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1 Introduction

Take the polynomial P (x) =
n∑
i=0

aix
i. By the Fundamental Theorem of Algebra,

we know that P (x) = 0 has exactly n solutions over C. Let these roots be the
elements of the set R = {r1, r2, r3, . . . , rn}.

Vieta’s Formulas give expressions for specific “combinations” of the roots of
a polynomial in terms of the coefficients. For example,

r1 + r2 + · · ·+ rn = −an−1
an

,

r1r2 + r1r3 + · · ·+ rn−1rn =
an−2
an

,

...

r1r2 · · · rn =
(−1)na0
an

.

This can be proven by expanding the factored form of

P (x) = an(x− r1)(x− r2) · · · (x− rn)

and setting the coefficients equal to those of the original form.
We define the following class of expressions.

Definition 1. Symmetrized Monomial.
A symmetrized monomial in n variables in which each term contains k vari-

ables is defined as ∑
r1,r2,...,rk∈R

ra11 ra22 . . . rakk

where ai ∈ N for all 1 ≤ i ≤ k. This sum is over all distinct monomials that
can be obtained from ra11 ra22 · · · r

ak
k by permuting the variables. We say that the

degree of the symmetrized monomial is

d =

k∑
i=1

ai.

Without loss of generality, we assume a1 ≥ a2 ≥ a3 ≥ · · · ≥ ak.

1



Example 2. For n = 4, an example of a symmetrized monomial in which each
term contains 3 variables is∑

r1,r2,r3∈R
r1r2r3 = r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4.

We also have the following definition.

Definition 3. Symmetric Polynomial.
Let σ be a permutation of the index set {1, 2, . . . , n} i.e. σ(i) would represent

the ith element in the permutation. A symmetric polynomial P (r1, r2, . . . , rn)
is a polynomial in n variables such that

P (r1, r2, . . . , rn) = P (rσ(1), rσ(2), . . . , rσ(n))

for all possible permutations σ.

We can see that any symmetric polynomial can be written as the linear
combination of symmetrized monomials.

Example 4. For n = 4, an example of a symmetric polynomial is

2
∑

r1,r2,r3∈R
r1r2r3 + 3

∑
r1,r2∈R

r21r2.

We have the following special class of symmetric polynomials.

Definition 5. Elementary Symmetric Polynomials.
The elementary symmetric polynomials in n variables are the “combina-

tions” from Vieta’s Formulas, specifically

s1 = r1 + r2 + . . . rn,

s2 = r1r2 + r1r3 + · · ·+ rn−1rn,

...

sn = r1r2 · · · rn.

Example 6. For n = 4, the elementary symmetric polynomials are

s1 = r1 + r2 + r3 + r4,

s2 = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4,

s3 = r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 and

s4 = r1r2r3r4.

The question arises as to whether all symmetric polynomials can be rewritten
in terms of “simpler” symmetric polynomials, and more specifically, whether
all symmetric polynomials can be rewritten in terms of elementary symmetric
polynomials. We prove the following theorem.
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Theorem 7. Every symmetric polynomial can be expressed in terms of elemen-
tary symmetric polynomials.

Example 8. If n = 3, an example of a symmetric polynomial is

3
∑

r1,r2,r3∈R
r21r2r3 +

∑
r1,r2∈R

r21r2 = 3r21r2r3 + 3r1r
2
2r3 + 3r1r2r

2
3

+ r21r2 + r1r
2
2 + r22r3 + r2r

2
3 + r23r1 + r3r

2
1.

This symmetric polynomial can be rewritten as

3
∑

r1,r2,r3∈R
r21r2r3 +

∑
r1,r2∈R

r21r2 = 3 (r1r2r3)

(∑
r1∈R

r1

)

+

 ∑
r1,r2∈R

r1r2

(∑
r1∈R

r1

)
− 3(r1r2r3)

= 3s3s1 + s2s1 − 3s3.

2 The Proof

We begin by proving the following lemma.

Lemma 9. Every symmetrized monomial with degree d can be expressed in
terms of elementary symmetric polynomials.

Proof. We proceed by induction on d.
The base case is d = 1. The only symmetrized monomial with degree 1 is

n∑
i=1

ri, which is an elementary symmetric polynomial, so the base case holds.

We assume that every symmetrized monomial of degree 1, 2, . . . , d − 1 can
be expressed in terms of elementary symmetric polynomials.

We wish to prove that every symmetrized monomial of degree d can be writ-
ten in terms of symmetrized monomials with smaller degree and symmetrized
monomials with more than k variables.

Let the symmetrized monomial

M =
∑

r1,r2,...,rk

ra11 ra22 · · · r
ak
k , a1 ≥ a2 ≥ · · · ≥ ak > 0.

Then we have

M =
∑

r1,r2,...,rk∈R
r1r2 · · · rk ·

∑
r1,r2,...,rk∈R

ra1−11 ra2−12 · · · rak−1k −
∑

ciMi
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for some symmetrized monomials Mi each with degree d and some constants ci.
We see that the first term on the right hand side of the equation is an elementary
symmetric polynomial, and the second term is a symmetrized monomial of lower
degree. Therefore, by our induction hypothesis, these two terms can already be
written in terms of elementary symmetric polynomials.

Each of the symmetrized monomials Mi can be split into one of two cate-
gories, those which contain all n variables in each term and those which contain
less than n variables in each term. In the first case, we can factor the elemen-
tary symmetric polynomial r1r2 · · · rn out ak times to get a new symmetrized
monomial with smaller degree, which has already been taken care of by our
induction hypothesis.

We now look at the second possibility. From our rewritten form of M , we
know that all of the symmetrized monomials formed by the product of our two
sums must contain at least k of the n variables in each term. If they contain
exactly k of the n variables in each term, then they must be part of S, so they
will not fall into this category. Therefore, all of the symmetrized monomials in
this category will have m variables in each term for some k < m < n.

Since the number of variables in each term of the symmetrized monomials
in this category is always increasing, at some point, we are bound to get a
symmetrized monomial with n variables in each term. From here, we continue
as in the previous case, so this symmetrized monomial can also be expressed in
terms of elementary symmetric polynomials.

Theorem 10. Every symmetric polynomial can be expressed in terms of ele-
mentary symmetric polynomials.

Proof. By definition, symmetric polynomials are linear combinations of sym-
metrized monomials, so from the above lemma, every symmetric polynomial
can be written in terms of elementary symmetric polynomials.

3 Applications

Example 11. Let P (x) = x5 + 2x4−x3 +x2− 3x+ 1. If the roots of P (x) = 0
are r1, r2, r3, r4, and r5, find

r21r
2
2r

2
3 + r21r

2
2r

2
4 + r21r

2
2r

2
5 + r21r

2
3r

2
4 + r21r

2
3r

2
5

+r21r
2
4r

2
5 + r22r

2
3r

2
4 + r22r

2
3r

2
5 + r22r

2
4r

2
5 + r23r

2
4r

2
5.

Solution 12. We wish to compute
∑

r1,r2,r3∈R
r21r

2
2r

2
3. Using Vieta’s Formulas,

we have
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∑
r1,r2,r3∈R

r21r
2
2r

2
3 =

 ∑
r1,r2,r3∈R

r1r2r3

 ∑
r1,r2,r3∈R

r1r2r3


− 2

∑
r1,r2,r3,r4∈R

r21r
2
2r3r4 − 6

∑
r1,r2,r3,r4,r5∈R

r21r2r3r4r5

= (s3)2 − 2

 ∑
r1,r2,r3,r4∈R

r1r2r3r4

 ∑
r1,r2∈R

r1r2


+ 2 · 4

∑
r1,r2,r3,r4,r5∈R

r21r2r3r4r5 − 6
∑

r1,r2,r3,r4,r5∈R
r21r2r3r4r5

= s23 − 2s4s2 + 8s1s5 − 6s1s5

= s23 − 2s4s2 + 2s1s5

= −1 .
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