
Lecture 2

Maximum and intermediate values

In this lecture we will start discussing the main subject of interest in this course:
geometric properties of the DGFF sample paths. After some introduction and pic-
tures, we will focus attention on the behavior of the absolute maximum as well as
the level sets at heights proportional to the absolute maximum. We will then state
the main theorem on the scaling limit of such level sets linking the limit object to
Gaussian multiplicative chaos and Liouville quantum gravity. The proofs of the
main theorems are relegated to the forthcoming lectures.

2.1. Level set geometry

The existence of the scaling limit established in Theorem 1.26 indicates that the law
of the DGFF is asymptotically scale invariant. Scale invariance of a random object
usually entails one of the following two possibilities:

• either the object is trivial (e.g., degenerate, flat, non-random),

• or it is very interesting (e.g., chaotic or fractal, etc).

As is seen in Fig. 2.1, the DGFF definitely falls into the latter category.
Looking at Fig. 2.1 more closely, a natural first question is to understand the be-
havior of the (implicit) boundaries between warm and cold colors. As the field
averages to zero, and should thus take both positive and negative values pretty
much everywhere, this in particular amounts to looking at the contour lines be-
tween the regions where the field is positive and where it is negative. This has been
done and corresponds to the beautiful work of Schramm and Sheffield, with later
contributions due to Werner, Miller and others. It is thus known that (with proper
formulation) these lines admit a scaling limit to a process of nested collections of
loops called a Conformal Loop Ensemble. The individual contour lines are closely
related to the Schramm-Loewner process SLEk with k = 4.
Our interest in these lectures will be somewhat different as we will want to look
at level sets at heights proportional to the scaling of the maximum. We call these

15 (Last update: June 21, 2017)



Figure 2.1: A sample of the DGFF on 300⇥300 square in Z2. The cold colors
(violet and blue) indicate low values, the warm colors (yellow and red) indicate
large values. The fractal nature of the sample is quite apparent.

intermediate level sets. Samples of such level sets are shown in Fig. 2.2.
The self-similar structure of the level sets in Fig. 2.2 is quite apparent. This moti-
vates the following questions:

• Is there a way to take a scaling limit of the samples in Fig. 2.2?

• And if so, is there a way to characterize the limit object directly?

Our motivation for these arises directly from Donsker’s Invariance Principle for
random walks. There one first answers the second question by constructing a limit
process called the Brownian Motion. Then one proves that, under diffusive scaling
of space and time, all random walks with zero mean and second moments scale to
that Brownian motion (or constant multiples thereof).
The goal of the lectures for the rest of the week is to answer these questions for
intermediate level sets. We will do this only for one starting process (the DGFF
above) so this cannot be thought as a full analogue of Donsker’s Invariance Princi-
ple. Notwithstanding, the spirit of the result is quite similar.

2.2. Growth of absolute maximum

In order to set the scales for our future discussion, we first have to identify the
growth-rate of the absolute maximum. Here an early result of Bolthausen, Deuschel
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Figure 2.2: Plots of the points where the sample of the DGFF in Fig. 2.1
is at heights (as labeled left to right) above 0.1, 0.3 and 0.5-multiples of
the absolute maximum, respectively. Higher level sets are too sparse to
produce a visible effect.

and Giacomin from 2001 provided control of the leading-order asymptotic in square
boxes. Their result reads:

Theorem 2.1 [Bolthausen, Deuschel, Giacomin 2001] For VN := (0, N)2 \ Z2,

max
x2VN

hVN (x) =
�

2
p

g + o(1)
�

log N (2.1)

where o(1) ! 0 in probability as N ! •.

Proof of upper bound in (2.1). We start by noting the well-known tail estimate for
centered normal random variables:

Exercise 2.2 Prove that

Z law
= N (0, s2) ) P(Z > a)  e�

a2
2s2 , a > 0. (2.2)

We will want to use this for Z replaced by hVN
x but for that we need need to bound

the variance of hVN
x uniformly in x 2 VN . Here we observe that, thanks to the

monotonicity of V 7! GV(x, x) and translation invariance Gz+V(z + x, z + y) =
GV(x, y), denoting eVN := (�N/2, N/2)2 \ Z2, there is a c 2 R such that

max
x2VN

Var(hVN
x )  Var

�

h eV2N
0

�  g log N + c, (2.3)

where the last bound follows from the asymptotic in Theorem 1.17. Plugging this
in (2.2), for any q > 0 we thus get

P
�

hVN
x > q log N

�  exp
n

�1
2

q2(log N)2

g log N + c

o

. (2.4)
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Using that (1 + l)�1 � 1 � l for l 2 (0, 1) we obtain

1
g log N + c

� 1
g log N

� c
(g log N)2 (2.5)

as soon as N is sufficiently large. Then

max
x2VN

P
�

hVN
x > q log N

�  c0N� q2
2g (2.6)

for c0 := eq2c/(2g2) as soon as N is large enough. The union bound and the fact
that |VN |  N2 then give

P
⇣

max
x2VN

hVN
x > q log N

⌘

 Â
x2VN

P
�

hVN
x > q log N

�

 c0|VN |N� q2
2g = c0N2� q2

2g .

(2.7)

This tends to zero as N ! • for any q > 2pg thus proving “” in (2.1).

The proof of the complementary lower bound is considerably harder. The idea is to
use the second-moment method but that requires working with a scale decompo-
sition of the DGFF and computing the second moment under a suitable truncation
on the various terms in this decomposition. We will not perform this calculation
here as the result will follow as a corollary from Theorem 2.7 below.
Soon after the appearance of the above results, Daviaud was able to extend the
control to the level sets of the form

�

x 2 VN : hVN
x � 2

p
g l log N

 

, (2.8)

where l 2 (0, 1). His result reads:

Theorem 2.3 [Daviaud 2004] For any l 2 (0, 1),

#
�

x 2 VN : hVN
x � 2

p
g l log N

 

= N2(1�l2)+o(1) , (2.9)

where o(1) ! 0 in probability as N ! •.

Proof of “ ” in (2.9). Let LN denote the cardinality of the set in (2.8). Using the
Markov inequality and the reasoning (2.6–2.7),

P
�

LN � N2(1�l2)+e
�  N�2(1�l2)�eE(LN)

 c0N�2(1�l2)�eN2�2l2
= c0N�e.

(2.10)

This tends to zero as N ! • for any e > 0 thus proving “” in (2.9).

We will not give a full proof of the lower bound for all l 2 (0, 1) as that requires
similar truncations as the corresponding bound for the maximum. However, these
truncations are avoidable for l small, so we will content ourselves with:
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Proof of “�” in (2.9) with positive probability for l < 1/
p

2. Define

YN := Â
x2Ve

N

ebhVN
x (2.11)

where b > 0 is a parameter to be adjusted later and Ve
N := (eN, (1 � e)N)2 \ Z2

for some e 2 (0, 1/2) to be fixed for the rest of the calculation. This can be thought
of as the normalizing factor (the partition function) for the Gibbs measure on VN
where state x gets energy hVN

x . Our first observation is:

Lemma 2.4 For b > 0 such that b2g < 2 there is c = c(b) > 0 such that

P
�

YN � cN2+ 1
2 b2g� � c (2.12)

once N is sufficiently large.

Proof. We will prove this by invoking the second moment method whose driving force
is the following inequality:

Exercise 2.5 Let Y 2 L2 be a non-negative random variable. Prove that

P
�

Y � hEY
� � (1 � h)2 [E(Y)]2

E(Y2)
, h 2 (0, 1). (2.13)

We begin by computing the first moment of YN . The fact that EeX = eEX+ 1
2 Var(X)

for any X normal yields

EYN = Â
x2Ve

N

e
1
2 b2Var(hVN

x ). (2.14)

Writing eVN := (�N/2, N/2)2 \ Z2, the monotonicity of V 7! GV(x, x) gives

Var(h eVeN
0 )  Var(hVN

x )  Var(h eVN
0 ) (2.15)

Theorem 1.17 then implies

sup
N�1

max
x2Ve

N

�

�Var(hVN
x )� g log N

�

� < • (2.16)

As |Ve
N | is of order N2, using this in (2.14) we conclude that

cN2+ 1
2 b2g  EYN  c�1N2+ 1

2 b2g (2.17)

holds for some constant c 2 (0, 1) and all N � 1.
Next we will compute the second moment of YN . Using the notation for the Green
function, we have

E(Y2
N) = Â

x,y2Ve
N

e
1
2 b2[GVN (x,x)+GVN (y,y)+2GVN (x,y)] . (2.18)
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Invoking (2.16) and (1.44) we thus get

E(Y2
N)  c0Nb2g Â

x,y2Ve
N

✓

N
|x � y| _ 1

◆b2g

. (2.19)

For b2g < 2 the sum is dominated by pairs x and y with |x � y| of order N. The
sum is thus of order N4 and so we conclude

E(Y2
N)  c00Nb2g+4 (2.20)

for some constant c00 > 0. By (2.17), this bound is proportional to [EYN ]2 so using
this in (2.13) (with, e.g., h := 1/2) readily yields the claim.

Next we will need to observe that the main contribution to YN comes from the set
of points where the field is roughly equal bg log N:

Lemma 2.6 For any d > 0,

P
✓

Â
x2Ve

N

1{|hVN
x �bg log N|>(log N)1/2+d} ebhVN

x � dN2+ 1
2 b2g

◆

�!
N!•

0. (2.21)

Proof. By (2.16), we may instead prove this for bg log N replaced by bVar(hVN
x ).

Using the Markov inequality, the probability is then bounded by

1
dN2+ 1

2 b2g Â
x2Ve

N

E
⇣

1{|hVN
x �bVar(hVN

x )|>(log N)1/2+d} ebhVN
x
⌘

(2.22)

Changing variables inside the (single-variable) Gaussian integral gives

E
⇣

1{|hVN
x �bVar(hVN

x )|>(log N)1/2+d} ebhVN
x
⌘

= e�
1
2 b2Var(hVN

x )P
�|hVN

x | > (log N)1/2+d
�

 cN� 1
2 b2ge�c00(log N)2d

(2.23)

for some c, c0 > 0, where we used again (2.16). This bounds the probability in the
statement by a constant times d�1e�c00(log N)2d , which tends to zero as N ! •.

Combining the results of the two lemmas we readily infer

P
✓

Â
x2Ve

N

1{hVN
x �bg log N�(log N)1/2+d} �

c
2

N2+ 1
2 b2g�b2ge�b(log N)1/2+d

◆

� c
2

(2.24)

as soon as N is sufficiently large. Setting b so that bg log N � (log N)1/2+d =
2pgl log N gives 2 � 1

2 b2g = 2(1 � l2) + O(log N)�1/2+d) and so, since Ve
N ⇢ VN ,

P
�

LN � N2(1�l2)�c0(log N)1/2+d� � c
2

(2.25)

20 (Last update: June 21, 2017)



holds for some constant c0 2 R once N is large enough. This is “�” in (2.9)
with o(1) ! 0 with a uniformly positive probability. The claim applies only to b
such that b2g < 2, which means that it covers only l < 1/

p
2.

Having the lower bound with positive probability is actually sufficient to complete
the proof of (2.9) as stated. The key additional tool needed for this is the Gibbs-
Markov decomposition of the DGFF which will be discussed in the next lecture.
(The application to the above proof will be given as an exercise.)
It is actually remarkable that the first-moment calculation alone is able to nail the
correct leading order of the maximum as well as the asymptotic size of the level set
(2.8). As that calculation did not involve correlations between the DGFF at different
vertices, the same estimate would apply to i.i.d. Gaussians with the same growth
of the variances. This (and many subsequent derivations) may lead one to think
that the extreme values behave somehow like those of i.i.d. Gaussians. However,
this is very far from truth, as seen in Fig. 2.3.

Figure 2.3: Left: A sample of the level set (2.8) on a square of side N := 300
with l := 0.2. Right: A corresponding sample for i.i.d. normals with mean
zero and variance g log N. Although these two samples live on the same
“vertical scale”, their local structure is very different.

Related to this is the fact that the factor 1 � l2 in the exponent is ubiquitous in
this subject area. Indeed, it appears in various forms in the study of thick points
of Brownian motion and, as was just noted, i.i.d. Gaussians with variance g log N.
A paper by Chatterjee, Dembo and Ding (arXiv:1310.5175) gives (generous) condi-
tions under which such a factor should be expected.

2.3. Intermediate level sets

The main objective in this part of the course is to show that the intermediate level
set (2.8) admit a non-trivial scaling limit whose law can be explicitly characterized.
A key starting point is proper formulation of what it means to take a scaling limit.
Indeed, scaling the box down to a unit size, the set (2.8) becomes increasingly dense
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everywhere so taking its limit using, e.g., the topology of Hausdorff convergence
does not seem useful. The new idea here is to encode the set into the point measure
on D ⇥ R of the form

Â
x2DN

dx/N ⌦ d
hDN

x �aN
, (2.26)

where aN is a scale sequence such that

aN

log N
�!
N!•

2
p

g l (2.27)

for some l 2 (0, 1). A sample from (2.26) can be identified with the picture on
the left of Fig. 2.3. Theorem 2.3 indicates that the measure in (2.26) will have un-
bounded mass even if restricted to bounded intervals in the second variable, and so
suitable normalization is required. We will show that this can be done (somewhat
surprisingly) by a deterministic sequence of the form

KN :=
N2

p

log N
e�

a2
N

2g log N (2.28)

As is directly checked, (2.27) implies KN = N2(1�l2)+o(1) so the normalization is
consistent with with Theorem 2.3. Our main result, proved jointly with O. Louidor
in a recent posting (arXiv:1612.01424), is then:

Theorem 2.7 [Scaling limit of intermediate level sets] For each l 2 (0, 1) and
each D 2 D there is an a.s.-finite random Borel measure ZD

l on D such that for any aN
satisfying (2.27) and any admissible sequence {DN : N � 1} of lattice approximations
of D, the normalized point measure

hD
N :=

1
KN

Â
x2DN

dx/N ⌦ d hDN (x)�aN
(2.29)

obeys
hD

N
law�!

N!•
ZD

l (dx) ⌦ e�alhdh, (2.30)

where a := 2/pg. Moreover, ZD
l (A) > 0 for every non-empty open A ⇢ D a.s.

A remark is perhaps in order on what it means that random measures converge
in law. The space of Radon measures on D ⇥ R (of which hD

N is an example) is
naturally endowed with topology of vague convergence. Then hD

N ! hD in law
if for every f : D ⇥ R ! R which is continuous and compactly supported, the
integrals of f with respect to hD

N converge in law to the integral of f with respect
to hD. A subtlety of the above theorem is that the convergence actually happens on
a larger space, namely, D ⇥ (R [ {+•}). This means that we can take the above
statement even for functions which take non-trivial values on ∂D in the x-variable
and/or at +• in the h-variable. This then readily implies:

Corollary 2.8 For the setting of Theorem 2.7,

1
KN

#
�

x 2 DN : hDN (x) � aN
 law�!

N!•
(al)�1 ZD

l (D). (2.31)
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Proof. Apply Theorem 2.7 to hD
N integrated against f (x, y) := 1[0,•)(h).

Exercise 2.9 Apply suitable monotone limits to check that the convergence in (2.30) —
which restrict a priori only integrals of these measures with respect to compactly supported
continuous functions — can be applied to functions of the form

f (x, h) := 1A(x)1[a,b](h) (2.32)

for A ⇢ D either open or closed and a < b.

We remark that Corollary 2.8 extends, quite considerably, Theorem 2.3 originally
proved by Daviaud in 2004. Trying to get more feeling for what Theorem 2.7 says
about the positions of the points in the level set, we also state:

Corollary 2.10 Let XN be a point from {x/N : x 2 DN , hDN
x � aN} chosen uniformly

at random. Then
1
N

XN
law�!

N!•
bX with law( bX) =

ZD
l (·)

ZD
l (D)

. (2.33)

Proof. We easily check that, for any f : D ! R continuous (and thus bounded),

E
⇥

f (XN/N)
⇤

=
hhD

N , f ⌦ 1[0,•)i
hhD

N , 1[0,•)i
, (2.34)

where ( f ⌦ 1[0,•))(x, h) := f (x)1[0,•)(h) and the brackets denote the integral of the
function with respect to the measure. Applying Theorem 2.7, we get

hhD
N , f 1[0,•)i

hhD
N , 1[0,•)i

law�!
N!•

Z

D
f (x)ZD

l (dx)

ZD
l (D)

. (2.35)

This is what is stated above.

Exercise 2.11 The statement (2.35) harbors a technical caveat: we are taking the distri-
butional limit of a ratio of two random variables, each of which converges in law. Fill the
details needed to justify the conclusion.

The spatial part of the right-hand side of (2.30) thus tells us about the “intensity”
of the sets in the pictures in Fig. 2.3. Concerning the values of the field, we may
be tempted to say that these are Gumbel “distributed” with decay exponent al.
This is not justified by the statement per say as the measure on the right of (2.30)
is not a probability (it is not even finite). Still, one can perhaps relate this to the
corresponding problem for i.i.d. Gaussians with variance g log N; cf Fig. 2.3 again.
As a straightforward exercise in extreme-value statistics, we in fact pose:

Exercise 2.12 Prove the same type of convergence, with the same KN and with ZD
l re-

placed by (a constant times) the Lebesgue measure on D, for the measure hD
N associated

with standard i.i.d. Gaussians with covariance g log N.

We rush to add that (as we will explain later) ZD
l is a.s. singular with respect to the

Lebesgue measure. This vindicates, one more time, Fig. 2.3.
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2.4. Link to Liouville Quantum Gravity

As we will see, the random measures {ZD
l : D 2 D} (or, rather their laws) are very

closely related. We will later give a list of properties that characterize these laws
uniquely. From these properties one can derive the following transformation rule
under the conformal maps between the underlying domains:

Theorem 2.13 [Conformal convariance] Let l 2 (0, 1). Under any conformal bijec-
tion f : D ! f (D) between the admissible domains D, f (D) 2 D, the laws of the above
measures transform as

Z f (D)
l � f (dx) law

= | f 0(x)|2+2l2
ZD

l (dx). (2.36)

Recall that the simply connected domains are all included in D and that rD(x) de-
notes the conformal radius of D from x. The following is now a simple consequence
of the above theorem:

Exercise 2.14 Show that in the class of bounded, simply-connected D ⇢ C, the law of

1
rD(x)2+2l2 ZD

l (dx) (2.37)

is invariant under conformal maps. Prove that this measure is infinite a.s.

As a consequence, the law of ZD
l for any bounded and simply connected D can thus

be reconstructed from the law on, say, the open unit disc. However, we can even
give an independent construction of the law of ZD

l using the ideas from Kahane’s
theory of multiplicative chaos.
Let H1

0(D) denote the closure of the set of smooth, functions with compact support
in D in the topology induced by the Dirichlet inner product

h f , gir :=
1
4

Z

D
r f (x) ·rg(x)dx , (2.38)

where r f is now the ordinary (continuum) gradient. For {Xn : n � 1} i.i.d. stan-
dard normals and { fn : n � 1} an orthonormal basis in H1

0(D), let

jn(x) :=
n

Â
k=1

Xk fk(x). (2.39)

These are to be thought of as regularizations of the CGFF. Indeed, we have:

Exercise 2.15 For any smooth f : D ! R, let jn( f ) :=
R

D f (x)jn(x)dx. Show
that jn( f ) converges, as n ! •, in L2 to a CGFF in the sense of Definition 1.28.

For each b 2 [0, •), define the random measure

µ
D,b
n (dx) := 1D(x)ebjn(x)� b2

2 E[jn(x)2] dx. (2.40)

The following observation goes back to Kahane in 1985:
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Lemma 2.16 [Gaussian Multiplicative Chaos] There exists a random, a.s. finite (al-
beit possibly trivial) Borel measure µ

D,b
• on D such that for each measurable A ⇢ D

µ
D,b
n (A) �!

n!•
µ

D,b
• (A), a.s. (2.41)

Proof. For each n 2 N define

Mn := µ
D,b
n (A) and Fn := s(X1, . . . , Xn). (2.42)

We claim that {Mn : n � 1} is a martingale with respect to {Fn : n � 1}. Using the
regularity of the underlying measure space (to apply Fubini-Tonelli)

E(Mn+1|Fn) = E
�

µ
D,b
n+1(A)

�

�Fn
�

=
Z

D
dx E

�

ebjn+1(x)� b2
2 E[jn+1(x)2]

�

�Fn
�

. (2.43)

The additive structure of jn now gives

E
�

ebjn+1(x)� b2
2 E[jn+1(x)2]

�

�Fn
�

= ebjn(x)� b2
2 E[jn(x)2]E

�

eb fn+1(x)Xn+1� 1
2 b2 fn+1(x)2E[X2

n+1]
�

= ebjn(x)� b2
2 E[jn(x)2]. (2.44)

Using this in (2.43), the right-hand side then wraps back into µ
D,b
n (A) = Mn and so

{Mn : n � 1} is a martingale as claimed.
The martingale {Mn : n � 1} is non-negative and so the Martingale Convergence
Theorem yields Mn ! M• a.s. In order to identify the limit in terms of a ran-
dom measure, we have to rerun the above argument as follows: For any bounded
measurable f : D ! R define

fn( f ) :=
Z

f dµ
D,b
n . (2.45)

Then the same argument as above shows that fn( f ) is a bounded martingale and
so fn( f ) ! f•( f ). Specializing to continuous f , the immediate bound

�

�fn( f )
�

�  µ
D,b
n (D) k f kC(D) (2.46)

along with the above a.s. convergence Mn ! M• yields
�

�f•( f )
�

�  M•k f kC(D). (2.47)

Restricting to a countable dense subclass of f to manage proliferation of null sets,
f 7! f•( f ) extends to a continuous linear functional on C(D) a.s. whose value
for any f still agrees with f•( f ) (constructed by the above limit) a.s. The Riesz
Representation Theorem then casts f•( f ) as

f•( f ) =
Z

f dµ
D,b
• (2.48)

25 (Last update: June 21, 2017)



for some (random) Borel measure µ
D,b
• . By straightforward approximation argu-

ments, we then get (2.41) (with the null set depending on A) as well.

As it turns out, the law of the measure µ
D,b
• is independent of the choice of the

underlying basis in H1
0(D). (This has been proved gradually starting with some-

what restrictive Kahane’s theory and culminating in a recent paper by Shamov).
Moreover, it is also known that for each b 2 (0, bc), where

bc := a = 2/
p

g (2.49)

we have µ
D,b
• (D) > 0 a.s. (This will independently follow from our results be-

low.) The measure µ
D,b
• is called the Gaussian multiplicative chaos associated with

the continuum Gaussian Free Field. We now claim:

Theorem 2.17 [ZD
l -measures as LQG measure] Assume the setting of Theorem 2.7

with l 2 (0, 1) and denote

yD
l (x) := exp

n

2l2
Z

∂D
PD(x, dz) log |x � z|

o

. (2.50)

Then there is ĉ 2 (0, •) such that for all D 2 D,

ZD
l (dx) law

= ĉyD
l (x) µD, la

• (dx). (2.51)

Note that yD
l is just the 2l2-th power of the conformal radius rD(x). The measure

on the right of (2.51) (without the constant c) is called the Liouville Quantum Gravity
(LQG) measure in D for parameter b := la. This object is currently being heavily
studied in connection with random conformally-invariant geometry.

Figure 2.4: A sample of the LQG measure yD
l (x)µD,la

• (dx) for D a unit
square and l = 0.3. The high points indicate places of high local intensity.

We will not discuss the LQG measures much in these lectures, although (as we
have seen above) they will keep popping up in our various theorems. The proofs
of the above results will be given in the forthcoming two lectures.
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