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Bond percolation on Zd

Let Bd be the set of n.n. edges in Zd . Fix p ∈ [0, 1].

A bond b ∈ Bd is occupied with probability p and vacant with
probability 1 − p, independently of all other bonds.

Formally, ω = (ωb)b∈Bd i.i.d. 0-1 valued with P(ωb = 1) = p.



Percolation transition

Let C∞ = C∞(ω) be the sites “connected to infinity.”

Burton-Keane’s Theorem: C∞ is connected with probability 1.

In d ≥ 2 there exists pc ∈ (0, 1) such that

P(0 ∈ C∞)

{
= 0, p < pc,

> 0, p > pc.

For p > pc we denote �0 = {0 ∈ C∞} and P0(·) = P(·|�0).



Simple random walk on C∞

For each ω ∈ �0, let (Xn)n≥0 be the simple random walk
on C∞(ω) started at the origin.

Explicitly, (Xn)n≥0 is a Markov chain on Zd with law P0,ω given by

P0,ω(Xn+1 = x + e|Xn = x) =
1{ωe=1} ◦τx∑

e′ : |e′|=1 1{ωe′=1} ◦τx
, |e| = 1,

and
P0,ω(X0 = 0) = 1.

Here τx = shift by x .
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Flavors of the problem
I. Lazy vs agile walk

This is the agile simple random walk. Another version, the lazy
walk, is defined as follows:

I At each unit of time, pick one of 2d neighbors at random.
I If the bond is occupied, move. Otherwise, stay.

Same: geometrical image

Different: time parametrization
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Flavors of the problem
II. Quenched vs annealed

Quenched problem:
Random walk measure P0,ω where ω is sampled from a set of
full P0-measure and fixed through all calculations.

Annealed problem:
Random walk distribution Q given by

Q(A) = E0
(
P0,ω(A)

)
Ostensibly different objects



Flavors of the problem
II. Quenched vs annealed

Quenched problem:
Random walk measure P0,ω where ω is sampled from a set of
full P0-measure and fixed through all calculations.

Annealed problem:
Random walk distribution Q given by

Q(A) = E0
(
P0,ω(A)

)

Ostensibly different objects



Flavors of the problem
II. Quenched vs annealed

Quenched problem:
Random walk measure P0,ω where ω is sampled from a set of
full P0-measure and fixed through all calculations.

Annealed problem:
Random walk distribution Q given by

Q(A) = E0
(
P0,ω(A)

)
Ostensibly different objects



A fundamental question

Is the probability of { walk exits through top side } close to 1/2?

I Trivially true for the annealed measure.
I Quenched measure: Prove a Functional CLT .
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Main result

Theorem 1
Let d ≥ 2, p > pc(d) and let ω ∈ �0. Let (Xn)n≥0 be the random
walk with law P0,ω and let

Bn(t) =
1

√
n

(
Xbtnc + (tn − btnc)(Xbtnc+1 − Xbtnc)

)
, t ≥ 0.

Then for all T > 0 and P0-a.e. ω, the law of (Bn(t) : 0 ≤ t ≤ T )

on (C[0, T ], WT ) converges weakly to the law of an isotropic
(non-degenerate) Brownian motion.

A similar result holds for the lazy walk as well.



Previous results

I Quenched problem in d ≥ 4:

Sidoravicius & Sznitman (2004)

I Annealed problem :

De Masi & Ferrari & Goldstein & Wick (1989)

I Directed version :

Rassoul-Agha & Sepäläinen (2004)

I Walk among random conductances :

Kozlov (1985), Kipnis & Varadhan (1986),
Sidoravicius & Sznitman (2004), Fontes & Mathieu (2004)

I Heat-kernel estimates :

Barlow (2004)
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I Walk among random conductances :

Kozlov (1985), Kipnis & Varadhan (1986),
Sidoravicius & Sznitman (2004), Fontes & Mathieu (2004)

I Heat-kernel estimates :

Barlow (2004)



Previous results

I Quenched problem in d ≥ 4:

Sidoravicius & Sznitman (2004)

I Annealed problem :

De Masi & Ferrari & Goldstein & Wick (1989)

I Directed version :

Rassoul-Agha & Sepäläinen (2004)
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Main idea

Geometric embedding of C∞:

The walk (Xn) is not a martingale.
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Main idea

Harmonic embedding of C∞: x 7→ x + χ(x, ω)

The walk Xn + χ(Xn, ω) is a martingale.



Exit problem revisited

A martingale calculation:

P0,ω(exits thru top) =
1
2

(
1 +

e2 · χ(0, ω)

width

)

Will need to show that |χ(0, ω)| � width.



Corrector
Probabilistic construction

Natural candidate for the corrector:

χ(x, ω) = lim
n→∞

[
Ex,ω(Xn) − E0,ω(Xn)

]
.

I Trivially harmonic
I Existence of limit unclear
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Corrector
Analytic construction (Kipnis & Varadhan)

Proposition 2 ( d ≥ 2)
There exists a function χ : Zd

× �0 → Rd such that, for
P0-a.e. ω ∈ �0:

(0) χ(0, ω) = 0.

(1) x 7→ x + χ(x, ω) is harmonic on C∞(ω).

(2) χ is a gradient field on C∞:

χ(x, ω) − χ(y , ω) = χ(x − y , τyω), x, y ∈ C∞.

(3) The gradients of χ are square integrable:∥∥ [χ(x + e, ω) − χ(x, ω)]1{x,x+e∈C∞}

∥∥
2 < C, |e| = 1.



Deformed random walk

The listed properties make

Mn = Xn + χ(Xn, ω)

an L2-martingale.

Martingale CLT + some ergodicity ⇒

The deformed walk scales to Brownian motion
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Controlling the deformation
d = 2 for now

Need to show that

max
1≤k≤n

∣∣χ(Xk , ω)
∣∣ = o(

√
n).

Since Mn = O(
√

n), it suffices to prove:

Proposition 3 ( d = 2)
For P0-a.e. ω ∈ �0,

lim
n→∞

max
x∈C∞(ω)

|x |≤n

|χ(x, ω)|

n
= 0.
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Some ergodic theory
Induced shift

For ω ∈ �0, let (xn)n∈Z be the intersections of C∞(ω) with x-axis
labeled so that xn < xn+1 and x0 = 0.

Consider the induced shift σ: �0 → �0

σ(ω) = τx1(ω)(ω), ω ∈ �0.

Standard arguments show:

Lemma 4 ( d ≥ 2)
σ is P0-preserving and ergodic.
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Along coordinate axes
Now set

9(ω) = χ
(
x1(ω), ω

)
− χ(0, ω)

Then

χ
(
xn(ω), ω

)
=

n∑
k=1

9 ◦ σk (ω)

But 9 ∈ L1 (Antal-Pisztora) and

E0(9) = 0

and so the Ergodic Theorem implies:

Corollary 5 ( d ≥ 2)
For P0-a.e. ω ∈ �0,

lim
n→∞

χ(xn(ω), ω)

n
= 0.
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Weaving webs of goodness
Good lines and sites

Let K , ε > 0 and ω ∈ �0. The x-axis is called good in ω if∣∣χ(x, ω)
∣∣ ≤ K + ε|x |

for every x ∈ C∞ on x-axis.

A site x ∈ Zd is called good in ω if
I x ∈ C∞(ω)

I Both x and y -axes are good in τx(ω).
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Weaving webs of goodness
Good grid

For P0-a.e. ω and all ε > 0:
I Origin is good if K is large
I Good sites appear with positive density along both axes

n

o(n)
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Weaving webs of goodness
Sublinearity everywhere

Maximum on good grid: ≤ 2K + 2εn.

imply:
max

x∈C∞(ω)
|x |≤n

∣∣χ(x, ω)
∣∣ ≤ 2K + 2εn + o(n)
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Higher dimensions
A density bound on corrector

We do not see how to extend this argument to d ≥ 3.
But we can prove:

Proposition 6 ( d ≥ 3)
For P0-a.e. ω ∈ �0 and all ε > 0,

lim sup
n→∞

1
(2n + 1)d

∑
x∈C∞(ω)

|x |≤n

1{|χ(x,ω)|≥εn} = 0.



Higher dimensions
Main idea

n × n square in Z3

WANT:∣∣χ(x, ω) − χ(y , ω)
∣∣ ≤ εn

for (most of) good

x, y ∈ C∞ ∩ square

x

y

n
L

TRUE FOR:
I Nearly all (good) sites in C∞ ∩ square
I Nearly fraction P∞ = P(0 ∈ C∞) of C∞ ∩ cube

Now stack M � 1 of these squares on top of each other
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Final touches

To finish, we will need:

Theorem 7 (Barlow 2004)
For P0-a.e. ω and all x ∈ C∞(ω),

P0,ω(Xn = x) ≤
c1

nd/2
exp

{
−c2

|x |
2

n

}
,

once n is sufficiently large.

Combined with Proposition 6, we then have

|χ(Xn, ω)|
√

n
−→
n→∞

0 in P0,ω-probability.

This implies the CLT in d ≥ 3.
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Future research
Everybody welcome

Limit laws:
I Maximum bound on corrector in d ≥ 3
I Other graphs, e.g., Voronoi percolation
I Local CLT
I Long-range percolation (stable processes)

Corrector:
I Actual size
I Scaling limit (Gaussian free field?)
I Behavior as p ↓ pc
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Percolation cluster and its deformation: p = 0.95
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Playing with corrector

Percolation cluster and its deformation: p = 0.65



Playing with corrector

Percolation cluster and its deformation: p = 0.55



THE END


