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This talk is an introduction to the theory of heights on projective varieties

over local and global fields. I will also say something about canonical heights
for a dynamical system, and a local-global formula for these.

This material is from Chapters 1-2 of the book by Bombieri and Gubler on
heights [BG]; also Silverman’s book The Arithmetic of Dynamical Systems, 3.1
- 3.5 and 5.9 [Si]. There is also a chapter on heights in Silverman’s Advanced
Topics in the Arithmetic of Elliptic Curves [Si2].

1 Heights on Projective Space

In general a “height function” is some real-valued function that defines the
“arithmetic complexity” of a point on a variety over a number field. One hopes
that such a height function will have two fundamental properties. First, only
a finite number of points should have height less than any given bound. Sec-
ond, the height should behave in a predictable way under automorphisms of
the variety. For example, the standard logarithmic height on an elliptic curve
approximately quadruples when the point is doubled, i.e.

h(2P ) = 4h(P ) +O(1).

This notion of height is used in the proof of the Mordell-Weil theorem; it is also
useful in arithmetic dynamics.

(As an aside, it is often useful to have effective bounds for the big-O expres-
sions that arise here. It seems these bounds can be attained but not without
quite a bit of effort. If this is the sort of thing that interests you then keep it in
mind throughout my talk and we can talk about where the difficulty lies.)

Definition 1.1. We say a height function (a real-valued function on a set of
points) satisfies the finiteness property if, for any real number B, the set of
points with height less than B is finite.

As a warm-up, define a height on Q by

H(p/q) = max(|p| , |q|).
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The finiteness property is clear.
This height extends in the obvious way to P1

Q, where it can be phrased more

uniformly as follows. Any point of P1
Q can be written uniquely as (p : q) with p

and q relatively prime integers. Then we take

H(p : q) = max(|p| , |q|).

This notion generalizes to PnQ. Any point of Pn+1
Q can be expressed uniquely

as (x0 : x1 : · · · : xn), where the xi’s are integers with no common factor. With
this choice of coordinates, we define

H(x0 : · · · : xn) = max
i

(|xi|).

With this definition the finiteness property is again clear.
In generalizing to an arbitrary number field K, whose ring of integers may

not be a PID, we cannot always guarantee that the coordinates be “integers
with no common factor,” i.e. algebraic integers in K generating the full ring of
integers OK . We could get around this by scaling the height so the coordinates
do not have to be normalized in the first place: specifically we scale by the norm
of the fractional ideal generated by x0, . . . , xn.

Over Q, the finiteness property holds because only finitely many integers
have absolute value less than a given bound. This remains true for imaginary
quadratic fields, but it is not true for a general number field K ⊂ C. We know
from elementary number theory that K has more than one archimedean absolute
value, and it is often more natural to treat them all on an equal footing. What
turns out to be the correct definition is the following. For any point of projective
space, choose homogenous coordinates (x0 : · · · : xn), and define

H(x0 : · · · : xn) =

(
1

|Nm(x0, · · · , xn)|
∏
v

max
i
|xi|fvv

) 1
[K:Q]

,

where v ranges over the archimedean valuations of K, and fv = 1 if v is a real
place, fv = 2 if complex.

The height so defined is independent of the choice of homogenous coordi-
nates, and invariant under extension of the field. We call it the standard height
function on projective space.

Lemma 1.2. The standard height defined above has the finiteness property.

Proof. (Sketch.)
Let I be a set of ideals of OK , containing one ideal from each ideal class.

Then I is finite, and any point of PnK can be written uniquely as (x0 : . . . : xn)
so that the n coordinates generate an ideal in I. Thus, it is enough to show
for each fixed ideal I that only finitely many points with (x0, . . . , xn) = I have
height less than any given finite bound; and for this it is enough to show that
there are only finitely many choices of x0, . . . , xn, up to multiplication by a unit,
satisfying ∏

v

max
i
|xi|fvv < B,
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for B an arbitrary real number.
Next, I claim that we can, by scaling by a unit of OK , guarantee that for all

archimedean valuations v of K, we have

|xn|v > εfv ,

where ε > 0 is a constant depending only on the choice of K. In the language of
the proof of Theorem 38 of Marcus’s Number Fields, the multiplicative monoid
of OK maps to “logarithmic space” by

x 7→ (log |x|v)v,

the unit group ofOK forms a lattice of maximal rank in the norm-one hyperplane
of this logarithmic space. Now we can translate xn by a unit to bring it into a
suitably chosen fundamental domain for the action of this lattice, and the claim
follows.

But now the bound ∏
v

max
i
|xi|fvv < B,

implies for each i and v that

|xi|v <
(
Bεfv−r

) 1
fv ,

where r = [K : Q]; and it is known that only finitely many xi can satisfy such
a bound.

Given the appearance of archimedean valuations in our definition, it should
not be surprising that the standard height can be defined as a product of local
heights. The formula below is usually given as a definition in the literature.
The proof is routine, and we omit it.

Lemma 1.3. The standard height of a point (x0 : . . . : xn) in PnK is given as
the product over all places of K,(∏

v

max
i
|xi|evfvv

) 1
[K:Q]

,

where ev and fv represent the ramification and inertia degrees, of v over the
appropriate place of Q.

It is often cleaner to use the logarithmic height, which we now define.

Definition 1.4. The logarithmic height on projective space is given by

h(x0 : · · · : xn) = logH(x0 : · · · : xn).

Now we outline a proof of the second fundamental fact about heights: a
degree-d map approximately multiplies the logarithmic height by d.
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Theorem 1.5. Let f : PnK → PmK be a map (i.e. a morphism of varieties). Then
there is an constant C, depending only of f , such that for any (K-valued) point
p ∈ PnK , we have

dh(p)− C < h(f(p)) < dh(p) + C.

(In fact this constant is effectively computable.)

Proof. (Sketch.)
First, note that f is given, in homogenous coordinates, by homogenous poly-

nomials f0, . . . , fm of degree d, and we can take these polynomials to have co-
efficients in OK .

As in the proof of Lemma 1.2, we may assume p has integral coordinates,
and the ideal generated by its coordinates belongs to a finite set I of ideals.
Thus in particular the logarithmic height h(p) differs by at most a constant
from

1

[K : Q]

(∑
v

fv max
i

log(|xi|v)

)
.

By an easy argument involving the triangle inequality, for any polynomial
fj of degree d, there is a constant C0, such that

|fj(x0, . . . , xn)|v < C0 max
i
|xi|d .

The upper bound
h(f(p)) < dh(p) + C

now follows by staring at the definition of h(f(p)).
The lower bound is more difficult, as there is no reason a priori why the

value of a polynomial should not be very small compared to the coefficients.
The trick is to show (roughly) that the coordinates xi can be recovered from
the coordinates fj(x), and thus the values fj(x) cannot all be too small at once.

Since the polynomials fj define a map from Pn to Pm, they cannot simulta-
neously vanish unless all the xi’s are zero. Thus, by Hilbert’s Nullstellensatz,
the ideal generated by the fj ’s contains xN0 , . . . , x

N
n , for some positive integer

N . Thus we can bound the norms of xNi from above in terms of the height
h(f(p)); and this gives the reverse inequality.

(On effectivity: the upper bound is easy. The lower bound requires an
effective Nullstellensatz. See [MW]. On effectivity questions in general, see for
example 2.2.12-13 and 2.5 of [BG].)

We now have the following easy consequence for arithmetic dynamics, the
topic of our seminar.

Corollary 1.6. Any map f : PnK → PnK of degree 2 or greater has at most
finitely many preperiodic points.

Proof. By Theorem 1.5, we can bound the height of any preperiodic point of f .
By Lemma 1.2, there are only finitely many points of bounded height.
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2 Heights on a Projective Variety

This material is presented in III.10 of [Si2] as well as sections 2.2-2.4 of [BG].
We follow the presentation in Silverman.

Definition 2.1. For any set X, let RX denote the R-vector space of real valued
functions on X, and B(X) the subspaces of bounded functions on X. By a
function up to O(1) on X we mean an element of the quotient RX/B(X).

Given a projective variety X over a number field K and a very ample line
bundle L on X, we define a height function up to O(1) on X as follows. Let φ
be the morphism X → PNK defined in the usual way from the complete linear
system of L; note that φ is defined up to linear automorphism of the target.
Now we set, for all p ∈ X,

hL(p) = h(φ(x)),

where the height on the right-hand side is the standard height on projective
space.

By Theorem 1.5, the function hL is well-defined up to O(1).
In the above construction, we started with a line bundle L and used the

map to projective space given by the complete linear system on L to define a
height. What if we had only used some sections on L? The answer is given by
the following theorem, which we do not prove.

Theorem 2.2. Suppose X is a projective variety over a number field K, with
two morphisms φ : X → PnK and ψ : X → PmK such that the hyperplane sections
of the two projective spaces pull back to the same line bundle L on X. Then we
have for p ∈ X

h(ψ(p))− h(φ(p)) = O(1).

This is Lemma III.10.4 of [Si2]. See also sections 2.2-2.3 of [BG].
Some remarks on the proof: consider for simplicity the special case where φ

and ψ are closed embeddings, so L is very ample. Without loss of generality,
suppose φ is in fact defined via the complete linear system on L, and suppose the
image of ψ is not contained in any hyperplane. Then there is a linear projection
away from some linear subspace A, say π : PnK −A→ PmK , such that ψ = π ◦ φ.
Now it is obvious that

h(ψ(p)) < h(φ(p)) +O(1)

by Theorem 1.5. The difficulty is in the other direction.
Since π induces an isomorphism on the projectively embedded copies of X,

we know the induced map is invertible, hence given affine-locally by polynomial
functions. Then one argues that the behavior of the height can be bounded
locally on open affines. The argument (here and in general) requires Nullstel-
lensatz, as in the proof of Theorem 1.5.

Next, we need an easy technical lemma.
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Lemma 2.3. Let φ : PnK × PmK → Pnm+n+m
K denote the Segre embedding. Then

we have
h(φ(x, y)) = h(x) + h(y),

where on both sides h denotes the standard logarithmic height on the relevant
projective space.

Proof. Follows immediately from the definitions.

As an immediate consequence, we have the following.

Lemma 2.4. Let X be a projective variety over a number field K, and let L
and L′ be two very ample line bundles on X. Then we have

hL+L′ = hL + hL′ +O(1).

Proof. Follows from Theorem 2.2 and Lemma 2.3.

Now we can define heights (up to O(1)) with respect to a general line bundle.

Definition 2.5. Let X be a projective variety over a number field K, and let L
be a line bundle on X. Write L as the difference of two very ample line bundles
L1 − L2, and define

hL = hL1 − hL2 ,

up to O(1). This function hL is called the Weil height on X with respect to L.

By Lemma 2.4, the height so defined is independent of the choice of L1 and
L2. If L was ample to start with then the Weil height agrees with the height
hL defined earlier, justifying our use of the same symbol for both.

From here the following theorem (III.10.1 of [Si2]) is easy.

Theorem 2.6. The Weil height satisfies the following properties.

(a) On Pnk , the Weil height hO(1) is the standard logarithmic height.

(b) For any line bundles L and L′ on a projective variety X over K, we have

hL+L′ = hL + hL′ +O(1).

(c) Let φ : X → Y be a morphism of projective varieties over K, and let L be
a line bundle on Y . Then we have

hφ∗(L)(x) = hL(φ(x)) +O(1).
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3 Canonical Heights and the Local Decomposi-
tion

We return to the study of dynamical systems. Following Silverman [Si], we
restrict ourselves to the study of degree-d ≥ 2 maps φ : P1

K → P1
K , but in fact

everything should be true over PnK .
We first introduce the canonical height for a dynamical system.

Theorem 3.1. Let K be a number field. Given any map φ : P1
K → P1

K of degree
d ≥ 2, there is a height function hφ : P1

K → R such that:

(a)
hφ − h = O(1),

and

(b) for any x ∈ P1
K , we have

hφ(φ(x)) = dhφ(x),

with exact equality.

Proof. Take
hφ(x) = lim

n
d−nh(φn(x)).

Using Lemma 1.5 one shows that this limit exists, and that it differs from the
standard logarithmic height by O(1). Part (b) is trivial.

Remark 3.2. The Néron-Tate height on elliptic curves is defined as a canonical
height for the doubling map (viewed as an automorphism of P1). It is a remark-
able fact that this canonical height not only transforms nicely with respect to the
doubling map, but also defines a quadratic form that respects the group law on
the elliptic curve. See Theorem VIII.9.3 of [Si1]. I do not know whether this
generalizes, say, to families of commuting maps φi from Pn to itself.

The canonical height plays well with preperiodic points.

Corollary 3.3. With notation as above, we have

hφ(x) = 0

if and only if x is preperiodic for φ.

Proof. The forward direction uses the finiteness property of the standard height.
The reverse direction is trivial.

We saw in Lemma 1.3 above that the standard (logarithmic) height on pro-
jective space can be expressed as a sum of local heights. It would be nice to
express the global canonical height as a sum of local terms, as well.

Let K be a nonarchimedean local field. There is (for general φ) no logarith-
mic height on P1

K satisfying the conclusion of Theorem 1.5. To deal with this,
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we lift φ to a map Φ on A2
K , as in the proof of Theorem 1.5; we define the local

canonical height on A2
K by an averaging trick as in Theorem 3.1; and then we

normalize and sum the local heights.
We define a norm on A2

K by

|(x, y)|v = max(|x|v , |y|v).

By the usual arguments, for x ∈ A2
K , and any homogenous degree-d map

Φ = (F,G) from A2
K to itself, where F and G have no common factors, we have

log |Φ(x)|v = d log |x|v +O(1).

Furthermore, in case v is archimedean and φ is unramified at v, we have equality:

log |Φ(x)|v = d log |x|v .

Thus, we can define the Green’s function

GΦ(x) = lim
n
d−n log |φn(x)|v .

We obtain as usual the following theorem (Proposition 5.58 of [Si]).

Theorem 3.4. The Green’s function defined above satisfies the following prop-
erties.

(a) For any x in A2 we have

GΦ(Φ(x)) = dGΦ(x)

and
GΦ(x) = log |x|v +O(1).

(b) If v is archimedean and the map Φ has good reduction at v, then we have
exact equality in

GΦ(x) = log |x|v .

(c) The Green function scales by

GΦ(cx) = GΦ(x) + log |c|v

GcΦ(x) = GΦ(x) +
1

d− 1
log |c|v .

(d) The Green function GΦ is Hölder continuous.

Finally, we show that the Green’s functions GΦ,v, as v ranges over all places
of K, decompose the global canonical height.
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Theorem 3.5. Suppose φ : P1
K → P1

K is a map of degree d ≥ 2. Choose a lift
Φ of φ to A2

K . Then we have

hφ(x : y) =
∑
v

evfvGΦ,v(x, y),

for all x ∈ P2(K).

Proof. (Sketch.)
First, note that the sum on the right-hand side is finite. Indeed, for all but

finitely many v, we see that v is archimedean, Φ is unramified at v, and x and
y have absolute value 1 at v. Thus the sum is well-defined. Let h0(x, y) denote
its value.

Next, by scaling properties of Green’s functions, we show that h0(x, y) =
h0(cx, cy). Thus h0 gives a function on P1

K .
Finally, we show that applying h0(φ(x)) = dh0(x), and h0(x) = h(x)+O(1).
Now by uniqueness of the canonical height, we have h0 = hφ.
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