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Schrödinger operators

The discrete Laplacian acting on the square summable sequences
`2(Z) is given by

∆ψ(n) = ψ(n + 1) + ψ(n − 1). (1)

For a potential, i.e. a bounded sequence, V : Z→ R, we call
H = ∆ + V a Schrödinger operator.

For V (n) i.i.d.r.v. with distribution supported in [a, b],
H = ∆ + V is called the Anderson model. we have that the
spectrum is given by

σ(H) = range(V ) + σ(∆) = [a− 2, b + 2]. (2)

For V (n) = 2λ cos(2π(nω + x)) with ω irrational and λ 6= 0, we
have the Almost–Mathieu operator. Then the spectrum is always
a Cantor set.
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Number theory of
ωn (mod 1) and ωn2 (mod 1)

ωn (mod 1) and ωn2 (mod 1) are both equidistributed in [0, 1].

Let N ≥ 2 and define

{β1 < β2 < · · · < βN} = {ωn (mod 1)}Nn=1

and
{γ1 < γ2 < · · · < γN} = {ωn2 (mod 1)}Nn=1.

Then the set of lengths

{lj = βj+1 − βj , j = 1, . . . ,N − 1}

consists of just three elements, whereas

{`j = γj+1 − γj , j = 1, . . . ,N − 1}

obey Poisson statistics for generic ω.
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The skew-shift Schrödinger operator

Define the skew-shift T : T2 → T2, T = R/Z,

T (x , y) = (x + 2ω, x + y) (mod 1). (3)

Then ωn2 = T n(ω, 0)2 (mod 1).

It thus makes sense instead of considering the potential
V (n) = f (n2ω (mod 1)), to consider potentials given by

V (n) = λf (T n(x , y)) (4)

for f : T2 → R. These then form an ergodic family of potentials.

Conjecture: For sufficiently regular f , the spectrum of ∆ + V
consists of finitely many intervals and is Anderson localized.
This means it behaves as in the random case.

Progress: Large coupling (λ� 1): Bourgain–Goldstein–Schlag,
Bourgain, Bourgain–Jitomirskaya, K.
Small coupling (0 < λ� 1): Bourgain. largely open

Necessity of regularity: Avila–Bochi–Damanik, Boshernitzan–Damanik.
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V (n) = 2λ cos(2πωn2)

λ = 0.9
ω =
√

2.

H : `2([1, 50])→ `2([1, 50])
b(1) 1

1 b(2) 1
. . .

. . .
. . .

1 b(50)


Huj = Ejuj for j = 1, . . . , 50

Black dot at (n,Ej) if
|uj(n)| ≥ 0.01.

1 2 3 4 5
Site

-3

-2

-1

1

2

3

Energy
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Verblunsky coefficients and orthogonal
polynomials on the unit circle

It turns out that this problem can be solved explicitely for the
unitary analog of Schrödinger operators: CMV matrices.

Given a sequence of Verblunsky coefficients

α(n) ∈ D = {z ∈ C : |z | < 1}. (5)

Define a sequence of monic polynomials by the Szegő recursion

Φn+1(z) = zΦn(z)− α(n)Φ∗n(z) (6)

with Φ∗n(z) = znΦn(z−1).
Then there exists an unique probability measure µ supported on
∂D such that Φn are the polynomials obtained by orthogonalizing
1, z , . . . in L2(∂D, µ).
One can also view µ as the spectral measure of the CMV matrix
C corresponding to the Verblunsky coefficients α(n).
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Rotating the Verblunsky coefficients

Recall
Φn+1(z) = zΦn(z)− α(n)Φ∗n(z). (7)

Define α̃(n) = e−2πiθ(n+1)α(n). Then one has for

Φ̃n(z) = e2πinθΦn(e−2πiθz) that

Φ̃n+1(z) = zΦ̃n(z)− α̃(n)Φ̃∗n(z). (8)

Hence we see that the measure µ̃ corresponding to α̃ is just the
measure µ rotated by e2πiθ.

In particular, that
σ(C) = e2πiθσ(C̃). (9)
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Skew-shift Verblunsky coefficients

Given λ ∈ D, define the function f (x , y) = λe2πiy and the
Verblunsky coefficients

αx,y (n) = f (T n(x , y)) = λe2πi(ωn(n−1)+nx+y). (10)

From the previous results, we have

σ(Cx̃,y ) = e2πi(x−x̃)σ(Cx,y ). (11)

From minimality of the skew-shift, we have

σ(Cx̃,ỹ ) = σ(Cx,y ). (12)

Since σ(Cx,y ) ⊆ ∂D is non-empty, we obtain

Theorem

For every x , y, we have

Cx,y = ∂D. (13)



The spectrum of
dynamically defined

operators

Helge Krüger
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Anderson localization

Using similar arguments, one also obtains

Theorem

Let λ ∈ D and x ∈ R. For almost-every y ∈ R, the CMV matrix
Cx,y has pure point spectrum with exponentially decaying
eigenfunctions.

This is what is called Anderson localization.
Proof: Define the Lyapunov exponent

L(z) = lim
N→∞

1

N

∫
T2

log ‖Az
N(x , y)‖d(x , y) (14)

where Az
N(x , y) = Az(T n(x , y)) · · ·Az(x , y) is the transfer matrix

Az(x , y) =
1√

1− |λ|2

(
z −λe−2πiy

−λe2πiyz 1

)
. (15)

One then shows L(e2πit) = L(e2πis) as before. Since α(n) 6= 0,
one thus must have L(e2πit) > 0. Standard results then imply the
localization claim.
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One then shows L(e2πit) = L(e2πis) as before. Since α(n) 6= 0,
one thus must have L(e2πit) > 0. Standard results then imply the
localization claim.
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It should be tedious but possible to extend these results to
Verblunsky coefficients of the form

αx,y (n) = λe2πi(ωn(n−1)+nx+y) + εg(T n(x , y)), (16)

where g : T2 → R is real-analytic and ε > 0 is small enough.

More interestingly, one should be able to compute the eigenvalue
statistics of this operator.
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