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1 Introduction

1.1 Recall the following special case of a foundational result of Shimura
( [S2, Theorems 7.15 and 7.16]) :

Theorem Let f be a holomorphic newform of weight 2 with rational Fourier
coefficients {an(f)|n ≥ 1}. There exists an elliptic curve E defined over
Q such that, for all but finitely many of the primes p at which E has good
reduction Ep, the formula

ap(f) = 1−Np(E) + p

holds. Here Np(E) denotes the number of points of Ep over the field with p
elements.

1.2. The first result of this type is due to Eichler ([E]) who treated the
case where f = f11 is the unique weight 2 newform for Γ0(11) and E is the
compactified modular curve for this group. Later, in several works, Shimura
showed that the Hasse-Weil zeta functions of special models (often called
canonical models) of modular and quaternionic curves are, at almost all fi-
nite places v, products of the v-Euler factors attached to a basis of the Hecke
eigenforms of the given level. These results give at once computations of the
zeta functions of the Jacobians of these curves since H1

l (C) = H1
l (Jac(C))

for a smooth projective curve. However, it was only in late 1960’s that the
correspondence between individual forms and geometry came to be empha-
sized. In particular, in his proof of the above Theorem, Shimura identified
L(f, s) as the zeta function of a one dimensional factor Ef of the Jacobian
variety. He also treated the case where the an(f) are not rational; then Ef
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is replaced by a higher dimensional factor (or, alternatively, quotient)Af of
the Jacobian ([S3] and [S4]).

By Tate’s conjecture ([F]), the above correspondence f → Ef determines
Ef up to an isogeny defined over Q. Further, by works of Igusa, Langlands,
Deligne, Carayol, and others, a completed result is known: the conductorNE

of E coincides with the conductor Nf of f, the above formula holds for all p
such that (Nf , p) = 1, and corresponding but more complicated statements
(the local Langlands correspondence) hold at the primes p which divide Nf .
1.3. Our goal here is to give a conditional generalisation of Shimura’s result
to totally real fields F , i.e. to Hilbert modular forms. Thus, we replace f
by a cuspidal automorphic representation π = π∞ ⊗ πf of the adele group
GL2(AF ). The weight 2 condition generalises to the requirements that (i)
π∞ belong to the lowest discrete series as a representation of GL2(F ⊗R),
and (ii) π have central character ωπ equal to the inverse of the usual idelic
norm. In the classical language of holomorphic forms on (disjoint unions of)
products of upper-half planes, condition (i) asserts that on each product the
form be of diagonal weight (2,...,2). For each finite place v of F at which
π is unramified, we have the Hecke eigenvalue av(π). We assume that the
av(π) belong to Q for all such v, and that the Hecke operators are so nor-
malized that, for almost all v, the polynomial T 2−av(π)T +Nv has its zeros
at numbers of size N1/2

v , where Nv denotes the number of elements in the
residue field of F at v. Here is the now standard conjectural generalisation,
first published by Oda ([O]), of Shimura’s result.

1.4. Existence Conjecture. For π as above, there exists an elliptic curve
E defined over F such that for all but finitely many of the finite places v of
F at which E has good reduction Ev,

av(π) = 1−Nv(E) +Nv

holds. Here Nv(E) is the number of points of Ev over the residue field at v.
It should be noted that if the Existence Conjecture is proven, then the ap-
propriate statements of the Langlands correspondence hold at all places.
(This follows from ([T1], [T2]) and the Cebotarev theorem.)

1.5. Central to our argument is an unproved hypothesis of Deligne: the
Absolute Hodge Conjecture ([D4]). This conjecture can be stated in sev-
eral ways. For us, its categorical formulation is most directly useful. To
recall it, let MC denote the tensor category of motives for absolute Hodge
cycles defined over C (cf. [D4]). By Hodge theory, the usual topological
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cohomology functor on varieties, which attaches to each projective smooth
complex variety X its total cohomology ring H∗

B(X,Q), takes values in the
tensor category of polarisable rational Hodge structures. It extends to the
category MC and we denote this extended functor by ωB. The rational
Hodge structure attached to a motive M , defined over a subfield L of C, is
MB = ωB(M ⊗C), where M ⊗C is the base change of M to C.

In this language the Absolute Hodge Conjecture asserts simply:

The functor ωB is fully faithful.

In fact we shall use precisely the assertion:

If M and N are motives for absolute Hodge cycles defined over
C , and MB is isomorphic to NB as Hodge structure, then M is
isomorphic to N.

Of course, the Absolute Hodge Conjecture (AHC) is trivially a consequence
of the usual Hodge Conjecture. The AHC was proved for all abelian vari-
eties over subfields of C (in particular, for all products of curves over C) by
Deligne, and as such it has been of great utility in the theory of Shimura
varieties. We need to use it in this paper for a product of a Picard modular
surface (e.g. an arithmetic quotient of the unit ball) and an abelian variety.
In such a case the conjecture is unknown.

1.6. The main result here is the following

Theorem 1 Suppose that the Absolute Hodge Conjecture is true. Then the
Existence Conjecture is true.

1.7. For background it is essential to recall the known cases of the Existence
Conjecture.

1.7.1. It is an easy consequence of work of Hida ([H] and Faltings ([F]) in
the cases covered by the following hypotheses QC:

QC1. [F:Q] is odd, or
QC2. π has a finite place at which πv belongs to the discrete series.

In Section 2 below this case is deduced from Hida’s work.
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1.7.2. The conjecture is also known for all forms π of CM type. Here π is
defined to be of CM type if there exists a non-trivial idele class character ε
(necessarily of order 2) of F such that the representation π⊗ ε is isomorphic
to π. See 2.2 below for some comments.

1.7.3. However, to our knowledge, the existence conjecture is not known
for any non-CM type everywhere unramified representations π in the case
where F is a real quadratic extension of Q. Such representations exist and
should be in bijection, for a given F , with the F -isogeny classes of non-CM
elliptic curves over F which have good reduction at all finite places. One
may regard these forms as the test case for any construction.

1.8. In recent years, many automorphic correspondences, more sophisti-
cated than the Jacquet-Langlands correspondence, have been proven. It is
natural to ask whether, at least in principle, there should exist some other
such functorialities to a group of Hermitian symmetric type from which the
sought E’s can be directly constructed. However, some new ideas will be
needed. Indeed, we have the following folklore result:

Theorem 2 Every non-CM abelian variety which occurs as a quotient of
the Picard variety of any smooth compactification of a Shimura variety is
isogenous to a base change of a factor of the Jacobian of a quaternionic
Shimura curve.

The proof of this easy negative result is sketched, if not proven,below in 2.3.
In view of this fact, it seemed reasonable to investigate whether any known
principles (e.g. the Hodge Conjecture) could provide the additional abelian
varieties needed for the Existence Conjecture.

1.9. Here is a brief outline of the proof of Theorem 1. There are 4 main steps:

1.9.1. We use a sequence of functorialities to find an orthogonal rank 3
motive M in the second cohomology of a Picard modular surface ([LR])
which has the same L-function as the symmetric square of a base change of
π.
1.9.2. From the weight 2 Hodge structure MB of M , we construct a rank
2 rational Hodge structure R of type (1,0) (0,1) whose symmetric square is
isomorphic to MB. We let A = AC be an elliptic curve over C whose H1

B(A)
is isomorphic as Hodge structure to R.
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1.9.3. Using the Absolute Hodge Conjecture, we descend A to a curve, also
denoted A, defined over a number field L which contains F .

1.9.4. Using the existence ([T1, BR2]) of a two dimensional l-adic represen-
tation attached to π, we find a D of dimension 1 inside the Weil restriction
of scalars of A from L to F ; by construction, D has the correct l-adic rep-
resentations.

1.10. Since the result is in any case conditional, and for simplicity, we have
usually treated only the case of rational Hecke eigenvalues where the sought
variety really is an elliptic curve. However, the proof extends, with some
changes, to the general case of forms with π∞ belonging to the lowest dis-
crete series. At the suggestion of the referee, we have indicated significant
changes needed for the case of general Hecke field Tπ, which is defined as
the number field generated by the av(π). In this case it is more convenient
to state the conjecture cohomologically:

For π of weight (2, ..., 2), having Hecke field Tπ, there exists an abelian
variety Aπ, defined over F , such that End(Aπ) = Tπ, and such that for all
but finitely many of the finite places v of F at which Aπ has good reduction,

Lv(H1
l (Aπ), Tπ, s) = Lv(π, s).

Here Lv(H1
l (Aπ), Tπ, s) is the L-function denoted ζ(s;Aπ/F, Tπ) in ([S2, Sec-

tion 7.6]), and is denoted by Lv(H1
l (Bπ), σl, s) below in 2.1, for the case

σl = id.

1.11.Finally, we note that in several lectures on this topic the proof was given
with alternative first steps using quaternionic surfaces. The proof given here
is a little simpler, but the earlier construction is still useful. In particular, it
enables the unconditional proof of the Ramanujan conjecture at all places for
holomorphic Hilbert modular forms which are discrete series at infinity ([B]).

1.12. Notations. Throughout the paper, F denotes a totally real field,
K0 is a fixed quadratic imaginary extension of Q and K = FK0. The let-
ter L will denote a number field whose definition depends on context. The
symbol π denotes a fixed cuspidal automorphic representation, as above, of
GL(2, AF ), i.e. which is (i) of lowest discrete series type at infinity, and (ii)
has central character equal to the inverse of the norm.
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2 Known Cases of the Existence Conjecture and
Negative Background

2.1. Hida ([H, Theorem 4.12]) generalised most of Shimura’s result (1.1),
to the curves defined by quaternion algebras over totally real fields. Thus,
to use Hida’s work, one first invokes the Jacquet-Langlands correspondence
([JL]) to find an automorphic representation πQ with the same L-function as
π but on the adele group associated to the muliplicative group of a suitable
quaternion algebra Q over F . Here suitable means that the canonical mod-
els of the associated arithmetic quotients are curves defined over F . The
hypotheses QC above are necessary and sufficient for such a pair (Q, πQ) to
exist.

Let T = Tπ be the Hecke field of π. It is a number field which is either
totally real or a totally imaginary quadratic extension of a totally real field.
By Hida ([H, Prop. 4.8])there exists an abelian variety Bπ and a Tπ-
subalgebra T of End(Bπ), which is isomorphic to a direct sum of number
fields, such that H1

l (Bπ) is a free rank 2 T ⊗Ql-module. Further, for almost
all finite places v of F , all l prime to v, and all morphisms σl : T → Ql,

Lv(H1
l (Bπ), σl, s) = Lv(π, σl, s)d

where d = [T : Tπ], the L-factor on the left hand side is that of the σl-
eigensubspace of H1

l (Bπ) ⊗ Ql, and that on the right hand side is the L-
factor with coefficients in σl(Tπ) defined by applying σl to the coefficients of
Lv(π, s). (The equality makes sense if one recalls the usual convention that
Q is identified once and for all with subfields of both C and Ql via fixed
embeddings.)

By ([BR1]), each σl-eigensubspace of H1
l (Bπ)⊗Ql, is absolutely irreducible.

Hence, the commutant of the image of Galois in EndQl
(H1

l (Bπ) ⊗ Ql) is
isomorphic to the matrix algebra Md(Tπ ⊗ Ql). By the Tate conjecture
([F]),this means that End(Bπ) is a simple algebra with center Tπ and T is
a maximal commutative semisimple subalgebra. By Albert’s classification,
End(Bπ) is isomorphic either to (i) Me(D) where D is a quaternion algebra
with center Tπ, or (ii) Md(Tπ)). This follows because we know in general
that the rank over T of the toplogical cohomology H1

B(Bπ) is a multiple of
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k, if [D : Tπ] = k2. To exclude the former case if Tπ = Q is easy: D is
split at all finite places and so, since there is only 1 infinite place, it must
be split everywhere. However, if Tπ 6= Q, we need to use a standard argu-
ment which relies upon the fact that F has a real place. Let B0 be a simple
factor of Bπ. Then End(B0) = D. Note that complex conjugation defines a
continous involution of the set of complex points B0(C) of B0. Denote the
associated involution on the rank 1 D module H1

B(B0) by Fr∞. Evidently,
Fr∞ has order 2, has eigenvalues 1 and -1 with equal multiplicity (since it
interchanges the holomorphic and antiholomorphic parts of the Hodge split-
ting) and commutes with Tπ. To conclude, note that the commutant of D
in End(B0) is isomorphic to the opposite quaternion algebra Dop to D, and
that Fr∞ is a non-scalar element of this algebra. Since Fr∞ is non-scalar,
the algebra Q[X]/(X2 − 1) embeds in Dop. But this algebra is not a field,
and hence this case cannot occur.

Thus, End(Bπ) = Md(Tπ). If Aπ denotes any simple factor, we have
End(Aπ) = Tπ and finally

Lv(H1
l (Aπ), σl, s) = Lv(π, σl, s)

for all σl, almost all v, and all l which are prime to v. QED.

Theorem 3 The Existence Conjecture holds for all π which satisfy the hy-
potheses QC.

Remark. It would be interesting to show that we can take d = 1 without
invoking the Tate Conjecture.

2.2. The CM case. This follows from the work of Casselman ([S1]), the
Tate conjecture for abelian varieties of CM type, and the fact that the holo-
morphic cusp forms of CM type (of weight 2) are exactly those associated
by theta series (or automorphic induction) to algebraic Hecke characters of
totally imaginary quadratic extensions of F and having a CM type for their
infinity type. In more detail, if π is of CM type, then there exists a totally
imaginary quadratic extension J of F and a Hecke character ρ of J such
that L(π, s) = L(ρ, s), where the equality is one of formal Euler products
over places of F . Since the Hecke eigenvalues of π are rational, the field
generated by the values of ρ on the finite ideles of J is a quadratic imagi-
nary extension T of Q. By Casselman’s theorem ([S1], Theorem 6), there
exists an elliptic curve E defined over J, having complex multiplication by
OT over J , such that L(ρ, s)L(ρ, s) is the zeta function of H1(E). Let RE
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denote the restriction scalars (in the sense of Weil) from J to F of E. Let
for each finite place λ of K, ρλ be the λ-adic representation of Gal(Q/Q
attached to ρ by Weil. Then the induced representation IndJF (ρλ) has a
Ql-rational character and hence, since F has a real place, can be defined
over Ql. Note the L-function of the compatible system of all IndJF (ρλ) is
L(π, s). Since H1

l (E) is a free rank 2 K ⊗Ql-module, and the Galois action
commutes with this structure, the Galois action on H1

l (E) is the direct sum
of two copies of the Ql model of IndJF (ρλ). Hence the commutant of the
image of Galois is M2(Ql). Since this holds for all l, and using the Tate
conjecture, we conclude that End(RE) is M2(Q) and RE is isogenous to a
square E0 × E0. Evidently, we have L(π, s) = L(H1(E0), s).

2.3. We clarify the meaning of the statement in (1.8).

2.3.1. Let S be any Shimura variety in the sense of Deligne’s axioms ([D1]).
Assume first that S is smooth, since the cohomology of a lower level injects
into that of S. Let S∗ be a smooth compactification of S. For any variety X,
the cohomology H∗

B(X,Q) has a canonical mixed Hodge structure, due to
Deligne ([D3]). By this theory, the image of the pure weight n Hodge struc-
ture Hn

B(S∗,Q) is exactly the first step WnH
n
B(S,Q) of the weight filtration

of the mixed Hodge structure onHn
B(S,Q). SinceH0

B(S,Q) is pure of weight
0, and since the weights of the pure graded components of Hn

B(S,Q) are at
least n, the only source for a Hodge structure of type (1,0) (0,1) among the
pure Hodge structures defined as quotients of the weight filtration W• of
H∗
B(S,Q) is W1H

1
B(S,Q). Further, if such a Hodge structure occurs, then

it is identified with H1
B(A) for a suitable factor of the Picard variety of any

S∗. Suppose now that S is not smooth. Choosing a suitably large level
(=small open compact), we find an S1 such that the cohomology (as mixed
Hodge structure) of S injects into that of S1. So no new Hodge structures
of the type (1,0) (0,1) occur.

2.3.2. The condition that S have H1
B(S,Q) 6= 0 is very restrictive. Indeed,

unless dim(S) = 1, we have

H1
B(S,Q) = IH1

B(S,Q) = H1
2 (S,Q)

where IH∗ denotes the usual intersection cohomology and H1
2 denotes the

L2 cohomology. Now using the Künneth formula, we can assume that S is
defined by an algebraic group G over Q whose semisimple part Gss is almost
simple. In a standard way (using the Matsushima formula, the Künneth
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formula for continuous cohomology, the Vogan-Zuckermann classification,
and the strong approximation theorem), we see that Gss(R) can have at
most one non-compact factor G1 which must itself be of real rank 1. By the
classification of groups of Hermitian symmetric type, the only possibilities
for G1 are that it be isogenous to SU(n, 1) for n ≥ 1. Suppose n > 1. Then
by ([MR]) H1

B(S,Q) is of CM type and so is the associated Picard variety.
On the other hand, if n = 1, then S is a curve, and it is not hard to see,
from the definition of reflex fields and the computation of the zeta function
of these curves, that every factor of the Jacobian of S is isogenous to the
base change of a factor of the Jacobian of a quaternionic Shimura curve.
This completes our sketch of the proof.

3 Some functorialities.

3.1. We assume throughout the paper that [F : Q] > 1. Further, from now
until the last Section of the paper we insist that

(i) K is unramified quadratic over F ,
(ii) π is unramified at every finite place of F ,
(iii) the central character ωπ of π is | ∗ |−1

F , the inverse of the idelic norm.

These conditions will impose no restriction on our final result. Indeed, the
first condition may be achieved, starting from any quadratic extension K
of F , by a cyclic totally real base change from F to an extension F ′, suit-
ably ramified at the places of F where K is ramified, so that K′ = KF ′
is unramified over F ′. For (ii), if πv belongs to the discrete series at any
finite place v, then the condtion QC2 is satisfied, and there is nothing to
prove. On the other hand, if πv belongs to the principal series at each fi-
nite place, then there is always an abelian totally real base change which
kills all ramification, as may easily seen by using the fact that the Galois
representations attached to π by Taylor([T1, T2]) satisfy the local Lang-
lands correspondence. Finally, since ωπ differs from | ∗ |−1

F by a totally even
character ψ of finite order, a base change to the field Fψ associated to ψ by
classfield theory establishes (iii). Of course, for the main case of this paper,
it is part of our initial assumption. Note in any case that it ensures, since π
is non-CM, that Tπ is totally real.
3.2. Jacquet and Gelbart ([GJ]) have proven a correspondence Sym2 from
non-CM cuspidal automorphic representations of GL(2, AF ) to cuspidal au-
tomorphic representations of GL(3, AF ). The underlying local correspon-
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dence is elementary to describe, at least at the finite places, since π is
unramified. For such a place v, recall that the Hecke polynomial at v of
π is

Hv(π)(T ) = T 2 − av(π)T +Nv,

which we factor as Hv(π)(T ) = (T − αv(π))(T − βv(π)). Similarly, each
cuspidal automorphic representation Π of GL(3, AF ) has Hecke polynomials

Hv(Π)(T ) = (T − rv)(T − sv)(T − tv)

for v which are unramified for Π. Define

H2
v (π)(T ) = (T − α2)(T −Nv)(T − β2

v).

Then by ([GJ]) there exists a unique cuspidal automorphic representation
Sym2(π) of GL(3, AF ) such that

Hv(Sym2(π)) = H2
v (π)

for all finite v.
An analogous result holds at the infinite places. Here the groups areGL(2,R)
and GL(3,R) whose irreducible admissible representations are classified by
conjugacy classes of semisimple homomorphisms σv : WR → GL(k,C),
(k = 2, 3), where WR is the Weil group of R. Of course, given σv : WR →
GL(2,C), there is a naturally defined class Sym2(σv) : WR → GL(3,C).
(One definition is Sym2 = (σv) ⊗ (σv)/det(σv).) Then the correspondence
at infinite v is σv(Sym2(π)) = Sym2(σv).

3.3. There is a base change correspondence ([AC, Thm. 4.2])

BCKF {cusp forms on GL3(AF)} 7−→ {cusp forms on GL3(AK)}

which takes cusp forms to cusp forms. For π3 a cuspidal automorphic rep-
resentation of GL(3, AK), BCKF (π3) is characterized by the equality, for all
but finitely many v,

Lw(BCKF (π3), s) = Lv(π3, s)Lv(π3 ⊗ εK/F , s),

where εK/F is the idele class character of A∗F associated by class-field theory
to K/F . An analogous result holds at all places. At the infinite places, the
groups are GL(3,R) and GL(3,C) whose irreducible admissible representa-
tions are classified by semisimple homomorphisms σ : WR → GL(3,C) and
σ : WC = C∗ → GL(3,C), respectively. Then
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σ((BCKF (π3))w) = σ(π3)v|WC

if w lies over v.

3.4. Let V be a vector space of dimension 3 overK and letH : V ×V → K be
a non-degenerate Hermitian form relative toK/F . LetG = U(H) denote the
unitary group ofH as an algebraic group over F . Assume thatH is chosen so
that G is quasi-split. Let G∗ = GU∗(H) be the group of rational similitudes
of H.Then the base change of G to K (as algebraic group) is isomorphic
to GL(3,K) as algebraic group over K. In [R2] Rogawski established base
change correspondences, also denoted BCKF , between automorphic forms
on G(AF ) and on GL(3, AK). Let η be the algebraic automorphism of G
defined by η(g) =t g−1 for all g in GL(3,K) and extend η to GL(3, AK) in
the natural way. Then a cusp form Π3 on GL(3, AK) is in the image of base
change BCKF from a global L-packet of automorphic representations of G iff
Π3◦η is isomorphic to Π3. Let Π3 = BCKF (Sym2(Π))⊗|det|. Then evidently
Π3◦η ∼= Π3 since this is so almost everywhere locally ( since the form is a base
change, the conjugation can be ignored; since the map g →t g−1 takes a local
unitary Πw to its contragredient, it suffices to note that the local components
of BCKF (Sym2(π)) ⊗ |det| are self-dual.) By [R2] there exists an L-packet
Π(G) of G(AF ) such that BCKF (Π(G)) = BCKF (Sym2(Π))⊗ |det|. Further,
at each infinite place v, the members of the local L-packet Π(G)v belong
to the discrete series; they are exactly the 3 discrete series representations
π(G)v such that

dim(H2(Lie(G), k∞, π(G)v)) = 1.

Denoting any of these Π(G)v by Π(G)∞, put

Π(G)∞ = {π+, π−, π0},

where the members are respectively holomorphic, antiholomorphic, and nei-
ther, for the usual choice of complex structure on the symmetric space (=unit
ball) attached toG. Since BCKF (Sym2(Π)) is cuspidal, Π(G) is stable and its
structure is easy to describe. If π(G) ∈ Π(G), then π(G) = π∞(G)⊗πf (G).
The πf (G) is independent of the choice of π(G) ∈ Π(G), and the π∞(G) is
any one of 3g representations of G(F ⊗ R) which arise as external tensor
products of the elements of the local L-packets Π(G)v.

3.5. Now let G1 be the inner form of G which is

11



(i) isomorphic to G at all finite places,
(ii) isomorphic to U(2, 1), e.g. quasi-split, at the archimedian place v1 of F
defined by the given embedding of F into R ,
(iii) isomorphic to U(3), e.g. compact, at the other archimedian places of
F .

Then G1 is an anisotropic group, also defined by a Hermitian form H1; let
G∗1 be the associated group of rational similitudes. In [R2], Rogawski proved
a Jacquet-Langlands type of correspondence between L-packets on G and
G1. Since Π(G) is stable cuspidal and Π(G)v is discrete series at each infinite
place, there is a unique L-packet, all of whose members are automorphic,
Π(G1) on G1 such that

(i) Π(G1)f = Π(G)f ,
(ii) Π(G1)∞1 = Π(G)∞,
(iii) Π(G1)v consists solely of the trivial representation for all archimedian
v other than ∞1.

Further, (i) the central character of each member of Π(G1) is trivial and (ii)
the multiplicity of any π(G1) in the discrete automorphic spectrum of G1 is
one. (These results are not stated explicitly in Chapter 14 of [R2] but they
follow easily from Thm. 14.6.1 (comparison of traces ) and Thm. 13.3.3,
and in any case are well-known.)

3.6. Each automorphic representation π(G1) in Π(G1) extends uniquely to
an automorphic representation π(G∗1) of G∗1 with trivial central character.
Thus, we obtain on G∗1 a set Π(G∗1) of 3 automorphic representations with
isomorphic finite parts π(G∗1)f and whose infinite parts are identified, via
projection of G∗1(R) onto the factor corresponding to F∞1 as the members
of Π(G)∞ = {π+, π−, π0}. For more details see [BR1, R1].

4 Picard modular surfaces.

4.1. The group G∗1 defines a compact Shimura variety Sh whose field of
definition is easily seen to be K. Let U be an open compact subgroup of
(G∗1)f . Then Sh is the projective limit over such U of projective varieties
ShU , each of which is defined over K and consists of a finite disjoint union
of projective algebraic surfaces. (It is customary to refer to any of the ShK
as a Picard modular surface. See [D1, LR] for background.)
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Let U(1) be an open compact which is a product of hyperspecial maximal
compact subgroups at each finite place, and let U be a normal subgroup of
U(1), sufficiently small so that ShU is non-singular. For a (G∗1)f module
V , let V U(1) denote the subspace of U(1) invariants. It is a module for the
Hecke algebra HU(1) of compactly supported bi-U(1) invariant functions on
(G∗1)f . Note that V U(1) is a module for HU(1).

The degree 2 cohomology H2
B(Sh,Q) of Sh decomposes as a direct sum

of isotypic π(G∗1)f modules. Now let V = H2
B(Sh,Q)(π(G∗1)f ) denote the

π(G∗1)f -isotypic component. Then, as usual, V U(1) is identified, using the
Matsushima formula, with a 3 dimensional subspace of H2

B(ShU ,Q); it is
an isotypic component for a representation (π(G∗1)f )

U(1) of HU(1).

4.2. Q-structure. Note that V has a natural Q structure coming from
H2
B(Sh,Q).

Lemma. The subspace V U(1) of V is defined over Q.

Proof. Let τ be an automorphism of C and let V U(1)τ be the conju-
gate of V U(1) inside H2

B(Sh,Q) = H2
B(Sh,Q) ⊗ Q. Then V U(1)τ is the

((π(G∗1)f )
τ )U(1) isotypic subspace of H2

B(Sh,Q), so it is enough to show
that

((π(G∗1)f )
τ ) = (π(G∗1)f .

Since these representations are unramified, and since, by the discussion of
[R2, 12.2], unramified local L-packets for G1 consist of single elements, it is
enough to check, for each finite place v, the equality of Langlands classes

σv((π(G∗1)f )
τ ) = σv((π(G∗1)f ).

However, it is not hard to check that

σv((π(G∗1)f )
τ ) = σv((π(G∗1)v)

τ .

By the discussion of [R1, 4.1-2], these classes are in Galois equivariant bi-
jection with associated L-factors. In our case, as is easily seen, the factor is
given by

Lw(BCKF (Sym2(π)), s),
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where w is any extension of v. Since π has rational Hecke eigenvalues
L(BCKF (Sym2(Π)), s) is an Euler product over reciprocals of Dirichlet poly-
nomials with rational coefficients. Hence

(σv((π(G∗1)v)
τ = (σv((π(G∗1)v

and the result follows.

4.2.1. The case Tπ 6= Q. Here, instead of the above Lemma, one shows
that the smallest subspace WB of H2

B(Sh,Q) whose scalar extension to
overlineQ contains V U(1) is a 3-dimensional Tπ vector space, where Tπ is
identified with the quotient of HU(1) acting on WB. The argument requires
nothing new.
4.3 Hodge structure. Let MB denote the Q vector space such that

MB ⊗Q = V U(1)

By the stability of the L-packet, each tensor product σ∗ ⊗ πf with σ∗ ∈
Π(G)∞1 is automorphic. The bigraded Matsushima formula ([BW])shows
that the Hodge decomposition of MB has the form

MB ⊗C = M (2,0)
⊕

M (1,1)
⊕

M (0,2)

where the factors, each of dimension 1, are the contributions of σ+, σ0, and
σ− to the cohomology, respectively.

4.4 Motive. For each rational prime l, Ml = MB ⊗Ql is identified with a
summand of the l-adic etale cohomology H2

B(Sh×Q,Ql). Since the action
of the Hecke algebra on H2

B(Sh,Q) is semisimple, there exists an element e
which acts as an idempotent on H2

B(Sh,Q) and whose image is MB. Inter-
preting, as usual, the action of Hecke operators via algebraic correspondences
(c.f. [DM, BR2]), we see that the pair

M = (H2
B(Sh,Q), e)

defines a Grothendieck motive with associated ∞-tuple of realizations

Mr = (MB,MDR;Ml, l prime).

Here MB is regarded as a rational Hodge structure, MDR, a graded K-vector
space, is the De Rham cohomology of M , and each Ml is a Gal(Q/Q)-
module. Each module is the image of the action of e in the corresponding
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cohomology theory of Sh. Since the classes of algebraic cycles are absolute
Hodge cycles, every Grothendieck motive is also a motive for absolute Hodge
cycles. Henceforth, by abuse of language, we regard Mr as such motive, and
all motives will be motives for absolute Hodge cycles.

4.5 Polarization. There is ([DM] a well-known Tate twist operation which
for any motive M and any n ∈ Z defines a new motive M(n); we recall
the properties of this operation only as needed. Further, any motive is
polarisable. In our case, this means that there is a non-degenerate symmetric
morphism of Hodge structures

ΨM : MB(1)⊗MB(1) → Q

whose associated bilinear form has signature (1, 2). Here Q has the ”trivial”
Hodge structure of type (0, 0), and the Hodge decomposition of MB(1) co-
incides with that of MB, but with each pair (p, q) of the bigrading replaced
by (p − 1, q − 1). The form induces, for each l, a Gal(Q/K) -equivariant
map

Ψl : Ml(1)⊗Ml(1) → Ql

where Ql is the trivial Galois module. A similar remark applies to MDR,
but we will have no need of it. Likewise, an explicit realisation of the polar-
isation is given by the restriction to M of the cup-product on H2(Sh), but
we don’t need this fact.

4.5.2. If Tπ 6= Q, then the above construction provides us with a motive M
of rank 3 over Tπ such that Tπ acts on each component of the Hodge de-
composition by regular representation. The polarization ΨM has the form
ΨM = TrK/F (Ψ0) with a Tπ-linear symmetric bilinear form Ψ0 taking values
in Tπ⊗. The Tπ ⊗R-valued form ΨM ⊗R decomposes as a sum, indexed
by the embeddings of Tπ into R of forms of signature (1, 2). In particular,
the orthogonal group of this form is quasi-split at each infinite place.

4.6. Construction of an elliptic curve over C. For a Hodge structure
H, let Sym2(H) denote its symmetric square.

Proposition. There exists, up to isomorphism, a unique two dimensional
rational Hodge structure HB having Hodge types (1, 0) and (0, 1) such that
Sym2(HB) is isomorphic to MB.
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4.7. Proof.

4.7.1 We follow [D2], Sections 3 and 4. Let C+ = C+(MB(1)) be the even
Clifford algebra of the quadratic module MB(1). A Hodge structure on a
rational vector space X is given by a morphism of real algebraic groups
h : S → Aut(X ⊗R) where S = RC/RGm is the Weil restriction of scalars
from C to R of the multiplicative group. Let h = hMB(1) denote the mor-
phism so defined for M . There is a canonical morphism with kernel Gm of
the algebraic group (C+)∗ into the group SO(MB(1),Ψ). Of course, im(h)
lies in SO(MB(1),Ψ)(R). The morphism h lifts uniquely to a morphism
h+ : S → (C+)∗ ⊗R such that the associated Hodge structure on C+ has
types (1, 0) and (0, 1) only. Note that in our case C+ is a quaternion algebra
with center Q.

4.7.2. We must show that C+ is a split algebra. If so, then denoting by
W an irreducible 2 dimensional module for C+, we know by [D2], 3.4 that
End(W )/center is isomorphic to Λ2(MB(1)), which is itself isomorphic to
MB(1). (Note that the center of End(W ) is a rational sub-Hodge structure
of type (0, 0).) Hence Sym2(W ) = (W ⊗W )/Λ2(W ) is isomorphic to MB.)

4.7.3. To show that C+ is split, we use the surface Sh and R. Taylor’s l-adic
representations ρTl of Gal(Q/F ).

4.7.4. Lemma. The representations ρTl and Sym2(ρTl ) are irreducible and
remain irreducible when restricted to any finite subgroup of Gal(Q/F ).
Proof. Evidently, if the result holds for Sym2(ρTl ), then it holds for ρTl .
The former case will follow from [BR1], Theorem 2.2.1(b), once we exclude
the case (iib) of that Theorem, i.e. that Sym2(ρTl ) is potentially abelian.
To see this, observe that, since Sym2(ρTl ) occurs as the Galois action on Ml

for a motive M whose MB has 3 Hodge types (2,0), (1,1), and (0,2), the
Hodge-Tate theory shows that the semisimple part of the Zariski-closure of
the image of Galois, over any finite extension L of K, contains a non-trivial
torus over Cl. Considering now ρTl , this means that if ρTl is potentially
abelian, the connected component of the Zariski closure over Cl is a non-
central torus S of GL(2). Hence the image of ρTl must lie in the normalizerN
of S inside GL(2). Such an N is either abelian or has an abelian subgroup
of index 2, and so the image of Galois is either abelian or is non-abelian
but has an abelian subgroup of index 2. The first case contradicts ([BR1,
Prop.2.3.1], [T2]), whereas the second means that π is of CM type. QED
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For each l, let ηl = Sym2(ρTl |K)(1)) . Each ηl acts on Q3
l which is isomorphic

to the module Ml(1) as Galois module. Let Gl denote the Zariski closure of
the image of ηl inEnd(Q3

l ).

4.7.5. Lemma. Gl is a quasi-split special orthogonal group.

Proof. The image of Sym2 ⊗ (det−1) : GL(2) → GL(3) is a quasi-split
special orthogonal group SO(3)qs. Hence we need only check that the image
of ηl, automatically contained in this group, has Zariski closure equal to
it. But (ηl)|L is irreducible for all finite extensions L of K. Hence Gl is a
connected irreducible algebraic subgroup of SO(3)qs. Fortunately, the only
such subgroup is SO(3)qs itself.

4.7.6. Completion of proof that C+ is split. Now we know that the
Zariski closure of the Galois action on each Ml(1) is the quasi-split orthog-
onal group. On the other hand, this irreducible action preserves the form
Ψl. Since an irreducible orthogonal representation can preserve at most one
quadratic form (up to homothety), this shows that the special orthogonal
group of Ψl is SO(3)qs for all l. Hence for all primes l, the algebra C+⊗Ql

is split. Hence it must be split at infinity as well, and so is a matrix algebra.
QED.

4.7.7. If Tπ 6= Q, we must construct a rational Hodge structure on the
underlying rational vector space of a 2 dimensional Tπ vector space HB so
that (i) only Hodge types (1, 0) and (0, 1) occur, and (ii) Tπ acts via endo-
morphisms of the Hodge structure. The argument of 4.7.1 provides such a
Tπ-linear Hodge structure h+ on C+, which is now quaternion algebra over
Tπ. Similarly, the argument through 4.7.5, using the Tπ -linearSym2, ex-
tends without difficulty to show that C+ is split at all finite places. Finally,
since SO(ΨM ) is quasi-split at each infinite place, so is (C+)∗. So (C+)∗ is
everywhere locally,and hence globally, split.

4.8. The Hodge structure HB defines a unique isogeny class of elliptic curves
over C such that for any member A of this class, H1

B(A) is isomorphic as
Hodge structure to HB. We now choose and fix one such A.

4.8.1. If Tπ 6= Q, HB defines an isogeny class of abelian varieties over C,
such that for any member A = Aπ of this class, H1

B(A) is isomorphic as
Hodge structure to HB. Indeed, the Tπ action renders HB automatically
polarizable, which is all that needed to be checked.
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5 Descent of A to Q.

5.1. Let τ be an automorphism of C over Q. Let τ(A) be the conjugate of
A by τ .

Theorem 4 Suppose the Absolute Hodge Conjecture holds. Then τ(A) is
isogenous to A.

5.2. Proposition. Let E1 and E2 be elliptic curves over C and suppose
that the Hodge structures Sym2(H1

B(E1)) and Sym2(H1
B(E2)) are isomor-

phic. Then E1 is isogenous to E2.

5.3. Proof. E1 is isogenous to E2 iff H1
B(E1) is isomorphic to H1

B(E2) as
rational Hodge structure. As in 4.7.1, let h1 and h2 be the Hodge struc-
ture morphisms defined for H1

B(E1) and H1
B(E2); these actions are each

separately equivalent over R to the tautological action of C∗ = S(R) on
C, for a suitable choice of isomorphism of C with R2. Let Vj = H1

B(Ej)
(j ∈ {1, 2}),and let

h = (h1, h2) : S → GL(V1,R)×GL(V2,R)

be the product morphism. Let H be the smallest algebraic subgroup of
GL(V1,Q) × GL(V2,Q) which contains im(h) over R. Then H is a re-
ductive algebraic group; it is the Mumford-Tate group of E1 × E2 and the
isomorphism classes of its algebraic representations over Q are in natural bi-
jection with the isomorphism classes of rational Hodge structures contained
in all tensor powers of all sums of V1, V2, and their duals. The projection of
H to a factor is the Mumford-Tate group of the corresponding curve.

Put W = (V1 ⊗ V2) ⊗ (V1 ⊗ V2). Then of course W ∼= (V1 ⊗ V1) ⊗ (V2 ⊗
V2). Since the action of H on Vj ⊗ Vj factors through the projection
onto GL(Vj), we see that the action of H on Vj ⊗ Vj decomposes as a
sum of the 1-dimensional representation det ◦ prj and the 3 dimensional
representation Sym2(Vj) ◦ prj . Further, the representations det(pr1) and
det(pr2) are isomorphic since the corresponding Hodge structures are 1-
dimensional, of type (1,1), and there is up to isomorphism only 1 such Hodge
structure. Since,by assumption, Sym2(V1) is isomorphic to Sym2(V2), and
Sym2(V1)∗ ∼= Sym2(V1) ⊗ (det(pr1)−2, we see that Sym2(V1) ⊗ Sym2(V2)
decomposes as the sum of a 1-dimensional (det(pr1))2, and an 8-dimensional
representation. Hence W contains at least two copies of the representation
(det(pr1))2. Now, V1 and V2 are non-isomorphic as Hodge structures iff they
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are non-isomorphic as H-modules iff V1⊗V2 contains no 1-dimensional sum-
mand isomorphic to det(pr1). This follows since (V1)∗ ∼= V1 ⊗ (det(pr1)−1),
and the morphisms of Hodge structure are exactly the vectors in V ∗1 ⊗V2 on
which H acts via the trivial representation. Suppose now V1 ⊗ V2

∼= A⊕B
with A and B two-dimensional sub-Hodge structures. Evidently, one of the
factors is purely of type (1, 1), and so the associated H representation is
isomorphic to det(pr1)⊕det(pr1). Hence V1 is isomorphic to V2. (Of course,
in this case we know more: both have complex multiplication, since if α and
β are two non-homothetic elements of Hom(E1, E2), (β̂) ◦ α is a non-scalar
endomorphism of E1. ) Thus, we must only exclude the possibility that
V1 ⊗ V2 is an irreducible Hodge structure, i.e. corresponds to an irreducible
representation of H. But in this case V1⊗V2⊗V1⊗V2 contains exactly one
copy of (det(pr1))2, by Schur’s Lemma. Since we have seen above that the
multiplicity of det(pr1) is at least 2, this case cannot occur. QED.

5.4. Remark: This Proposition is easily adapted to the general case, pro-
vided one works always in the category of Hodge structures which are Tπ-
modules, working Tπ-linearly.

5.5. Proof of the Theorem. By construction, the Hodge structure
Sym2(H1(A)) is isomorphic to that of MB(πf ). Hence, by the Absolute
Hodge Conjecture, there is an isomorphism in the category of motives over
C:

φ : Sym2(H1(A)) →MB(πf )⊗C.

Let τ be an element of Aut(C/Q). Conjugating by τ , we get an iso-
morphism φτ : (Sym2(H1(A))τ → MB(πf )τ . Since MB(πf ) is defined
over Q, MB(πf )τ = MB(πf ). Further, (Sym2(H1(A))τ ∼= Sym2(H1(Aτ )).
Hence Sym2(H1(Aτ )) ∼= Sym2(H1(A)). In particular, the Hodge structures
Sym2(H1

B(Aτ )) and Sym2(H1
B(A)) are isomorphic. By the Lemma, Aτ is

isogenous to A.

5.6. Corollary. Suppose the Absolute Hodge Conjecture holds. Then A
admits a model over a finite extension L of Q.

Proof (of the Corollary). The complex isogeny class of A contains only
countably many complex isomorphism classes of elliptic curves. For an el-
liptic curve B let j(B) be its j-invariant. Then B1 is ismorphic over C to
B2 iff j(B1) = j(B2). Furthermore, j(τ(B)) = τ(j(B)) for all B. Hence,
considering all automorphisms τ of C over Q, the set {τ(j(A))} is countable.
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Let on the other hand z be any non-algebraic complex number. Then it is
well-known that the set {τ(z)} is uncountable. Hence, j(A) must be in Q,
i.e. {τ(j(A))} is finite. Let L = Q(j(A)). Since any elliptic curve B admits
a Weierstrass model over Q(j(B)), we are done.

5.7. Remark: In the general case Tπ 6= Q, we can, changing A within its
isogeny class as needed, give A a principal polarisation PA . Then the set of
all j-invariants is replaced by the quasi-projective variety Md, defined over
Q, which parametrises all isomorphism classes B of pairs (B,PB) where
B has dimension d, and PB is a principal polarisation of B. Then A =
(A,PA) defines a point ν(A) of Md. The variety Md is defined over Q.
Further, if τ is an automorphism of C over Q, τ(A) = (τ(A), τ(PA)) is also
a principally polarised abelian variety and τ(ν(A)) = ν(τ(A)). Again, the
set of all isomorphism classes of pairs B = (B,PB) where B is isogenous
to A is countable. Since τ(A) is isogenous to A, this means that the set
of all τ(ν(A)) is countable. Hence ν(A) has algebraic coordinates. (This is
standard. Choosing a suitable hyperplane H, defined over Q which does not
contain ν((A)), the countable set τ(ν(A)) is contained in an affine variety
defined over Q. But if V is an affine variety defined over Q, and v is a
point of V with complex coordinates such that τ(v) is countable, then the
coordinates of v are all algebraic. ) Now let L0 be the number field generated
by the coordinates of ν(A); it is called the field of moduli of A. But it is
known that every polarized smooth projective variety admits a model over
a finite algebraic extension of its field of moduli. So (A,PA), and hence A
alone, is definable over a finite extension L of L0. This completes our sketch
of the general case.

6 Comparison of H1
l (A) and ρTl (π)

6.1. Fix a prime l. The two dimensional Ql-vector space H1
l (A) is a

Gal(Q/L)-module. Recall that V T
l (π) denotes the 2-dimensionalGal(Q/F )-

module attached to π ([T1, BR2]); the Galois action has been denoted
ρTl (πf ).

6.2. Proposition. Suppose the Absolute Hodge Conjecture holds. Then
there exists a finite extension L1 of L, containing K, such that V T

l (π)|L1 is
isomorphic as Gal(Q/L1)-module to H1

l (A)|L1 .

6.3. Proof. The motive Sym2(H1(A)) is defined over L, and by con-

20



struction, there is an isomorphism ιB of Hodge structures between MB and
Sym2(H1(A))B. Regarding ιB as an element of M∗

B ⊗Sym2(H1(A))B, it is
a rational class of type (0, 0). By Deligne’s theorem, Gal(Q/L) acts contin-
uously, via a finite quotient group, on the Q-vector subspace of all rational
classes of type (0, 0). Let L1 be a finite extension of L, containing K, such
that Gal(Q/L) acts trivially on ι. Now, for a rational prime l, ι defines also
an isomorphism

ιl : (M ⊗K L1)l → (Sym2(H1(A))⊗L L1)l

which is Gal(Q/L1)-equivariant.

6.4. Since the restriction to K of

Sym2(ρT (π)l) : Gal(Q/F ) → Aut(V T
l )

is isomorphic to Ml, we now know that, over L1, Sym2(ρT (π)l)|L1 is isomor-
phic as a Galois module to Sym2(H1(A))l. Since the dual of Sym2(ρT (π)l)|L1

is isomorphic to (Sym2(ρT (π)l)|L1)(−2), this means that

(Sym2(ρT (π)l)|L1)⊗ (Sym2(H1(A))l)

contains χ−2
l , where χl is the l-adic cyclotomic character. Let Ql(−1) be Ql

with Galois action given by χl.
6.5. We now proceed as in the conclusion of the proof of the preceding
proposition. Let V1 = H1

l (A) and let V2 = V T
l |L1. Then

V1 ⊗ V1 ⊗ V2 ⊗ V2

is isomorphic to

(Sym2(V1)⊕Ql(−1))⊗ (Sym2(V2)⊕Ql(−1))

which, from the above, contains the square of the inverse of the l-adic cy-
clotomic character χ−2

l with multiplicity two. Hence, putting W = V1 ⊗ V2,
we see that W ⊗W contains χ−2 with multiplicity two. If W is absolutely
(i.e. Ql) irreducible as a Galois module, then W ⊗W contains χ−2

l with
multiplicity one. So W is reducible. If W decomposes as X ⊕ Y , with X
and Y irreducible and two dimensional, then consider the exterior square

Λ = Λ2(X ⊕ Y ).

This decomposes as
det(X)⊕X ⊗ Y ⊕ det(Y ).
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On the other hand
Λ = Λ2(V1 ⊗ V2)

which decomposes as

Λ = (Sym2(V1)⊗ det(V2))⊕ (det(V1)⊗ Sym2(V2)).

The first calculation shows that Λ has at least two 1-dimensional summands,
and, since Sym2(V1) ∼= Sym2(V2) is irreducible, the second shows that Λ
has no 1-dimensional summands, this case is impossible. Hence W = U ⊕Z
with a 1-dimensional summand Z.

6.6. To finish the argument, denote the Galois action on Z by ψ. Then V ∗1 ⊗
(V2 ⊗ ψ−1)(−1) contains the trivial representation. Since V1 is irreducible,
this means that V1 is isomorphic to (V2 ⊗ ψ−1)(−1). Since det(V1) and
det(V2) both have the Galois action given by χ−1

l , we conclude by taking
determinants, that (ψχl)2 = 1. Set µ = ψχl . Enlarge L1 by a finite
extension L2 such that µ|L2 is trivial. Then over L2, V2

∼= V1. Relabeling
L2 as L1 , we are done.

7 Completion of the Construction

7.1. Preliminary We now remove the conditions, in force since Section 3,
that π be unramified over F , and FK0 = K be unramified over F , and we
reinterpret the preceding constructions as commencing from the base change
of π to the solvable totally real extension F1 of F , over which BCF1

F (π) is
unramified, and such that F1K0 is unramified. Further, we henceforth let
L (not L1) denote any number field which is a field of definition of A and
which satisfies the conclusion of the previous proposition.

7.2. Finally, let B = RL/F (A). Then the Gal(Q/F )-module H1
l (B) is iso-

morphic to the induced module IndL/F (H1
l (A)). However, H1

l (A) is isomor-
phic to the restriction ResL/F (V T

l ) of the 2-dimensional Gal(Q/F )-module
V T
l = V T

l (π). Hence H1
l (B) is isomorphic to V T

l ⊗ΠL/F where ΠL/F is the
permutation representation defined by the action of Gal(Q/F ) on the set of
F -linear embeddings of L into Q.

7.3. Since the trivial representation occurs in ΠL/F , we see that V T
l occurs

in H1
l (B). Let τ be any non-trivial irreducible constituent of ΠL/F ⊗ Ql.

Then we claim that ρTl is not a constituent of ρTl ⊗ τ . To see this, just note
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that the multiplicity in question is the dimension of ((V T
l )∗ ⊗ V T

l ⊗ τ)Gal

where Gal = Gal(Q/F ). Since (V T
l )∗⊗V T

l = 1⊕Ad(V T
l ), and 1⊗ τ is irre-

ducible, it is enough to check that Ad(V T
l )⊗τ contains no Galois invariants.

But if J denotes the kernel of τ , then the restriction of Ad(V T
l )⊗ τ to J is

isomorphic to the direct sum of 3 copies of (the restriction to J of) Ad(V T
l )

. Since we have seen that Ad(V T
l ) = Sym2(V T

l ) ⊗ ω−1
π , and Sym2(V T

l )
remains irreducible on restriction to J , there are no invariants. Hence the
multiplicity of V T

l in H1
l (B) is 1.

7.4. Let D be the smallest abelian subvariety of B such that H1
l (D) con-

tains the unique submodule of H1
l (B) which is isomorphic to V T

l . We will
show that D is an elliptic curve. Evidently D is simple and so End(D) is a
division algebra. In fact, End(D) is a field. To see this let Z be the center
of End(D) and let dimZ(End(D)) = n2. Then over Z ⊗Ql, H1

l (D) ⊗Ql

is a free module over the the matrix algebra Mn(Z ⊗Ql). Hence each irre-
ducible Galois submodule of H1

l (D)⊗Ql must occur at least n times. Since
V T
l occurs once, this means n = 1, i.e. End(D) = Z. Evidently, H1

l (D) is a
free rank 2 Z ⊗Ql-module.

7.5. Now we must show that Z = Q. To see this, note that H1
l (D) is a free

Z ⊗ Ql-module. Put Z ⊗ Ql = Z1 ⊕ ... ⊕ Zt, with local fields Zj . Let ej
denote the idempotent of Z ⊗ Ql which has image the factor Zj . Choose
the indexing so that the Z1 module e1(H1

l (D)) contains the Ql-submodule
W isomorphic to V T

l . Since the Galois action on V T
l is irreducible, there

is an embedding of V T
l ⊗ Z1 into e1(H1

l (D)). But if [Z1 : Ql] > 1, the
commutant of this image would be non-abelian. Since Z is a field, this
means Z1 = Ql. Since l is arbitrary, the Cebotarev theorem ([CF], Ex-
ercise 6.2) forces Z = Q. Thus the commutant of the image of Galois in
End(H1(D))⊗Ql is Ql. This means that H1

l (D) is isomorphic to V T
l , and

so D is in fact the sought elliptic curve. This completes the construction.

7.6. If Tπ 6= Q, the arguments of Sections 6 and 7 proceed essentially un-
changed, albeit Tπ-linearly, using the free rank 2 Tπ⊗Ql-adic representations
V T
l of Taylor.
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