5.8 Summary

e Reduction of statistical error in MC quadrature pos-
sible through variance reduction

e Variety of possible methods

— antithetic variables™

— control variates™

— matching moments™

— importance sampling

— stratification

*frequently used in finance
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Error (RMS-20 runs)
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Figure 6: Discounted Cashflow, QMC
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Error vs. N for Discounted Payment Example: Pseudo
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Figure 5: Discounted Cashflow, MC
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Control variate

Approximate (1 +r;)-1 by 1 —r, for i > 1.
Form control variate as

9= (147rg)= {1 =)L =ry)(1 =)

Since ¢ consists of a sum of linear exponentials, its inte-
eral can be performed exactly; e.g.

/_O; eAve=t 2y = N2 /_O; e—(@=2)2/2y
— A2)2 /_0; e~V 2dy
= 2meN/?
Numerical Results
e Standard MC
o Quasi-MC (described in next section)

e Antithetic variables

e Control variates
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Present value is

PV = E[u]
= (2m)73/2 /_O; /_O; /_O; ue_(x%”%”%wdxldxgdxg

Discount factor v and interest rates r, are

u= (1 1) (L )1 (1)

r, o= T060x1—02/2

ry = T160x2—02/2

ry = T260:1;3—02/2
Parameters

e initial interest rate r, = .10 = 10%
e size of interest rate fluctuations o = .1 (1% per year)
Evaluate PV by sampling x; from N(0,1) distribution

using transformation method. Apply antithetic variables
and control variates.
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5.7 Example — Discounted Payment

Present value of discounted payment.
e Payment of $1 after M = 4 years
e Year ¢

— 1nterest rate r;

— annual discount factor (1 41r)-1
e log normal interest rate model

_ —02/2
agxr g
r,=mr;, ,eovi

o v, is N(0,1)

e Simple path dependent security
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Effectiveness of importance sampling

o If f/p is nearly constant, then

Op<<0

e Sample from p(x) using acceptance-rejection, if nec-
essary.

e Use to emphasize rare events
— risk

— far out of the money options
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5.6 Importance Sampling

Rewrite integral using density p.

e Integral

e Monte Carlo estimate is

1 N
In(f) = szi

Error ey (f) = I(f) = Iy(f)

e Error size
GN(f) ~ O-p‘/\/v_l/2

e Variance
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Stratification always lowers integration error if distribu-
tion of points is balanced.

e balance condition: for all k
pr/Np =1/N

e number of points in set (), is proportional to its
weighted size p,

e resulting error for stratified quadrature
ey ~ N2

M 2
k=1

S

e Variance reduction

o,<0

e Resulting error reduction
€N S €y

e Better choice - put more points where f has largest
variation
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Resulting integration error

e 'Total error

entf) = 1) = Iy(f)

e Error components

W)~ N (/Qk — fy)2p ()
(N, ot

e Variances
o) = (p, )12 (/Q — £.)2p) (& )daj) 2
- (/Qk<f<x> - fk)Qp(x)dx)l/Q

e Averages

fk /Qk dx/pk

)



General Formulation of Stratification

e Split integration region () into M pieces {2, with

— UM
Q Uk:1Qk
o Take NNV, random variables in each piece {2, with

M
SN, =N
k=1

o (%) distributed with density p*)(z) in Q,
= p(x) = p(x)/p,

= Dy = g, pla)da
— note: fo, pF(a)de =1

e Stratified quadrature formula is sum over k

o4



MC Integration Error Using Stratification

e MC quadrature error
e ~ N-1/20

o2 = [ (f(x) - () da

S

M 2
= X Jo, V(@) = fi)"da
Stratified always beats non-stratified

o,<0

Proof: For each k, ¢ = f, is minimizer for

/Qk (f(x)— 0)2 dx

In particular,

/Qk (f(x) - fk)Q dr < /Qk (f(a) - f)Zda;
Sum this to get

M=
S—

Eonl

I

—
ol

g2 =
s

—
ol

AN
M=
S~
=
=
|
=
b
=N
]

|
Q
ro I
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5.5 Stratification

Combination of grid and random variables.
Simplest case: Stratification based on regular grid with
uniform density

o Split integration region 2 = [0, 1] into M pieces €2,
(k—=1) k

Q, = —
M M

° |Qk| = 1/M

o For each k, sample N, = N/M points {xgk)} uni-
formly distributed in €2,

o Averages
fla)y=f, = M/Qk flx)dx  for x €.

e Quadrature formula
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Transformation of sample points

e Match first moment

yn - (xn - Iul) +m1

— satisfies % Yy, =my

e Match first two moments

Yn

(2, = py)/c+my

Caution: Sample points no longer independent

e CLT not applicable

e Error estimates less straightforward
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5.4 Matching Moments Method

Monte Carlo integration error partly due to statistical
sampling error

o Distribution of {x, }N mnot exactly p(x)

o g iy Fmy, iy Fmy

e First and second moments of p

m, = /xp(x)dx
my, = /pr(x)dx

o First and second moments of sample {z |V X

N
py = N-1 Zgjn
n=1
N
fy = N-1 Zgj?
n=1 "

e Partial correction: make moments exact
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Optimal Use of Control Variate

Introduce optimal multiplier A for control variate ¢

e Integral

/f )dx —/ x)— Ag(x))de + )\/g(aj)daj
e Error in first integral is proportional to variance

f )\g_/< ) dz
in which
fle) = fle)—1[f]
glx) = g(x) = Ig]

e Optimal value of A found by minimizing (7]% \, to
—Ag

obtain
A = Elfg]/Elg]

= ([ fade) /([ g2de)
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5.3 Control Variates

Use integrand ¢, which is similar to f.

e Integral
[ fla)de = [ (f(x) = g(x)) de + [ g(x)dx
e Known integral I(g) = J g(x)dx

e Monte Carlo quadrature formula

1

LD =% & (Fa,) = o(e,) +1(9)

Integration error e\ (f) = I(f) — Iy(f)

o Size
ev(f)~ Of_gN_1/2

e Variance

Effective if
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5.2 Antithetic Variables

For each sample value x also use the value —z.
Motivation: E[f(x)] with x from N (0, 02)

e r =01

e Taylor expansion of f = f(oz) (for small o) as

f = £(0) + f(0)7i + O(02),

e In / = E[f] linear terms have average (

e Linear terms cancel exactly with antithetic variables
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5.1 Motivation

Integration error € in Monte Carlo with N samples are
related by

e = O(cN—1/2)
N = O(o/e)2

Two options for acceleration (error reduction)
e Variance reduction
— transform the integrand to reduce the variance o

e Modified statistics

— Replace random variables (e.g. by quasi-random
variables)

Caution: Acceleration method may require extra compu-
tational time, which must be balanced against reduced

N.
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5. Variance Reduction

5.1 Motivation

5.2 Antithetic Variables

5.3 Control Variates

5.4 Matching Moments

5.5 Stratification

5.6 Importance Sampling

5.7 Example — Discounted Payment

5.8 Summary
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4.5 Summary

e Furopean options, Greeks, basket options easily cal-
culated by Monte Carlo

— accuracy = O(N—Y2), cpu time = O(N)

— slow compared to PDE or tree methods for single
security

— faster for multiple securities
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5.8

Value of Basket Option (10 Securities) vs. N, for MC and QMC

5.6

5.4

5.2

4.8

4.6

4.4
10

N

Figure 4: Basket Option with 10 Securities
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4.4 Basket Options

Simple basket option
e Furopean call for arithmetic average of M securities

e Securities are correlated

M
dS;=rS;dt+ 3 Oiijdbj(t)

7=1
o b.(t) independent standard Brownian motions

e Pricing formulas

M 1
S(t) = S5,(0)exp (rt + ¥ (aij\/gyj — a?,t))
=1 2
S b S
— (1
av MZ; Z( )

PV, = e-rtE(max (0,5, — L))

o v; are independent N(0,1) random variables

e M-dimensional integral

e Difficult for pde or lattice method if M > 3

e Monte Carlo performs well independent of dimension

e Computational example M = 10
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Value and Greeks for European Put, MC
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Figure 3: Value and Greeks for Put using MC
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Value and Greeks for European Call, MC
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Figure 2: Value and Greeks for Call using MC
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4.3 Computational Results

Parameters
e 5, =42
o A =40
or=.1
o0 =2
o1 =2.5

e Call is in-the-money

e Put is out-of-the-money
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4.2 Monte Carlo Calculation of the Greeks

e Exact formulas possible for vanilla options, but not
for exotics

e Approximate derivatives by finite difference; e.g. for

Ap=0PV /05  and T = 92PV,, /052
PVa(Sy+8) = PVa(S, — 6)

¢ 26
 PVi(Sy+8) + PVi(S, — 8) = 2PV,(S,)
S
52

o Use same random numbers for PV,.(S,), PV.(S,+
) and PV, (5, —9).

e Minimizes statistical error
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Notation
e ;1 = rate of return on stock
e r = risk free rate of return
e 0 = volatility
e i(t) = standard Brownian motion
e 5, = current price
o I = strike price

e vis N(0,1)
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4.1 European Options

Stock price S(t)
e Real process  dS = uSdt + oSdb
e Risk-neutral process dS = rSdt + o5db

— use risk-neutral process in subsequent formulas

— from Ito calculus

S(t) = Syexp((r —o2/2)t + Oﬁy)

Call and Put Values
e Call Value PV,

PV, = e-rtE(max(0,S(t) — I'))
e Put Value PV,
PV, = e-rtE(max(0, K — S(t)))

e Equivalent to Black-Scholes formulas

e Evaluate by sampling v, using formula for S(t)
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4. Applications: European Options, the
Greeks

4.1 European Options

4.2 Monte Carlo Calculation of the Greeks
4.3 Computational Results

4.4 Basket Options

4.5 Summary
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3.4 Summary

e Monte Carlo quadrature is straightforward and ro-
bust

e Empirical estimates of accuracy as part of computa-
tion

e Determine necessary N for desired accuracy

34



Variation of N

For desired accuracy level &

e Perform series of M computations at some initial
value IV,

e Calculate RMS error £ N

o Obtain desired accuracy by using N = N (& N /€)2

Note
e Af this point already computed with N, = M N,
e Fasy to increment values as N increases

¢ Use independent values of z; to assess accuracy vs.

N

e For final value at largest value of V add on additional
values of f, using formula

N
Iy = (n/N)[n +N-1 > f.
1=n+1
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3.3 Computation and Interpretation of Re-
sults

Monte Carlo method illustrated by comparing value I,
at different values of N

Accuracy of results is assessed, as described in Section
1.3

e Perform M independent calculations of [ ](VZ) with M =~
20
o Average value [, = M-1 z]j(vj)

e Empirical RMS error £,

N . - 1/2
ty = (M1~ Iye)!

Plot £, vs. N to see 1/v/N behavior
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3.2 Monte Carlo Code

choose N = #samples

generate uniform random variables y,

transform to N(0,1) variables x,

evaluate and sum f, = f(x;) = a2

divide by N

result [, = N-1% f,
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3.1 Example — Gaussian Integral

Consider the following Gaussian integral

I = (27)~1/2 /_O;ﬂe_ﬂ/?dx
= E[gj?]

o Expectation is over N(0,1) random variable x
e Exact value I =1

e Compute using Monte Carlo method

MC quadrature formula is

30



3. Implementation of Monte Carlo Com-
putational Method

3.1 Example — Gaussian Integral
3.2 Monte Carlo Code
3.3 Computation and Interpretation of Results

3.4 Summary
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2.7 Summary

e Pscudo-random numbers generated by standard meth-

ods

— uniform distribution on [0, 1]

— warning: very good but not perfect

e Sampling of nonuniform distribution from uniform
distribution

— general methods: transformation and acceptance-
rejection

— special methods: Box-Muller and others

28



Effectiveness of Acceptance-Rejection:
e Advantage: General

e Normalization of p not required

e Advantage: Requires no inversion of P

e Disadvantage: May be inefficient, requiring many tri-

als before acceptance

27



Acceptance-Rejection: Partial Derivation

Since p < ¢, then

/le(zgg > y)dy = (i)

()
= ple)(qle)I]g])!

RS

[stwlods = [ [ 50 > ) ite) dy de 1l
Nt f(ar) Ig]
play) /() >yn
N-to Y flwy)
accepted pts

Q

Q

in which

N7 = total number of trial points

N = total number of accepted points
~ N'/1g]
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Acceptance—Rejection
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Figure 1: Typical choice of p, ¢ and p/q. Accept for y < p/q and reject for
y > p/q-
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2.6 Acceptance-Rejection Method

General way of producing random variables of given den-
sity p(x)

e Choose ¢(x) > p(x)

e Probability density

q(x) = q(x)/1]q]
Ilq] = [ qlat)da

Acceptance-Rejection Procedure
e T'wo random variables, 27,y

— trial variable 2/ with density ¢(a/)

— decision variable y uniform (0 <y < 1)
o acceptif 0 <y < p(ar)/q(ar)
o reject if p(ar)/q(ar) <y < 1
e Repeat until a value a/ is accepted

e Once x/ is accepted, take

xr = al.

24



Box-Muller is based on the following observation:

o Change variables (z,,x,) = (rcos#,rsinf) to polar
coordinates (r,6)

dadxy, = rdrdf

e Integration element

(27T)_16_(x%+x%)/2d1‘1d1‘2 = (27T)—16_7“2/27“d7“d6’

e Angular variable §/(27) is uniformly distributed.
e Variable r is easily sampled

— density re—"*/?

— distribution
P(r) = /07“ e~ 2p1drt = 1 — e=r/2
P-i(y) = \/=2log(1—y)

e Resulting transform

(Y1, 99) = (1,0) = (2, 25)

23



2.5 Box-Muller Method

e Direct way of generating normal random variables
without inverting the error function.

® y,.y, two uniform variables

¢ Obtain two normal variables x, x,:

r, = y/—2log(y,) cos(2my,)
ry = y/—2log(y,)sin(27y,)

22



2.4 Gaussian (Normal) Random Variables

Normal random variable: density p and distribution P
pla) = (2n) Ve
L
word I
1 1
in which

e Factor (27r)—1/ 2 is a normalization

o /* plr)dr =1

o0

e Error function erf defined by
f " [ et
cr (Z) = ﬁ/@ & .

Sample normal variable z, using uniform variable y, by

y=Px)= % —I—% erf(z/v/2)

1.c.

r =2 ef 12y —1).
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2.3 Transformation Method

Goal: Produce random variable & with density p(x).
Method: Write x = X (y) with y a uniform variable.

Define probability distribution function

P(x) = /iop(x’)dx’

Determination of the mapping X (y):

Elf(0)] = E,;lf(X(y))] for anyf
= [ fla)p(a)de = [ (X
= /f dy/dx daj by change of variables
= p(v )—dy/dx
— / ) p(z )da;—dy
— P(X(y)) =
= X(y)=P- 1( )
Summary

e y (uniform) — x (density p(x))

o © = P-1(y), inverse function of distribution P

20



2.2 Non-Uniform Density

e Standard random number generators produce uni-
formly distributed variables.

e Non-uniform variables sampled through transforma-
tion of uniform variable.

e For a non-uniform random variable with density p(x)

E[f] = I[f]= [ f(x)p(x)dz
ex(f) = 1(f) = Ix(f)

= [flapla)de — = ¥ f(z,)

CLT results:
o ex(f) = N-12ow
o 1 is N(0,1)
o 02 = [(f — f)2p(x)de

19



2.1 Random Number Generators

Numbers generated by computers are not random, but
pseudo-random

e Pseudo-random sequences are made to have many
properties of random numbers

— well-developed subject

— occasional problems still occur, mostly with very
long sequences (N > 109)

— linear congruential methods predominate

e Series of reliable methods in Numerical Recipes, 2nd

Ed.

— ran0, ranl, ran2, ran3, ran4

— ranl recommended for N < 108

e Very poor methods in Numerical Recipes, 1st Ed.
— DO NOT USE RANO, RAN1, RAN2, RAN3
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2. Generating and Sampling Random Vari-
ables

2.1 Random Number Generators

2.2 Non-Uniform Density

2.3 Transformation Method

2.4 Gaussian (Normal) Random Variables
2.5 Box-Muller Method

2.6 Acceptance-Rejection Method

2.7 Summary
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1.7 Summary

e Monte Carlo quadrature based on probabilistic rep-
resentation of integrals

e Error ¢ is of size c N=1/2 for N samples and variance
o

e Empirical estimate of ¢ provides guide to necessary
sample size N for desired accuracy ¢ with confidence
c

e Monte Carlo also applicable to simulation and opti-
mization

16



1.6 When Should Monte Carlo Be Used?

e High dimension

— e.g. basket options with 3 or more securities
e Finite difference or tree methods unavailable

— c.g. path-dependent securities
e Simulation

— e.g. value at risk

15



How can irregular set of points beat a grid?
e Fourier interpretation (periodic functions)

— erid of spacing 1/n gives

* 0% accuracy on wavenumber k = mn (for m
a nonzero integer)

+ 100% accuracy on wavenumbers k # mn

— random array gives partial accuracy for all &
e 'Iree interpretation

— in regular grid, variation of only one component
at a time; l.e.

(0,0,...,0,0) — (0,0,...,0,1/n)

— inefficient use of unvaried components

— random array, all components varied in each point

14



1.5 Comparison to Grid-Based Methods

Comparison to grid-based integration methods (e.g. Simp-
son’s rule)

e Convergence rate for grid based quadrature: O(N—F/d)
for order & method in dimension d

— MC beats grid in high dimension d (d > 3 or 4),
k/d<1/2
e Impossible to lay down grid in high dimension
— requires at least 24 points
e Impossible to refine grids in high dimension

— requires increasing # points by factor 2d points
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1.4 Simulation and Optimization

Quadrature for valuation and risk is the focus of this

course.
But there are additional uses for Monte Carlo:

Monte Carlo provides a direct and robust simulation of a

financial process.
e .o interest rate paths
e Provides picture of future scenarios
e Represents full statistics

e Risk calculations

Optimization performed using Monte Carlo

e Search state space for largest value of payoff function
flx)

e E.o. optimal cash allocations

12



Use of CLT in Applications

Problem: Exact value is unknown (that’s the desired
value), so errors and the variance cannot be determined

Solution: Determine empirical error and variance

e Perform M computations using independent points
v, for 1 <i < MN

e Obtain values [](VZ) for 1 <) <M,

e Empirical RMS error is €, given by

M ~ 1/2
@V:(M’IZ(%Q—LW%

j=1
in which
_ M
[y=M-13 10
j=1

e Empirical variance is o given by

5= N2z,

11



Converse of CLT:

To insure
e Error of size €
e With confidence level ¢
Require
e Number of sample points N given by
N = e-2025(c)

e s 1s confidence function for a normal variable.

= [y IV

—S8

= erf(s(c)/V2)

Values of confidence function
confidence level ¢ 0 .68 .80 .90 .95
multiplier s(¢) 0 1.0 1.28 1.65 1.96
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Partial Derivation of CLT

First define {; = o-1(f(x,) — f) for x, uniformly dis-
tributed. Then

o LG =0
. E[fZQ] = 1 since

Ele2) = [o-2(f(x,) - da
1

o E[§;¢;] = 0if i # j since independent

Variance of sum:
o Define Sy = (1/N)=V ¢ =o-ley

e Calculate

=

B[S3J2 = E[N-2(% &2

4

I
—

=

1/2
SRR I30s @-@-1}

1t 1=1 5+

N 1/2
= N—l{ 1—|—O}
=1

1=

— N-1/2

= N-1 {E[

.

o Therefore RMSE = O(oc N—1/2)



1.3 Central Limit Theorem (CLT)

CLT describes the size and statistical properties of Monte
Carlo integration error.

e Integration error

e CLT: For N large,
ex(f) o N-1/2y

e v is N(0,1) random variable

e 0 = o(f) is the variance of f

o(f) = ([l flx) = I(f))2dx)

e Precise statement

1/2

N
lim Prob(a < —e€y < b) = Prob(a < v < b)
N—oo ol



Monte Carlo Quadrature Formula
o Sequence {x | sampled from uniform distribution

e Empirical approximation to the expectation is

1

Il = anlf( .
e Unbiased:
ElI[f]] = 1]f]
e Convergent;
fim Ty[f] — 1111

N—oo

In general define

o Error ey (f) =1(f) — Iy(f)
o Bias = Eley(f)]

e RMSE="root mean square error” = El[e(f)2]'/?



1.2 Expectation and Integration

The integral of a function f(x) can be expressed as the
average or expectation. For one dimensional unit interval

o Integral /[f] = fol fla)de = f

o Average F[f(x)] = K f(x)dx for a uniform random

variable

For unit cube Id = [0, 1] in d dimensions,

o I[f] = E|f(x)] = f1a f(x)dx



Examples:
e Uniform: For0 < x < 1
ple) =1
Any number in unit interval is equally likely.

e Gaussian (a.k.a. normal or N(0,1))
plx) = (2r)~12e=2%/2,
e Gaussian with mean m and variance o2 (N(m, o))

p(ﬂf) = (20-277')_1/26—(1'—771)2/202'

e Note: These are all continuous random variables

Discrete Random Variables

e Binomial

1/2

. .
r = { | with probability { 12

ple) =1/26(x +1) +1/26(x = 1).



1.1 Random variables

A random variable X with a density function p(x) takes
on value x with relative probability p(x).
Properties:

o Pla<X <b)=/"p(x)dx
o 0 < p(x)

o /p(x)dr=1

e Mean & = fap(x)dx

e Variance o2 = [(x — Z)2p(x)dx



1. Monte Carlo Integration

1.1 Random Variables

1.2 Expectation and Integration

1.3 Central Limit Theorem

1.4 Simulation and Optimization

1.5 Comparison to Grid-Based Methods
1.6 When to Use Monte Carlo

1.7 Summary



Outline

1. Monte Carlo Integration
2. Generating and Sampling Random Variables

3. Implementation of Monte Carlo Computation
4. Applications: European Options, Greeks
5. Variance Reduction



Monte Carlo Methods

for

Finance

Russel E. Caflisch
Mathematics Department

UCLA



