
��� Summary

� Reduction of statistical error in MC quadrature pos�
sible through variance reduction

� Variety of possible methods
� antithetic variables�

� control variates�

� matching moments�

� importance sampling

� strati�cation

�frequently used in �nance
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Control variate

Approximate �� � ri��� by �� ri for i � ��
Form control variate as

g � �� � r	������ r����� r���� � r��

Since g consists of a sum of linear exponentials	 its inte�
gral can be performed exactly
 e�g�

Z �
��

e�xe�x���dx � e����
Z �
��

e�
x������dx

� e����
Z �
��

e�y���dy

�
p
��e����

Numerical Results

� Standard MC
� Quasi�MC �described in next section�
� Antithetic variables
� Control variates
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Present value is

PV � E�u


� ��������
Z �
��

Z �
��

Z �
��

ue�
x
�
�
�x�

�
�x�

�
���dx�dx�dx�

Discount factor u and interest rates ri are

u � �� � r	����� � r������ � r������ � r����

r� � r	e
�x������

r� � r�e
�x������

r� � r�e
�x������

Parameters

� initial interest rate r	 � ��� � ���

� size of interest rate �uctuations � � �� ��� per year�

Evaluate PV by sampling xi from N��� �� distribution

using transformation method� Apply antithetic variables
and control variates�
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��� Example � Discounted Payment

Present value of discounted payment�

� Payment of �� after M � � years

� Year i
� interest rate ri
� annual discount factor �� � ri���

� log normal interest rate model
ri � ri��e

�xi�����

� xi is N��� ��

� Simple path dependent security

�




E�ectiveness of importance sampling

� If f�p is nearly constant	 then
�p �� �

�

� Sample from p�x� using acceptance�rejection	 if nec�

essary�

� Use to emphasize rare events
� risk

� far out of the money options
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��� Importance Sampling

Rewrite integral using density p�

� Integral

I�f� �
Z
f�x�dx �

Z f�x�

p�x�
p�x�dx�

� Monte Carlo estimate is

IN�f� �
�

N

NX
n��

f�xn�

p�xn�
�

Error �N�f� � I�f�� IN�f�

� Error size
�N�f� � �pN

����

� Variance

�p �
Z �
B�f�x�
p�x�

� I

�
CA
�

p�x�dx
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Strati�cation always lowers integration error if distribu�

tion of points is balanced�

� balance condition� for all k
�pk�Nk � ��N

� number of points in set �k is proportional to its
weighted size �pk

� resulting error for strati�ed quadrature
�N � N�����s

��
s
�

MX
k��

�
k�
�

� Variance reduction
�s � �

� Resulting error reduction
�sN � �N

� Better choice � put more points where f has largest
variation
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Resulting integration error

� Total error
�sN�f� � I�f�� IN�f�

�
MX
k��

�
k�
Nk

�f�

� Error components

�
k�
Nk

�f� � N����
k

�pk

�Z
�k

�f�x� � �fk��p

k��x�dx

����

� ��pk�Nk�
����
k�

� Variances
�
k� � ��pk�

���
�Z

�k

�f�x� � �fk��p

k��x�dx

����

�
�Z

�k

�f�x� � �fk��p�x�dx
����

� Averages
�fk �

Z
�k

f�x�p�x�dx��pk �

��



General Formulation of Strati�cation

� Split integration region � into M pieces �k with

� � �M
k��
�k

� Take Nk random variables in each piece �k with

MX
k��

Nk � N

� x
k�
n
distributed with density p
k��x� in �k

� p
k��x� � p�x���pk

� �pk �
R
�k

p�x�dx

� note�
R
�k

p
k��x�dx � �

� Strati�ed quadrature formula is sum over k

IN�f� �
MX
k��

�

Nk

NkX
n��

f�x
k�
n
�

��



MC Integration Error Using Strati�cation

� MC quadrature error
� � N�����s

��
s
�

Z �
f�x� � �f �x�

��
dx

�
MX
k��

Z
�k

�
f�x� � �fk

��
dx

Strati�ed always beats non�strati�ed

�s � �

Proof� For each k	 c � �fk is minimizer forZ
�k

�f�x� � c�� dx

In particular	
Z
�k

�
f�x� � �fk

��
dx �

Z
�k

�
f�x� � �f

��
dx

Sum this to get

��
s
�

MX
k��

Z
�k

�
f�x� � �fk

��
dx

� MX
k��

Z
�k

�
f�x� � �f

��
dx

� ��
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��� Strati�cation

Combination of grid and random variables�

Simplest case� Strati�cation based on regular grid with
uniform density

� Split integration region � � ��� �
 into M pieces �k

�k �

�
�	�k � ��

M
�
k

M



��

� j�kj � ��M
� For each k	 sample Nk � N�M points fx
k�

i
g uni�

formly distributed in �k

� Averages
�f �x� � �fk �M

Z
�k

f�x�dx for x � �k�

� Quadrature formula

IN � N��
MX
k��

N�MX
i��

f�x
k�
i
�

��



Transformation of sample points

� Match �rst moment
yn � �xn � ��� �m�

� satis�es �
N

P
yn � m�

� Match �rst two moments
yn � �xn � ����c �m�

c �

vuuuuut
m� �m�

�

�� � ��
�

� �
N

P
yn � m�

� �
N

P
y�
n
� m�

Caution� Sample points no longer independent

� CLT not applicable
� Error estimates less straightforward
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��� Matching Moments Method

Monte Carlo integration error partly due to statistical

sampling error

� Distribution of fxngNn�� not exactly p�x�
� E�g� �� �� m�	 �� �� m�

� First and second moments of p
m� �

Z
xp�x�dx

m� �
Z
x�p�x�dx

� First and second moments of sample fxngNn��

�� � N��
NX
n��

xn

�� � N��
NX
n��

x�
n

� Partial correction� make moments exact

�	



Optimal Use of Control Variate

Introduce optimal multiplier � for control variate g

� Integral
Z
f�x�dx �

Z
�f�x� � �g�x�� dx� �

Z
g�x�dx

� Error in �rst integral is proportional to variance
��
f��g

�
Z 

�f�x� � ��g�x�

��
dx

in which

�f �x� � f�x� � I �f 


�g�x� � g�x� � I �g


� Optimal value of � found by minimizing ��
f��g

to

obtain

� � E� �f �g
�E��g�


�

Z
�f �gdx

�
�

Z
�g�dx

�

�




��� Control Variates

Use integrand g	 which is similar to f �

� Integral
Z
f�x�dx �

Z
�f�x� � g�x�� dx�

Z
g�x�dx

� Known integral I�g� � R
g�x�dx

� Monte Carlo quadrature formula

In�f� �
�

N

NX
n��
�f�xn�� g�xn�� � I�g�

Integration error �N�f� � I�f� � IN�f�

� Size
�N�f� � �f�gN

����

� Variance
��
f�g

�
Z �

f�x� � g�x�� � �f � �g��� dx�

E�ective if

�f�g �� �f
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��	 Antithetic Variables

For each sample value x also use the value �x�
Motivation� E�f�x�
 with x from N��� ���

� x � ��x

� Taylor expansion of f � f���x� �for small �� as

f � f��� � f ������x�O�����

� In I � E�f 
 linear terms have average �

� Linear terms cancel exactly with antithetic variables

��



��
 Motivation

Integration error � in Monte Carlo with N samples are

related by

� � O��N�����

N � O������

Two options for acceleration �error reduction�

� Variance reduction
� transform the integrand to reduce the variance �

� Modi�ed statistics
� Replace random variables �e�g� by quasi�random
variables�

Caution� Acceleration method may require extra compu�
tational time	 which must be balanced against reduced

N �

��



�� Variance Reduction

��� Motivation

��� Antithetic Variables

��� Control Variates

��� Matching Moments

��� Strati�cation

��� Importance Sampling

��� Example � Discounted Payment

��� Summary
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��� Summary

� European options	 Greeks	 basket options easily cal�
culated by Monte Carlo

� accuracy � O�N�����	 cpu time � O�N�

� slow compared to PDE or tree methods for single
security

� faster for multiple securities
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��� Basket Options

Simple basket option

� European call for arithmetic average of M securities

� Securities are correlated
dSi� rSidt�

MX
j��

�ijSjdbj�t�

� bj�t� independent standard Brownian motions

� Pricing formulas

Si�t� � Si��� exp

�
B�rt� MX

j��
��ij

p
t	j �

�

�
��
ij
t�

�
CA

Sav �
�

M

MX
i��

Si�t�

PVC � e�rtE �max ��� Sav �K��

� 	j are independent N��� �� random variables

� M�dimensional integral
� Di�cult for pde or lattice method if M � �
� Monte Carlo performs well independent of dimension
� Computational example M � ��

��



Put  

delta

gamma

rho  

vega 

theta

10
1

10
2

10
3

10
4

−8

−6

−4

−2

0

2

4

6
Value and Greeks for European Put, MC

N

Figure �� Value and Greeks for Put using MC

��



Call 

delta

gamma

rho  

vega 

theta

10
1

10
2

10
3

10
4

−10

−5

0

5

10

15
Value and Greeks for European Call, MC

N

Figure �� Value and Greeks for Call using MC

�	



��� Computational Results

Parameters

� S	 � ��

� K � ��

� r � ��

� � � ��

� t � ��

� Call is in�the�money
� Put is out�of�the�money

�




��	 Monte Carlo Calculation of the Greeks

� Exact formulas possible for vanilla options	 but not
for exotics

� Approximate derivatives by �nite di�erence
 e�g� for
 C � 
PVC�
S	 and !C � 
�PVC�
S�

	

 C �
PVC�S	 � ��� PVC�S	 � ��

��

!C �
PVC�S	 � �� � PVC�S	 � ��� �PVC�S	�

��

� Use same random numbers for PVC�S	�	 PVC�S	�
�� and PVC�S	 � ���

� Minimizes statistical error
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Notation

� � � rate of return on stock

� r � risk free rate of return

� � � volatility

� b�t� � standard Brownian motion

� S	 � current price

� K � strike price

� 	 is N��� ��
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��
 European Options

Stock price S�t�

� Real process dS � �Sdt� �Sdb

� Risk�neutral process dS � rSdt� �Sdb

� use risk�neutral process in subsequent formulas

� from Ito calculus

S�t� � S	 exp��r � �����t� �
p
t	�

Call and Put Values

� Call Value PVC

PVC � e�rtE�max��� S�t� �K��

� Put Value PVP

PVP � e�rtE�max���K � S�t���

� Equivalent to Black�Scholes formulas
� Evaluate by sampling 		 using formula for S�t�

��



�� Applications� European Options� the
Greeks

��� European Options

��� Monte Carlo Calculation of the Greeks

��� Computational Results

��� Basket Options

��� Summary
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��� Summary

� Monte Carlo quadrature is straightforward and ro�
bust

� Empirical estimates of accuracy as part of computa�
tion

� Determine necessary N for desired accuracy

��



Variation of N

For desired accuracy level ��

� Perform series of M computations at some initial

value N	

� Calculate RMS error ��N�

� Obtain desired accuracy by using N � N	���N�
�����

Note

� At this point already computed with N� �MN	

� Easy to increment values as N increases

� Use independent values of xi to assess accuracy vs�
N

� For �nal value at largest value of N add on additional
values of fi using formula

IN � �n�N�In �N��
NX

i�n��
fi

��



��� Computation and Interpretation of Re

sults

Monte Carlo method illustrated by comparing value IN
at di�erent values of N

Accuracy of results is assessed	 as described in Section

���

� PerformM independent calculations of I 
j�
N
withM �

��

� Average value �IN �M��
P
I 
j�
N

� Empirical RMS error ��N
��N �



M��

X
�I 
j�

N
� �IN��

����

Plot ��N vs� N to see ��
p
N behavior

��



��	 Monte Carlo Code

choose N � "samples

generate uniform random variables yi

transform to N��� �� variables xi

evaluate and sum fi � f�xi� � x�
i

divide by N

result IN � N��
P
fi

��



��
 Example � Gaussian Integral

Consider the following Gaussian integral

I � ��������
Z �
��

x�e�x���dx

� E�x�


� Expectation is over N��� �� random variable x
� Exact value I � �
� Compute using Monte Carlo method

MC quadrature formula is

IN � N��
NX
i��

x�
i

�	



�� Implementation of Monte Carlo Com

putational Method

��� Example � Gaussian Integral

��� Monte Carlo Code

��� Computation and Interpretation of Results

��� Summary

�




	�� Summary

� Pseudo�randomnumbers generated by standardmeth�
ods

� uniform distribution on ��� �


� warning� very good but not perfect

� Sampling of nonuniform distribution from uniform
distribution

� general methods� transformation and acceptance�
rejection

� special methods� Box�Muller and others

��



E�ectiveness of Acceptance�Rejection�

� Advantage� General
� Normalization of p not required
� Advantage� Requires no inversion of P
� Disadvantage� May be ine�cient	 requiring many tri�
als before acceptance

��



Acceptance�Rejection� Partial Derivation

Since p � q	 then

Z �
	

�
p�x�

q�x�
� y�dy �

p�x�

q�x�
� p�x���q�x�I �q
���

So

Z
f�x�p�x�dx �

Z Z �

	
f�x� 
�

p�x�

q�x�
� y� �q�x� dy dx I �q


� N ���
X

p
x�

n
��q
x�

n
��yn

f�x�
n
� I �q


� N��
X

accepted pts
f�xn�

in which

N � � total number of trial points

N � total number of accepted points

� N ��I �q


��
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	�� Acceptance
Rejection Method

General way of producing random variables of given den�

sity p�x�

� Choose q�x� � p�x�

� Probability density
�q�x� � q�x��I �q


I �q
 �
Z
q�x��dx�

Acceptance�Rejection Procedure

� Two random variables	 x�� y
� trial variable x� with density �q�x��

� decision variable y uniform �� � y � ��

� accept if � � y � p�x���q�x��

� reject if p�x���q�x�� � y � �

� Repeat until a value x� is accepted
� Once x� is accepted	 take

x � x��

��



Box�Muller is based on the following observation�

� Change variables �x�� x�� � �r cos �� r sin �� to polar
coordinates �r� ��

dx�dx� � rdrd�

� Integration element
������e�
x

�
�
�x�

�
���dx�dx� � ������e

�r���rdrd�

� Angular variable ������ is uniformly distributed�
� Variable r is easily sampled

� density re�r���

� distribution

P �r� �
Z r
	
e�r����r�dr� � �� e�r���

P���y� �
r
�� log ��� y�

� Resulting transform
�y�� y��� �r� ��� �x�� x��

��



	�� Box
Muller Method

� Direct way of generating normal random variables

without inverting the error function�

� y�� y� two uniform variables

� Obtain two normal variables x�� x��
x� �

r
�� log�y�� cos���y��

x� �
r
�� log�y�� sin���y��

��



	�� Gaussian �Normal� Random Variables

Normal random variable� density p and distribution P

p�x� � ��������e�x���

P �x� �
�p
��

Z x
��

e�t���dt

�
�

�
�
�

�
erf�x�

p
��

in which

� Factor �������� is a normalization
� R�

��
p�x�dx � �

� Error function erf de�ned by

erf�z� �
�p
�

Z z
	
e�t�dt�

Sample normal variable x	 using uniform variable y	 by

y � P �x� �
�

�
�
�

�
erf�x�

p
��

i�e�	

x �
p
� erf����y � ���

��



	�� Transformation Method

Goal� Produce random variable x with density p�x��

Method� Write x � X�y� with y a uniform variable�

De�ne probability distribution function

P �x� �
Z x
��

p�x��dx�

Determination of the mapping X�y��

Ep�f�x�
 � Eunif �f�X�y��
 for any f

�	
Z
f�x�p�x�dx �

Z
f�X�y��dy

�
Z
f�x��dy�dx�dx by change of variables

�	 p�x� � dy�dx

�	
Z X
y�

p�x�dx � dy

�	 P �X�y�� � y

�	 X�y� � P���y�

Summary

� y �uniform� � x �density p�x��

� x � P���y�	 inverse function of distribution P

�	



	�	 Non
Uniform Density

� Standard random number generators produce uni�
formly distributed variables�

� Non�uniform variables sampled through transforma�
tion of uniform variable�

� For a non�uniform random variable with density p�x�
E�f 
 � I �f 
 �

Z
f�x�p�x�dx

�N�f� � I�f�� IN�f�

�
Z
f�x�p�x�dx � �

N

NX
n��

f�xn�

CLT results�

� �N�f� � N�����	

� 	 is N��� ��

� �� �
R
�f � �f ��p�x�dx

�




	�
 Random Number Generators

Numbers generated by computers are not random	 but

pseudo�random

� Pseudo�random sequences are made to have many
properties of random numbers

� well�developed subject

� occasional problems still occur	 mostly with very
long sequences �N � ��
�

� linear congruential methods predominate

� Series of reliable methods in Numerical Recipes	 �nd
Ed�

� ran�	 ran�	 ran�	 ran�	 ran�

� ran� recommended for N � ���

� Very poor methods in Numerical Recipes	 �st Ed�
� DO NOT USE RAN�	 RAN�	 RAN�	 RAN�
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	� Generating and SamplingRandomVari

ables

��� Random Number Generators

��� Non�Uniform Density

��� Transformation Method

��� Gaussian �Normal� Random Variables

��� Box�Muller Method

��� Acceptance�Rejection Method

��� Summary

��




�� Summary

� Monte Carlo quadrature based on probabilistic rep�
resentation of integrals

� Error � is of size �N���� for N samples and variance
�

� Empirical estimate of � provides guide to necessary
sample size N for desired accuracy � with con�dence

c

� Monte Carlo also applicable to simulation and opti�
mization

��




�� When Should Monte Carlo Be Used�

� High dimension
� e�g� basket options with � or more securities

� Finite di�erence or tree methods unavailable
� e�g� path�dependent securities

� Simulation
� e�g� value at risk

��



How can irregular set of points beat a grid#

� Fourier interpretation �periodic functions�
� grid of spacing ��n gives


 �� accuracy on wavenumber k � mn �for m

a nonzero integer�


 ���� accuracy on wavenumbers k �� mn

� random array gives partial accuracy for all k

� Tree interpretation
� in regular grid	 variation of only one component
at a time
 i�e�

��� �� � � � � �� �� � ��� �� � � � � �� ��n�

� ine�cient use of unvaried components

� random array	 all components varied in each point

��




�� Comparison to Grid
Based Methods

Comparison to grid�based integration methods �e�g� Simp�

son$s rule�

� Convergence rate for grid based quadrature� O�N�k�d�
for order k method in dimension d

� MC beats grid in high dimension d �d � � or ��	
k�d � ���

� Impossible to lay down grid in high dimension
� requires at least �d points

� Impossible to re�ne grids in high dimension
� requires increasing " points by factor �d points

��




�� Simulation and Optimization

Quadrature for valuation and risk is the focus of this

course�
But there are additional uses for Monte Carlo�

Monte Carlo provides a direct and robust simulation of a

�nancial process�

� E�g� interest rate paths
� Provides picture of future scenarios
� Represents full statistics
� Risk calculations

Optimization performed using Monte Carlo

� Search state space for largest value of payo� function
f�x�

� E�g� optimal cash allocations

��



Use of CLT in Applications

Problem� Exact value is unknown �that$s the desired
value�	 so errors and the variance cannot be determined

Solution� Determine empirical error and variance

� Perform M computations using independent points
xi for � � i �MN

� Obtain values I 
j�
N
for � � j �M 	

� Empirical RMS error is ��N given by

��N �

�
B�M��

MX
j��
�I 
j�

N
� �IN��

�
CA
���

in which
�IN �M��

MX
j��

I 
j�
N

� Empirical variance is �� given by
�� � N�����N

��



Converse of CLT�

To insure

� Error of size �
� With con�dence level c

Require

� Number of sample points N given by

N � �����s�c�

� s is con�dence function for a normal variable�

c �
Z s
c�
�s
c�

e�x���dx�
p
��

� erf�s�c��
p
��

Values of con�dence function

con�dence level c � ��� ��� �%� �%�

multiplier s�c� � ��� ���� ���� ��%�

�	



Partial Derivation of CLT

First de�ne �i � ����f�xi� � �f � for xi uniformly dis�
tributed� Then

� E��i
 � �

� E���
i

 � � since

E���
i

 �

Z
����f�xi�� �f ��dx

� �

� E��i�j
 � � if i �� j since independent

Variance of sum�

� De�ne SN � ���N�PN
�
�i � ����N

� Calculate
E�S�

N

��� � E�N���

NX
i��

�i��

���

� N��

���
��E�

NX
i��

��
i

 �E�

NX
i��

X
j ��i

�i�j


���
��
���

� N��

��
�
NX
i��
� � �

��
�
���

� N����

� Therefore RMSEx � O��N�����







�� Central Limit Theorem �CLT�

CLT describes the size and statistical properties of Monte
Carlo integration error�

� Integration error
�N�f� � I�f�� IN�f��

� CLT� For N large	

�N�f� � �N����	

� 	 is N��� �� random variable

� � � ��f� is the variance of f

��f� �

Z
Id
�f�x� � I�f���dx

����

� Precise statement

lim
N��

Prob�a �

p
N

�
�N � b� � Prob�a � 	 � b�

�



Monte Carlo Quadrature Formula

� Sequence fxng sampled from uniform distribution
� Empirical approximation to the expectation is

IN �f 
 �
�

N

NX
n��

f�xn�

� Unbiased�
E�IN �f 

 � I �f 


� Convergent

lim
N��

IN �f 
� I �f 


In general de�ne

� Error �N�f� � I�f�� IN�f�

� Bias � E��N �f�


� RMSE�&root mean square error' � E��N �f��

���

�




�	 Expectation and Integration

The integral of a function f�x� can be expressed as the

average or expectation� For one dimensional unit interval

� Integral I �f 
 � R�
	
f�x�dx � �f

� Average E�f�x�
 � R�
	
f�x�dx for a uniform random

variable

For unit cube Id � ��� �
d in d dimensions	

� I �f 
 � E�f�x�
 �
R
Id f�x�dx

�



Examples�

� Uniform� For � � x � �

p�x� � ��

Any number in unit interval is equally likely�

� Gaussian �a�k�a� normal or N��� ���
p�x� � ��������e�x����

� Gaussian with mean m and variance �� �N�m����

p�x� � ����������e�
x�m�������

� Note� These are all continuous random variables

Discrete Random Variables

� Binomial

x �

���
��
�
�� with probability

���
��
���
���

p�x� � �����x� �� � �����x� ���

�




�
 Random variables

A random variable X with a density function p�x� takes

on value x with relative probability p�x��
Properties�

� P �a � X � b� �
R b
a
p�x�dx

� � � p�x�

� R
p�x�dx � �

� Mean �x � R
xp�x�dx

� Variance �� � R
�x � �x��p�x�dx

�




� Monte Carlo Integration

��� Random Variables

��� Expectation and Integration

��� Central Limit Theorem

��� Simulation and Optimization

��� Comparison to Grid�Based Methods

��� When to Use Monte Carlo

��� Summary

�
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