
Math 181 Lecture 15

Hedging and the Greeks (Chap. 14, Hull)

One use of derivation is for investors or investment banks to manage the risk
of their investments. If an investor buys a stock for price S0, they may also
buy a put at strike X. Then the most they could lose on the stock would be
S0 − X.

A bank that sells an option is also interested in hedging the option to
limit their risk. Suppose that a bank sells a call. If they do nothing else, this
is naked position. If they buy shares of the stock, so that they can satisfy
the option if it is exercised, this is a covered position. Neither of these is
very satisfactory. If the stock price goes up, the bank in a naked position
will have to buy it at its high price to satisfy the exercised option. If the
stock price goes down, the option will not be exercised, and the bank in the
covered position will absorb this loss.

A tempting, but flawed method to eliminate risk, is the stop-loss strategy.
The idea is to buy the stock whenever its price rises above X and sell it
whenever it falls below X. The cost of this hedging strategy is (incorrectly)
calculated to be

Q = max[S(0) − X, 0]

by the following method:
If S(0) > X, then the stock must be bought initially. When the price falls

below X the stock is sold at price X, the cost being S(0) − X so far. From
then on the strategy has no cost since the stock is always bought and sold
at price X (including the exercise of the option). If the price is S(0) < X,
then the cost is 0, for this same reason. This gives Q.

This reasoning is incorrect for several reasons. First, the buying and
selling of the stock occurs at different times and must be discounted. Second,
since transactions are not instantaneous, they cannot be made exactly at X.
Purchases may be made at X + δ and sales at X − δ with a net loss. As
one tries to make δ smaller, the number of times that the stock value crosses
X − δ to X + δ (or vice versa) gets larger and larger. The effect is a net loss.

The preferred hedging schemes use derivatives of the option price, which
are referred to as “the Greeks”. Here are definitions of the usual Greeks for
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an option f
delta: ∆ = ∂f

∂s

gamma: Γ = ∂2f
∂s2

theta: Θ = ∂f
∂t

vega: v = ∂f
∂σ

rho: ρ = ∂f
∂r

.

(1)

For a call option
c = SN(d1) −Xe−r(T−t)N(d2)

and the Greeks are

∆ =
∂c

∂s
= N(d1) + SN ′(d1)

∂d1

∂s
−Xe−r(T−t)N ′(d2)

∂d2

∂s

= N(d1) + {SN ′(d1) − Xe−r(T−t)N ′(d2)}
∂d1

∂s

since d2 = d1 − σ
√

T − t so that ∂d2
∂s

= ∂d1
∂s

. Now N ′(d) = e−d2/2
√

2π
and

N ′(d1) = exp−d2
1/2/

√
2π

N ′(d2) = exp−(d1 − σ
√

T − t)2/2/
√

2π

=
1√
2π

e−d2
1/2 expσ

√
T − td1 − σ2(T − t)/2

= N ′(d1) exp{log(S/x) + (r + σ2/2)(T − t) − σ2(T − t)/2}
= N ′(d1)(S/X)er(T−t).

So
SN ′(d1) = Xe−r(T−t)N ′(d2)

and for a call
∆ = N(d1).

Next

Γ =
∂2c

∂s2
=

2

∂s

(
∂c

∂s

)
=

∂

∂s
∆
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= N ′(d1)
∂d1

∂s

= N ′(d1)
1

s

1

σ
√

T − t

=
N ′(d1)

sσ
√

T − t
.

Note that ∆ and Γ are positive for a call.
Similar calculations show that

Θ = −SN ′(d1)σ

2
√

T − t
− rXe−r(T−t)N(d2)

v = s
√

T − tN ′(d1)

ρ = X(T − t)e−r(T−t)N(d2).
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Figure 1: Graph of a hypothetical option f and the tangent line of slope
∆ = ∂f/∂S(S1) at a point S = S1.

Math 181 Lecture 16

Hedging and the Greeks (continued)

The first type of hedging using the Greeks is delta hedging. This is just what
was done to make the Black-Scholes argument. In a delta hedge, for each
option one also buys −∆ = − ∂f

∂S
shares of the stock. The hedge portfolio is

A : α options, − α∆ = −α
∂f

∂S
shares of stock

with value
A = αf − α∆S.

Graphically, ∆ is the slope of the tangent line to f , as shown in Figure 1.
Then f − δS is shown in Figure 2.
This shows that for any option whose value f is convex, then the delta

hedged portfolio is everywhere above the current price.
Note that the ∆ of A is

∆A =
∂A

∂S
= α

∂f

∂S
− α∆

∂

∂S
(S)

= α
∂f

∂S
− α∆ = 0.
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Figure 2: Graph of a f − ∆S (shifted by a constant amount f(S1) − ∆S1)
vs. S.

A portfolio where ∆ is zero is called delta neutral.
A delta-hedged portfolio has no risk for infinitesimal movements, but it

does require that the value of ∆ is changed as S changes. Moreover there is
risk for large changes in S.

For a delta-hedged portfolio, there are still changes in value for the fol-
lowing reasons: the value changes in time and ∆ changes in time. The first
of these is measured by Θ and the second by Γ.

In fact we can expand the value of an option f or portfolio π by

dπ = π(t + dt, S + dS) − π(t, S)

= πsdS +
1

2
πssdS2 + πtdt + · · ·

≈ ∆dS +
1

2
ΓdS2 + Θdt.

If the portfolio is delta-neutral, then ∆ = 0 so that

dπ ≈ 1

2
ΓdS2 + Θdt.

The change in time is expected and cannot be hedged away. The portfolio
can also be made Γ neutral. This is a little subtle, however, because the
stock itself, with value S, has Γ = 0. So we needed to add a traded option
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where Γ value is ΓT to the portfolio. Choose to add wT of the traded option,
in which

wT ΓT + Γ = 0.

One of the assumptions of Black-Scholes is that the volatility σ is con-
stant. Actually, volatilities change in time. Vega v = ∂

∂σ
f measures the

sensitivity of option price to changes in σ. Again this can be hedged away
by using a traded option with known vega.

Similarly ρ = ∂
∂r

f measures sensitivity of option price to changes in r.
Again, this can be hedged away using a traded option.

6


