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Discrete Gaussian Free Field (DGFF)

D c R9 (or C in d = 2) bounded, open, “nice” boundary
Dy:={x€Z9: x/N e D}
G,\? := Green function of SRW on Dy killed upon exit

7—1
Gy (x.y) = EX( Y 1{xk=y}>
k=0

where 7 := first exit time from Dy
Definition

DGFF on Dy := Gaussian process {hy: x € Dy} with

E(h)=0 and E(hch,) =GR (xy)

N.B. Zero values outside Dy



Gibbs-Markov property

Law of DGFF = finite-volume Gibbs measure characterized by

The Gibbs-Markov property:
Assume D C D. Then

pD 1w D +(pD,5

where
(1) AP and @PP independent Gaussian fields

(2) x— (pD’b(x) discrete harmonic on Dy

Set pP0(x) := E(hP(x) | hP(z): z € Dy~ D)
Then hP — PP 1 @PD and kP — PP law D



Why 2D?

For x with dist(x, D§,) > o N,

N, if d=1,
Var(hy) = Gy (x,x) < { log N, if d=2,
1, if d>3.
Ind=2:
Gn(x,y) =glogN —a(x,y)+o(1), N>1
a(x,y) =glog|x—y|+c+o(1), Ix—y|>1
where

2 .
g:= (In physics, g := %)
The model is asymptotically scale invariant:
Gon(2x,2y) = Gn(x,y) +o(1)

In fact: conformally invariant (S. Andres’ talk)












Level set (fractal) geometry
Some known facts

e O(1)-level sets: SLE, curves (Schramm & Sheffield)

e O(log N)-level sets: Hausdorff dimension (Daviaud)
{x€Dy: h(x) > 2,/gylogN}, 0<y<l1

has N2(1=7")+(1) yertices. Note: Maximum order log N!



Goal of today’s talk

Extreme values of DGFF

Main goal: Describe statistics of extreme values of hP

Question of interest: What's the role of conformal invariance?

N.B.: Continuum GFF not a function!

Surprise connections:
» Invariant measures for independent particle systems
» Liouville Quantum Gravity (S. Andres’ talk)



Further known facts
Absolute maximum
Setting and notation: Dy := (0, N)?NZ?2

Mp := max hy and mp := EMy
x€Dy

Leading scale (Bolthausen, Deuschel & Giacomin):
my ~ 2./glog N

Tightness for a subsequence (Bolthausen, Deuschel & Zeitouni):

2E’MN—mN‘ < moy—mpy

Full tightness (Bramson & Zeitouni):
3
EMy =2,/glog N — Z\/EloglogN—k Oo(1)

Convergence in law (Bramson, Ding & Zeitouni)



Ding & Zeitouni, Ding established
extremal process tightness:

Extreme level set:

FN(T.') = {XG Dy: hXZmN—t}
3¢, C € (0,00): Jim liminf P(e* < Ty(R)] <e*) =1
and dc > 0 s.t.
lim limsup P
r—oo N —oo

(Elx,y eTlpn(cloglogr): r<|x—y| < N/r) =0



Full process: Measure Ny on D x R

Nn = Z 6x/N®6hX—mN
x€Dy
Problem: Values in each “peak” strongly correlated

Local maxima only: A,(x):={z€Z?: |z—x| <r}

x€Dy

nN,r = Z 1{hx:maxzeAr(X) hz} 6X/N ® 6hx_mN

<O Fr <= o4



There is a random Borel measure ZP on D with 0 < ZP(D) < =
a.s. such that for any ry — oo and N/ ry — oo,

LA PPP(ZD(dx)®e—“hdh)
where o :=2/./g = \/27.

«4O>» «F>» «=» «



Corollaries

Asymptotic law of maximum: Setting Z := ZP(D),

P(My < my+t) — E(e® 2%

N—oo

N.B.: Laplace transform of Z

Joint law position/value: A C D open, Z(A) = ZP(A)/ZP (D)

P(MN < mpy+t, Nlargmax hP € A) — E(z(A)eforlZe*m)

N—oo

In fact: Key steps of the proof



Proof of Theorem

Invariance under “Dysonization”

As {nn.r,: N > 1} tight, we can extract converging subsequences
Denote

(n,F) = /n(dx,dh)f(x,h)

Proposition (Distributional invariance)

Suppose N := a weak-limit point of some {nNk,rNk }. Then for any
f: DxR — [0,0) continuous, compact support,

E(ef<n,f>) — E(e*<ﬂfr>), t>0,

where
fo(x,h) := —log Ee~ flohtB=5t)

with B; := standard Brownian motion.



We may write

n=Y 8.n)

i>1

Let {Bgi)} := i.i.d. standard Brownian motions. Set
Ny i= gs(x,-,hﬁBy) gy
Well defined as t +— |y (t)| grows only exponentially. Then

E(e—(mﬂ) = E(e—m,f:))
and so Proposition says

law

n: =1, t>0



Proof of Proposition |

.. . 1 .
Gaussian interpolation: #',h" = h, independent

t 1/2 t 1/2
i (1- ) )
glogN glog N

main term perturbation

Denote

On, (L) :={x€Dpn: H,>my—A, K, = n)\a?)hlz}
zeA,(x

For x € Opn,,(A) (“large r-local maximum™):
t \1/2 1t

1- Wo=H, - W+ o(1

( glogN) XX 2glogN x+o(l)

! t my
! 1
X 2glogN o(1)

:h’x—gt+o(1)



Concerning h”, abbreviate

.

() H
*" \gloghN
Properties of Green function:

Cov(hy. b)) = {Zai(l),

if [ x—y|<r
So we conclude: The law of

X

if [ x—y|>N/r

nearly constant

nearly independent

{E'X': x € @N,,(A)}

is asymptotically that of independent B.M.’s

DA



Proof of Theorem

Invariant laws for independent particle systems

Problem: Characterize point processes on D x R are invariant
under independent Dysonization

(x, h) — (x,h—l—Bt—%t)

of (the second coordinate of) its points

Easy to check: PPP(v(dx) ®e~*"dh) okay for any v (even random)

Any other solutions?



Liggett's “folk” theorem

Setting:
» Markov chain on (nice space) 2~ w/ transition kernel P
» System of particles evolving independently by P

» 7 .= loc. finite invariant measures on particle systems

Theorem (Liggett 1977)

Assume uniform dispersivity property:
sup P”(x, C) — 0 VC C % compact
xeX s

Then each u € .7 takes the form PPP(M(dx)), where M is a
random measure satisfying

law

MP = M



Liggett’s 1977 derivation

For t > 0 define Markov kernel P on D x R by
(Pg)(x,h) := E%(x,h+ B: — %t)

Set g(x,h) := e~ "xh) for f >0 continuous with compact support.
Proposition implies

E(e 1)) = E(e‘<"f(")>)

where
£ (x,h) = —log(P"e ") (x, h)

P has uniform dispersivity property and so P"e~ — 1 uniformly
on D xIR. Expanding the log,

£~ 1-pref as n— oo



Liggett’s 1977 derivation (continued)

Hence .
E(e*<"’f>) = lim E(e*m’l*Pn( >)

n—oo

But, as P is Markov,

(M. 1-Pe ") = (nP"1-¢")

(x) shows that {nP": n>1} is tight. Along a subsequence
NP (dx,dh) —> M(dx dh)

and so
E(e 1) = E(e=M1=e)
i.e., 1 =PPP(M(dx,dh)). Clearly,

law

MP =M



Proof of Theorem
Key problem Il

Question: What M can we get in our case?

Theorem (Liggett 1977)
MP 2 M implies MP = M a.s. when P is a kernel of

(1) an irreducible, recurrent Markov chain
(2) a random walk on a closed abelian group w/o proper closed
invariant subset
N.B.:(2) covers our case and
MP =M as. < M random mixture of P-invariant laws

For our chain Choquet-Deny (or t | 0) shows
M(dx,dh) = ZP(dx) @ e *"dh+ 7P (dx) @ dh

Tightness of maximum forces ZP =0as.



Proof of Theorem completed

Uniqueness of the limit

We thus know MN.ry, Law, n implies

n =PPP(ZP(dx) ® e *"dh)
for some random ZP — albeit possibly depending on {N,}.
But for Z := ZP(D), this yields

P(MNk S me +t) k_) E(efaflze*at)

—00

Hence: law of ZP(D) unique if limit law of maximum unique
(and we know this from Bramson & Ding & Zeitouni)

Existence of joint limit of maxima in finite number of disjoint
subsets of D = uniqueness of law of ZP(dx) O



Some literature

Details for above derivation for D := (0,1)2:
Biskup-Louidor (arXiv:1306.2602)

Maxima for log-correlated fields:
Madaule (arXiv:1307.1365), Acosta (arXiv:1311.2000)
Ding, Roy and Zeitouni (in preparation)



The measure ZP satisfies:

(1) ZP(A) =0 a.s. for any Borel A C D with Leb(A) =0
(2) supp(ZP) =D and ZP(dD) =0 a.s.

(3) ZP is non-atomic a.s.

Property (3) is only barely true:

ZP is supported on a set of zero Hausdorff dimension




Fancy properties

Gibbs-Markov for ZP measure

Recall DC D yields hP law D + (pD,D

Fact: @20 2% ®D.D on D where

(1) {CDD’E)(X)Z x € D} mean-zero Gaussian field with

COV(CDD’E(X),QDD’E)(y)) = GD(X,Y) - GE(X,)’)

continuum Green functions

(2) x— <I>D*5(x) harmonic on D as.

Theorem (Gibbs-Markov property)
Suppose D C D be such that Leb(D~ D) = 0. Then

ZD(dx) 2 a®PP() 7D (gx)



Fancy properties

Conformal symmetry

Theorem (Conformal symmetry)
Suppose f: D — f(D) analytic bijection. Then
Z7P) o £(dx) & | (x)[*ZP (dx)
In particular, for D simply connected and radp(x) conformal radius
radp (x) ~*ZP (dx)
is invariant under conformal maps of D.

Note:
(1) Lebof(dx) = |f'(x)|?Leb(dx) and so radp(x) *Leb(dx) is
invariant under conformal maps.

(2) By GM property it suffices to know law(ZP) for ID := unit
disc. So this is a statement of universality



Unifying scheme?

Continuum Gaussian Free Field
Continuum GFF := Gaussian on H}(D) w.r.t. norm f + 7||Vf||3

Formal expression: h(x) =Y ,>1 Z,¢@n(x) {pn} ONB

Exists only as a linear functional on H}(D):

h(f) =V Y, Zo(VE,VPn)12(p)

n>1

Derivative martingale:  (y=2ins Andres talk)
M'(dx) = [2Var(h(x)) — h(x)}e%(x)—?"af(h(X))dX

Defined by smooth approximations to h or expansion in ONB
(Duplantier, Sheffield, Rhodes, Vargas)

KPZ relation links M'-measure of sets to Lebesgue measure



Unifying scheme?
Liouville Quantum Gravity/Multiplicative Chaos

Liouville Quantum Gravity (LQG):

MP (dx) :=radp(x)? M'(dx)

Theorem (B-Louidor, in progress)

There is constant c, € (0,00) s.t. for all D

ZP(dx) ' ¢, MP(dx)

Current status: Law of ZP characterized by
> GIbbS—MarkOV property okay for LQG
» shift and dilation symmetry okay for LQG

> precise upper tails of ZP(A) s far open



Naked GFF:




LQG in pictures

Derivative martingale:

|




THE END



