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Discrete Gaussian Free Field (DGFF)

D ⊂Rd (or C in d = 2) bounded, open, “nice” boundary
DN := {x ∈Zd : x/N ∈ D}
GD

N := Green function of SRW on DN killed upon exit

GD
N (x ,y) = E x

(
τ−1

∑
k=0

1{Xk=y}

)
where τ := first exit time from DN

Definition

DGFF on DN := Gaussian process {hx : x ∈ DN} with

E (hx ) = 0 and E (hxhy ) = GD
N (x ,y)

N.B. Zero values outside DN



Gibbs-Markov property

Law of DGFF = finite-volume Gibbs measure characterized by

The Gibbs-Markov property:

Assume D̃ ⊂ D. Then

hD law= hD̃ + ϕ
D,D̃

where

(1) hD̃ and ϕD,D̃ independent Gaussian fields

(2) x 7→ ϕD,D̃(x) discrete harmonic on D̃N

Set ϕD,D̃(x) := E
(
hD(x)

∣∣hD(z) : z ∈ DN r D̃N

)
Then hD −ϕD,D̃ ⊥⊥ ϕD,D̃ and hD −ϕD,D̃ law= hD̃



Why 2D?

For x with dist(x ,Dc
N) > δ N,

Var(hx ) = GN(x ,x) �


N , if d = 1,
log N , if d = 2,
1, if d ≥ 3.

In d = 2:

GN(x ,y) = g log N−a(x ,y)+ o(1), N � 1

a(x ,y) = g log |x−y |+ c0 + o(1), |x−y | � 1

where

g :=
2

π
(In physics, g := 1

2π
)

The model is asymptotically scale invariant:

G2N(2x ,2y) = GN(x ,y)+ o(1)

In fact: conformally invariant (S. Andres’ talk)



DGFF: a sample figure
Box 35×35, range of values ≈ [−5,5]



DGFF on 500×500 square
Uniform color system
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DGFF on 500×500 square
Emphasizing the extreme values
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Level set (fractal) geometry
Some known facts

• O(1)-level sets: SLE4 curves (Schramm & Sheffield)

• O(log N)-level sets: Hausdorff dimension (Daviaud){
x ∈ DN : h(x) ≥ 2

√
g γ log N

}
, 0 < γ < 1

has N2(1−γ 2)+o(1) vertices. Note: Maximum order log N!



Goal of today’s talk
Extreme values of DGFF

Main goal: Describe statistics of extreme values of hD

Question of interest: What’s the role of conformal invariance?

N.B.: Continuum GFF not a function!

Surprise connections:

I Invariant measures for independent particle systems

I Liouville Quantum Gravity (S. Andres’ talk)



Further known facts
Absolute maximum

Setting and notation: DN := (0,N)2∩Z2

MN := max
x∈DN

hx and mN := EMN

Leading scale (Bolthausen, Deuschel & Giacomin):

mN ∼ 2
√

g log N

Tightness for a subsequence (Bolthausen, Deuschel & Zeitouni):

2E
∣∣MN −mN

∣∣≤m2N −mN

Full tightness (Bramson & Zeitouni):

EMN = 2
√

g log N− 3

4

√
g log log N + O(1)

Convergence in law (Bramson, Ding & Zeitouni)



Some known facts
Extremal process tightness

Ding & Zeitouni, Ding established
extremal process tightness:

Extreme level set:

ΓN(t) := {x ∈ DN : hx ≥mN − t}

∃c ,C ∈ (0,∞) : lim
λ→∞

liminf
N→∞

P
(
ecλ ≤ |ΓN(λ )| ≤ eCλ

)
= 1

and ∃c > 0 s.t.

lim
r→∞

limsup
N→∞

P
(
∃x ,y ∈ ΓN(c log log r) : r ≤ |x−y | ≤ N/r

)
= 0



Setup for extreme order theory
Extremal point process

Full process: Measure ηN on D×R

ηN := ∑
x∈DN

δx/N ⊗δhx−mN

Problem: Values in each “peak” strongly correlated

Local maxima only: Λr (x) := {z ∈Z2 : |z−x | ≤ r}

ηN ,r := ∑
x∈DN

1{hx=maxz∈Λr (x) hz} δx/N ⊗δhx−mN



Main result
Scaling limit

Theorem (Convergence to Cox process)

There is a random Borel measure ZD on D with 0 < ZD(D) < ∞

a.s. such that for any rN → ∞ and N/rN → ∞,

ηN ,rN
law−→

N→∞

PPP
(

ZD(dx)⊗ e−αhdh
)

where α := 2/
√

g =
√

2π.



Corollaries

Asymptotic law of maximum: Setting Z := ZD(D),

P
(
MN ≤mN + t

)
−→
N→∞

E
(
e−α−1Ze−αt)

N.B.: Laplace transform of Z

Joint law position/value: A⊂ D open, Ẑ (A) = ZD(A)/ZD(D)

P
(

MN ≤mN + t, N−1argmax hD ∈ A
)
−→
N→∞

E
(
Ẑ (A)e−α−1Ze−αt)

In fact: Key steps of the proof



Proof of Theorem
Invariance under “Dysonization”

As {ηN ,rN : N ≥ 1} tight, we can extract converging subsequences
Denote

〈η , f 〉 :=
∫

η(dx ,dh)f (x ,h)

Proposition (Distributional invariance)

Suppose η := a weak-limit point of some {ηNk ,rNk
}. Then for any

f : D×R→ [0,∞) continuous, compact support,

E
(
e−〈η ,f 〉)= E

(
e−〈η ,ft〉

)
, t > 0,

where
ft(x ,h) := − log Ee−f (x ,h+Bt − α

2 t)

with Bt := standard Brownian motion.



Proposition explained

We may write
η = ∑

i≥1

δ(xi ,hi )

Let {B (i)
t } := i.i.d. standard Brownian motions. Set

ηt := ∑
i≥1

δ
(xi ,hi+B

(i)
t − α

2 t)

Well defined as t 7→ |ΓN(t)| grows only exponentially. Then

E
(
e−〈ηt ,f 〉)= E

(
e−〈η ,ft〉

)
and so Proposition says

ηt
law= η , t > 0



Proof of Proposition I

Gaussian interpolation: h′,h′′
law= h, independent

h
law=
(

1− t

g log N

)1/2
h′︸ ︷︷ ︸

main term

+
( t

g log N

)1/2
h′′︸ ︷︷ ︸

perturbation

Denote

ΘN ,r (λ ) := {x ∈ DN : h′x ≥mN −λ , h′x = max
z∈Λr (x)

h′z}

For x ∈ΘN ,r (λ ) (“large r -local maximum”):(
1− t

g log N

)1/2
h′x = h′x −

1

2

t

g log N
h′x + o(1)

= h′x −
t

2

mN

g log N
+ o(1)

= h′x−
α

2
t + o(1)



Proof of Proposition II

Concerning h′′, abbreviate

h̃′′x :=
( t

g log N

)1/2
h′′x

Properties of Green function:

Cov
(

h̃′′x , h̃′′y
)
=

{
t + o(1), if |x−y | ≤ r nearly constant

o(1), if |x−y | ≥ N/r nearly independent

So we conclude: The law of{
h̃′′x : x ∈ΘN ,r (λ )

}
is asymptotically that of independent B.M.’s



Proof of Theorem
Invariant laws for independent particle systems

Problem: Characterize point processes on D×R are invariant
under independent Dysonization

(x ,h) 7→
(

x ,h + Bt −
α

2
t
)

of (the second coordinate of) its points

Easy to check: PPP(ν(dx)⊗ e−αhdh) okay for any ν (even random)

Any other solutions?



Liggett’s “folk” theorem

Setting:

I Markov chain on (nice space) X w/ transition kernel P

I System of particles evolving independently by P

I I := loc. finite invariant measures on particle systems

Theorem (Liggett 1977)

Assume uniform dispersivity property:

sup
x∈X

Pn
(
x ,C

)
−→
n→∞

0 ∀C ⊂X compact

Then each µ ∈I takes the form PPP(M(dx)), where M is a
random measure satisfying

MP
law= M



Liggett’s 1977 derivation

For t > 0 define Markov kernel P on D×R by

(Pg)(x ,h) := E 0g
(
x ,h + Bt − α

2 t
)

Set g(x ,h) := e−f (x ,h) for f ≥ 0 continuous with compact support.
Proposition implies

E
(
e−〈η ,f 〉)= E

(
e−〈η ,f (n)〉)

where
f (n)(x ,h) = − log(Pne−f )(x ,h)

P has uniform dispersivity property and so Pne−f → 1 uniformly
on D×R. Expanding the log,

f (n) ∼ 1−Pne−f as n→ ∞



Liggett’s 1977 derivation (continued)

Hence
E
(
e−〈η ,f 〉)= lim

n→∞
E
(
e−〈η ,1−Pne−f 〉) (∗)

But, as P is Markov,

〈η ,1−Pne−f 〉= 〈ηPn,1− e−f 〉

(∗) shows that {ηPn : n ≥ 1} is tight. Along a subsequence

ηPnk (dx ,dh) law−→
k→∞

M(dx ,dh)

and so
E
(
e−〈η ,f 〉)= E

(
e−〈M ,1−e−f 〉)

i.e., η = PPP(M(dx ,dh)). Clearly,

MP
law= M



Proof of Theorem
Key problem II

Question: What M can we get in our case?

Theorem (Liggett 1977)

MP
law= M implies MP = M a.s. when P is a kernel of

(1) an irreducible, recurrent Markov chain

(2) a random walk on a closed abelian group w/o proper closed
invariant subset

N.B.:(2) covers our case and

MP = M a.s. ⇔ M random mixture of P-invariant laws

For our chain Choquet-Deny (or t ↓ 0) shows

M(dx ,dh) = ZD(dx)⊗ e−αhdh + Z̃D(dx)⊗dh

Tightness of maximum forces Z̃D = 0 a.s.



Proof of Theorem completed
Uniqueness of the limit

We thus know ηNk ,rNk

law−→ η implies

η = PPP
(
ZD(dx)⊗ e−αhdh

)
for some random ZD — albeit possibly depending on {Nk}.

But for Z := ZD(D), this yields

P
(
MNk

≤mNk
+ t
)
−→
k→∞

E
(
e−α−1Ze−αt)

Hence: law of ZD(D) unique if limit law of maximum unique
(and we know this from Bramson & Ding & Zeitouni)

Existence of joint limit of maxima in finite number of disjoint
subsets of D ⇒ uniqueness of law of ZD(dx)



Some literature

Details for above derivation for D := (0,1)2:
Biskup-Louidor (arXiv:1306.2602)

Maxima for log-correlated fields:
Madaule (arXiv:1307.1365), Acosta (arXiv:1311.2000)
Ding, Roy and Zeitouni (in preparation)



Properties of ZD-measure

Theorem

The measure ZD satisfies:

(1) ZD(A) = 0 a.s. for any Borel A⊂ D with Leb(A) = 0

(2) supp(ZD) = D and ZD(∂ D) = 0 a.s.

(3) ZD is non-atomic a.s.

Property (3) is only barely true:

Conjecture

ZD is supported on a set of zero Hausdorff dimension



Fancy properties
Gibbs-Markov for ZD measure

Recall D̃ ⊆ D yields hD law= hD̃ + ϕD,D̃

Fact: ϕD,D̃ law−→ΦD,D̃ on D̃ where

(1) {ΦD,D̃(x) : x ∈ D̃} mean-zero Gaussian field with

Cov
(
ΦD,D̃(x),ΦD,D̃(y)

)
= GD(x ,y)−G D̃(x ,y)

continuum Green functions

(2) x 7→ΦD,D̃(x) harmonic on D̃ a.s.

Theorem (Gibbs-Markov property)

Suppose D̃ ⊆ D be such that Leb(D r D̃) = 0. Then

ZD(dx) law= eαΦD,D̃ (x)Z D̃(dx)



Fancy properties
Conformal symmetry

Theorem (Conformal symmetry)

Suppose f : D→ f (D) analytic bijection. Then

Z f (D) ◦ f (dx) law= |f ′(x)|4ZD(dx)

In particular, for D simply connected and radD(x) conformal radius

radD(x)−4ZD(dx)

is invariant under conformal maps of D.

Note:

(1) Leb◦ f (dx) = |f ′(x)|2 Leb(dx) and so radD(x)−2Leb(dx) is
invariant under conformal maps.

(2) By GM property it suffices to know law(Z D) for D := unit
disc. So this is a statement of universality



Unifying scheme?
Continuum Gaussian Free Field

Continuum GFF := Gaussian on H1
0(D) w.r.t. norm f 7→ π‖∇f ‖2

2

Formal expression: h(x) = ∑n≥1 Znϕn(x) {ϕn} ONB

Exists only as a linear functional on H1
0(D):

h(f ) =
√

π ∑
n≥1

Zn〈∇f ,∇ϕn〉L2(D)

Derivative martingale: (γ = 2 in S. Andres’ talk)

M ′(dx) =
[
2Var(h(x))−h(x)

]
e2h(x)−2Var(h(x))dx

Defined by smooth approximations to h or expansion in ONB
(Duplantier, Sheffield, Rhodes, Vargas)

KPZ relation links M ′-measure of sets to Lebesgue measure



Unifying scheme?
Liouville Quantum Gravity/Multiplicative Chaos

Liouville Quantum Gravity (LQG):

MD(dx) := radD(x)2 M ′(dx)

Theorem (B-Louidor, in progress)

There is constant c? ∈ (0,∞) s.t. for all D

ZD(dx) law= c? MD(dx)

Current status: Law of ZD characterized by

I Gibbs-Markov property okay for LQG

I shift and dilation symmetry okay for LQG

I precise upper tails of ZD(A) so far open



LQG in pictures

Naked GFF:



LQG in pictures

Derivative martingale:



THE END


