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Ay(n) =(n+1) +¢(n—1). (1)

For a potential, i.e. a bounded sequence, V : Z — R, we call
H = A+ V a Schrodinger operator.

For V/(n) i.i.d.r.v. with distribution supported in [a, b],
H = A+ V is called the Anderson model. we have that the
spectrum is given by

o(H) =range(V)+o(A)=[a—2,b+2]. (2)

For V/(n) = 2\ cos(2m(nw + x)) with w irrational and X\ # 0, we
have the Almost—Mathieu operator. Then the spectrum is always
a Cantor set.
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and
{fn<m<-<w}={wn’
Then the set of lengths

consists of just three elements, whereas

obey Poisson statistics for generic w.
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T(x,y)=(x+2w,x+y) (mod1). 3)
Then wn? = T"(w,0), (mod 1).

It thus makes sense instead of considering the potential
V(n) = f(n?w (mod 1)), to consider potentials given by

V(n) = M(T"(x,y)) (4)

for f : T2 — R. These then form an ergodic family of potentials.

Conjecture: For sufficiently regular f, the spectrum of A + V
consists of finitely many intervals and is Anderson localized.
This means it behaves as in the random case.

Progress: Large coupling (A > 1): Bourgain—Goldstein—Schlag,
Bourgain, Bourgain—Jitomirskaya, K.

Small coupling (0 < XA < 1): Bourgain. largely open

Necessity of regularity: Avila—Bochi-Damanik, Boshernitzan—Damanik.
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The unitary case

It turns out that this problem can be solved explicitely for the
unitary analog of Schrodinger operators: CMV matrices.

Given a sequence of Verblunsky coefficients
a(n)eD={zeC: |z|] <1} (5)

Define a sequence of monic polynomials by the Szegé recursion

®ri1(z) = 2®n(2) — a(n)®;(2) (6)
with ®*(z2) = z"®,(z71).
Then there exists an unique probability measure p supported on
0D such that ®, are the polynomials obtained by orthogonalizing
1,z,... in L2(OD, ).
One can also view p as the spectral measure of the CMV matrix
C corresponding to the Verblunsky coefficients a(n).



Recall

®pi1(2) = 2Pn(2) — a(n)®7(2). (7)
Define @(n) = e~2%("q(n). Then one has for
IR S ,(z) = 2™, (e72™17) that
Bria(2) = 28y(2) — A(B3() 0

Hence we see that the measure i corresponding to & is just the
measure i rotated by €21,



Recall

®pi1(2) = 2Pn(2) — a(n)®7(2). (7)
Define @(n) = e~2%("q(n). Then one has for
IR S ,(z) = 2™, (e72™17) that
Bria(2) = 28y(2) — A(B3() 0

Hence we see that the measure i corresponding to & is just the
measure i rotated by €21,

In particular, that _ _
o(C) = ™5 (C). (9)
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Given \ € D, define the function f(x,y) = Ae*™ and the
Verblunsky coefficients

ey () = F(T"(x,y)) = AZmlen(remen), (10)

From the previous results, we have
The unitary case 7(Cey) = Q2mi(x—%) 7(Cx.y)- (11)
From minimality of the skew-shift, we have

9(Cszy) = 9(Cxy)- (12)

Since 0(Cx,,) C I is non-empty, we obtain

Theorem

For every x, y, we have

Cy.,, = OD. (13)
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Anderson localization

Using similar arguments, one also obtains

Theorem

Let A € D and x € R. For almost-every y € R, the CMV matrix
Cx.y has pure point spectrum with exponentially decaying
eigenfunctions.

This is what is called Anderson localization.
Proof: Define the Lyapunov exponent

()= Jim © / l0g [} 4% (x, y)[d(x. ) (14)

where A% (x,y) = A*(T"(x,y))--- A%(x,y) is the transfer matrix

5 B 1 z — e 27y
A% (x,y) = Vi (_/\627riyz 1 ) . (1)

One then shows L(e*™it) = L(e?™) as before. Since a(n) # 0,
one thus must have L(e®™'*) > 0. Standard results then imply the
localization claim.
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Verblunsky coefficients of the form
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It should be tedious but possible to extend these results to
Verblunsky coefficients of the form

ax,y(n) _ )\e2wi(wn(n—1)+nx+y) + 8g( T"(X,y)), (16)
where g : T2 — R is real-analytic and ¢ > 0 is small enough.

More interestingly, one should be able to compute the eigenvalue
statistics of this operator.
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