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The Boltzmann Equation with a Soft Potential 

I. Linear, Spatially-Homogeneous 

Russel E. Caflisch* 

Department of Mathematics, Stanford University, Stanford, CA 94305, USA 

Abstract. The initial value problem for the linearized spatially-homogeneous 

equation has the form ~ + L f  = 0 with f({, t = 0) given. Boltzmann The linear 

operator L operates only on the ~ variable and is non-negative, but, for the soft 
potentials considered here, its continuous spectrum extends to the origin. Thus 
one cannot expect exponential decay for f, but in this paper it is shown that f 
decays like e- Ate with fl < 1. This result will be used in Part II to show existence 
of solutions of the initial value problem for the full nonlinear, spatially 
dependent problem for initial data that is close to equilibrium. 

1. Introduction 

The initial value problem for the Boltzmann equation of kinetic theory is 

~ f  + ~ . ~ F  
&-- Ox +Q(F,F)=O, F(t=O)=F o (1.1) 

in which 

F = F(~, t, x), (1.2) 

t~lR +, ~ I R  3, x~IR 3. (1.3) 

Throughout this paper a boldface letter will represent a vector in IR 3, while the 
non-boldface letter signifies its magnitude. The quadratically nonlinear operator 
Q vanishes if F is a Maxwellian: 

FM = O_ _ e-I~-<2/2r (1.4) 
( 2~z T) 3/ 2 

where O, u, T can be any functions of x and t. If they are constants, F~  is an 
equilibrium solution of (1.1). We will study solutions of (1.1) which are close to 
such an equilibrium and which are independent of space. 
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Write F in the form 

F({, t) = co(4) + V ~  f({, t), (1.5) 

in which 
1 

co(~) = ~ e -  1/2~2. (1.6) 

Note that we have removed the Q, u, and T by scaling and translating. The 
equation for f is 

a f  + L f +  vr(f,f) = o, (1.7) & 

with 
L f =  2co- 1/2 Q(co, o91/2 f ) ,  (1.8) 

v r ( f  f )  = co- 1/2 Q(o31/2 f, col/2 f ) .  (1.9) 

In this paper we consider only the linearized equation with given initial data, i.e. 

Of  + L f = 0 ,  (1.10) 
& 

f(¢, O) = fo(¢) e N(L)±, (1.11 ) 

where N(L) z is the orthogonal complemem of the null space of L. This last 
condition (1.1t) on fo means that we have chosen the right Maxwellian to perturb 
around ; i.e. all the mass, momentum and energy is in the Maxwellian distribution 
03. 

The linear operator L was analyzed extensively by Grad [5], and we take our 
notation as well as the general outline of our procedure from there. Grad showed 
that 

(L f)(~) = v( ~) f ({) + (K f ) ({) ,  (1.12) 

where K is a compact integral operator and v(~_) is a function which is essentially of 
the form 

v(~) = (1 + ~)~. (1.13) 

The operator L is self-adjoint and non-negative, i.e. 

(Lff)>=O, (1.14) 

and has 0 as an eigenvalue of multiplicity 5. Since a compact perturbation does not 
disturb the continuous spectrum of a self-adjoint operator [12], the decom- 
position (1.12) shows that 

acont(L)= {2:2=v(~) for some 4}. (1.15) 

If the force law between two particles is a power of their distance apart, i.e. 

F(r) = r- s, (1.16) 

then the exponent 7 is found as 

s - 5  
~= s-----i-" (1.17) 
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The mathematical theory is sensitive to the sign of 7. A hard potential is a 
collision law for which 7 > 0  or s > 5. The values of v go from 1 to oe and so acont(L) 
does likewise. All that is left in o-(L) is discrete eigenvalues, and there is a lowest 
non-zero eigenvalue 2 o, which is positive. This shows that the part o f f  in the range 
of L decays like e -h°t. Using this decay various authors [6, 11, t3] have shown 
existence for all time for the linear and nonlinear problems with spatial homo- 
geneity or inhomogeneity, if the initial data is close to Maxwellian, i.e. if f0({, x) is 
small. For  the nonlinear spatially homogeneous problem, Arkeryd [1] has shown 
the global existence for a broad class of initial data. 

On the other hand for a soft potential, with 3 <s  < 5, the function v has the 
expression 

v(~) =(1 + ~)-~, (1.18) 
with 

s - 5  
7=  s - 1  > 0 .  (1.19) 

(We have switched the sign of y to emphasis the negativity of the exponent.) Now 
the values ofv range from 0 to 1, and so the spectrum of L goes all the way down to 
0. Thus we cannot expect exponential decay in (1.10), and none of the existence 
results mentioned above are applicable. Nonetheless we show in this paper that 

2 
the part o f f  in the range of L does decay at the rate e-*te, with fi = and 2 > 0. 

2 + 7  
This is our main result and is stated precisely in Sect. 3. The reason for this decay is 
that the small values of 2 in o-(L) correspond to small values of v({) and to large 
velocities 4. But we will assume that fo looks approximately like e - < 2  i.e. that it is 
comparable to a Maxwellian, so that these large velocities are relatively 
unimportant. 

The exact form of L and a modification to remove its null space are presented 
in Sect. 2. After the main result is stated in Sect. 3, an outline of the proof is given in 
Sect. 4. Sections 5 and 6 are devoted to estimates on the compact operator K. Then 
the spectrum of L restricted to 5~2(~ : { <w) is analyzed in Sect. 7. In Sect. 8 we pick 
the constants 2o, fl, w, la which appear in previous sections. Finally in Sect. 9 the 
iteration equation is solved and in Sects. I0 and 11 it is shown that the iteration 
procedure converges for all time and that the decay is maintained .for the 5{ ,2 
norm. In Sect. 12 we find that the a-norm is preserved and the sup norm decays. 

In Part II we will show the global existence of solutions of the spatially periodic 
initial value problem for the linear spatially dependent equation and for the full 
nonlinear Eq. (1.1) with small initial data. 

Inverse power repulsive forces are often used as first approximations to more 
realistic but complicated forces [7]. The power s is usually chosen to give 
agreement with the coefficient of viscosity Or heat flow or some other measurable 
quantity of the gas. For  most gases hard forces, with s between 9 and 15, are most 
realistic while for a few gases soft forces, with s below but close to 5, are relevant 
[2]. Many authors [10, 2, 4] have also used the Maxwetlian force s = 5 because of 
its computational simplicity. Of course there is interest in the very soft Coulomb 
force with s = 2, which our treatment of 3 < s < 5 does not include. 
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Short-time existence theorems for the full nonlinear, spatially dependent 
problem (1.1) were proved by Glikson [3], Kaniel and Shinbrot [8], and Lanford 
[9]. Their work included hard as well as soft potentials. Glikson solved the 
equation by direct iteration. Kaniel and Shinbrot used decreasing and increasing 
sequences of functions which squeezed down on the solution. Both allow a very 
general class of initial data. Our results are more restrictive since we consider only 
small perturbations from equilibrium, but are stronger since we obtain existence 
and decay for all time. 

Throughout the paper there are estimates with constant coefficients. It is not 
necessary to keep careful account of these constants, and so we wilt use c as a 
generic constant replacing any other constant (such as c 2) by c. 

I am very grateful to Harold Grad, who suggested this problem and found the 
improved estimates for soft potentials which are basic to its solution. He also 
pointed out the decay of the eigenfunctions which is crucial in the analysis of a(L) 
in Sect. 7. In addition I had a number of helpful and stimulating discussions with 
Percy Deift and George Papanicolaou. This work was performed at the Courant 
Institute and at the Mathematics Research Center; I am happy to acknowledge 
their support. 

2. The Linearized Collision Operator 

The Boltzmann collision operator has the form 

Q(F, F)(~) = ~ (F'F' 1 - FFI)B(O, V ) d O d e d ~ ,  (2.1) 

where 

V = ~1 - ~, (2.2) 

F '=F({ ' )  F i = F ( { i )  F I=F(¢ I ) ,  (2.3) 

~'=~+~(~.V), 
{'~ = {1 - ~(e" V), (2.4) 

and e is the unit vector in the direction of the apse line. The angle 0 range from 0 to 
with n -  20 being the angle of deflection in center of mass coordinates, and e is 

the angular coordinate in the impact parameter plane. 
Grad [5] has found exact and convenient forms for the function v and the 

compact operator K in (1.12). These are 

v(Q = 2n f B(O, v)o~(tl)dOdll, (2.5) 

Kf(~)  = ~ k(~, 11) fO1) dll, (2.6) 

k = - k I + k2, (2.7) 

kt(~, 11) = 27go) 1/2(¢) (,o 1/2(t/) ~ B(O, v) dO, (2.8) 

2 1 ex_r iv 2 1~2~ 
k2({,11)= (2=)3/2 V2 Pl_--g --3 lJ 

• 5 e x p [ -  ½tw + ~2t z] Q(v, w)dw,  (2.9) 
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in which 

v - I I - { = a ( a . ¥ )  v=  Vcos0,  (2.10) 

w = V - a ( a - V )  w =  Vsin0, (2.11) 
~1 +{2 = ~ =  ½({ +~1), (2.12) 

with {1 parallel to v and {2 perpendicular to v. Note that w is perpendicular to v 
and the integral in (2.9) is over that 2-dimensional plane with v held constant. We 
define 

1 
Q(v, w) . . . .  [B(O, V) + B(~ - 0, V)] (2.13) 

2[sin01 

and co is defined in (1.6). 
We modify L to eliminate its null space, which is spanned by the five functions 

~Po, ~1, ---, tP4 defined by 

~o(~)=col/2(0 
tp,(~) = {ico*m({) i = 1, 2, 3 (2.14) 

lP4(~) = ~2CO1/2(~), 

Replace L by L with 

4 

[~f=Lf + Z tPi(Va,,f)" (2.15) 
i=0 

This amounts to replacing k, by/~1 where 

4 

k~ = ka - 2 *&({)~&(tt). (2.16) 
i=0 

With this modification, L is positive, i.e. 

(Lf, f )  >0 .  (2.17) 

Furthermore the problem 

Of + L f = O  (2.18) 
& 

f( t  = 0) =fo e N(L) ~ (2.19) 

is equivalent to the problem (1.10) and (1.11). From now on we will drop the bar 
and L and k 1 will mean the modification in (2.15) and (2.16). The reason for the 
modification is that, although it does not change the problem, it does affect the 
proof. We will be performing a velocity cutoff, multiplying L by X~, defined in (4.8) 
and applying x,~L to functions )~M~. But N(L) l is not invariant under this 
multiplication. To get rid of this nuisance we have removed the null space by 
modifying L. 

We study only soft potentials, i.e. v must satisfy 

coo + ~)- '  < v({) <c,(1 + {)- ' ,  (2.20) 

where co, c~ and 0 <y  < 1 are positive constants. 
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In addition we assume an angular cutoff to the collision process, which means 
that 

B(O, V) < c V- ~lsin 0 cos 01. (2.2t) 

In other words B must approach zero linearly at 0 = 0 and 0 = ~, and it, as well as 
the total collisional cross section v, must decay algebraically for large V and have 
restricted growth for small V. The angular cutoff assumption was first suggested by 
Grad [5] and used in many subsequent works (e.g. [1,3, 6, 8, 11, 13]). 

The formulas above are more explicit if the intermolecular force is an inverse 
power, ~ = Y / r  ~, with 3 < s < 5. Then 

B(O, V)= V-~ fi(O), (2.22) 

5--s  
Y - s-- 1" (2.23) 

Furthermore 

v(~) = flo ~ It/-  ~]-~ exp( - {I/2) &l, (2.24) 

~/2 

flo=(2n) -1/2 5 fi(O)dO, (2.25) 
o 

which satisfies (2.20). The angular cut-off assumption (2.21) is a restriction on fl(O). 

3. Main Result 

Before stating the main theorem we first define a few useful norms. The notation is 
not confusing, although it is not entirely consistent. 

Definition. 
I l f l l -  j" f ({ )2d{ .  

Na 

Ilfll~,r- sup (1 + ~)re~¢21/(~)l. 
~193 

[IfL = 1ifl[~,0. 

Ilfll o~ -II/l[0,0. 

The subscript 0~ will always signify exponential decay and r algebraic decay. If ? 
ever appears in a subscript it is in the algebraic part. The algebraic decay is used in 
the proofs but not in the results. 

The following theorem establishes existence, uniqueness, and decay for the 
spatially-homogeneous linearized Boltzman equation with a soft cut-off potential. 

Theorem 3,1. Let 0 < e < ¼ .  Let foe  N(L) ~ with ilfo[l < o~. Then there is a unique 
solution of  (1.10) and (1.11). Its decay in time is given by 

]Lf(t)ll < CNfoll~e - x*a, (3.1) 

!lf(t)It~ < clI fo!l~e - a~, (3.2) 

II f(t)[I ~, < c 1[ fo I] ~, (3.3) 
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in which 
2 

f l = - -  
2 + 7 '  

2 = ( 1 -  2e)cd-~ (~-) p , 

(3.4) 

(3.5) 

f o r  any e > O. The  constants  c depend on ~. 

Remarks .  1) The constant fl comes from the following simpler problem which can 
be solved exactly. Let 

0 
~ f ( t , ~ ) + ~ - Y f ( t , ~ ) = O ,  for 3 > i ,  (3.6) 

f(0, 4) = e- ~2. (3.7) 

Then 
f ( t ,  4) = e -  ~ -  t~ , ,  (3.8) 

]If(Oil 00 = c e -  ~t~, (3.9) 

in which fl is given by (3.4). 
2) Notice that in both (3.1) and (3.2), the norm on the right is different from 

that on the left. This will cause complications later (in Part II) when we solve the 
nonlinear problem for small initial data, but it seems to be necessary. 

3) There is a simple existence and uniqueness theorem which does not 
guarantee decay" 

Theorem 3.2. The  Eqs. (1.10) and (1.11) with fo ~ ~2(~) has a unique solut ion f ( t ,  ~) 
in 5~2(~), and it satisfies 

Ilf(t) ll =<e ~[Ifoll, (3.10) 

where ~c is a bound on L,  i.e. 

fiLl1 <K. (3.11) 

This simple result proves the uniqueness and existence in Theorem 3.1. The 
real problem is to obtain the decay, which will be needed for subsequent work on 
the nonlinear problem. 

4. Outline of  the Proof of  Theorem 3.1 

First we give a very rough indication of the proof. Split the velocity space into two 
parts A and A with 

A = {~, ~ <w} (4.1) 
~ = { ~ , ~ > w ) .  

In A the solution f of the Boltzmann equation is of size e -~w~. Choose w so that 
c~w 2 = 2t ~, i.e. 

w = 1/2- t p/2. (4.2) 
V~ 
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In A we consider the operator Lw=ZAL= V+XA K defined on YZ(A), where ZA is 
the characteristic function of A. Since minv(~)=v(w)mco w-~, the continuous 

~ A  

spectrum of L~, has the lower bound v(w). The crucial fact, stated in Theorem 7.1, is 
that also there are no eigenvalues below t~v(w) for any 1 > # > 0. Thus (we omit the 
# in this rough statement) 

- exp J'. Co I ~)[2~- ~t2 t -  ~!2/j (4.3) 

and 
} 

e sL<s)as __<exp t -  c° 1 -£] ~ S-~'/2dS~ 
(4.4) 

-v/2 1 t 1 - ~b'12} 
_ 

Now to get decay like e -ap inside A, we ask that 

2t ~ = Co _ t 1 - v~/2, (4.5) 
1-7fi/2 

and are led to 

2 
fl = 2 +--7' (4.6) 

2 = ~ ' - '  ( 7 )  n , (4.7) 

which is approximately the choice of constants in Theorem 3.1. 
The actual proof requires a little more care. We make the splitting velocity w 

constant in the interval [Z  T+ 1]. Define the characteristic functions 

X~({)= {cA (4.8) 

The Boltzmann equation (t.10) can be rewritten as 

(If), + xL I f  = - zKzf ,  (4.9) 

(El), + vT~/'= - 2K( / f  + U) .  (4.10) 

Solve these equations in the time period [T, T+ 1] using the following iterative 
scheme 

(Lf,+ ,)t+ xLlf,+ , = -xKYoe,, (4.1t) 

(7C/', +,), + vTo~, +, = - 2K(/f ,  + U,). (4.12) 

We show in Sect. 9 that f .+ ,  decays if f ,  is decaying, and in Sect. 10 that f,-+f, 
which solves (1.10) and (1.11) and has the same decay rate. But in each interval we 
pick up a factor of (1 + c T-  1/3). This results in a small loss in the coefficient in the 
exponential decay, as shown in Sect, 11, 

The above argument provides the decay for NfN. We show the decay of Hftl ~o 
and the preservation of [Ifll= in Sect. 12, 
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5. Estimates on the Integral Kernels 

The integral operator K is better behaved for a soft potential than for a hard 
potential. Grad  [5] briefly pointed this out, by noting that  his estimate (60) could 
be improved if the potential was soft. The following estimates on the kernel k are 
the main results of this section. 

Proposition 5.1. For any 0 <e < 1, and any ~ I R  3 and II~IR 3, 

[k({, 11) t =< c 1 (1 + ~ + 11)- (' + l) exp{ - 1 - e) (~v 2 + !r2~2~1,,, (5.1) 
V 

.[ k({, 11)dl 1 __< c(1 + 4)- (' + 2), (5.2) 

y k({, 11)2dll < c(1 + ¢)-(z,+ 3) (5.3) 
•3 

For a soft potential the kernel k is Hilbert-Schmidt, since the right hand side of  (5.3) 
is integrable in {. 

Note. In (5.t) the constant  c may  depend on e. But this does not matter  since we 
only use several choices of e. The vectors v and ~ are defined by (2.10) and (2.12). 
These estimates are valid for - 1  <7  < 1, i.e. for hard as well as soft potentials. 

These estimates will be proved using the next two propositions. 

Propositions 5.2. For any veR 2, ~2@IR 3 and welR 3, we have 
y+l  

Q(v, w)__< cv(v 2 + w 2) 2 , (5.4) 

1 S exp{ - ½(w + ~2) 2} Q(v, w)dw ___ c(1 + (2 + v)~(1' + 1), (5.5) 
VI2 

in which f2 = {w~IR 3 "wd_v}. 

The inequality (5.5) is an improved version of Graf ts  estimate (60) in [-5]. 

Proposition5.3. For any 0 > - 3  and any a > 0 ,  b>0 ,  there is a constant c 
(depending on ~, a, b) so that 

v ° exp{ - a v  2 - b( 2 } dll< c(1 + 4)- 1 (5.6) 
;113 

for any ~. The vectors ~l and v are defined as in (2.10) and (2.12). 

These propositions are proved in reverse order. 

Proof of  Proposition 5.3. Denote the integral by I and change its variable of 
integration to v = I ! -  {. Write {-v = x¢v and change to polar coordinates a round  {, 
so that  dv=v2dvdxdq). We can rewrite ~ as 

2 1 (2~ 'Vq-V2)  2 = ¼ ( 2 X { + V ) 2  (5.7) 
l=a .  ~g 

Since the integrand is independent of ~o, the integral in (5.6) is 

1 
I = 2~ ~ v ~+ 2e-"~ ~ e-bl/4(zx~+~)~dxdv. (5.8) 

0 - 1  
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The inner integral is estimated by 

1 ~ 2~+v C 
I ebli4(2~+~)~dx= e-bli4Y~dY< 7.+~" (5.9) 

-1  -2~+v 

Therefore 
oo 

I<_2rc ~ vQ+Ze ~ c 
- -  o 1 +~ dv 

C 
< - -  (5.1o) 
= l + ~  

Proof of Proposition 5.2. a) According to the angular cutoff hypothesis (2.21) and 
the definition (2.13), (2.10), and (2.11), 

Q(v, w) <__ ctcos 01 V-~ 

=<c(t +~2)- it2(vz +wZ)-~lz, (5.11) 

where z = tan 0 = w/v. Therefore 

1 
_ Q < c(v 2 + w 2)- ~ + 1)/2. (5.12) 
v 

as in (5.4). 
b) Using the bound (5.12), we estimate 

y+l l!exp{_½(W+;a)2Q(v,w)aw__ < f e x p { _ ½ ( w + ; 2 ) a } ( v ~ + w 2  ) 2 dw 
V 

? + 1  
< ~e-llzw~(vZ+(w_~2)) 2 dw. (5.13) 

g? 

Denote this integral by I, and split it into two parts: I~, with w > ½¢2, and 12, with 
w<½~ 2. Estimate these two separately. First 

7+1 
11 = ~ e-llzw2(vZ+(w_~z)2) 2 dw 

W> li2~2 

<C(V+ ~2) -~'+ 1). 

In the domain {w<½~2} we have 

/)2 + (W-- ~2)2 >/)Z -t- L~2 41- 2 '  

So the integral I z is bounded by 

?+1 
I z = ~ e-  l/2w~(v2 + ( w -  42) 2) 2 dw 

w < 1/2{z 
7+1 

__<c(v2+¼¢~) 2 

Furthermore since y < l ,  the integrand 
Combining this with (5.14) and (5.16), it follows that 

(5.14) 

(5.15) 

(5.16) 

in I is integrable even for v=~2=0 .  

I<=c(1 +V+~z) -(~+ 1). (5.17) 



Boltzmann Equation with a Soft Potential. I 81 

Proof of  Proposition 5.I. First we prove (5.1) for k 1 and k 2 separately [recall that  
k I has been modified as in (2.16)]. 

a) According to (2.16), (2.8), and (2.21), we know that 

kt({, !1) = e-  1/4e~e- 1/4"2" {2n y B(O, v)dO + 1 + {-il + ~zt/2}, (5. t8) 

in which 

B(0, v) < v- qcos 0 sin 0[. (5.19) 

Therefore (making very crude estimates) 

kl(~, rl) <= cv-~ e - 1/4(1 -~/2)(~2 +,2) 

~ c v -  1(1 + ~ +r/) -('l+ *)e- 1/4(1 _ ~)(~2 +,~) 

<_ cv- 1(1 + ~ + r/) -(~ + 1)exp{ - ( 1  - e~ (±v 2 + ±~2~ (5.20) 
- -  ] \ 8  2 l Y J  

since ¼(~2+q2)>(~ v2 +5~1).1 2 
b) According to (2.9), we know that  

2 1 exp{_~ve_½~2}.~exp{_llw+~2t2}Q.(v,w)dw" (5.21) k2 (~,11)= (2g)3/2 v 2 

Proposit ion 5.2 provides an estimate for the integral on the right, so that 

1 1 2 1~'2/~1 k 2 ( { , q ) < c v e x p { -  gv - a  1, ,  + v + { 2 )  -(~+1) 

=<c1(1 + v + { 1  +~2) - ( ~  1) exp { - ( 1  - ~'l ~ 11)21,~8 --21 ~2]'~1,,. (5.22) 
V 

Recall that v=lq--~l  and 1 ~=g{{ +i11, and thus 

t + v + ~  +~z >c(1 + ~ + t/). (5.23) 

Finally 

k2({, I]) < C ! (1 + { + i/)-(7 + 1) exp{ - (1 - e) (~v z - ½~2)}. (5.24) 
/) 

c) Now that  (5.1) has been established the remaining estimates are easy. We 
will prove (5.2); the proof of (5.3) is similar. We set e = ½ and integrate (5.1) with the 
result that  

5 k({,11)dll <=C 5 v-~( 1 + ~ + r / ) - ( e + l ) ' e x p { -  i~v2-¼ ~'2}dq 
~3 [R 3 

5C( lq- ~)-(~+ 1) S V- 1 exp{-- 116 v2-14-~z}z dil 
N3 

< c(1 + 4) - (' ÷ 2), (5.25) 

using Proposit ion 5.3. 
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6. Es t imates  on K 

In this section we present a number of estimates on the compact integral operator 
K. These show that the application of K to f results in extra algebraic decay in 3. 
These estimates are valid for hard, as welt as soft, potentials. 

Proposition 6.1. For any 0__<~<¼ and r ~O, 

IlKfll 0,7+ 3/2 ~-~ clffll, (6.1) 

tlgfH~,,+7+ z <cllflI~,r, (6.2) 

IIKffl <clifIl~. (6.3) 

In the sequel we also need estimates on K with a cutoff. Define the 
characteristic functions ):w and Zw as in (4.8). The product ~w K has a simple 
estimate. 

Proposition 6.2. For any 0<c~<¼ and any w>0,  

IlNwK z w f  ll~,7+ 3/2 < ce~W2ll f ll . (6.4) 

Before proving these we state an elementary lemma. 

L e m m a  6.3.  

v 2 + 4( z - 2 ~  z + 2,12 > 0, (6.5) 

for all ~ and R with v and ~1, as in (2.10) and (2.12). For any w>0,  

V 2 @ 4( 2 + 2W 2 - -  2 q  2 ;> 0 (6.6) 

/f ~ > w > ~ .  

Proof of  Proposition 6.1. a) First we prove (6.t). Using the Schwartz inequality 
and (5.3), we find that 

IKf({)[ < II fLI ~ k({, B) 2 dll U2 

__< c II f I[ (1 + 3) - 1/2(27 + 3) (6.7) 

Then 

I lgf  II 0,7+ 3/2 ~ cllfll. (6.8) 

b) Next we prove (6.2). From the estimate (5.1), we get 

tKf(~)l<c ~ _ l ( l + ¢ + t / ) - ( 7 + l ) e x p { _ ( l _ e ) ( ~ v 2 + l  2 _ gga)} tf(ri)l&! 
11t3 /2 

<ce-~¢2llfL,,(1 + ¢)-~7+ 1~ 

" 5 l e x p { - (  1-e) (}v2+½~-~)+e¢2-eqz} ' (  1 +tl)-~d11, 
N,3 

<ce-~¢~(1 + @- e~+ 1)llfll~,, 

"~3 1(I  + r/)-~ exp{-- 0(v2 + 4¢~)} dR' (6.9) 
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1 - 4e 1 - 4c~ 
after picking e = ~ and 0 = ~ -  and applying (6.5) in Lemma 6.3. Denote the 

integral on the right by I and split it into two pieces: 11, with t/< ½{, and I2, with 
1 ~>g{ .  Now 11 is easy to estimate since v2>¼4 2 in that domain, and 

I i ~ c e  -O1/4U. (6.10) 

In the domain integration for 12, we have (1 +t/)>½(l +4), so that 

I 2 < c(1 + 4)-~ > 5 1 exp{ - 0(1) 2 q- 4(~)} dll 
n 1/2~ 

~c(1 + ~)-r- 1 (6.tl) 

using Proposition 5.3. Combining (6.10) and (6.11) we see that 

I =11 + I  2 <c(1 + 4) ~- 1, (6.12) 

and thus 

IKf(~)]<=c(1 + ~)-(~+ ~+ 2)e- ~2llfll~,~, (6.13) 

from which (6.2) follows immediately. 
c) We prove (6.3) for K by writing 

Ilgf[I = ~3 (~ k({'q)f(R)dq) 2 d~1/2 

_-< sup If01)l 5 (5 k(g, ll)dll)Zdg 1/2 

< cllfll ~ 5(1 q- 4 ) -  2(Y+ 2)d{ 1/2 

<cltflloo, (6.14) 

using the estimate (5.2). This concludes the proof of Proposition 6.1. 

Proof of Proposition 6,2. Write 

zwK )~w f <= 'I f " ( ~< k(~, ")2 d") 1/2 

<cl[fl[ (1 + ~ + t/)- z('+ 1) e x p { -  (1 - e) (¼v2 + ~2)} dll 
rt w 

<ctlfll e~W~-~2(1 + 4) -( '+ 1) 

• (~<,~exp{-(1-e)(¼v2+~2)-2ew2+2e{2}d@ 1/2. (6.15) 

1 - & z  1-4c~ 
In the last step we used (6.6) in Lemma 6.3 after choosing e = ~ ,  0 = 

and recognizing that 4 > w > t/. Therefore 

2~Kx~f < cl[flP e ~ - ~ ( 1  + ~)-('+ 1) 

I vl-yexp{-- 0(/.)2 +4~2)}dr/1/2 
r/<va 

<clIfl[ e=~-<~(a + {)-(~ + 1)(1 + 4)- 1/2, 

from which (6.6) follows immediately. 
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7. Spectrum of the Cutoff Operator 

Consider the linearized collision operator (with modification as in Sect. 2) 

L=v(~)+ K.  (7.1) 

This operator has a positive numerical range, i.e. 

(L f  f )  > 0. (7.2) 

Since K is compact, the continuous spectrum of L comes from the values of v, 
which range from 0 to Vo=maxv. There may be discrete eigenvalues as well. In 
order to get decay in the solution of the problem (1.10) we need a(L) to be bounded 
away from the origin. That is not true for L, but it is for L with a velocity cutoff. 
Define 

L~ =zwL (7.3) 

as an operator from ~2(~ <w) into itself with Xw defined as in (4.8). 

Theorem7.1. Let 0</~<1.  For w large enough, the operator L~ has spectrum 
bounded from below by pv(w), i.e. 

cr(L~) C {2 > #v(w)}. (7.4) 

The # which we use will be a constant chosen in Sect. 8. Theorem 7.1 is proved 
using the following proposition about the decay of eigenfunctions of L~. 

Proposition 7.2. Let f be an eigenfunction of L~ with eigenvalue 2, i.e. 

fE ~2(~ < w) 
L ~ f  = 2 f  , (7.5) 

and suppose that 

0 < 2 < #v(w). (7.6) 

Then f is rapidly decreasing at 0% i.e. for each m there is a constant c m such that 

l[ f(~)li o,,, < Cm if f ll- (7.7) 

Furthermore c m is independent of f, 2, and w, but depends on #. 

Proof of Proposition 7.2. Since v is a decreasing function of ~, it follows from (7.6) 
that 

v(0-- 2 > (1 - ~) v(0 • (7.8) 

The eigen-equation (6.11) can be written as 

zwK f = - ( v -  ,~) f . (7.9) 

As a result of (7.8) and (2.20) 

Igfl >= (1 - #)vlfl 
_-> Co(1 - #) (1 + ~)-7 Ifl, (7.10) 

from which it follows that 

II Kf[Io,r+, >cllfll0,r. (7.11) 
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Use this in the estimates of Proposition 6.1. From (7.11) and (6.1) we estimate 

I[fll0,3/z <el]gfllo,3/z+, 
<=c[Ifll . (7.t2) 

Continue by iteration using (7,11) and (6.2) with c~=0, to find 

Iif[10,7/2 <e[lgfllo,3/2+7+ 2 

<=cIIftlo,3/2 

< c l l f l l  , (7.13) 
IIf/10,2.+ 3/2--< c./Ifll, (7,14) 

from which (7.7) follows. 

Proof of Theorem 7.1. Suppose that the theorem is not true. Then there is a 
sequence Wn--' CO SO that each operator L~, has a point 2, in its spectrum with 
2, <#v(w,). Since the continuous spectrum of Lw. is bounded below by v(%), in 
fact each 2, is a discrete eigenvalue with eigenfunction f,, i.e. 

LwoL = ,~,L , (7.15) 

with [1£[[ = 1. The above Eq. (7.15) is in ~2(~ <w,), but we also want to think o f f ,  
as a member of ~2(IR3), by just extending it to be zero on {4 > %}- We shall show 
that f ,  ~ f  in which f is a null eigenfunction of the full operator L. This is a 
contradiction, since L is a positive operator. 

The eigen-equation (7.15) can be rewritten as 

v(¢) f~ + )~w. Kf~ = 2, f~. (7.16) 

Since K is compact, then after restricting to a subsequence 

Kf~--*9 in ~Z(lR3). (7.17) 

Since w,~o% 

x w g f , - , 9  in £a2(lR3). (7.18) 

Also since v(%)~O, then , ~ 0 ,  and 

) ~ , f ~ 0  in y2(IR3). (7.19) 

So we can take the limit in (7.16) to get 

tim v(¢)f~= - 9 in ~°2(]R3). (7.20) 

Unfortunately division by v(¢)~(1 + ¢)-~ is not a continuous operator in y 2 ,  but 
by first restricting to a subsequence we can change (7.20) into convergence almost 
everywhere. Then it is possible to divide by v 

1 
f~-~ - - 9 ,  a.e. (7.21) 

By Proposition 7.2, the f, 's are uniformly bounded by the ~ 2  function c(1 + I~1)- 2. 
Since they converge pointwise, in fact they converge in ~2 ,  i.e. 

f ~ f  in ~2(1R3). (7.22) 
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Take the limit again in (7.15) to find 

L f  =O. (7.23) 

But since llf.II = t ,  f is not 0. This is the intended contradiction which concludes 
the proof of the theorem. 

As a result of Theorem 7.1, we find 

Corollary 7.3. 

II e -tz~L tl < e - tu~(w). (7.24) 

8. Choice of Constants 

We are now ready to pick the coefficient 20, cutoff speed w, the exponent fi, and the 
constant #. This will be done for an arbitrary time interval [T, T+ 1], and w will 
depend on T, while 20, fl, and # will be constant. Choose 

2 

2+  7 ' 

2 o = ( 1 -  e)cd - ~ (~-) ~ , 

w = V l  (2oTa + ~ l o g T ) ,  

#=(1  _~2), 

in which e >0  is fixed but arbitrarily small. The necessary 
parameters are listed in the next proposition. 

Proposition 8.1. I f  e is sufficiently small and T is sufficiently large, 

exp{- t~( t -a )v(w)+2o( t~-a~)}  <= 1, for r<_~r<_t< T+ 1, 

exp {ew 2 - 2 o T ¢} = T 5/12, 

exp { - c~w 2 + 2o(T+ 1) 8} < cT-  5/12 

Proof. a) By a simple calculation 

t ~ _ aP  
. . . . . . .  f i T  p-1" sup 

T<=a<t t--o" 

To show (8.5) it suffices to have #v(w)>2oflT ~- 1. Now 

v(w) >%( i  + w)- '  

= Co(2o/~)-.~/2 T - ~¢/2 + O(T-  ~/2), 

so that we need only show that 

c [)~°1-"/2 T -'~/2 + O(T -'~/2)_>_2ofiT ~-t  
o I T /  

(8.1) 

(8.2) 

(8.3) 

(8.4) 

properties of the 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

(8.10) 
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Notice that 7fl/2= 1 - f i ,  and thus (8.10) becomes 

c - ' j 2  

o iV)  

Finally we can take )oo = (1 -e ) )~ ,  in which 

co( ) 
i.e. 

;~1 =~1-qCo/ f l )p  " 

b) The equality (8.6) comes directly from 
inequality (8.7) is proved by 

exp {).o(r+ 1) p -- T ~) 
exp { - aw 2 + ~o(T+ t) p} = 

exp {ew 2 - 2 0 T p} 

.(cZ-5/12" 
since fl < 1 and 

( T +  I ) P -  TP<=c. 

(8.11) 

(8.12) 

(8.13) 

the definition (8.4). The next 

(8.14) 

(8.15) 

9. The Iteration Equation 

In the time interval T<_t<__ T+ 1, we choose w according to (8.3) and denote X=Zw, 
Z = ) ~  as in (4.8). Let 

suppgo CA suppho C A , (9.1) 

suppg 1 CA s u p p h l C A ,  (9.2) 

as defined in (4.1). We solve the following inhomogeneous version of the iteration 
Eqs. (4.11) and (4.12): 

gt + z L g  = - zKh~  , (9.3) 

h t + vh = - 2K(g~ + h~), (9.4) 

for T<_t<_ T +  1, 

g(t = T)  = go ,  h(t = T)  = h o . (9.5) 

Suppose that T is large enough for Proposition 8.1 to be applicable and that the 
inhomogeneities satisfy 

]]go +h0ll <--bo e-a°T~ , (9.6) 

[[ho[[ <bo.  (9.7) 

tl gl(t) + hi(t)l[ < b l e-  ~ot~ (9.8) 

Hhl(t)tt <=bl. (9.9) 
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The main result of this section is 

Proposition 9.1. Let g and h solve Eqs. (9.3)-(9.5)for T< t <_ T+ 1, and suppose that 
9o, ho, gl, hi have the bounds given by (9.6)(9.9). Then if  T is sufficiently large, 

If g(t) + h(t)il < b2e- ~o~e , (9.10) 

tLh(t)lk~<b2, (9.11) 

with 
b z = (1 + c T -  1/3)b o + cT-  1/3 bl " (9.12) 

We can take b2=bl ,  if 

b 1 >(1 + 3 c r -  1/3)b o . (9.13) 

Proof. a) The Eqs. (9.3) and (9.4) are decoupled. First estimate IIgIl- Solve (9.3) to 
get 

t 

g(t) = e-  it- T3zLg ° _ ~ e - "  - ~)zLzKh i (cz)&r. (9. t4) 
T 

According to (7.24) 

]lg(t)[[ < e - ' ° -  T>(w/llgo [I + i e-~<t- ~)'~)llxKhl(cr)H da.  (9.15) 
T 

We estimate the two terms on the right separately. Using Proposi t ion 6.1 and (9.2) 
we can bound  

II)~Khl(o')l! < c!Ihl II ~o 

<ce-~iIIhl(¢)H ~ 

<cbx e - ~ 2  . (9.16) 

Next  use (8.5) and (8.7) from Proposi t ion (8.1) to find that  

e-  ~"- ~(w~][XKha(a )]] < cbl exp { - 1 4 t -  o) v (w) -  a w 2} 

< cb 1 exp { - # ( t -  ¢)v(w) + 2o(t ~ - a~)} 

• exp {2 o ~ - aw2} • e -  ;~ote 

< cb 1 T -  5/12e- ~°~ (9.17) 

So the second term on the right side of (9.17) is estimated by 

i e-""-~>ll)~Kh,][da< i blcT-'/12e-X°t~ 
T T 

< cblT-  lla e-  aot~, (9.18) 

since t - -  T<  1. The first term on the right of (9.15) is estimated in a similar way as 

e u(t- T)v(w)II go II =< bo exp { - /~(t  - T)v(w) - 20 T a} 

< bo e-~°'e (9.19) 

by Proposi t ion 8.1. Therefore, after using (9.18) and (9.t9) in (9.15), 

]]g(t)N < (b o + cb 1 T -  1/3)e- a°'~. (9.20) 
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b) Next we estimate Ilh(t)]l,. Solve (9.4) by 
t 

h(t) = e -(t-  r>h o - ~ e-  (~ - °>2K(g  1 + h 1) (a)d~. (9.21) 
T 

We just drop the e -v terms in our estimate and end up with 

11 h(t)l[, < ]] h 0 ll~ + i II zK(gl + hi) (o-)l[,do-. (9.22) 
T 

Look  at  the terms inside the integral. The first one is 

II 2Kgl  [1~ = H2gzgl  U~ < (1 + w) -( '+ 3/2)IIyKzo 1 FI~,, + 3/2 

N(1 +W) -( '+ 3/2)ce~W21Lgl(~)ll, 

<= cb 1 (1 + w)-  (~ + 3/2)e~W2 - z~ ,  

N cbi(1 + w)-  (~ + 3/2) TS/12, 

cb 1 T -  ('~ 3/2)p/2 + s/12, 

< cb 1 T-  1/3, (9.23) 

since fl = ~ < 1 and (7 + 3/2)fi/2 = t - fl/4 > 3/4. 

The second term in the integral in (9.22) is 

Ilyghl(~r)ll ~ _-<(1 + w) -( '  + 2)112ghl(o-)ll~,~ + z 

<c(1 +w)-(~+2)llh 1 ll~, using Proposit ion 6.1. 

~ c b l T  -(~+2)~/2, using (9.8) and (8.3) 

= cb 1 T- 1/3 (9.24) 

Employing (9.23), (9.24), and (9.7) in (9.22), we find an inequality for h as 
Ilh(t) I[~ < bo + cbl T -  II3 . (9.25) 

Therefore (9.11) will be true for b z given by (9.12). 
c) We next calculate tlh(t)ll and llh(t)+g(t)ll 

IIhll2=<[lhl[ 2 j" e-2~¢2d~ 
w<~i 

<cllhl]2we -2=~ 

_<- c(b o + c T -  1/3 b 1)z TP/2 T -  5/%- ZXot~ , (9.26) 

using (9.25), the definition (8.4), and (8.7). Since fl < 1, 5/6 - fl/2 > 1/3 and 

IIhl[2 < c(bo + c r -  1/3bl) T-  1/3. (9.27) 

Combining this with (9.20), we find 

Jig+hi[ z=  IlgI[2 + IlhH 2 

<= (b o + c T -  1/3bl)2(1 q- c T -  1/3)e- Z.~.ote, 

IIg+hl] < b o + c T - 1 / 3 ( b o + b l )  (9.28) 

Therefore (9.10) will be true for b 2 as in (9.11). 

by Proposit ion 6.2 

by (9.8) 

by Proposit ion 8.1 

using (8.3) 
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10. Convergence of the Iteration Scheme 

At last we are ready to show the convergence of  the iteration scheme in the time 
interval IT, T+  1]. We suppose that  the Bol tzmann equat ion has been solved up to 
time T and that  

No --max {e~°r~Ilf(r)tI, ll2~,f(T)lI~) (10.1) 

is finite. Now start the iteration procedure  by defining 

f l  (t) = e ~°(r~ - t~)f(T) (10.2) 

and define f"+ 1, for n >  1, by (4.11) and (4,12) with starting values 

f ,+ I ( T ) = f ( T ) .  (10.3) 

Also define 

1,+1 = f"+ l  - f "  (10.4) 

and 

N n = 
e~ot B max { IIf, ll, 112wf, ll~}, 

T<=t<=T+ I 

M , =  max {eX°¢~lll.ll, ll)~w/.lt~}. 
T<_t<_T+I 

First we find uniform bounds on N,. For  N1, we know that  

N 1 = N o <(1 + 3cT-  1/3)N o . 

Then we proceed by induction using Proposi t ion 9.1, in which 

9o = )/~f(T),  

ho = 2~f (T) ,  

01 = Z~f", 

hi =Lf", 
g=z,~f,+ l 

h=2~f"+ i 

b o = N  O 

b I = N ,  <(1 + 3c T -  1/3)N o, 

with the result that  

Nn+ 1 =<(1 + c T -  1/3)N 0 + c T -  1 / 3 N  n 

<(1 + 3cT-  1/3)N o . 

This is true for all n. 
Next  we find bounds on M,. The first one is 

M 2 ~ N 2 + N 1 ~ (2 + 6cT-  1/3)N 0 . 

(lO.5) 

(lO.6) 

(10.7) 

(lO.8) 

(10.9) 

(10.10) 
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The others are found by applying 
I.+1 = f .+ l  - f . ,  which has 

90 = h o = 0 ,  

91 =Zwl. ,  

h 1 =2~I . ,  

9 =)~wln+ 1 

b0=0,  

b 1 - -M, ,  

to find that 

M.+ 1 < c T -  l /aM. 

91 

Proposition 9.1 to the equation for 

(10.11) 

< ( c T -  1/3)~- 1(2 + 6 c T -  1/3)N o . (10.12) 

For Tlarge enough, c T -  1/3 < 1, and then the series with term M, is summable, i.e. 

~, 1 I/3)No ' 
n=2 M n ~  1 - - c T  -1/3 

(2+6cT-  (10.13) 

for T large enough. It follows that ~ (f. + 1 - f . )  converges and therefore 
n = l  

f . - - , f  , (10.14) 

in the sense that 

e-~° '~l l f -L[  I -~0 
II2w(f-f,)]l~ -~0- (10.15) 

The limit f is a solution of the problem (1.10) and (1.11) 
Define 

N =  max {eX°"llfll,ll2wfll}. (10.16) 
T<=t<=T+I 

Because of (10.9), 

N < (1 + 3 c T -  1/a)N 0 . (10.17) 

This shows the decay of the solution in any time interval IT, T+ t]. But we are not 
finished yet, since we need to examine what changes in going from one interval to 
the next. That is done in the next section. 

11. Propagation of the Estimate 

So far we have found that f is exponentially decaying in the time interval 
[T ,T+I ] ,  according to (10.17), since N is finite. But we picked up a factor 
(1 + 3c T-  1/3), and in order to see the global time decay we must consider its effect. 
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Denote w(t) to be the continuously varying time-dependent cut-off velocity as 
defined in (8.3) with t instead of T. Define 

N(t) = max{e ~°t~ [If(t) l[, IIZw,~f[l~}. (11.1) 

In the last two sections w was fixed at w = w(T). Statement (10.17) can be translated 
a s  

max{ e;~°te II f(t)ll, II 2w(r)f(t)]l ~} < (t + 3c T-  1/3) N(T), (11.2) 

for T-< t-< T+  1. But since w is increasing 

]l 2w(r)f(t)II ~ > II 2w(o f(t)[b =, (11.3) 

and 

N(t) < (1 + 3c T- 1/3)N(T), (11.4) 

for T_< t_< T+  1. It follows that, for T+ N -  1 _< t_< T+ N, 

N 

N(O < 1-[ (1 + 3c(r+K)-  1/3)N(T) 
K = I  

N cea~/' N( T). (11.5) 

Since fl > 2/3 we obtain the global decay for [[f(t)]] by just making the coefficient in 
the exponential a little smaller, i.e. by changing from 2 o to 2. 

Proposition 11.1. Fix T large anough, then 

][f(t)l [ Nee-a~lLf(T)]l~ (11.6) 

for t > T. 

Proof According to (11.5) 

ea°te II f(t)11 < cea2/~ N(T) 

< ce ~-j~ t[ f(T)[F~. (11.7) 

Since fi > -~ and 2 <,~0, 

Ill(t)][ <ce x~ILN(T)[I~. (11.8) 

Finally we are ready to see the global decay of [[f(t)]]. In all the above theory 
there has been the premise that T be large. But clearly the estimate in Proposition 
11.1 is preserved by a shift in time. Define 

]c( t )=f( t -T)  for t > T .  (11.9) 

The argument of y is large enough to apply the results, and so 

II y(t)II _-< c e - *''/I f ( r ) I /~ ,  

from which it follows that 

N f(t)II ~ ce-  aeIt f(O)E[~ . 

This is the result (3.1). 

(11.10) 

(11.tl) 
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12. The Sup Norms 

a) First we show the preservation of the ~ norm. Rewrite the Boltzmann equation 
(1.10), (1.11) as 

t 

f ( t )  = e-** fo  -- ~ e ( ' -  ~)~ K f ( s ) d s .  (I2.1) 
o 

Since e-t*< 1, we have 
t 

[If(t) [] ~ _-< ]]fo II ~ + .[ [U e - ( t -  s)v Kf(s)H ~ ds.  (12.2) 
0 

Now 

[[e-(t~)VKf(s)l[~ < sup e-(t-s)~(1 + 4)- ~- 1/2 

. sup (1 + ¢)'+ 1/Ze~21Kf( ~, s)[. (12.3) 

The first factor on the right is estimated according to the following lemma. 

Lemma 12.1. 

sup e-~(1 + ¢) - ~(1 + 4)- ~' < c(1 + t)- ~'/~ (12.4) 

for  t>0 ,  7>0, y '>0.  

The second factor is recognized as ]lKf(s)[l~,~+~/2. By splitting up this norm 
into two terms with ~ < 4o and ~ > 4o, in which ~o will be chosen later, we find 

[1Kf(s)[l~,, + 1/2 < e~¢°~ Kf ( s )  0,,+ 1/2 +(1 + {0)- 3/2[[Kf(s)[[=,',+ 2 

< e~¢g 1[ f ( s )  ll + (1 + 40)- 3/2 [I f ( s )  ll ~, (12.5) 

according to Proposition 6.1. Combining this with Lemma 12.1 we change (12.3) to 

I ]e - ( t~ ) 'g f ( s )N  < c ( l + t - s ) - l - 1 / 2 ~ { e ~ e g l l f ( s ) l l + ( l + 4 o ) - a / 2 t l f ( s ) l l ~ } .  (12.6) 

Next we substitute this into (12.2). Use the facts that II/(s)ll <ell/o/l= and that 
t 

(1 + t -  s)-  1 - 1/2~ ds < c independent of t, to find 
0 

Ilf(t)l]~ <Hfoll=+ce=egllfoll=+c(1+40) 3/2 sup IIf(s)ll=. (12.7) 
O < ~ s ~ t  

- 3 / 2 < ~  Choose 40 large enough that c(1 + 40) = 2. Then 

sup llf(s)l[~_-< cllJo L ,  (12.8) 
0 < s < ~  

which proves (3.3) in Theorem 3.1. 
b) Next we show the decay of Ilfl/~. As before we first look at a fixed time 

interval IT, T+ 1]. Define w as in (8.3) and denote 

g = z w f  h = 2 ~ f ,  (12.9) 

2+20 (12.10) Q(t)=e~'~l l f ( t )]]~,  with 2 ~ -  2 
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Use (3.3) in Theorem 3.1 and (8.7) in Proposition 8.t to estimate 

II h(t)II ~ < c e -  ~,v~ 11 f(t)II 

<ce-~W2tlfolf~ 

<ce  -Z~*~llfo[I ~. (12.11) 

By rearranging the Boltzmann equation, we write 

g(t)=e-(t-~)" 9(T)+ i e-(t-~)V xwKf(a)da.  (12.12) 
T 

Now 

IIg(T)H ~ < Q(T)e-  ~,T~. (12.13) 

Since 21 <20, the statement (3.1) of Theorem 3.1 is also true with 21 instead of 2. 
Using that and Proposition 6.1, we find 

[t)~,K f(a)l]~ < c[tf[] 

< ce -  ~*¢~ll fobl ~ . (12.14) 

Since v > v(w) for ~ < w, 

][9(t)]l ~ < e-( t -  T)~O~ e-  ~°T~ Q( T) + c i e - ( t -~)~)  e -a '~  dal[ foll~ " (12.15) 
T 

It follows from (8.5) in Proposition 8.1 that 

- ( t - a ) v ( w ) -  21aP < - 2 1  t p, (12.16) 

and 

- ( t -  T )v (w) -  20 T ~ < - 2~ t ~ . (12.17) 

Therefore 

IlO(t)ll oo =< e-~t~(Q(T) + cllfo I[~). (12.18) 

Combine this with (12.11) to find that 

Q(t) <= Q(T) + cll/o I]=, (12.19) 

for T_< t _< T+  1. 
As before the statement (12.19) is true for large T, but can be made into a 

statement for all t. By adding up the contributions in each time interval we get 

Q(t) < c tllfol[~. (12.20) 

As before the factor t can be absorbed into the exponential e x*te in Q, by replacing 
the coefficient 2~ by 2. This results in the desired inequality (3.2). Finally the proof 
of Theorem 3.1 is finished. 
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