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e Wi, ..., W, independent Brownian motions in RY running
until times t1,..., tp. Typically, here d > 2.

@ Look at their path intersections:

P
Se=[(\Wil0,t;)  t=(t1,...,tp) € (0,00)"
i=1

@ Dvoretzky, Erdos, Kakutani and Taylor showed S; is
non-empty with positive probability iff

d=2,peN
d=3,p=2
d>4, p=1
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Brownian Intersection measure

Intersection measure

Intensity of the intersections

@ A measure is naturally defined on S;:
P ti
((A) = / dy H/ ds 5,(Wj(s)) AcC RY
A 170
@ For p =1, /; is the single path occupation measure:
. t
A a) :/ dsia(We) i=1,....p
0

o Note: If égi) would have a Lebesgue density Bgi)(y), so would

£+ and

p .
l(y) = Hfg')(y) makes sense only in d = 1!
i=1

@ Goal: Make precise the above as t 1 oo (in particular, d > 2).
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Wiener Sausages

Construction of intersection measure

@ Le Gall (1986) looked at Wiener sausages:

S(igz{XGRdZ’X—M/i(ri)|<€} [:]_”p

€,

@ Normalise Lebesgue measure on the intersection of the
sausages

dlee(y) =sa(e) 1, g0 (v) dy
where
T PlogP(L) ifd=2
sqa(€) = { (2me) 2 ifd=3and p=2

Gy fd>3andp=1



Brownian Intersection measure

Wiener Sausages

Intersection measure: scaling limit of Lebesgue measure on sausages

o Le Gall shows limit € | 0 gives the Brownian intersection
measure:

lim £c.:(A) = £(A) in L9 for q € [1,00) J
e—
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Large t-asymptotics

Single path measure

Look at one path. Fix i € {1,... p}.

W; running in a compact set B in R? until its first exit time
7; from B.

@ Make sure the path does not leave B by time t:
Pi(-) =P(- N {t < 73}).

Normalise the occupation measure: %E(ti) € My(B)

Want to study: Behavior of %eﬁ"), as t T oo.
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1

P, (teﬁ") w) = ep[-t(I()+o)]  tToo

) = {;Hvﬂui i 4 € Hi(B)
(0,9)

else

where
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Large t-asymptotics for single path measure

Path densities show up

[Donsker-Varadhan (1975-83)], [Gartner (1977)]:
%zﬁ’) large deviation principle (LDP) in Mj(B) under P; as t 1 oc:

MEMl(B).
1
Bt </5) *ﬂ) = exp[-t(I() +o(1))]  thoo
where
B
10 = LIV ¥4 < Hs)
o0 else

Upshot: %E(t':) possess densities 1/1.2 = %,.for large t.
Our Goal: Similar statement for intersection measure ¢;, for large
t?
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Large deviations: diverging time

occupation measure and intersection measure

° E(tl), .. ,E(tp) occupation measures of p paths running until
time t in a bounded domain B until first exit times 71, ..., 7p.

@ /; the intersection measure of p paths.

@ Make sure no path exits B before time t:
Pi() = P(-N{t<n A AT})
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Large deviations: diverging time

Intersection densities as product of occupation densities

s i
P o ST R L R =exp [ — t(/(p pas- -, 1ip)
+o(1))]
M s p) = 5 001 [IV9il13  if

% =2, ¢; € HY(B), |vil2 = 1 occupation densities for large t
d” = %P intersection density for large t

uzp =117, u,2 intersection density as product of occupation densitie:

else,
| = identically
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Large deviations: diverging time

Extension of classical theory

Theorem (Konig/M (2011))

. ¢ e(l) e(P) .o
The family of tuples (t—; - , f—) satisfies a LDP under P;, as

t T oo, with rate function
1P
Wi, pp) = 5 ) IV9il3
i=1

if wand pa, ..., pp have densities *P and ¢3, ... {2 respectively,
¥i € HA(B), |[¥ill2 =1 and 9P =T]%_, 4?, else | = .

<
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Intersection measure LDP

Large deviations: diverging time

Specialising onto the first entry of tuples, (p, jt1,. .., pp) +— 1 and
use the contraction principle to get

_

The family of measures (%) satisfies a large deviation principle,

under P, as t T oo, with rate function

p

(1 - d
J(z) = inf {2 SVl : v € H(B). llwill = 1, [ v? = d/;}
=1,

i=1

v

p = 1: We recover classical Donsker-Varadhan theory for one path.



Main results: Large deviations

A related problem: Upper tail asymptotics

large intersections in a set

e UCB



Main results: Large deviations

A related problem: Upper tail asymptotics

large intersections in a set

e UCB
e Study: P(/(U) > a) as a1 o0?



Main results: Large deviations

A related problem: Upper tail asymptotics

large intersections in a set

e UCB
e Study: P(/(U) > a) as a1 o0?

[Konig and Morters (2001)]:
im a7 logP[(U) > a] = —O(U)

for

o(u) = inf {70l : v € H(B)InuvlB, = 1}-
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Main results: Large deviations

Minimisers and path behavior

Euler-Lagrange equations

@ Minimiser(s) to O(U) exist(s).

@ Every minimising v solves

AY(x) = —i@(U)w2p1(x) ly(x)  forx e B\oU

@ Open: For p > 1, is the minimizer or the solution % unique?
(unique if U= B(0;1) and B = R3, rotational symmetry)

o p=1:

o the solution is unique (Rayleigh-Ritz)
o 1% appears as large-a density of the occupation measure on U.

Upshot: 2P should be the large-a density of the intersection
measure on U.
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Main results: Large deviations

Minimisers and path behavior

Law of large masses

o Let L = ﬁ be the normalised probability on U.
o M= {uec My(U): u(dx)=12P(x)dx, 1 minimises O(U)}

[Konig and Morters (2005)]

lirm Pld(L, M) > €| £(U) > a] =0

where d weakly metrises M1 (U)

@ Upshot: Law of large numbers:

L— 4%  under P(-| £(U) > a),a T 0o

@ Large deviations: What is the exponential decay rate?
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Intersection measure until exit times

Large deviations: diverging mass

Theorem (Konig/M (2011))

The normalized probability measures L = ﬁ satisfy a large
deviation principle under P(-|¢(U) > a), as a 1 oo, with rate
function

p

(1 P d
N =inf {3 S 19wl i € H(e) 1147 - ol -e()

i=1
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Questions we can chew on

@ Study the variational formula for the rate function:
1P P d
. 2. 1 2
) = inf {237 90113  vr € H(B). il = 1T T o7 = 22
i=1 i=1
Open question: Can the minimisers be taken at
P = =Pp? same optimal strategy?
If so, rate function is much simpler!

L2
p du\ 2

J(p) = = —
(#) 2Hv(dx> 2

@ Extend it to unbounded domains.: For p =2, B = R3
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