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A LOCALIZED APPROXIMATION METHOD FOR VORTICAL FLOWS*

R. E. CAFLISCH’, O. F. ORELLANA, AND M. SIEGEL

Abstract. An approximation method of Moore for Kelvin-Helmholtz instability is formulated as a

general method for two-dimensional, incompressible, inviscid flows generated by a vortex sheet. In this
method the nonlocal equations describing evolution of the sheet are approximated by a system of (local)
differential equations. These equations are useful for predicting singularity formation on the sheet and for
analyzing the initial value problem before singularity formation. The general method is applied to a number
of problems: Kelvin-Helmholtz instability for periodic vortex sheets, motion of an interface in Hele-Shaw
flow, Rayleigh-Taylor instability for stratified flow, and Krasny’s desingularized vortex sheet equation. A
new physically desingularized vortex sheet equation is proposed, which agrees with the finite thickness
vortex layer equations in the localized approximation.
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1. Introduction. For many two-dimensional incompressible, inviscid flows, the
vorticity is confined to lie on a vortex sheet, which is a free surface in the flow. The
fluid velocity is then determined by the location and strength of the vortex sheet. Such
flows include the Kelvin-Helmholtz flow in which the vorticity is present initially,
Rayleigh-Taylor flow in which the vorticity is generated baroclinically along a curve
of density discontinuity, and motion of a fluid interface in a Hele-Shaw cell for which
vorticity is produced by a jump in viscosity across the interface. These problems are
described in detail in subsequent sections.

One of the most interesting phenomenon for such free surface flows is singularity
formation on the vortex sheet. The singularity may be of weak type, such as infinite
curvature of the sheet at a point. These singularities, if they occur, are clearly important
to mathematical theory and numerical computation, while their physical significance
varies from one problem to the next. For example, for the Kelvin-Helmholtz problem,
singularity formation immediately precedes roll-up of the sheet [8], [9]. This in turn
contributes to production of small-scale variation in the flow. Analysis of the solution
after singularity formation is a major open problem for these free surface flows.

Moore 11 ], 12] analyzed the formation of singularities for the Kelvin-Helmholtz
problem and derived a simple approximate description for the evolution of vortex
sheets as a system of differential equations in the circulation variable F along the sheet.
A principal advantage of this approximate description is that it is local in F, in contrast
to the nonlocal exact description through the Birkhoff-Rott equation. A second feature
of this approximation is that it is hyperbolic in a complex F-direction, so that singularity
formation on the sheet can be understood as motion of a singularity in the complex
F-plane. The complex plane is purely a mathematical construction with no physical
meaning, but when the singularity reaches the real F-line, it actually appears on the
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vortex sheet. Moore’s approximate equations were rederived and used by Caflisch and
Orellana [4] to prove long-time existence for a slightly perturbed vortex sheet.

Moore’s predictions for the singularity time and the type of singularity in the
Kelvin-Helmholtz problem have been verified numerically in [1], [8], and [17]. A
rigorous mathematical analysis of singularity formation in the Kelvin-Helmholtz
problem [5], [6] shows that Moore’s approximation (with some modifications) gives
a correct description for a large set of singular solutions of weak amplitude. Possible
limitations of Moore’s approximation and some disagreements between Shelley’s
numerical results [17] and Moore’s analysis are discussed at the ends of 2 and 3.

The purpose of this paper is to present a general formulation of Moore’s approxi-
mation method ( 2), which we call the "localized approximation." In this form it can
be applied to a variety of flows involving vortex sheets: the periodic Kelvin-Helmholtz
problem ( 3), an interface in Hele-Shaw flow ( 4), the Rayleigh-Taylor problem
( 5), and desingularized vortex sheet equations ( 6) such as that of Krasny [9]. A
summary of these results and a discussion of additional applications is presented in
the final section, 7.

2. The localized approximation method. Consider an integral operator M for which
the integrand k depends on the independent variable F, as well as on a function s(F),
i.e.,

M M[s](r)

(2.1)
PV f k(r, r’, s(r), s(r’)) dr’.

The domain of integration will vary with the application. The integral is taken in the
Cauchy principal value sense, because of possible singularities at F’= F and IF’I .

We shall assume that s is analytic in IIm F < p and that s and M are 2or-periodic
in F. In addition, we assume that

(2.2) M[so]-- 0

for any constant So, and as a result that constant terms in s can be ignored. Then if s
is regular it can be decomposed as

(2.3) s= s++s_

in which s+ Yl g(k)e ikr is analytic in the upper half plane {Im F>-p} and s_

F_I (k) e ikr is analytic in the lower half plane {Im F < p}. The integral operator M
can be written as

(2.4) M= M[s+](r) + M[s_](r) + [s](r).

Although (2.4) is just a definition of E, we claim that E is negligible compared to the
other terms in (2.4). The reason for this can be understood in two equivalent ways.

The first justification for neglecting E uses properties of upper and lower analytic
functions. The difference

(2.5) E[s] M[s+ + s_]- M[s+]- M[s_]

depends only on cross multiplication terms such as s+s_, and not on pure s+ or pure
s_ terms such as s+ or The upper analytic function s+ is exponentially decaying
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in the Im (F) direction, while s_ is exponentially decaying in the -Im (F) direction,
i.e., for Im F > -p

(2.6a) Is/(r)l <- e-(p+Im(r)) sup Is/(r’)l
ImF’=-p

and for Im F < p

(2.6b) Is_(r)l < e-(-Im(r)) sup
Imr’=p

A detailed proof of (2.6a) and (2.6b) is provided in Appendix A of [4]. As a consequence,
for lira rl--< p

(2.7) Is+ _(r)l -< e sup Is+(r’)[ sup Is_(r’)l
ImF’=-p ImF’=p

Define ][sl] =SUPlImrl___o ]s(F)]. Then (2.7) says that ]ls+s_l] _-< e-2l]s+]l IIs_]]. If M is a
good operator, it follows that

(2.8) IIE[ ]ll e-= lls/ll IIs-II,
whereas M[s+/-] o(lls ll). Therefore if p >> 1, E[s] is negligible.

A second explanation for the smallness of E comes from looking at the Fourier
series for s. This is the original explanation of Moore [11] and is actually equivalent
to the first explanation. Assume that s has the form

(2.9) s(F) Z elklak eikI’.
kO

This is equivalent to the assumption that s is analytic in {llm F! < p} with p Ilog el.
Such an expansion is natural if s is originally of the form s eal eir+ ea_l e-iv (or
any finite number of wavenumbers) and s evolves in time due to a nonlinear process.
Then higher wavenumbers are generated by wavenumber doubling through multiplica-
tion of s with itself, so that the higher wavenumbers come with geometrically decreasing
amplitudes. Now consider the product s2 which is expanded as

s2(r) E E elk’l+lk21ak, ak2
k k2=--oo

(2.10)
k,o o

(61k’+k2lok, ak2 + O(Elkl+k2l+l)) ei(k,+k2)F.
sgn (kl) =sgn (k2)

Since [k,]+k2] ]k, + k2] only if sgn (k,)= sgn (k2), only products of two positive k
2 sterms or two negative k terms are significant, i.e., only s+ and terms. For all cross

multiplications of negative k and positive k terms, the wavenumber sum ka + k2 involves
cancellation while the amplitude exponent ]k+]k2] add. Since E[s] involves only
products of + and terms, it is negligible.

Return now to equation (2.4). Since E[s] is negligible, M can be approximated by

(2.11) M[s]-M[s+]+M[s_].

The advantage of the approximation (2.11) over the original operator (2.1) is that the
two integral operators on the right of (2.11) involve an integrand that is analytic in
the upper or lower half planes. Thus we can hope to directly evaluate them by
appropriate contour deformation.

Now suppose that s evolves in time according to the integrodifferential equation

(2.12) Ots*(r t)= M[s](F, t)
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in which s*(F)= s(F) and the overbar indicates the usual complex conjugate. The
function s* is the analytic extension of the conjugate function g from the real F line.
Define the projection H/ onto the space of upper analytic functions and the projection
H_ onto that of lower analytic functions. Since the operator * switches upper and
lower half planes,

(2.13a) H/(s*) (H_s)* (s_)*,

(2.13b) H_(s*) (H+s)* (s+)*.

We also assume that M[s+] is upper analytic and M[s_] is lower analytic, i.e., that

(2.14a) H+M[s+] M[s+],

(2.14b) H_M[s_]=M[s_].

Now use the localized approximation (2.11) in (2.12), with s s+ + s_, to obtain

(2.15) O,(s+)*+O,(s_)*=M[s+]+M[s_].

Apply the operators H+ and H_ to (2.15) using the relations (2.13) and (2.14) to obtain

(2.16a) O,(s+)*=M[s_],

(2.16b) Ot(s_)*=M[s+].

It will be more convenient to have equations for s+ and (s_)*, both of which are
analytic in the upper half plane. These are obtained by applying * to (2.16) to get the
equations

(2.17a) O,s+ m[s_]*,

(2.17b) O,s* M[s+]

in which s* (s_)*. The system (2.17) is the localized approximation for the evolution
equation (2.12).

A similar localized approximation can be made if M[s] is replaced by the somewhat
more complicated operator M[s, s*](F, t). Since M depends on both s and s*, the
localized approximation (2.11) for M must be modified. The functions s+ and s* (s_)*
are upper analytic, while s_ and s*+ (s+)* are lower analytic. As before, product terms
s+s_, s_s*+, s_s*, and s*+s*_ are negligible compared to the purely upper analytic or
purely lower analytic terms s2+, s_, s+*, s+s* s_s*+, and s*_ This leads to the localized
approximation

(2.18) M[s, s*] M[s+, s*] + M[s_, s*+]

for M.
Now consider an evolution equation of the form

(2.19) Os*= M[s, s*].

Use of the approximation (2.18), projection by H+ and H_, and application of * to
the H_ equation results in the localized approximation

(2.20a) Ors+ M[s_, s*+]*,

(2.20b) O,s* m[s+, s*]
in which s*= (s_)* and s*+= (s+)*.

The localized approximations (2.17) or (2.20) for the evolution equations (2.12)
or (2.19), respectively, are the main results of this section. We shall employ this
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approximation and examine its consequences for a variety of problems below. For
these applications we shall find that M[s/] and M[s_]* (or M[s/, s*] and M[s__, s*+]*)
can be explicitly evaluated as differential operators.

Note that the localized approximation contains all of the linear terms and thus
has the same linearization as the original problem. For singularities far from the real
axis, it also contains the most important nonlinear terms. Thus the approximation
should correctly describe both the nonlinear production of singularities far from the
real axis and the propagation of singularities toward the real axis. If the initial
perturbation s is of size e, then it is expected to take time log (e -1) for the singularities
to reach the real axis [11], [12]. The bound (2.8) suffices to make E[s] negligible even
over this long time period [4].

Once the singularities are near the real axis, then p (the width of the strip of
analyticity) is not large, and the factor e-2p in the bound (2.8) is not small. However
if the perturbation s in the vortex sheet position is small at the singularity time (as in
the Kelvin-Helmholtz problem), then the nonlinear term E[s] will still be negligible.
In this case the localized approximation should correctly describe the singularity
formation. Even if the vortex sheet perturbations are large at the singularity time, so
that the localized approximation is not quantitatively accurate, we still expect that it
will give a reasonable estimate of both the singularity time and the type of singularity.
As described at the end of 5, this is the case for the Boussinesq limit of the
Rayleigh-Taylor problem. Thus we expect the localized approximation to give a valid
description of singularity formation in free surface flows.

3. The Kelvin-Helmholtz problem. The Kelvin-Helmholtz problem is to describe
the evolution of a small periodic perturbation of a flat vortex sheet of uniform strength.
The location of the sheet is described by a complex function z(F, t)--x + iy, in which
the real variable F parameterizes the sheet. Choose the parameterization F, so that
OF/Os vorticity density along the sheet. The evolution of the sheet is governed by the
Birkhoff-Rott equation [3]

(3.1)
Oz*
Ot

(2ri)-lpv I_oo (z(F) z(F’))-’ dF’

for F real. A special equilibrium solution of (3.1) is z F, corresponding to a flat
vortex sheet of uniform strength.

Write z as a perturbation of this exact solution, i.e.,

(3.2) z(F, t)= F + s([’, t)

and define the integral operator

(3.3) B[s](F)=(2’i)-’PV (r-r’+ dr’.

In (3.3) constants in s do not matter, so that we may assume that So 0. The operator
B[s] is of the form considered in 2. Then Moore’s approximation (i.e., the localized
approximation) for B is

B[s]-B[s+]+B[s_]

(3.4) 1 Ors+ 1 Ors_

2 l+Ors+ 2 l+Ors_

The second line of (3.4) comes from the exact evaluations B[s+]=1/2(OrS+)(1 +0rs+) -1

and B[s_] 1/2(0rS_)(1 + ORS_)-, details ofwhich are in [4]. Ifwe assume that [Ors+l < 1,
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1/2OrS+/then B[s+] (l+Ors+) and B[s_]* -1/2Ors*/(l+Ors*) are upper analytic, as
assumed in 2. Then the localized approximation (2.17) for the Birkhoff-Rott equation
(3.1) is

1 Ors+(3.5a) O,s* - 1 + Ors+’
1 Ors*(3.5b) 0t/s+ - 1 + OrS*

in which s* (s_)*.
The system (3.5) can be made quasi-linear by differentiation in F, with the definition

d Ors+, Ors*_, to obtain

(3.6a) 0tq -1/20r(1 + b) -1,
(3.6b) 0t4 1/20r(1 + )-1.

Equations (3.6) are the localized approximation for the Kelvin-Helmholtz problem
and are the main goal of this section.

The system (3.6) is a nonlinear hyperbolic system in complex F versus with
Riemann invariants

(3.7a)

(3.7b)

and characteristic speeds

r=log (1+ b)+/log (1+

s log (1 + 4))-/log (1 + q),

(3.8a) A =- (1 + 6)-1(1 -k-l/) -1,

(3.8b) /x = (1 + b)-l(1 + q)-I

satisfying

(3.9a)

(3.9b)

rt nt- Art 0,

st + tXSr O.

Moore [9], 10] used the Riemann invariant form for this system (actually he used
an equivalent system (3.11) below) to describe singularity formation for the vortex
sheet. This application of nonlinear hyperbolic equations is unusual in that the physi-
cally correct singularity occurs as an envelope of the characteristics. The reason is that
the characteristics move approximately in the imaginary F direction, whereas the
physical line is the real F axis. As sketched in Fig. 1 an envelope for the characteristics
may form off in the complex plane and travel to the real line. Up until the time that
it hits the real axis, the solution on the real axis is smooth. At the envelope, the generic
behavior of 4 and q is (F-Fe) 1/2, so that the generic singularity for the vortex sheet
is z (F-Fe)3/2 (since b and q are related to Zr). At the time of physical appearance
of the singularity on the real F line, two such singularities may collide.

Note that after the envelope forms (say on the imaginary axis), the solution cannot
be continued past the envelope. Actually, as shown in Fig. 2, there are two envelope
curves. Continuation of the solution from the real axis is stopped by the envelope
curve El. A shock could be inserted into the solution to make a jump from the sheet
S1 onto the sheet $2 (cf. Fig. 3), if the solution needs to be continued to the entire
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ri

FIG. 1. One family of characteristics and their envelope for the system (3.12). A smooth solution on the
physical line FR i.e., F real) exists until time T. The characteristics have been drawn as straight linesfor simplicity.

E

FIG. 2. Continuation of Fig. to all F. At initial formation of the envelope it has two branches. Only the

upper one is needed here, as in Fig. 1. A shock(s) would be inserted for a gas dynamics problem.

$2

S

F
FIG. 3. The solution as a multivalued function. A smooth solution exists on the lower branch S up to the

envelope
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imaginary axis. However, since the real axis is the physical line, this is unnecessary
(in contrast to usual applications of hyperbolic equation), so that no shock is needed.

The system used by Moore in [11] and [12] is a transformation of (3.6). Set

(3.10) 4) =-1 + (1/x/)h a/:z e -ig/:z

and set y iF. Then g and h satisfy

(3.11a) ht gy,

(3.11b) gt=h-2hy,
which is the system obtained by Moore [12]. The localized approximation equations
(3.6) or (3.11) were also used by Caflisch and Orellana [4] to prove long-time existence
for s that is initially small and analytic in a wide strip {Jim FI < p}.

Recent computations by Shelley 17] confirm the power singularity and Moore’s
expression for the singularity time. However for initial perturbations of moderate size,
they show some disagreement with Moore’s expression for the form of the singularity.
We believe that Moore’s approximate equations (3.11) would give the correct form
for the singularity, and that these discrepancies come from Moore’s asymptotic solution
of equations (3.11). This possibility is currently being tested.

4. Interfaces in Hele-Shaw flow. Flow in a narrow gap between two plates is
described by the Hele-Shaw equations. The interface between two fluids in a Hele-Shaw
cell is a vortex sheet, since the tangential velocity is discontinuous there. Trygvasson
and Aref 19] show how to describe the dynamics of such an interface by an integral-
differential equation on the interface. We first recall this integral-differential equation,
then rewrite it in the complex analytic notation of the previous section, so that the
localized approximation method of 2 can be applied.

The Hele-Shaw equations are

(4.1a) Vp -(tXl/ kl)U + plg,

(4.1b) V u 0 in "1,

(4.1c) Vp -(/x/k.)u + pg,
(4.1d) V. u=O in

for upper fluid 1 in "1 and lower fluid 2 in f2 with fluid interface S 0121 (q 0-2 The
forcing has been assumed to be gravitational, but this is equivalent to a prescribed
pressure gradiant. The boundary conditions across S are

(4.2a) pl P2,

(4.2b) n’ul=n’u2

since there is no surface tension. At infinity the velocities ua and I12 are assumed to go
to zero. The vorticity density 3/on S is found to be

(4.3)
3/-= (u-ua) "
=2aU,’r-2b.r

in which U (Ul +u)/2 is the average velocity of the two fluids at the interface and

a ([.61/ka-/1,/,2/k2)/(/Zl/kl +/1.62/k),

b p P)lg]/(,/k, + /k),
fg: g/Igl (0, -1).
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For the interface velocity U Ox/Ot we will use a weighted average of the two
fluid velocities at the interface, i.e.,

1-/3 1+/3(4.4) U=Ul+U:,
2 2

in which -1 =</3 =< 1 will be chosen later. Note that this choice is permissible since it
has the correct normal component n U n Ul n u2, while the tangential component
for the velocity of any interface is arbitrary. Such a weighted average seems desirable,
because for an interface between liquid and gas with p2 =/x2 0, the most reasonable
choice for U is U ul. The equation for motion of the interface is then

(4.5) Otx(F, t) U,, +-Z 3/7..
Z

Parameterize the interface as x(F). The Biot-Savart law says that the average
velocity Ua is

(4.6)

(x(r)-x(r’))
Ua=(27r)-ipvJ Ix(r)

(27r)-lpv (x(r)- x(r’))
Ix(r)-x(r’)l

r(r’) as (r’)

Equations (4.3), (4.5), and (4.6) give a complete description of the interface motion.
They can be rewritten in complex variable notation by defining z(F)= x(F)+ iy(F),
v y(’x + i-y), and w U‘‘ + iV,,. The vorticity density y(Os/OF) is then found to be

y-(= 2(aU‘‘- bg). "

(4.7)
2(aU, aV + b) (Xr, Yr)
2a( Uxr+ Vyr) + 2byr

a Zr+ Wer) ib Zr r)

a(W*Zr+ wz)- ib(zr-z).
Equality (4.7) is for real F. Replacement of ff by z* (the analytic extension of if) is
valid for real F and analytically extends the formula for (Os/OF) to complex F.
Similarly,

v*= z?l(a(w*zr+ wz)- ib(zr-z)},

(4.8)
w,=H[z,z,]=(Zi)_pv f(z_z,)_{a(w,,z+w,z,)_ib(z_z,)}dF

with z z(F), z’= z(F’), etc., on the right side. Finally, (4.5) for the motion of the
interface is equivalent to

(4.9) Otz*(F, t)= w*+ v*.
2

An obvious solution of (4.9) is z= F with w=0.
The complex analytic equation (4.9) can now be analyzed using the localized

approximation method. Look for z to be a slight perturbation of the steady-state
solution Zo F, i.e.,

z=F+s(F,t)
(4.10) F + s+(F, t) + s_(F, t)
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and denote

(4.11) M[s, s*] H[z, z*].

The localized approximation for M, according to (2.18), is

M[s, s*] M[s+, s*_] + M[s_, s*+](4.12)

in which

M[s+, s*_](F)

(4.13) (27ri)-lPV I_ (z/- z)-1

{aw*’’ z* *’+i-+aw+ ib(z’+r Z-r)} dr’,

where we denote z+ F + s+, z_ F + s_, etc. A straightforward contour integration
shows that

(4.14a) M[s+ s*] =-1 -1 .-Z+r{aw_z+r+ aw+z*r- ib(z+r- Z’r)},

M[s_, s*+]* 1/2z*{l{aw+z*r + aw*z+v + ib( z*v Z+r)}
(4.14b)

-z*;lz+vm[s+, s*].

The change in sign in (4.14b) comes because the integration contour is deformed
downwards, rather than upwards as in (4.14a). If Is+v[<1/2, then M[s+,s*] and
M[s_, s*+]* are upper analytic, as required.

The localized approximation for w is (after some cancellation)

ib s+v- s*v(4.15a) w*= M[s+, s*] =- l + s+r

ib s+v s*v
(4.15b) w+=M[s_,s*+]*- --.

2 l+s*-F

Similarly, the localized approximation for v is

v* z_{a(w*z+v+ w+z*r)- ib(z+r- z’v)}
(4.16a)

ib(s*_r-S*+r)/(1 + s+r),

W+Z_F
(4.16b)

v+ z-r a( * +w*z+r)+ib(z*r z+r)}

ib(s*r s*+r)/( 1 + s’r).

The localized approximation (2.20) for the Hele-Shaw equation (4.5) is then

(4.17a) O,s+ w+ +- v+,

(4.17b) O,s* w* +my*,
2

ib S’r- S+r(4.18a) s+, =- (1 +/3)
1 + s*-F

(4.18b)
ib s*r- s+vs*,=- (1-fl)
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Equations (4.18) can be cast into a very simple form by differentiating them in F
and defining

1-/3 1+/3(4.19a) u
l + s+r l + s*r’
1 + S+F(4.19b) v
l+s*-F

Then (4.18) is equivalent to

(4.20a) OtU --0,

ib
(4.20b) Otv+ uOrv O,

which is a linearly degenerate hyperbolic system. The system (4.20) is the localized
approximation for an interface in a Hele-Shaw cell. Singularities occur in the solution
of this system only if they are present initially somewhere in the complex plane. They
propagate along the characteristics dz/dt =0 or dz/dt u(z).

At equilibrium z F, the quantities u and v are u 2 and v 1. Thus the lineariz-
ation of (4.20) for u 2 + u’, v 1 + v’ is

(4.21a) u’t=O,

(4.21b) v’ ibv.=O,

which has the solution v’= e ikr+bkt. Since v is upper analytic, k> 0. Thus there is
instability if b > 0 and stability if b < 0, in agreement with the linear analysis of Saffman
and Taylor 16].

In the extreme case of an interface between a liquid and a gas, i.e., p2 =/z2 0, it
is natural to take the interface velocity to be the velocity of the liquid, which means
to set /3 =-1. For this special case, there is a simple exact set of equations, which
differ from the localized approximation equations (4.18). The simplified system is
obtained by parameterizing the interface as z(K, t)= K + h(, t) in which h is upper
analytic in . The -parameterization, which is determined by the requirement of upper
analyticity, differs from the F-parameterization above, which is determined by the
velocity definition (4.5).

Using this simplified system for the liquid-gas interface, exact singular solutions
have been derived by Howison, Ockendon, and Lacey [7] and exact smooth solutions
by Saffman [15]. For the singular solutions of Howison, Ockendon, and Lacey [7] the
singular point is iK0 at which OKz 0. This can be transformed to a point at which
Oz=, by the mapping F= +a cos at =0 with proper choice of a so that
0KF(io)=0. Moreover, if [o[ is large enough, F(K) is one to one and onto on the
interval [0, 2r]. This choice is more natural for the hyperbolic equation (4.17), since
the singular point Oz= will move along the characteristics until it reaches the
physical line F real. This shows that the singular solutions of [7] correspond to singular
solutions of our localized approximation (4.20).

5. The Rayleigh-Taylor problem. The Rayleigh-Taylor problem describes motion
of an interface between incompressible, inviscid fluids with different densities. The
baroclinic generation of vorticity along this interface makes it into a vortex sheet,
which is then subject to instability, singularity formation, and roll-up. As shown in
1 ], the interface position z(a, t) is governed by a system of integrodifferential equations
on the interface (for consistency with [18] the variable F is replaced by a in this
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section). Neglect surface tension, take the gravitational force to be (0,-g), and let
y(a, t) denote the vorticity density on the interface. As in the previous section, we
take the vortex sheet velocity U to be the combination of the upper and lower fluid
velocities given by (4.4). We also assume that the zeroth Fourier coefficient 3’0 in y is
zero. The equations for the Rayleigh-Taylor problem are then

(5.1a)

(5.1b)

O,3"(a, t)= R2[z, z*, 3"]

=-A (q*t z+qtz*)+-Ozz,-ig(z-z*)

+ 0 A3"
q

2 z,z* -+z*]
in which

(5.2) q*= (27ri)-lPVI 3"(a’, t)
z(a, t)-z(a’, t)

da’

and A p+ p_)/ p+ + p_) is the Atwood number.
As before, z---ce and 3’(a)= 0 is an equilibrium solution. Thus set

z a + S ce +s+(a, t)+s_(a, t),
(5.3)

3’ 3’+(a, t) + 3’_(a, t)

and define

(5.4a)

(5.4b)

MI[S, 3’]--Rl[Z 3’],

M2[ s, s*, 3’] R2[ z, z*, 3’1.
Apply the localized approximation method of 2 to obtain

(5.5a) O,s+ MI[S_ 3’_]*,

(5.5b) O,s* M[s+, 3’+],

(5.5c) 0,3’+ M2[s+, s*, 3’+ ],

(5.5d) 0,3’* M2[s_, s*+, 3’_]*.

Using the localized approximation, the integral term q in M1 is calculated from (5.2)
by contour deformation to be

(5.6a) q+ 3’:
(5.6b) q*_ -1/23’+z+
in which z+ a + s+ and z_ a + s_. Then

(5.7a) Ml[s_, 3’_]* /3 + 1
3’*_z*_

2

(5.7b) M[s+ 3’+]
/3- 1 --1

3’+Z+2
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and the localized approximation for the differential operator M2 gives

Mz[s+ s* 3’+]=A q* * + O‘x- ig(z+tZ+‘x + q+tz--‘x " *Z+‘xZ_‘x
(.8)

T++ O‘X-AT+2 * *Z+‘xZ_‘x \ Z+‘x

Since the vortex strength y is real for a real, the y+- y*. Under this assumption
the localized approximation equations (5.5)-(5.8) can be combined and simplified to
obtain

/3+1
(5.9a) O,s+- (1 +

2

(5.9b) Ors* [3 1
-= 2 (l+s+)-ly+,

(5.9c) O,y+ fl+A
0‘x [(1 + S+‘x)-l(1 + S*_‘x)-I 3/+] iAgO‘x(s+-s*).

Differentiate these equations in a and denote b =O‘xs+, =O‘xs*, and o)= 3’+. The
result is the quasi-linear system

fl+l(5.10a) 0,h
2 1+’

(5.10b) Otto 2
O‘x

1+ b’

(5.10c) Otw /3+A[ 09
2 ]o ( + 4;ii1+ iAg(4 .

The system (5.10) forms the localized approximation for the Rayleigh-Taylor
problem. An analysis of this system by Siegel [18] shows that singularities form as
expected, giving the first analytic prediction of singularities for the Rayleigh-Taylor
problem. In addition, at Atwood number A 1, corresponding to liquid falling into a
vacuum, two singularities of opposite sign coalesce and partially cancel. Such cancella-
tion was conjectured by Baker, Meiron, and Orszag 1]. For this problem it is natural
to take /3--1, so that the interface velocity is that of the liquid. Computation of
singularity formation for the Rayleigh-Taylor problem in the Boussineq limit (A 0,
Ag - 1) has been performed by Pugh 14], and the singularity time predicted by Siegel
(for/3 =0) agrees well with Pugh’s computations.

6. Desingularized vortex sheet equations. A desingularized approximation of the
vortex sheet equations (3.1) was formulated by Krasny [9] and used by him to compute
roll-up of a vortex sheet after singularity formation. Krasny’s desingularized equation
is

(6.1)
O,z(F)=K[z,]=_(2ri)_I_ Iz(r) z(r’)l + 6

dr’

(27ri)_
-z*’

( ,)(, ,,) +
dr’.
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As before set z=F+s and M[s, s*] Ks[ z, z*]. The localized approximation
for (6.1) is

(6.2a) O,s+ M[s_, s*+]*,

(6.2b) a,s* Ms[s+, s*].

Now calculate M[s+, s*] and M[s_, s*+]* for small 6. The first of these is

(6.3) Ms[s+, s*] -(27ri)
Z#

(’+- =+--z*’ z*) + - clV’

in which we denote z+ F + s+(F), z* F + s*(F), z_ F’+ s+(F’), etc. The denominator
is approximately

(6.4) (1 + s+r)(1 + s*)(F’-F)2+ 62

so that it has poles at

(6.5) F’= F’ F + i6(1 + s+r)-l/2(1 + si,) -1/2

In computing the integral (6.3), the contour is deformed upwards so that the
residue at F is obtained and there is also a contribution of from the integral at .
Thus

(6.6)

z*_’-z*_ ) 1
Ms[s+, s*] res

(z*’ z*
+-

r’:r; (z+ z+) )+62.
z*_’-z*_ 1

2z’+r( z*’ z* + z*(z+ z+

Now expand this to get the leading order corrections in 6, using the notation : F_ F
i6(1 + s+r)-/2(1 + s’v) -/2. The result is

(6.7)
21 2z+vl 81 ( z*-rv z+rr/M[s+ s*_] - + 3, z+Z+FZ-F

i6( S* 3S+FF )1 s+r
t--- -rr -- 5/2( 1/22 1 + S+r 8 (1 + S+r)3/2(1 + S*_F)3/2 (1 + S+r) 1 + S’r)

Similarly,

(6.8) M[s_ s+*]*=
1 S*r i6( S+rr- 1 + S*_F---- (1 + S*__F)3/2(1 + S+F)3/2

d-
3s*rr )(1 + s’r)5 + s+r) ’/2

These expressions may be substituted into (6.2) to obtain the localized approximation
for Krasny’s desingularized vortex sheet equation.

Krasny’s desingularized equation can be compared to the equation for motion of
vortex layer of small thickness derived by Moore 10] and studied by Baker and Shelley
[2]. Let e H/p be the dimensionless measure of thickness for the layer, with H the
dimensional thickness and p the radius of curvature. Let 05 be the (constant) vorticity
in the layer, so that w eo3 is the corresponding vortex sheet strength and is assumed
to be O(1) in size. Then the equation of motion for the center line z(F, t) F + s/ + s_

of the vortex layer is

(6.9) Ore M[s’, s*] (27ri) -1 f (z(F) z(F’)) -1 dF’+ e(6wi)-’Ov(Izvl-4gr)
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in which terms of size O(e2) have been ignored. The localized approximation for (6.9) is

:(6.10a) Ors+= ME[s_, s+*_]* --s_r(1 + s’r)- e(6toi)-lor((1 + S*_r)-2(1 + s+r)-l),

(6.10b) 0ts*= M[s+, s*__] =1/2s+r(1 + s+r)-I + e(6toi)-lOr((1 + S+r)-2(1 + S*_r)-l).

Comparison of (6.8) and (6.10) shows them to be significantly different so that
the desingularization parameter 6 cannot be interpreted as vortex layer thickness. This
difference can be understood by noting that Moore’s expansion parameter is (e/to)
which has units of (length/velocity). A more physically meaningful desingularization
is found by replacing 62 in (6.1) by (e/to):. Then a factor with units of velocity must
be put into the first term of the denominator. A natural choice is IZrl or Iz.l: (note
that the circulation variable F has units of velocity length).

Consider the desingularized integral

(-z’(lzrl+ll)N[s,s*]=(2"rri)-’ iz_,l(lzlS+lzbl)+(/oo) dF’

(6.11)

(2"tri)-I f_oo (z*--z*’)(aZrZ*r-k-flz’z*r’)
dF’.

z z’)( z* z*’)(z* +z*r’) + 1o
The localized approximation for N is

(6.12) N[s, s*] N[s+, s*]+ N[s_, s*+].

The first of these is evaluated by the same procedure as for Krasny’s desingularized
integral to obtain

1 S+r +_ (a -1t-/)--3/2N[s+, s*]- + s+ 8
(6.3)

( + 3t ( ++;( + s,_r+ (3 + 5t ( + +-ii + s’r)

This agrees with the vortex layer equations, i.e.,

s,_

if a =fl =. Similarly, N[s_,s*+]= M[s_,s*+]+O(e/to)2. Therefore we propose the
following physically desingularized vortex sheet equation"

( ,)(1 zrl 2 / Iz-I =)(6.5) o,e=(2i)- iz_z,12(iz12/lzbl=)/_(/,o)=
dr’.

Numerical solutions of this equation are now being performed.

7. Conclusions. We have reformulated and generalized an approximation method
of Moore and applied it to a variety of fluid flow problems involving vortex sheets.
Other applications of the method to circular vortex sheets and ringwings have been
made by Orellana [13]. We have also applied this localized approximation method to
a slightly perturbed strip of constant vorticity but with a trivial result; the linearized
equations are all that results. In general this approximation method is applicable to
the motion ofany front, if the motion ofthe front can be described by an integroditteren-
tial equation along the front.
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An improved version of the localized approximation has been formulated by
Caflisch and Semmes [5]. As described in 2, the present approximation method is
valid only for p >> 1, i.e., for singularities far from the physically meaningful real line.
In [5] the approximation is altered to a more complicated form that is valid up to the
time that singularities hit the real axis and hence appear physically. However we believe
that this improved approximation does not give a qualitative change in the singularity
formation.
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