Homework 1 Math 181

Handout: Wednesday, Oct. 1 Due: Wednesday, Oct. 8

1. Let x be an N(0, 1) random variable with density

$$p(x) = (2\pi)^{-\frac{1}{2}} e^{-x^2/2}.$$

Show that

(i) E(x) = 0
(ii) E(x²) = 1
(iii) E(e^{σx}) = e^{σ²/2}

Hint: You may use the fact that $\int_{-\infty}^{\infty} p(x) dx = 1$. For (ii) use integration by parts. For (iii), change variables to get a difference of two square in the exponential in the integrand.

2. Consider a random walk with steps $d_i \pm 1$ (with probability 1/2, 1/2), as discussed in Lecture 3. Denote the values as $x_0 = 0, x_1, x_2, \ldots$

(i) Find $\operatorname{prob}(x_4 = 4)$.

- (ii) Find $prob(x_i \ge 0 \text{ for } i = 1, ..., n)$ for n = 1, 2, 3, 4.
- 3. For a random walk x_n with Gaussian steps d_i , as discussed in Lecture 4, find $\operatorname{prob}(x_1 \ge 0)$ and $\operatorname{prob}(x_1 \ge 0, x_2 \ge 0)$.