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Metastates in random spin models

Lattice spin models with a quenched random Hamiltonian, examples
Edwards-Anderson spinglass

H = — Z Jq;,jO'iO'j
(4,9

Spins: 0; € {1,—1}
Random couplings: J;; ~ N (0, 1), i.i.d.
Random field Ising model:

H = — Zaiaj —82771'(%'
(4,9) i

Random fields: n; = £1 with equal probability, i.i.d.

The metastate is a concept to capture the asymptotic volume-dependence of

the Gibbs states
e_BH(J)

Z

"u(o) =
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Disordered systems

Quenched (fixed) randomness n = (1;), -
Probability distribution P(dn)
Infinite volume spin configuration o = (0;),.74

Infinite volume Hamiltonian H" (o) (given in terms of an interaction $7)

Fixing a boundary condition &, define the finite-volume Gibbs states

u3[n](do)

in the finite volume A C Z¢
restricting the terms of the Hamiltonian to A = A,, = [—n, n]?
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Disordered systems

Common for translation-invariant systems:
to have convergence of the finite-volume states

up,[n = 0l(do) — p7(do)
as n gets large

Common for disordered systems:
not to have convergence of the finite-volume states:

pn, ] (do)
might have many limit points when several Gibbs measures are available

Praha 1 September 2011 4(999)



Lattice and Mean-field examples

Newman book, Bovier book
Kllske: mean-field random field Ising

Bovier, Gayrard: Hopfield with many patterns

van Enter, Bovier, Niederhauser: Hopfield model with Gaussian fields
(continuous symmetry)

van Enter, Netocny, Schaap: Ising ferromagnet on lattice with random boundary
conditions

Arguin, Damron, Newman, Stein (2009): "Metastate-version” of uniqueness of
groundstate for lattice-spinglass in 2 dimensions

lacobelli, Kllske 2010: Metastates in mean-field models with i.i.d. disorder

Cotar, Kllske 2011, in preparation
measurably u[¢] = [vw[£](dv) with w[£](exG(€)) =1
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Disordered mean-field models: Ingredients

Spin variables: o(7) taking values in a finite set £
Disorder variable: n(7) taking values in a finite set £’
Sites: 1 € {1,2,...,n}

P(E) = {set of probability measures on E}

= {(p(a))acr : p(a) > 0,) pla) =1}

acl

L e 1 &
L, = empirical distribution = = > " §,¢;y € P(E)
=1

F:P(E) =R,
twice continuously differentiable.

Local a priori measures a[b] € P(F)
for any possible type of the disorder b € E'.
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Disordered mean-field models: Ingredients

Mean-field interaction F
A priori measures o = («[b])pep
Disorder distribution = € P(E’)

Definition 1. The disorder-dependent finite-volume Gibbs measures are
prn[n(l),...,n(n)](e(1) = w(l),...,0(n) = w(n))

1 w Q ) W
= Zenin (D), Gy P CE D) L alnd(wd)

Frozen disorder: n(:) ~ « i.i.d. over sites i
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Disordered mean-field models: The Aizenman-Wehr metastate

Definition 2. Assume that, for every bounded continuous G : P(E>*) x (E')>* —
R the limit
lim [ Pdn)Gpualilm) = [ J(dps, dm)Ga,m)

exists. Then the conditional distribution k[n](du) := J(du|n) is called the AW-
metastate on the level of the states.

Praha 1 September 2011 8(999)



Notations for empirical distributions

Volume of b-like sites, given #:

Au(b) = {i € {1,2,...,n};n(i) = b}
Frequency of the b-like sites:
[An(B)]

n

Tn(b) =

empirical spin-distribution on the b-like sites:

1
> i)

Ln(b) =

vector of empirical distributions:
Zzn — (En(b) )beE’
total empirical spin-distribution

beE'!
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Non-Degeneracy Assumptions 1 and 2

Definition 3. Consider the free energy minimization problem
v— d[r](v)
on P(E)¥, with the free energy functional
o P(E) x P(E)FI 5 R
o[r](v) =F (Z %(b)z?(b)> + > 7(b)S@(b)|alb])
beE' b

where S(p1|p2) = Y epp1(a) log % is the relative entropy.

Non-degeneracy condition 1:

-~

v — P[r](D) has a finite set of minimizers M* = M*(F,«, ) with positive
curvature.
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Non-Degeneracy Assumptions 1 and 2

Let ©; be a fixed element in M*. Let us consider the linearization of the free
energy functional at the fixed minimizers as a function of © around =, which
reads

@[] (7)) — ®[7](7j) = —B;j[7 — 7] + o(||T — =|)

This defines an affine function on the tangent space of field type measures
TP(E') (i.e. vectors which sum up to zero, isomorphic to RIZ'1-1), for any ;.
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Non-Degeneracy Assumptions 1 and 2

Non-degeneracy condition 2:
No different minimizers j, j' have the same B; = B

Definition 4. Call B; the stability vector of v; and call

Rj L= {ZE - TP(E/), <a:‘, Bj> > T£X<$, Bk>}
J

stability region of U;.
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Main Theorem: Visibility vs. Invisibility

THEOREM 5. (lacobelli, Kiilske, JSP 2010) Assume that the model satisfies the
non-degeneracy assumptions 1 and 2. Define the weights

w; = PW(G S Rj)

where G taking values in TP(E") is a centered Gaussian variable with covari-

ance
Cr(b,b") = w(b)Lp—y — w(b)w (V')

Then the Aizenman-Wehr metastate on the level of the states equals
k
kIl (dp) = ) w;d, 1y (dp)
j=1

where p;[n] = 112, vIn()](- |7v;) with

e Wafp](a)
Srene P @alt] (@)

vb](alv) =
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Potts random field examples

Let us take the Potts model with quadratic interaction

FO) = S0+ +v(0)?)

Let us take £ = E’ and = to be the equidistribution and switch to the specific
Bl,__ . . . .
case a[b](a) = <-=“ (random field with homogenous intensity). The kernels

P 1
become
667/(0’)+B1a:b
/Y[b] (CL|I/) - ZaeE eBV(aH‘Bla:b
We will be looking at measures in v, € P(E) of the form v, ,(j) = 1F«e=1),

q
via(i) = % for i # j. The stability vector for v, is given by

( =1 |5g ePutByq— 1\
eﬁu—l—eB—l—q 2

ePutBig—1

efut-eB+4q—2

_E log

0
|

V1iu

_1 lO ePutB g1
\ eftteB4q—2

the other ones are related by symmetry.
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Potts random field examples

mean-field equation for wu:
. efu B 1
it eB4(g—2) efutB4 (¢ 1)

u

u = 0 Is always a solution
for B = 0: mean-field equation for Potts without disorder

the non-trivial solution w is to be chosen iff [x](u) < P[x](u = 0)
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Potts random field examples

B = 0: first order transition at the critical inverse temperature 5 = 41og 2

B takes small enough positive values: line in the space of temperature and cou-
pling strength B of an equal-depth minimum at « = 0 and a positive value of

u=u"(5,q)

Along this line the set of Gibbs measures is strictly bigger then the set of states
which are seen under the metastate.

The Plot shows the graph of v — ®[#]([(v;.)) for B = 0.3,q = 3,8 =
41og 2 + 0.03203 at which there is the first order transition.
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Potts random field examples

0.010
0.008 }
0.006 }
0.004 }

0.002 -

0.000 e R B
0.0 0.2 04

L
1.0

W=

3
k[n](dp) = Z O3]
piln] = 1:[ YOI 1) u=ur8.0))

since B,, ,_, = 0 lies in the convex hull of the three others
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Sketch of Proof

Concentration of the total empirical spin vector follows from finite-volume Sanov:
prn[n(l), ..., n(n)](d(Ln, 7M") > €)

< II (n#a(d) + 1)?lexp | —n  inf  ®[#,](D) +n inf D[]
, ven: v'e My,
beE d(Fno,mM*)>e

7, . empirical field-type distribution

This explains the importance of the spin-rate-function ®[n](7)

for not too atypical 7,,.
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Sketch of Proof

How to get weights w;?

Fluctuations of type-empirical distribution on CLT-scale:
1 n
Xian] = — o, —m) — G
(1.0 1] \/ﬁ;:i( = ™)

Define n-dependent good-sets 1’ of the realization of the randomness

Hy = {n € (B)" : X1ln] € Ris, |
k
Hor = | H
=1
where R, 5, := {x € TP(E’) : (x, B;) — maxg=;{x, Bx) > ,}, and
(a) 5, 4 0, but

b) v/n 6p T 00

(b)
(a) Get full proba of 7~ in the limit of n 1 oo.
(b) Have concentration of L,, around a given minimizer o; on 7—[;57”;1
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Sketch of Proof

Suppose F'is a local function, depending on m coordinates of spins and random
fields.

Then:
i [, P E Gl = ws [ x (@ P(T I 755).0)

Productification with only local influence of randomness conditional on stability
region R;.
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Markov chain driven Models

Disorder variable: n(7) taking values in a finite set £’
Markov chain transition matrix M = (M (%, 5); jer), €rgodic
Invariant distribution = € P(E’)

Fact. For an ergodic finite state Markov chain, the standardized occupation
time measure of the form /n(7, — ) converges in distribution, as n tends to
infinity, to a centered Gaussian distribution G with a covariance matrix >, on
the |E’| — 1 dimensional vector space TP(E’).

Warning: Ergodicity of the Markov chain does not imply that >;, has the full
rank |E'| — 1
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Markov chain driven Models

Consider the case ¢ = |E’'| = 3 of a general doubly stochastic matrix in the
form

a b l1—a-—05>
M = C d l1—c—d
l—-a—-—cl—-b—d-14+a+b+c+d

, a,b,c,de€(0,1).

2 + 2(14+b(2—-6¢c)+2c—2d+a(-5+6d)) 1  b(5-6¢)+5c—2(1+d)+a(-2+6d) 1 4-8a—b—c—6bc—2d+6ad
9 27(—1+a+bctd—ad) 9 27(—1Fa+bctd—ad) 9 27(—1+a+bctd—ad)
Z —_ _ 1 _ b(5-60)+5c—2(1+d)+a(~2+46d) 2 + 2(14b(2—6¢)+2c—5d4a(—2+6d)) 1 4—2a—b—c—6bc—8d+6ad
M — 9 27 (=1t atbfotd—ad) 9 27 (=1t atbtctd—ad) 9 27 (=1t atbetd—ad)
1 4-8a—b—c—6bc—2d+6ad 1 4—2a—b—c—6bc—8d+6ad 2  2(=4+btct6bcta(5—-6d)+5d)
9 27(—1+a—+bc+d—ad) 9 27(—1+a—+bc+d—ad) 9 27(—14+a—+bc+d—ad)
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Markov chain driven Models

THEOREM 6. With Formentin, Reichenbachs (2011).
Assume full rank occupation time covariance 3.

Suppose the non-degeneracy conditions 1) and 2) on the spin model. Then the
metastate on the level of the spin measures exists and

k
kln](dp) = > wjéﬂj[n](du) forP.-a.e. n.

j=1

The weights are w; = Ps,,(G € R;) where G is a centered gaussian on TP(E')
with covariance > ,;.
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Potts model driven by degenerate Markov chain

Degenerate (but ergodic) Markov chain which also has the equidistribution as
Its invariant measure, nonreversible

O 1 O
M = p O01-—p
1-p0 p
R; R,

Figure 1: The Gaussian limiting distribution of \/n (7, — 7) concentrates on the dashed line that for upper half coincides with the boundary
between the stability regions R; and R5.
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Potts model driven by degenerate Markov chain

The metastate takes the following unusual form due to almost degeneracies:

THEOREM 7. The Metastate in the 3-state random field Potts model defined
above, driven by the degenerate MC above has the form

1
kln] = §5u3[n]

1 1 1
+ gééul[n]-l—%pﬁ[n] + §5P(B,B)M1[n]+(1—p(B,B))M2[n] + 1_85(1—p(6,3))u1[n]-l-p(B,B)MQ[n]

Here the function p(3, B) is computable in terms of the mean-field parameter u
and is strictly bigger than 1/2 in the phase transition regime.

NO SYMMETRY BETWEEN STATE 1 AND STATE 2!

Since N@n(1) — Nany(2) € {0,1}
state 1 gets slightly bigger weight
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