Math 181: Midterm Exam November 3, 2003

- 1. Let S be a security with volatility σ and growth rate μ , and let the risk-free rate be r. Consider an option f(S, t) with payout $f(S, T) = S^2$ at t = T. Use the Black-Scholes PDE to find a value of α such that $f(S, t) = S^2 \exp(\alpha(T t))$.
- 2. Suppose that f(S, t) and g(S, t) are two options with expiration at the same time T. If f(S,T) > g(S,T) for all S > 0, show that f(S,t) > g(S,t) for all S > 0 and all t with $0 \le t \le T$.
- 3. Consider a put option with initial price $S_0 = 100$, strike price X = 75, expiration T = 1.0 (years) and risk-free interest rate r = .02 (per year). Calculate the price p_0 at t = 0 for two different models of the underlying stock S:
 - (a) A tree (CRR) model with up and down factors u = 1.1 and d = .9, time steps dt = .25 (years) and real probability p' = .6 for an up step.
 - (b) A Black-Scholes model with volatility $\sigma = .4$ (in years) and $\mu = .15$ (per year).
- 4. Let x_n be a random walk with binomial increments; i.e.,

$$\begin{array}{rcl} x_{n+1} &=& x_n \pm 1 \\ x_0 &=& 0 \end{array}$$

with equal probability of going up (+) or down (-). Find the probability that $x_4 = 0$.