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Introduction
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There are many complex real-world networks, e.g.,

» Social networks (friendships, business relationships, sexual
contacts, ...);

» Information networks (World Wide Web, citations, ...);
» Technological networks (Internet, airline routes, ...);
» Biological networks (protein interactions, neural networks,...).
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Properties of complex networks

Number of nodes with k links

Power-law behavior
Number of vertices with degree k is proportionalto k7.

Bell Curve

Most nodes have
the same number of links

No highly
connected nodes

Number of nodes with k links

Power Law Distribution

Very many nodes
with only a few links
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Small worlds
Distances in the network are small
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Number of links (k)
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Ising model

Ising model: paradigm model in statistical physics for cooperative
behavior.

When studied on complex networks it can model for example opinion
spreading in society.

We will model complex networks with power-law random graphs.

What are effects of structure of complex networks on behavior of Ising
model?
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Definition of the Ising model

On a graph G,, the ferromagnetic Ising modelis given by the following
Boltzmann distributions overo ¢ {—1, +1}",

1
u((;):iexp ,3 Z O’[Ui‘i‘BZO’[ s
Z,(B, B) 07 ;
J)€EER ie[n]
where

» B > 0isthe inverse temperature;

» B is the external magnetic field;

» Z,(B, B) is a normalization factor (the partition function), i.e.,

Z,(B.B)= Y  expiB Y oicj+B> o

oe{—1,1}" (i,j)eEn ie[n]
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Power-law random graphs »

In the configuration modela graph G, = (V, = [n], E,) is constructed as
follows.

» Let D have a certain distribution (the degree distribution);

» Assign D; half-edges to each vertex i € [n], where D; arei.i.d. like D
(Add one half-edge to last vertex when the total number of
half-edges is odd);

» Attach first half-edge to another half-edge uniformly at random;

» Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

P[D > k] < ck= b, > 2.
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Local structure configuration model for r > 2

Start from random vertex i which has degree D;.

Look at neighbors of vertex i, probability such a neighbor has degree
k + 1 is approximately,

(k + 1) Zje[n] ]l{Dj:k—i-l}
Zie[n] Di

nnnnnnnn

/ department of mathematics and computer science



Local structure configuration model for r > 2

Start from random vertex i which has degree D;.

Look at neighbors of vertex i, probability such a neighbor has degree
k + 1 is approximately,

(k+1) 2 jerm Lio=k+1)/0 (k + DP[D = k + 1]
—

, fort > 2.
Zie[n] Dj/n E[D]
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Local structure configuration model for r > 2

Start from random vertex i which has degree D;.

Look at neighbors of vertex i, probability such a neighbor has degree
k + 1 is approximately,

(k+1) 2 jerm Lio=k+1)/0 (k + DP[D = k + 1]
—

, fort > 2.
Zie[n] Dj/n E[D]

Let K have distribution (the forward degree distribution),

(k + DHP[D = k + 1]

PIK = k] = (D]

Locally tree-like structure: a branching process with offspring D in first
generation and K in further generations. Also, uniformly sparse.
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Pressure in thermodynamic limit (E[K] < o0)

Theorem (Dembo, Montanari, ’10)

For alocally tree-like and uniformly sparse graph sequence {G,},-1 with
E[K] < oo, the pressure per particle,

1
Vn(B.B) = — log Z, (B, B),

converges, forn — oo, to
E[D E[D
% log cosh(B) — %

D
+E |:log (eB 1_[ {1 + tanh(B) tanh(h))}

i=1

on(B,B) = E[log(1 + tanh(B) tanh(h;) tanh(h,))]

D

+e P[] {1 —tanh(p) tanh(h,-)})} :
i=1
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Pressure in thermodynamic limit (E[D] < 00)

Theorem (DGvdH, ’10)
Lett > 2. Then, in the configuration model, the pressure per particle,

1
wn(ﬁv B) - H logzn(IB’ B)’

converges almost surely, forn — oo, to

E[D] E[D]

on(B,B) = - log cosh(B) — TE[ log(1 + tanh(B) tanh(hy) tanh(h,))]

D
+E |:log (eB 1_[ {1 + tanh(B) tanh(hy)}

i=1

D
+e B {1 -tanh(B) tanh(h,-)}ﬂ .
i=1
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Tree recursion

Proposition
Let K; be i.i.d. like K and B > 0. Then, the recursion

Kt
ht+h L gy > " atanh(tanh(g) tanh(h{")),
i=1
has a unique fixed point hz.

Interpretation: the effective field of a vertex in a tree expressed in that of
its neighbors.

Uniqueness shown by showing that effect of boundary conditions on
generation f vanishes for t — oco.
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Correlation inequalities

Lemma (Griffiths, ’67, Kelly, Sherman, ’68)
For a ferromagnet with positive external field, the magnetization at a
vertex will not decrease, when

» The number of edges increases;

» The external magnetic field increases;

» The temperature decreases.

Lemma (Griffiths, Hurst, Sherman, ’70)
For a ferromagnet with positive external field, the magnetization is
concave in the external fields, i.e.,
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Outline of the proof

Aim 4 (B, B)

€ B
= lim lim [1/;,,(0,8)—1—/0 8ﬁ/l//n(ﬂ , B)ydp’ +/

el0 n—o0

8 / /
LRI

B
o1 (0, B)+o+g£/8 3598 BIap

= ¢n(B, B).
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Internal energy

i _ ! Bl X, (oi0j),
%wn(ﬂ’ B) = n (i%e:E <U'0]>/L T n |E,

EID)

E [(aia/)u]
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Internal energy

|En| 2-i.j)ekn <0i‘7i)u

0 1
g ¥n(B,B) = Y foiog), =

p (i.j)ekn [Enl
E[D]
5 E[(aioj) ]
Gi e Gi
hr h
E[D E[D
—E|(oi03), | — =—E[foicr).]
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Derivative of ¢

0 E[D]
559 BB = ——E[(oic],].
on(B, B) = E[ZD] log cosh(B) — @E[log(l + tanh(B) tanh(h;) tanh(h,))]

D D
+E [Iog (eB 1_[ {1+ tanh(p)tanh(h)} + e~ ? ]_[ {1 —tanh(B) tanh(h,-)}ﬂ
i=1 i=1

> Show that we can ignore dependence of h; on g;
(Interpolation techniques. Split analysis into two parts, one for
small degrees and one for large degrees)

> Compute the derivative with assuming g fixed in hg.
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Thermodynamic quantities

Corollary

Lett > 2. Then, in the configuration model, a.s.:
The magnetization is given by

1 0
m(ﬂ,B>En'Lmoonzl<m>u a5 @B =E[lo),, |

The susceptibility is given by

oM, (B, B 92
xp.8) = tim B B
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Critical temperature

Define the magnetization on G, as

n

1
mn (B, B) = — > (o).

i=1

Then, the spontaneous magnetization,

T =0, B < Bc
m(ﬁ,0+)—g%m(ﬁ, B){ >0, B8 > B..
The critical inverse temperature B, is given by

E[K](tanh B.) = 1.

Note that, for r € (2, 3), we have E[K] = oo, so that B, = 0.
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Critical exponents

'02).

Predictions by physicists (e.g. Leone, Vazquez, Vespignani, Zecchina,

Critical behavior of magnetization m, and susceptibility x.

m(B,0%). B | Be | m(Be, BY, B L O | x(B,0%), B | B
r>5 ~ (B — BV ~ B! ~ (B =B
Te(3,5) |~ (PO | ~BUCD
Te23) |~ (B BV ~ B! ~ (B - Bo)?
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Distances in power-law random graphs

Let H, be the graph distance between two uniformly chosen connected
vertices in the configuration model. Then:

» Fort > 3and E[K] > 1 (vdH, Hooghiemstra, Van Mieghem, ’05),
H, ~ logn,
» Fort € (2, 3) (vdH, Hooghiemstra, Znamenski, ’07),

H, ~ loglog n;
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