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Random walk among random conductances
Uniformly elliptic case

Graph Zd , edges B (nearest neighbors only)

i.i.d. conductances (ωb : b ∈ B); law P, expectation E

Uniform ellipticity P(ωb ≥ ε) = 1 for some ε > 0

Random walk X0, X1, . . . with quenched law Pz,ω

Pz,ω(Xn+1 = x + e|Xn = x) =
ω(x,x+e)∑

e′ : |e′|=1 ω(x,x+e′)

|e| = 1

Initial condition
Pz,ω(X0 = z) = 1

Note: annealed law Q(A) = EzPz,ω(A) not Markov



Bond percolation on Zd

Away from uniform ellipticity

Allow p def
= P(ωb > 0) < 1 but p > pc(d) (requires d ≥ 2)

Case of interest:

ωb =

{
1 with probability p

0 otherwise

Let C∞ = C∞(ω) be the sites “connected to infinity”

Burton-Keane’s Theorem: C∞ is connected with probability 1

Denote �0 = {0 ∈ C∞} and P0(·) = P(·|�0)



A question
Percolation restricted to infinite slab

Is the probability of { walk exits through top side } close to 1/2?

I Trivially true for the annealed measure.
I Quenched measure: Prove a Functional CLT .



Main result

Theorem 1 (Functional CLT for RW on percolation cluster)
Let d ≥ 2, p > pc(d) and let ω ∈ �0. Let (Xn)n≥0 be the random
walk with law P0,ω and let

Bn(t) =
1

√
n

(
Xbtnc + (tn − btnc)(Xbtnc+1 − Xbtnc)

)
, t ≥ 0.

Then for all T > 0 and P0-a.e. ω, the law of (Bn(t) : 0 ≤ t ≤ T )

on (C[0, T ], WT ) converges weakly to the law of an isotropic
(non-degenerate) Brownian motion.

Similarly for variants of above RW (lazy walk, continuous time)



Previous results

I Quenched problem in d ≥ 4:

Sidoravicius & Sznitman (2004)

I Annealed problem :

De Masi & Ferrari & Goldstein & Wick (1989)

I Directed version :

Rassoul-Agha & Sepäläinen (2004)

I Uniformly elliptic case :

Kozlov (1985), Kipnis & Varadhan (1986),
Sidoravicius & Sznitman (2004), Fontes & Mathieu (2004)

I Heat-kernel estimates :

Nash, Varopoulos, Aronson, . . . , Heicklen & Hoffman
Mathieu & Remy (2004), Barlow (2004)



Simultaneous results

I Same theorem in d = 2, 3

Mathieu & Piatnitski (2005)

Key word: homogenization theory



Main idea

Geometric embedding of C∞:

The walk (Xn) is not a martingale.



Main idea

Harmonic embedding of C∞: x 7→ x + χ(x, ω)

The walk Xn + χ(Xn, ω) is a martingale.



Corrector
Analytical construction

Kozlov, Kipnis & Varadhan, Olla, Mathieu & Piatnitski

Proposition 2 ( d ≥ 2, p > pc)
There is χ : Zd

× �0 → Rd such that, for P0-a.e. ω ∈ �0:

(0) χ(0, ω) = 0

(1) x 7→ x + χ(x, ω) is harmonic on C∞(ω)

(2) χ is a gradient field on C∞:

χ(x, ω) − χ(y , ω) = χ(x − y , τyω), x, y ∈ C∞

(3) The gradients of χ are square integrable:

E0
(

[χ(e, ω) − χ(0, ω)]21{ωe=1}

)
< C, |e| = 1



Sketch of proof I.
L2-calculus on �

Unit vectors B = {±e1, . . . ,±ed }

Vector field (flow) v : � × B → Rd

Consistency: v(ω, −b) = −v(τ−bω, b)

Inner product on L2(� × B):

(v , w) =
1
2

E0

[∑
b∈B

ωbv(ω, b)w(ω, b)
]

Gradient field: For φ : � → Rd let

(∇φ)(ω, b) = φ(τbω) − φ(ω)

Natural L2-subspace

L2
∇

= {∇φ : φ-local} ⊂ L2(� × B)



Sketch of proof II.
Orthogonal decomposition

Fact: w ∈ (L2
∇
)⊥

⇔ div w = 0 (conserved flow)

(div w)(ω) =

∑
b∈B

ωbv(ω, b)

Now take g(ω, b) = b and define χ = χ(b, ω) by

χ = projL2
∇

(−g)

Then g + χ ∈ (L2
∇
)⊥, i.e., div (g + χ) = 0. This gives∑

b∈B
ωb

(
b + χ(b, ω)

)
= 0

g + χ obeys cycle condition ⇒ can be extended to C∞



Deformed random walk

The listed properties make

Mn = Xn + χ(Xn, ω)

an L2-martingale.

Ergodic theorem: Fn = σ(M1, . . . , Mn)

1
n

n−1∑
k=0

E0,ω

(
|Mk+1 − Mk |

2
|Fk

)
−→
n→∞

E0E0,ω(|M1|
2)

Lindenberg-Feller Martingale CLT ⇒

The deformed walk scales to Brownian motion



Controlling the deformation
d = 2 for now

Need to show that

max
1≤k≤n

∣∣χ(Xk , ω)
∣∣ = o(

√
n).

Since Mn = O(
√

n), it suffices to prove:

Proposition 3 ( d = 2)
For P0-a.e. ω ∈ �0,

lim
n→∞

max
x∈C∞(ω)

|x |≤n

|χ(x, ω)|

n
= 0.
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Some ergodic theory
Induced shift

For ω ∈ �0, let (xn)n∈Z be the intersections of C∞(ω) with x-axis
labeled so that xn < xn+1 and x0 = 0.

Consider the induced shift σ: �0 → �0

σ(ω) = τx1(ω)(ω), ω ∈ �0.

Standard arguments show:

Lemma 4 ( d ≥ 2)
σ is P0-preserving and ergodic.
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Along coordinate axes
Now set

9(ω) = χ
(
x1(ω), ω

)
− χ(0, ω)

Then

χ
(
xn(ω), ω

)
=

n∑
k=1

9 ◦ σk (ω)

But 9 ∈ L1 (Antal-Pisztora) and

E0(9) = 0

(9 is gradient) so the Ergodic Theorem implies:

Corollary 5 ( d ≥ 2)
For P0-a.e. ω ∈ �0,

lim
n→∞

χ(xn(ω), ω)

n
= 0.
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Weaving webs of goodness
Good lines and sites

Let K , ε > 0 and ω ∈ �0. The x-axis is called good in ω if∣∣χ(x, ω)
∣∣ ≤ K + ε|x |

for every x ∈ C∞ on x-axis.

A site x ∈ Zd is called good in ω if
I x ∈ C∞(ω)

I Both x and y -axes are good in τx(ω).



Weaving webs of goodness
Good grid

For P0-a.e. ω and all ε > 0:
I Origin is good if K is large
I Good sites appear with positive density along both axes

n

o(n)



Weaving webs of goodness
Sublinearity everywhere

Maximum on good grid: ≤ 2K + 2εn.

imply:
max

x∈C∞(ω)
|x |≤n

∣∣χ(x, ω)
∣∣ ≤ 2K + 2εn + o(n)
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Higher dimensions
A density bound on corrector

Embarrassing fact:

We do not know how to extend this argument to d ≥ 3

But we can prove:

Proposition 6 ( d ≥ 3)
For P0-a.e. ω ∈ �0 and all ε > 0,

lim sup
n→∞

1
nd

∑
x∈C∞(ω)

|x |≤n

1{|χ(x,ω)|≥εn} = 0



Higher dimensions
Main idea

n × n square in Z3

WANT:∣∣χ(x, ω) − χ(y , ω)
∣∣ ≤ εn

for (most of) good

x, y ∈ C∞ ∩ square

x

y

n
L

For L large x and y are connected by path shorter than 4n
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Higher dimensions
Main idea

Finally, perform induction on dimension:

x

y

L

x

y

r

s



Final touches

To finish, we prove tightness using

Theorem 7 (Barlow 2004)
For P0-a.e. ω and all x ∈ C∞(ω),

P0,ω(Xn = x) ≤
c1

nd/2
exp

{
−c2

|x |
2

n

}
,

once n is sufficiently large.

and focus on finite-dimensional distributions.

From Proposition 6, we then have

|χ(Xn, ω)|
√

n
−→
n→∞

0 in P0,ω-probability

i.e., Xn/
√

n = Mn/
√

n + o(1). This implies the CLT in d ≥ 3.
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Future research
Everybody welcome

Limit laws:
I Maximum bound on corrector in d ≥ 3
I Other graphs, e.g., Voronoi percolation
I Long-range percolation (stable processes)
I Beyond reversible environments (loop representation)

Corrector:
I A.s. uniqueness ↔ sublinear harmonic functions
I Scaling limit (Gaussian free field/tightness)
I Behavior as p ↓ pc



Some figures

Percolation cluster and its deformation: p = 0.95



Some figures

Percolation cluster and its deformation: p = 0.85



Some figures

Percolation cluster and its deformation: p = 0.75



Some figures

Percolation cluster and its deformation: p = 0.65



Some figures

Percolation cluster and its deformation: p = 0.55



THE END

Slides available from:
http://www.math.ucla.edu/˜biskup/talks.html


