
Math 181 Lecture 11

Options for Random Walks with Gaussian Increments

In this lecture we start on the valuation of options for a Gaussian random
walk. As in the discrete random walk, we will construct a portfolio that is
risk-free, or approximately risk free.

For the discrete walk, the risk-free portfolio was constructed only for a
single step. Here we need to make it risk-free over many steps. For this to be
true the hedging parameter needs to be changed as time progresses, which is
called dynamic hedging.

We consider a self-financing portfolio A where value at time n is denoted
An, and which consists of αn units of stock with price Sn and βn units of an
option with price fn. Thus

An = αnSn + βnfn. (1)

The evolution of An is in two steps. First, the values of Sn and fn change to
(Sn+1, fn+1). Second, the portfolio is rebalanced, i.e. αn and βn are changed
to (αn+1, βn+1). This rebalancing is chosen to be self-financing, i.e. it does
not require (or produce) cash. This says that

αnSn+1 + βnfn+1 = αn+1Sn+1 + βn+1fn+1 = An+1. (2)

The left hand side is the value after the change in stock and option values,
but before the rebalancing. The right hand side is after rebalancing.

It follows that the change in portfolio value is

dAn+1 = An+1 − An

= (αnSn+1 + βnfn+1) − (αnSn + βnfn)

= αndSn+1 + βndfn+1 (3)

in which
dSn+1 = Sn+1 − Sn

dfn+1 = fn+1 − fn.

At this point, we are ready to invoke the Gaussian random walk model for
the stock price. This can be phrased in terms of Sn or log Sn (an important
distinction between these two will be explained later).
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Here we use Sn. The model for stock price evolution is

Sn+1 = (1 + µdt)Sn + σ
√

dtωn+1Sn

in which the ωn are IID, N(0, 1) random variables. Therefore

dSn+1 = µSndt + σSn

√
dtωn+1. (4)

Next we assume that the option price f is a smooth function of stock
price S and time t, i.e.

f = f(S, t).

Then
fn = f(Sn, tn)

dfn+1 = fn+1 − fn

= f(Sn+1, tn+1) − f(Sn, tn).

We will perform a Taylor series expansion for dfn+1. Determination of the sig-
nificant terms in the expansion turns out to be surprisingly subtle, involving
what is called Ito’s lemma in probability theory.

Applying Taylor’s expansion yields

dfn+1 = ft(tn+1 − tn) + fs(Sn+1 − Sn)

+
1

2
fss(Sn+1 − Sn)2 + · · ·

= ftdt + fsdSn+1 +
1

2
fssdS2

n+1

+O(dt2 + dtdS + dS3)

in which ft, fs and fss are evaluated at (Sn, tn).
Now according to the previous formula for dSn+1,

dSn+1 = µSndt + σSn

√
dtωn+1.

In particular

dS = O(
√

dt)

O(dt2 + dtdS + dS3) = O(dt
3
2 )

dS2
n+1 = (µSndt + σSn

√
dtωn+1)

2

= σ2S2
ndtω2

n+1 + O(dt
3
2 ).
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Combine all of this together to obtain

dfn+1 = ftdt + fs(µSndt + σSn

√
dtωn+1)

+
1

2
fssσ

2S2
ndtω2

n+1 + O(dt
3
2 )

= σSnfsωn+1

√
dt

+(ft + µSnfs +
1

2
σ2S2

nfssω
2
n+1)dt

+O(dt
3
2 ). (5)

The dominant, random term is the first one which is of size
√

dt. We
choose αn and βn to eliminate this term. The change in value of the portfolio
is (from (2))

dAn+1 = An+1 − An

= αndSn+1 + βndfn+1

= αn{µSndt + σSn

√
dtωn+1}

βn{σSnfsωn+1

√
dt + (ft + µSnfs +

1

2
σ2S2

nfssω
2
n+1)dt}

+O(dt
3
2 )

= (αn + βnfs)σSnωn+1

√
dt

+(βnft + (αn + βnfs)µSn + βn
1

2
σ2S2

nfssω
2
n+1)dt + O(dt

3
2 ).

Choose αn, βn to satisfy
αn + βnfs = 0

to eliminate the
√

dt term. This also eliminates one of the dt terms.
The resulting equation for A is

dAn+1 = βn(ft +
1

2
σ2S2

nfssω
2
n+1)dt + O(dt

3
2 ). (6)

We also summarize the equations for αn and βn as

αn + βnfs = 0 (7)

(αn+1 − αn)Sn+1 + (βn+1 − βn)fn+1 = 0. (8)

The second equation expresses the self-financing condition; the first is the
condition that eliminates the dominant risk (i.e. randomness) in portfolio A.

3



Math 181 Lecture 12

Option Pricing and Ito’s Lemma

In the previous lecture, we constructed a self-financing portfolio A, in which
the dominant risk term

√
dtωn was eliminated. The resulting equation for

the evolution of portfolio value is

dAn+1 = An+1 − An

= βn(ft +
1

2
σ2S2

nfssω
2
n+1)dt + O(dt

3
2 ). (9)

There is still randomness in the ω2
n+1 term. In this lecture we show that the

randomness in this turn is cancelled, using the Central Limit Theorem.
First we write ω2

n+1 as a deterministic part, plus a mean 0 part. Since
ωn+1 is N(0, 1) it has variance 1, this implies that

E(ω2
n+1) = 1

so that
ω2

n+1 = 1 + γ̃n+1 (10)

in which
E(γ̃n+1) = 0.

Insert (10) into (9) and denote

γn+1 = βn
1

2
σ2S2

nfssγ̃n+1

κn+1 = βn(ft +
1

2
σ2S2

nfss)

to get
dAn+1 = κn+1dt + γn+1dt + O(dt

3
2 ).

Now we use this to find An

An = (An − An−1) + (An−1 −An−2) + · · · + (A1 − A0) + A0

= A0 +
n∑

k=1

dAk

= A0 +
n∑

k=1

κkdt +
n∑

k=1

γkdt + O(ndt
3
2 ).

Now we analyze each term separately.
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(i) The first sum contain n terms each of size dt, so it is size O(ndt) = O(tn).

(ii) The last term is O(ndt
3
2 ) = tnO(dt

1
2 ). For fixed tn, this term is close to

0 if dt is small.

(iii) The second sum, which is the most interesting term, looks at first just
like the first sum. The difference, however is that each γk is random
with

E(γk) = 0.

At this point we wish to apply the Central Limit Theorem to the sum of
the γk. One complication is that γ̃k are IID, but γk are only approximately
IID. Under this approximation, the Central Limit Theorem then says that

n∑

k=1

γk = O(
√

n).

So that

dt
n∑

k=1

γk = O(
√

ndt)

= O(
√

ndt
√

dt)

=
√

tnO(
√

dt).

As for the last term, this term is insignificant if tn is fixed and dt is small.
To summarize, we have found that the γk and the O(dt

3
2 ) terms are

insignificant in the sum for An, in the limit that tn is fixed and dt is small.
Therefore we drop these terms in the equation for dAn+1; i.e.

dAn+1 ' κn+1dt

= βn(ft +
1

2
σ2S2

nfss)dt. (11)

Finally, we have an equation for the value of portfolio A, with no randomness.
This shows that, within this approximation (i.e. dt small) that A is a riskfree
portfolio!

As a consequence, the no-arbitrage theory says that the value of A in-
creases at the risk free rate, i.e.

dAn+1 = rAndt. (12)
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Now we can evaluate An using the formula (7) as

An = αnSn + βnfn

= −βnfsSn + βnfn

= βn(f − Snfs)

so that
dAn+1 = βnr(f − Snfs)dt. (13)

Insert this into (11) to obtain

βnr(f − Snfs)dt = βn(ft +
1

2
σ2S2

nfss)dt.

Cancel the βn and dt factors and rearrange to obtain

−ft =
1

2
σ2S2fss + rSfs − rf. (14)

This is the Black-Scholes equation, a partial differential equation for the price
f of a derivative security.
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