Lecture 1

Discrete Gaussian Free Field & scaling limits

In this lecture we will define the main object of interest in this course: the two-
dimensional Discrete Gaussian Free Field (henceforth abbreviated as DGFF). We
will then identify the properties that make this object special, and as a result also
more amenable to analysis. This will particularly include a proof of the Gibbs-
Markov property and the resulting connection to discrete harmonic analysis. We
will then use the latter connection to infer the existence of a scaling limit to the
continuum Gaussian Free Field (CGFF) which is a concept that will underlie, albeit
often in disguise, most of the results discussed in the course.

1.1. Definitions

Letd > 1be an integer and let Z¢ denote the d-dimensional hypercubic lattice. This
is a graph with vertices at all points of R? with integer coordinates and an edge
between any two vertices at unit (Euclidean) distance. Denoting the sets of edges
(with both orientations identified as one edge) by E(Z?), we then put forward:

Definition 1.1 [DGFE, explicit formulal Let V C Z9 be finite. The DGFF in V is
a process {hy: x € Z} indexed by vertices of Z® with the law given (for any measur-

able A C RZ') by

P A) = / o Zuweee) M [T dm, T do(dhy) . (11)
A

norm. xeV x¢V

Here é is the Dirac point-mass at 0. The term “norm.” denotes a normalization constant.

Note that this definition forces all values of h outside V to zero — we thus talk
about zero boundary condition. To see that this definition is good, we pose:

Exercise 1.2 Prove that the integral in (1.1) is finite for A := RZ" and so the measure
can be normalized to be a probability.

The appearance of 4d factor in the exponent is a convention used in probability;
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physicists would write } instead of f;. Without this factor, the definition extends
readily from Z“ to any locally-finite graph but since Z¢ (in fact Z?) will be our
main focus, we refrain from doing so.

The above definition gives the law of the DGFF in the form of a Gibbs measure, i.e.,
a measure of the form

Z e PO y(dn) (1.2)

where Z is a normalization constant, H is the Hamiltonian,  is the inverse temper-
ature and v is an a priori (typically a product) measure. Many models of statistical
mechanics are cast this way; a key feature of the DGFF is that the Hamiltonian is
a positive-definite quadratic form which makes the resulting law of & a multivari-
ate Gaussian. This offers a possibility to define the law directly by prescribing the
mean and covariances.

Let {X,,: n > 0} denote the simple symmetric random walk on Z% ForV C 74,
we recall the definition of Green function in V given by

Tye—1
GY(x,y) == E"( Y 1{xny}> (1.3)
n=0

where E* is the expectation with respect to the law of X with Xy, = x a.s. and
Tye ;= inf{n > 0: X,, € V'} is the first exit time of the walk from V. We note:

Exercise 1.3  Prove that, for any x,y € Z¢,
V + GY(x,y) is non-decreasing with respect to set inclusion. (1.4)
In particular, for any V. C Z% (in any d > 1), we have GV (x,y) < oo for all x,y € Z°.

As is also easy to check, we also have GV(x, y) = Ounless x,y € V (in fact, unless x
and y can be connected by a path on Z¢ that lies entirely in V). The following
additional properties of GV will be important in the sequel:

Exercise 1.4 Let A denote the discrete Laplacian on Z% acting on f: Z* — R as
A=), (f) ). (15)
y: (vy)€E(Z7)
Then for any V C Z% and any x € Z%,y — GV (x,y) is the solution to

(1.6)

AGY (x,-) = —2d65,(+), onV,
GV(x,-) =0, on V¢,

where 6, is the Kronecker delta at x.

Another way to phrase this exercise is by saying that the Green function is (24)-
multiple of the inverse of the negative Laplacian in £2(V) — with Dirichlet bound-
ary conditions on V°. This functional-analytic representation of the Green function
allows us to readily solve:
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Exercise 1.5 For any V C Z% we have:

(1) forany x,y € Z%,
G (xy) = G"(y,x) (17)

(2) forany f: Z* — R with finite support,

Y., G y)f(x)f(y) >0. (1.8)

x,yeZ4

We remark that purely probabilistic solutions (i.e., those based solely on consider-
ations of random walks) exist as well. What matters for us is that properties (1-2)
make G" a covariance of a Gaussian process. This gives rise to:

Definition 1.6 [DGFF, via the Green function] Let V C Z“ be given. The DGFF
in V is a multivariate Gaussian process {hY : x € Z} with law determined by

E(hY)=0 and E(h/h))=G"(x,y), xyeZ° (1.9)

or, written concisely,
h = N(0,G") (1.10)
In order to avoid accusations of logical inconsistency, we immediate pose:

Exercise 1.7 Prove that for V. C Z* finite, Definitions 1.1 and 1.6 coincide.

The advantage of Definition 1.6 over Definition 1.1 is that it works for infinite V' as
well. The functional-analytic connection can be pushed further as follows. Given
a finite V. C Z¢, consider the Hilbert space H" := {f: Z? — R, supp(f) C V}
endowed with the Dirichlet inner product

(f,8)v =5y L V() Vg(x) (1.11)

xezZ4

where Vf(x), the gradient of f at x, is the vector in R? whose i-th component is
f(x+e;) — f(x), for e; the i-th unit vector in IR. (Since the supports of f and g are
finite, the sum is effectively finite.) We then have:

Lemma 1.8 [DGFF as Hilbert-space Gaussian] For the setting as above with V finite,
let {¢n:n = 1,...,|V|} be an orthonormal basis in H" and let Zy,...,Zy| be i.id.

standard normals. Then {h,: x € Z%}, where

v
hei=Y_ ou(x)Z,,  x€2° (1.12)
n=1

has the law of the DGFF in V.

Exercise 1.9 Prove the previous lemma.
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Lemma 1.8 thus gives yet another way to define DGFFE. (The restriction to finite V
was imposed only for simplicity.) As we will see at the end of this lecture, this is
the definition that generalizes seamlessly to a continuum underlying space.

We finish this section by a short remark on notation: Throughout these lectures we
will write 1V to denote the whole configuration of the DGFF in V and write hY for
the value of 1" at x. We will occasionally write 1" (x) instead of hY.

1.2. Why d = 2 only?
Throughout this course we will focus on the case of d = 2. Let us therefore com-
ment on what makes the two-dimensional DGFF special. We begin by noting:

Lemma 1.10 [Green function asymptotic] Let Vy := (0,N)? N Z? and, for any
€ € (0,1/2), denote V§ := (eN, (1 — €)N)* N Z4. Then for any x € V§,

N, d=1,
G (x,x) W {losN, d=2, (1.13)
1, d >3,

where “~" means that the ratio of the left and right-hand side tends to a positive and finite
number as N — oo (which may depend on where x is asymptotically located in V).

Proof (sketch). We will only prove thisind = 1 and d > 3 as the d = 2 case will
be treated later in far more explicit terms. To this end, a routine application of the
Strong Markov Property for the simple symmetric random walk yields
1
14
= —— 1.14
G (X,X) Px(f-x >TVC)’ ( )
where Ty := inf{n > 1: X, = x} is the first return time to x. Assuming x € V,
ind = 1 we then have

1
P (T > Tye) = 5 [Px“(rx > Tye) + P (1 > TVc)} (1.15)

where 7, := inf{n > 0: X,, = x} is the first hitting time at x. The Markov property
of the simple random walk shows that y — PY(7y > Tyg) is discrete harmonic
on{l,...,.x—1}U{x+1,...,N — 1} with value zero at y = x and one aty = 0
and y = N. Hence

1 _ 1
Px+1(Tx > TVC) - m and Px 1(Tx > TVC) - ; (116)
As x € Vy;, both of these probabilities are order 1/ N and scale nicely when x grows
proportionally to N. This proves the claimind = 1.

In d > 3 we note that the transience and translation invariance of the simple sym-
metric random walk implies

1
VN ,
G (x’x) N—oc0 PO<7A.'0 = OO) (117)
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uniformly in the above x. (Transience is equivalent to PY(fy = o) > 0.) ]

Focusing for the moment on d = 1, the fact that the variance blows up linearly
suggests that we normalize the DGFF by the square-root of the variance, i.e., v'N,
and attempt to extract a limit. This does work and yields:

Theorem 1.11 [Scaling to Brownian Bridge in d = 11 Suppose d = 1 and let h be
the DGFF in Vi := (0, N) N Z. Then

{\}th:te [0,1]}&{\@1/\4%6 [0,1]} (1.18)

where W is the standard Brownian Bridge on [0, 1].

We leave it to the reader to solve:

Exercise 1.12 Prove Theorem 1.11. [Hint: Note that {hy;1 —hy: x = 0,...,N —1}
are i.i.d. N'(0,2) conditioned on their total sum being zero.]

We remark that the limit taken in Theorem 1.11 is an example of a scaling (or con-
tinuum) limit — the lattice spacing is taken to zero while keeping the overall (con-
tinuum) domain fixed. In renormalization group theory, taking the scaling limit
corresponds to the removal of an ultraviolet cutoff.

Moving to d > 3, in the proof of Lemma 1.10 we observed enough to conclude:
Theorem 1.13 [Full-space limit in d > 3] Suppose d > 3 and let h be the DGFF
in Viy := (=N/2,N/2)4 N Z4. Then for any x,y € Z¢,

dk  cos(k-(x—y))
(2m) 2 2;1:1 sin(k;/2)?

G (x,y) — GZ(xy) = / (1.19)

In particular, i~ — N (0, GZ") := full space DGFFE,
p p

This means that the DGFF in large-enough (finite) domains is well approximated
by the full-space DGFF as long as we are far away from the boundary. This is an
example of a thermodynamic limit — the lattice stays fixed and the boundaries of
domains slide off to infinity. In renormalization group theory, taking the thermo-
dynamic limit corresponds to the removal of an infrared cutoff.

From Lemma 1.10 it is clear that the thermodynamic limit is meaningless for the
two-dimensional DGFF (indeed, variances blow up and, since we are talking about
Gaussian random variables, there is no tightness). Let us attempt to take the scal-
ing limit just as in 4 = 1: normalize the field by the square-root of the variance
(i.e., y/log N) and extract a distributional limit (for which it suffices to prove the
limit of the covariances). Here we note that

sup sup G (x,y) < oo, (1.20)
N>1 xyeVy
|x—y|>eN
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a fact that we will prove later as well. For any s, t € (0,1)? we thus get

\% %
E< h\_tI\I]\U h\_SNNj ) SN C(t) >0, ifs =t, (1 21)
\/log N’ V9og N/ N—e |0, else, '
where, here and henceforth,
|tN] := the unique z € Z? such that tN € z +[0,1)?. (1.22)

The only way to read this is that the limit distribution is a collection of independent
normals indexed by ¢ € (0,1)? — an object too irregular and generic to retain useful
information from before the limit was taken.

As we will see, the right thing to do is to take the limit of the DGFF without any
normalization. That will lead to a singular limit object as well but one that cap-
tures better the behavior of the DGFF and features additional symmetries (namely;,
conformal invariance) not present at the discrete level.

1.3. Green function asymptotic

Let us now analyze the situation in d = 2 in more detail. Our aim is to consider the
DGEFF in sequences of lattice domains {Dy: N > 1} that somehow correspond to
the scaled-up version of a given continuum domain D C C. The assumptions on
the continuum domains are the subject of:

Definition 1.14 [Admissible domains] Let © be the class of sets D C C that are
bounded, open and connected and such that their topological boundary oD is the union of
a finite number of connected components each of which has a positive (Euclidean) diameter.

For the sake of future use we note:

Exercise 1.15 All bounded, open and simply connected D C C belong to ®.

As to what sequence of discrete approximations of D we will permit, a natural
choice would be to work with plain discretization {x € Z?: x/N € D}. However,
this is too crude in the sense that parts of dD could be missed out completely; see
Fig. 1.1. We thus have to qualify admissible discretizations more precisely:

Definition 1.16 [Admissible lattice approximations] A family {Dx: N > 1} of
subsets of Z? is a sequence of admissible lattice approximations of D if

Dy C {x € Z*: de(x/N,D) > Uy}, (1.23)
where deo denotes the (®-distance on Z?, and if, for each § > 0,
Dy 2 {x € Z*: dw(x/N, D) > 6} (1.24)
holds once N is sufficiently large (depending possibly on o).
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Figure 1.1: An example of discretization of a continuum domain. The continuum
domain corresponds to the region in the plane bounded by the solid curves. The
discrete domain is the set of vertices in the shaded areas.

Note that this still ensures that x € Dy implies x/N € D. For the statement of the
next theorem, consider the (standard) Brownian motion {B;: t > 0} on R? and let
Tpe := inf{t > 0: B; & D} be the first exit time from D. Denote by IT" (x, -), with

I1°(x, A) := P* (B, € A), (1.25)

the law of the exit point from D of the Brownian motion started from x. This is also
known as the harmonic measure from x in D. The following is then perhaps the most
technical result in this lecture:

Theorem 1.17 [Green function asymptoticind = 2] Supposed = 2,let D € ® and
let {Dn: N > 1} be a sequence of admissible lattice approximations of D. Set g := 2/ 1.
Then there is co € IR such that for all x € D,

GPN(|xNJ, [xN]) = glog N + co —I—g/aD 1P (x,dz) log |x — z| +o(1)  (1.26)
and, for all x,y € D with x # y, also
GPN([xN], |[yN]) = —glog |x — y| —|—g/aD 1P (x,dz) log |y — z| +0(1).  (1.27)
Here 0o(1) — 0as N — oo and | - | denotes the Euclidean norm on IR?.

Proof (modulo two lemmas). The proof of the theorem starts by a convenient repre-
sentation of the Green function using the potential kernel. This is a function a: Z? —
[0, 00) defined, e.g., by the explicit formula

o dk 1 —cos(k - x)
a(x) := /(_n,n)z (27)? sin(k1/2)? + sin(kp/2)% (1.28)
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A key property for us is the content of:
Exercise 1.18 Show that a solves the Poisson problem

{Aa(-) = 450(+), on 72,

2(0) =0, (1.29)

where, as before, d is the Kronecker delta at 0.

Writing oV for external vertex boundary of V, i.e., the set of vertices in V¢ that have
an edge to a vertex in V, we now get:

Lemma 1.19 [Green function from potential kernel] For any finite V. C Z? and
any x,y €V,

GY(x,y)=—a(x—y)+ Y H'(x,2)a(z—y), (1.30)
zedV

where HY (x,z) := P*(Xy,. = z) is the probability that the simple symmetric random
walk started from x exists V at z € dV.

Proof. In light of (1.6), (1.29) and the translation invariance of the lattice Laplacian,

$(y) :==G"(x,y) +a(x —y) (1.31)

is discrete harmonic in V. Hence M, := ¢(Xv,.an) is a martingale for the usual fil-
tration o (X, . .., Xn). The finiteness of V ensures that M is bounded; the Optional
Stopping Theorem then gives

oly) = Y. H"(y,2)¢(2). (1.32)

zedV

Since G"(x,-) vanishes on 9V, this and the symmetry of x,y — G"(x,y) and of
x,y — a(x — y) now readily imply the claim. O

We note that the restriction to finite V was not a mere convenience. Indeed:

Exercise 1.20  Show that GZ* % (x,y) = a(x) + a(y) — a(x —y). Use this to conclude
that, in particular, (1.30) is generally false for infinite V.

As the next step of the proof, we invoke:

Lemma 1.21 [Potential kernel asymptotic] Thereis cy € R such that
a(x) = glog|x| +co + O(|x| %), (1.33)
where, we recall, ¢ = 2/ and |x| is the Euclidean norm of x.

This asymptotic form was apparently first proved by Stohr in 1950. In a 2004 paper,
Kozma and Schreiber analyzed the behavior of the potential kernel on other lattices
and identified the constants g and ¢ in terms of specific geometric attributes of the
lattice. In our case, we can certainly attempt:

Exercise 1.22 Prove Lemma 1.21 by suitable asymptotic analysis of (1.28).
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Using (1.30) and (1.33) together, for x,y € D with x # y we now get

GP¥([aN], [yN]) = glog|x —y|

+g Y HP¥(|aNJ,z)logly—z/N|+O(1/N)  (1.34)
z€dDy

where the O(l /N) term arises from the approximation of (the various occurrences
of) |[xN| by xN and also from the error in (1.33). To get (1.27), we thus need to
convert the sum into the integral. Here we will need:

Lemma 1.23 [Weak convergence of harmonic measures] Forany D € © and any
sequence {Dn: N > 1} of admissible lattice approximations of D,
Y HPV([aN],z) bn () " TP (x, ). (1.35)

x€dDyn N—eo

We will omit the proof as it would take us too far on a tangent; the reader is instead
referred to (the Appendix of) a joint paper with O. Louidor (arXiv:1410.4676). The
idea is to use Donsker’s Invariance Principle to extract a coupling of the simple
random walk and the Brownian motion that ensures that once the random walk
exits Dy, the Brownian motion will exit D at a “nearby” point. This is where we
find it useful that the boundary components to have a non-trivial diameter.

Since u — log |y — u| is bounded and continuous in a neighborhood of 9D (when-
ever y € D), the weak convergence in Lemma 1.23 implies

y HDN(LxNJ,z)log|y—z/N|:/ 1P (x,dz) log [y —z| + o(1),  (1.36)
z€dDy oD

with 0(1) — 0 as N — oo. This proves (1.27). The proof of (1.26) only amounts to
the substitution of —glog |x — y| in (1.34) by glog N + co; the convergence of the
sum to the integral is then handled as before. O

We remark that the convergence of discrete harmonic measure to the continuous
one in Lemma 1.23 is where all of the above assumptions on the continuum domain
and its lattice approximations enter.

The objects appearing on the right-hand side of (1.26-1.27) are actually quite well
known. Indeed, we set:

Definition 1.24 [Continuum Green function & conformal radius] For D C C
bounded and open, we define the continuum Green function in D from x to y by

GP(x,y) := —glog |x —y| +g/aD 1P (x,dz) log |y — z| (1.37)

Similarly, for x € D we define

rp(x) := exp{/aD 1P (x,dz) log |x — z]} (1.38)
to be the conformal radius of D from x.
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The continuum Green function is usually defined as the fundamental solution to
the Poisson equation; i.e., the continuum version of (1.6). We will not need that fact
in what follows so we will content ourself with the explicit form above. Similarly,
for open simply connected D C C, the conformal radius of D from x is defined as
the value |f’(x)|~! for f any conformal bijection of D onto {z € C: |z| < 1} such
that f(x) = 0. (The result does not depend on the choice of the bijection.) Although
we will not need this connection either, it is instructive to solve:

Exercise 1.25 Check that this coincides with rp(x) above.

For this as well as later derivations it may be useful to know that the harmonic
measure is conformally invariant: If f: D — f(D) is a conformal bijection with
continuous extensions of f to dD and f~! to df(D), then

P (x, A) = WP (f(x), f(A)) (1.39)

for any measurable A C dD. This can be seen as a direct consequence of conformal
invariance of the Brownian motion, although more straightforward approaches to
prove this exist as well.

1.4. Continuum Gaussian Free Field

Theorem 1.17 reveals two important facts: First, as already observed in Lemma 1.10
without proof, the pointwise limit of unscaled DGFF is meaningless as, in light
of (1.26), there is no tightness. Second, by (1.27), the off-diagonal covariances of
the DGFF do have a limit which is given by the continuum Green function. This
function is singular on the diagonal, but the singularity is only logarithmic and
thus pretty mild. This permits us to derive:

Theorem 1.26 Suppose D € © and let {Dy: N > 1} be any admissible sequence of
lattice approximations of D. For any bounded measurable f: D — R, let

hPx (f) = /D dx ()Y, (1.40)

Then
WOV (f) A;TW; N(0,63), (1.41)

where
ofi= [ dxdyf(x)f(1)C°(x,y). (1.42)

Proof. The random variable hPN (f) is Gaussian with mean zero and variance

B[] = [ dxdyff )G (LNL N)). (149

DxD

The reasoning underlying the proof of Theorem 1.17 yields the existence of ¢ € R
such that for all N large enough and all x,y € Dy,

N .
GVN(X,y) S g10g<|x_y|\/1> +C. (144)
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This shows

GPN([xN], [yN]) < clog|x —y| (1.45)
for some constant ¢ € (0,00) uniformly in x,y € D. Using this bound, we can esti-
mate (and later neglect) the contributions to the integral in (1.43) from pairs (x,y)
satisfying |x — y| < e for any given € > 0. The convergence of the remaining
part of the integral is then treated using the pointwise convergence (1.27) and the
Dominated Convergence Theorem. ]

Exercise 1.27 Give a full proof of the bound (1.44).

The definition (1.40) is tantamount to a projection of the field configuration onto a
test function. Theorem 1.26 then states that these projections admit a continuum
limit. This suggests we could treat the limit random variable as a linear functional
on a suitable space of test functions. This underlies:

Definition 1.28 [CGFF as a function-space indexed Gaussian] A continuum Gaus-
sian Free Field (CGFF) on a bounded, open D C C is an assignment f — P(f) of a
random variable to each bounded measurable f: D — R such that

(1) ®isa.s. linear, i.e.,
P(af +bg) = ad(f) +bP(g) as. (1.46)
for each bounded measurable f and g and each a,b € R, and
(2) for each bounded measurable f,

o(f) = N(0,63), (147)
where (7? is as in (1.42).

Theorem 1.26 shows that the DGFF scales to the CGFF taken in this sense — which
also means that a CGFF as defined above exists! (The linearity is immediate from
(1.40).) We remark that definitions given in the literature usually require that the
CGFF is even a.s. continuous in suitable topology on a suitable (and suitably com-
pleted) class of functions. Such continuity considerations are important when one
tries to assign meaning to ®(f) for singular f (e.g., those vanishing Lebesgue a.e.)
or for f varying continuously with respect to some parameter. This is for example
useful in the study of the disc-average process t — ®( f;) where
1

fily) :== mlB(x,e*f)(y) for B(x,r):={yeC:|ly—x|<r}. (1.48)

Here it is quite instructive to note:

Exercise 1.29 For CGFF as defined above and for any x € D at Euclidean distance r > 0
from D¢, show that for t > log, the process t — ®(f) has independent increments with

Var(®(f;)) = gt + c1 + glogrp(x) (1.49)

for some c¢1 € R independent of x. In particular, t — O(f;) admits a continuous version
whose law is that of a Brownian motion.
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