponds to a position on the real axis which can be
thought of as a variable obtained by simultaneously letting 0" andn — +oco. Assume
that

an(t,v) = F(nlv], v, 1) = f(n|v], 1) + ea(t, v) (6.4)

in which ¢, (¢, v) is a small error term that goes to 0 as—> 0. Now let|v| — O so that
n = v/|v| remains constant. Then, at least formally,

1 1
2 ; a) —awy - o ; f@lvl, 0= F@vl,n

ke M PV/ I S (6.5)
—oo f(&, 1) = f(&', 1)
Moreover, this approximation shows that the representation (6.4) is valid for all time if it
is true atr = 0. A rigorous analysis of the approximation (6.5) has been performed in
the context of vortex sheets in [9]. A rigorous justification of this limiting process is also
presented by other means in [29, Il] for the real viscosity case. It is then clear that the pair
of equations (6.4) and (6.5) satisfy the following:

Property 6.1The continuum limit of the Calogero dynamical system and the pole expansion
is the system of integrodifferential equations defined forasych thatv¢ € R, x # f(¢, 1),
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Figure 10. RY, (x, 1) versusx. Comparison of pole dynamics (—) and stationary phase
approximation {-- - - - yforv =102 and N = 10° atr = 1, 2, 3, 4, 5. Projection of pole
locations on the real axis (+).

by
=" v [ e
W) =7 =2 /(:x_?f(“)
This property can also be expressed as
gen="00aren [T S e
=00 ey _Z fZ(z,t)d—glf%/,z)’ &
and
L|J(x,t):§—2nx/(; xz_(jfz(g/,;)
=f—nxf:)%, x # f&.0). (6.60)

The system consisting of equations ¢.6and (6.®) provides a slowly varying, but
incomplete, description of the solution of the Burgers equation and of the pole dynamics.
Let (¢, t) solve the continuum (i.e. slowly varying) equation (.6Then the approximate
pole positions are given by (6.4) and the solutipn of the Burgers equation by the pole
expansion (6.4). Furthermore, as shown in the next section, the corresponding solution
Y of the inviscid Burgers equation is given by (B)6 and the image off in C is a
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Figure 11. Branch-cut dynamics for = 1075 atr = 1, 1.05, 1.1, 1.15, 1.2, 1.25.

branch cut fonp. This is an incomplete description, since it does not yield a formula for
the wavelength, phase and amplitude of the oscillations. Moreover, when the poles are
close to the real line, the oscillations in the Burgers solution are quite sensitive to small
errors. In fact, computations presented in section 7.3vfet ¢i, show that some of the
poles found through this ‘branch-cut dynamics’ method lie on the real axis, which makes
the reconstruction of the solutiofi, impossible. We believe that this difficulty could be
overcome through improvements in the approximation (6.5).

6.1. Branch-cut dynamics

The branch-cut dynamics method, presented in this section, is a new method for solving the
inviscid Burgers equation

W+ g, =0. (6.7)

The main interest here in this method is that it represents the continuum linpit} as O,

of the pole dynamics for the viscous equation. It is also interesting to note that the resulting
integro-differential equation is nearly the same as the Birkhoff-Rott equation for a vortex

sheet, but without the complex conjugation on the right-hand side. The branch-cut dynamics
have a parametric and a non-parametric formulation. In the parametric formulation, the
solution is described through the dynamics of a complex-valued fungtigns) of a real
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Figure 12. Branch-cut dynamics for = 104 at+ = 1, 1.1, 1.2, 1.3.

variable¢. Let f (¢, t) satisfy

£ /°° d’
()= """ —2nPV - > 6.8
=" mmBV | e = F @ ©8

in which n is an arbitrary constant. The integral is a Cauchy principal-value integral, due to
the singularity at’ = ¢, as well as possible singularities @t= +o0o. Next defined(x, r)

by

x ~dg
Px, 1) = i _Zn‘/;oom. (6.9)

A straightforward calculation shows thiitx, ¢) is a solution to the inviscid Burgers equation

W+ g, =0 (6.10)

for any choice ofp. These equations can be rephrased in a second non-parametric
formulation involving a moving curve™(r) in the complex plane (which may consist of
several disconnected parts) and a density funqti@n ) defined forz € I'(z). In particular,

['(¢) is the image off (¢, #) for ¢ varying over the real line. The density functigriz, )

is defined by [29 (I, section 5)]

1
1) = ) 6.11
p(z,t) fe(¢, 1) (6.11)
in whichz = f(¢,1). Thend’ = p(z/,1)dz’ and
Wix, 1) = T 2;7/ S ’t,) dz’. (6.12)
t ING) X —Z
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Figure 13. Branch-cut dynamics for = 10 3iat+ = 1, 2, 3, 4.

This formula can be extended into the complexplane but is discontinuous across the
curvel'(¢), i.e.T'(¢) is a branch cut for the functiofy. Variations in the arbitrary complex
parameter correspond to variations in the branch duy) for y, without change in the
branch point. An application of the Plemejl formulae (see [14]) at a poir I'(z) shows
that limiting values, andy_ from the right and left, respectively, are

. ot .
Wz, 1) = - — 2y I|m/ Pz ,) dz’  2n7ip(z, 1). (6.13)
t =0Jri 22

Here, thel’_(¢) are contours identical t&'(r) except for removed semi-circular arcs of
radius r above and below the singularity. Sinceomjg(t) = I'(¢), it follows that the
r—

difference ing_ is
lIJ_(Z,t)—l]J+(Z,t):4777[ip(z,l‘), (614)

and the average aof, is

~ 1

=5—2n/ ’O(Z’t)dz/
r

t @ 2—7
X o0 d¢’ f

="-2PvV | = (D). 6.15
t 1 ./_oo @& n—r¢,0n ot 0 (6.15)
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Figure 14. Branch-cut dynamics for = 1073¢"/4 atr = 1, 2, 3, 4.

Since 0=y, + Wy, = Y, + (3¥?)_ for bothp = Y, andy_, it follows that p satisfies the
conservation equation

o+ (Wp), =0. (6.16)

Therefore the branch-cut dynamics equations (6.8) and (6.9) are equivalent to the motion
of I'(+) by the velocityW(z, 1), and the evolution of the densipy(z, ) through (6.16).

The usefulness of this method in the present context is its relation to the pole dynamics
for the viscous (or dispersive) Burgers equation. An interesting equivalent form of the
branch-cut dynamics equation (6.8) is found by considering the change of time variable

T =11yt
1 (6.17)
8, 1) =1""f( 1)
for any constanty. The resulting equation fof is
=2(, 1) =2nPV . 6.18
A A B s S (6.18)

If n = 1/(4xi), and if the left-hand side was replaced by its complex conjuggaté, this
equation would be identical to the Birkhoff—Rott equation for a vortex sheet [9].

7. Numerics

We present numerics which pertain to the analysis previously derived. That is, we use both
the stationary phase formula and the pole dynamics as a means to compute the solution. A
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Figure 15. Positions of the first 20 poles from the pole dynamics fo= 10-3¢7/4 and
N=1Catr=1,2, 3, 4.

third method based on a full finite-difference scheme is also presented initially. For all three
methods, we set the parameter vaiye- 1. In all the figures describing the behaviour of
the solutiony,, we plot only the real part of the solutiohy,,. Thus, whenever there is a
label , it should be understood asy, .

7.1. Finite differences, Runge—Kutta scheme and pole expansion

We present a numerical scheme which enables us to solve (3.1) for arbitrary values of
argv for moderately small values dfv| = €. The procedure is sometimes referred to

as the method of lines and consists in using a centred difference operator in space while
time marching with a Runge—Kutta scheme. The method is implemented on the interval
I = [0, 1/2], with boundary conditiongy,(0,7) = 0 andy,(1/2,¢) = 0. The condition

that Y, (1/2, r) = 0 is consistent with the value of the dispersionless solution and as such

is consistent for small enough valueseofWe can use two different initial conditions:

W(x,0) = 4x3—tf

*

(7.13)

1
x2 - ay%(t*v V) '

W, (x, 1) = tf —dx Y (7.1b)
* n=1

If the second condition is used, then the pole positions at ¢, are specified by the
asymptotic estimate presented in property 4.1. This estimate is used for all valugs of
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Figure 16. Positions of the first 20 poles from the pole dynamicsifee 10-% and N = 10°
atr =1, 1.05 1.1, 1.15 1.2, 1.25.

for 10< n < N:
ay ([*a U) - ei30/4 i 4t* (26M11)3/4’
© _ 2

Gt g (1 & (1000 (1 5 (10 Z)))).
432u 61 721 121 1890Q«
For 1< n < 9, we use the numerical values found in [28, table 3], under the column headed
Numerical roots:

w1 = 0.8221037147 p, = 2.0226889660 p3 = 3.2292915284

g = 44372464748 s = 5.6457167459 ue = 6.8544374340

w7 = 8.0632985369 g = 9.2722462225 g = 10.4812510479

1y = G(u), (n—1/3), n>10, (7.2)

Let
LIJj =Y(j * Ax, 1), ELIJ,‘ = qu+1’ quJj =Wiip
D, =(E—-E%/Ax, D_=(E°—EY/Ax, Do=(D;+ D_)/2.
One then solves the system Hf— 1 equations using a Runge—Kutta 4-5 scheme:
%
dr
whereJ x Ax =1/2, §);_q = 0 andy, = 0.

= —Do(V?/2) +vD, D_;, j=1--,J-1, (7.3)
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Figure 17. Positions of the first 20 poles from the pole dynamicsifee 10~4i and N = 10°
atr=1,11, 1.2, 1.3.

7.2. Numerical pole dynamics

We now investigate the motion of the simple poles ypf(x, t) for various values of

v € C*. The procedure consists in truncating the Calogero dynamical system and by

starting with initial data for the poles at= t,: the complex poles o, (x, r) are located

atx = +a,(t,v) = £+/vk,(t, v), where the variables, satisfy the system

1de, _ Ky o0 1

Vi e N, { TR (7.4)
Kn(ty, V) = a,f(t*, v)/v.

a,(t., v) is computed as is described in the previous section. The valug (ofv) is

recovered using the relatian, (¢, v) = /vk,(z, v). Starting froms = ¢,, we compute and

plot the evolution of the first four poles, (¢, v),n = —4, - - -, 4 for different values of.

We useN poles in the computations, i.e; to ay whereN x 104 is 1, 2.5, 5, 10. That is,

we consider the truncated system

Kn — kn _ 1 _ Ay ZN 1
n =1 —
Vn—_l,~-~, ’ { 2 ! o

I#n X
Kn(te, V) = (4t*)2(2Mn)3/2\/Ee|9/2
where the integelV is appropriately chosen. In order to accelerate the computation of the
slowly converging pole expansions
Yool
3 . Wa=1.N
KiI — Kn

=1
I#n
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Figure 18. Positions of the first 20 poles from the pole dynamicsifee 103 and N = 10°
atr =1, 2, 3, 4.

we use the Multipole algorithm developed by Greengard and Rokhlin [20] and implemented
by Greengard, which reduces the number of operations fram?Pto O(N logN). A

fourth- and fifth-order Runge—Kutta—Fehlberg scheme with automatic step-size control is
used. Since the initial data are specified at 7, = 1, we can solve the system forwards
and backwards in time starting from= 1. The typical tolerance in the computation is
1078 < |(x4 — x5)/x5] < 10~* wherex, andxs are the fourth- and fifth-order estimates of
k1(t, v), respectively. Once the tolerance criterion is met, we recover the pole location via
the relation,, (t, v) = /vk,(t, v). The difference between the comphexase and the real

case is that the variables are all real faeal, and thus system (7.4) is a system of real ODEs
whereas, fon € C*, system (7.4) is a genuinely complex ODE system. The justification
of the numerics is the most difficult aspect of this simulation because one must justify the
convergence of the method both as the number of poles increases and as the time step is
refined. The time-step control is automatically determined by the relative tolerance (RT) test
on the fourth- and fifth-order approximations of the first ordered pole (the one closest to the
origin). (Note that RT is also called LRT for local relative tolerance in the figure captions.)
Thus one cannot fix the time stepping; rather one can have a subtle control on it by reducing
this tolerance. Typically, we fix the number of poles to 50 000 and vary the tolerance on the
successive intervals 1 < RT < 1075, 108 < RT < 1074, 10°® < RT < 1072 Then we

fix the tolerance at the highest reasonable level®18 RT < 104, and vary the number

of poles whereN x 10~* varies from 12.5,5, 10. Another test of accuracy is performed

on exactly solvable two-pair pole dynamics [29 (I, section 5)] and can easily be adapted
to this case. A discussion of the convergence of the pole dynamics method for the case
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Figure 19. Positions of the first 20 poles from the pole dynamicsifee 10~2i and N = 10°
atr =1, 2, 3, 4, 5.

v € R can be found in [29, 1]. The convergence of the (truncated) pole dynamics to the true
solution of the (infinite) Calogero dynamical system as the numbesf poles increases
and as the time stepping of the Runge—Kutta scheme is decreased improves as the argument
0 of v increases tor/2 and worsens as the magnitud®f v decreases. The convergence
improves with increasing because the position of the polestatgets closer to the real
axis. The closer the poles are to the real axis, the better the convergence in the tails of the
solution becomes. Indeed, the most difficult case (computationally) occurs whenr=alg
as discussed in [29, I].

Whenv > 0, the behaviour of the pol@,(z, v) displayed in [29, I] describes the
evolution of the width of the analyticity strip of the viscous solution.

Whenv € iR, the behaviour of the poles is studied @s= |v| decreases to 0. One
can observe a structuring of the pole behaviour into a spiralling motion at the end of which
they end close to the real axis for~ t,,t > t,. It is the presence of these poles close
to the real axis which gives rise to rapid oscillations which are observed in both the pole
expansion reconstruction and the stationary phase approximation. We describe many cases
for € ranging frome = 1072 to ¢ = 107° due to the drastic difference in the behaviour
of the poles displayed in figures 2—7. In many of these figures, we do not display the full
height of the oscillations in order to compare the pole dynamics with the stationary phase
approximation. The agreement between the two methods is remarkable (figures 8-10). The
few discrepancies which can be observed in these figures occur in the amplitude of the peaks
of certain oscillations. They are due to the extreme sensitivity of the pole reconstruction to
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Figure 20. Ja;(t, v) versusa;(t, v). Time evolution inC of a;(t, v), j = —4,---,4 for
v =103%¢"*and N = 10°. finitiat = t« = 1 andifina = 4. nseps = 80. Time-stepping
tolerance: 108 < LRT < 1074,

the pole positions. The accuracy of the match between the stationary phase approximation
and the pole dynamics also serves as a justification for the pole dynamics.

Finally, only the case = 1072 is treated for arg = 7 /4 to illustrate the behaviour of a
mixed dissipative—dispersive system (see (3.3)). In this case ¢arg/4), the diversity in
the behaviour of the poles in figure 20 is much less rich than that observed foeang 2.
Moreover, the number of oscillations is fixed to one and, as such, is less interesting to
observe. However, this case is included to provide a comparison with the (full) finite-
difference scheme (method of lines) displayed in figure 21.

7.3. Numerical branch-cut dynamics

Finally we present the results of numerical computations for the branch-cut dynamics
equation. Rather than solving (6.8) directly, we move pokis) on the branch cut through
the equation

: 1
X0 =W+ )X, 0, (7.5)

in which _ andy)_ are the limits from the right and left, respectively, of the corresponding
solution of the inviscid Burgers equation. For the initial dgtar, 0) = 4x3 — x/1,, the
positions of the poles are prescribedrat 1, to be the pole positions for the Burgers
equation with viscosity = €, as described in section 4 and [28]. In particular they lie
on the line argz = 36/4. Their location fors > 1, is found by solving the ODE (7.5).
Moreover the solution values

W(x, 1) = Wo(xo) = 4x§ — xo/. (7.6)
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Figure 21. %Y, (x, 1) versusx. Comparison of pole dynamics (——) and finite-difference
approximation {- - ---) for v = 10737/ and N = 10° atr = 1, 2, 3, 4. Projection of pole
locations on the real axis (+).

are found through the inversion of the cubic equation [29, section 6]

x = X0+t Yo(xo) = x5 + xo(ts — 1) /1. (7.7)
At a complex pointc on the branch cut we have
llJ+(x,t)=L|J0(x+(x,t),t), LIJ—('X’[):LIJO(X—(X’[)’I)’ (78)

in which x; and x_ are the limiting values oy from the right and left at the point.
For large positive or negative values ofon the real line, the cubic equation (7.7) has a
single real valuexg = xo(x, t). The valuex,(x, t) is the analytic continuation of this real
value ofxq(x, ) from the positive real axis; the value (x, t) is the analytic continuation
of xo(x, t) from the negative real axis.

Results of numerical solution of the branch-cut dynamics equation in the form (7.5)
corresponding to initial data (7.6) are presented in figures 11-14$000%, 1074, 1073
and 103V/i. As described in section 6.1, the equation for the branch cut depends only on
6@ = arg v; the value ofe is only used to determine the positions of the poles at
corresponding to that value of In each of these figures, as well as in similar computations
for other values ofy, we see that the branch cut is a line of angl¢8Bat: = ¢, and that,
ast increases, the branch cut again approaches a line but with a small angle =Foy2
(i.e. v = i€) the branch cut moves onto the real linetaacreases.

Next we compare the pole positions computed by the branch-cut dynamics method with
those obtained from the Calogero equations. The Calogero system is exact, except for
discretization ins and a cut-off in the numbeN of poles. In the case = 1073\/i, there
is excellent agreement between the results from the branch-cut dynamics (figure 14) and
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those from the Calogero system (figure 15). The cases withie are more interesting,
since there are oscillations in the corresponding Burgers solution. The branch-cut dynamics
results of figures 11-13 are in excellent agreement with the Calogero results of figures 16—
18 for poles that are outside the caustic points of the inviscid Burgers solution. Within the
caustic region, the poles from the branch-cut dynamics lie on the real axis, while those from
Calogero lie slightly off. On the other hand, the real parts of the pole positions from the
two methods are in good agreement.

This shows that the branch-cut dynamics do a very good job of describing the pole
dynamics for Burgers equation with complex viscosity, except within the caustic region for
imaginary viscosity.
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Appendix. Generalization of the initial data to Yy(x) = 2nz®*~1 — x/t,

Using a result in [29, I] concerning the asymptotic behaviour of ibte zero uy , of
Fu(u) = [ e*@1=")dz we can prove the following.

Property A.1. Letn € N, n > 2, and letv = €€’ € C* = {e > 0, |0| < 7/2}. Thekth
ordered pole of the solution at= ¢, arising from the initial datay,(x) = 2nx?*~1 — x/1,
is located at

-1

A (b, v = ed?) = ei%eiZnt* (Zeuk,,,) I

where the coefficients, , are asymptotically given by

il sec il n-1 +1+2k)+0O ! ask +
n = - — .
P = g0 = 2>\ an —2) \2n =1 k o°
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