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Favorite points

A favorite point of a walk of finite time-length is that visited most frequently.

Erd6és and Taylor (1960) asked: How much time does the simple random walk
on Z? of time-length 1 spend at its favorite point(s)?




Early answers

Let X = {X,,: n > 0} := simple random walk on Z*, initial value Xy := 0

Time spent at x (a.k.a. local time):

n
x) =Y ix—s}
=0

Erd6s and Taylor’s question: Find asymptotic behavior (as n — o) of

M, := max ¢, (x)
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In d = 3 [ET60] @Mﬂ — C4 € (0, OO) Maximum of 7 i.i.d. Geometric(c;)
II’I d = 1: Mn/\/ﬁ admlts a Weak llmlt. Lévy’s theory of Brownian local time

In d = 2 [ET60]: With high probability,

1 2
il <
(logn)® < My,
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(].Og l’l) Maximum of 1 i.i.d. Geometric(c log 1)



Q: Beyond leading order? Limit law? Other local maxima?

Q: What makes d = 2 SpeCial? Excursions reach points at scale of domain
A: Local time is logarithmically correlated



Connection to harmonic analysis

Setting:
e G = (V u {0}, E) finite connected graph with ¢ := distinguished vertex

e X = {X;: t > 0} := continuous-time simple random walk on V' u {¢} with
unit jump rate across each edge. P* := law of X started from x.

e Local time (parametrized by actual time)

l(x) == jotl{xs:x}ds
o The first hitting time of ¢ defined as
T, :=inf{t > 0: X; € 0}
gives rise to the Green function via
GY(xy) 1= E* (l,(v)

Fact: GV is symmetric & positive definite, so it is the covariance of a centered
Gaussian process called Gaussian Free Field (zero b.c. at ).



Connection to GFF

Key idea: Parametrize local time by the time spent at ¢. Indeed, set
To(t) :=inf{s > 0: £s(0) >t} and Li(x) := lr,((x)
Then forallt > 0and x,y € V U {o}:

E® (Lt(X)) =t

and
Covpe(Li(x), Li(y)) = 2t GY (x,y)

Ast — Li(x) has independent increments, we get:

Corollary (of multivariate CLT)
Let h = GFF (zero b.c. at ¢). Then




GFF maximum

Theorem (Bramson, Ding, Zeitouni (2016), B.-Louidor (2016))
Let Vi := (0, N)2 nZ2, 0 := 0V (wired boundary), h = GFF (zero b.c. at o). Set

my = 2,/¢ logN — Z\/g loglog N

where g := 2. Then for all u € R,

P(maxh, < my +u) — E(e_zeim)

xeVyn N—oo

In short, maxyev,, hy — my tend in law to a‘l(log Z + G) where G := Gumbel
independent of Z.

Caution(!): Approximation by GFF only good for times t » cover time of V.



Logarithmic correlations

In transient dimensions (d > 3): power-law decay
G'(xy) o |x—y|™

Ind = 2, we get logarithmic correlations
N
v =glog ————— 1
CHy) = glog i — =7 + O)

where N := diam(V) and g := 2

Logarithmic correlations appear for the Green function on regular trees
where, it turns out, we can answer the above questions.



Random walk on a tree a.k.a. hierarchical lattice
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SRW on a regular tree

T, := regular rooted tree of depth n with forward degree b > 2
L, := leaf vertices at depth n

As before: {X;: t > 0} := continuous-time SRW on T,

t
0x) = L 1y ds '

/

and, for ¢ := root of T},

T = inf{t > 0: X; = ¢}

“Connection” with Z2:

The random walk started from x € IL,, and run until 7, is similar to random
walk started at 0 and run until first exit from (—14", 34") N Z2.



Time spent at favorite leaf vertex

Theorem (B.-Louidor 2021)
Forany x, € Lyand all u € R,

Ple (maX \/e n\/logb — \/li@ logn + l/l) N ]E(e_ze—Zu\/@)

xelL, Nn—00

where Z is an a.s.-positive and finite random variable. Thus

1(maxﬁ (x) — (nzlogb—anogn)) % logZ+G

n \ xelL, n—0o0

where G is a normalized Gumbel random variable independent of Z.

Note: |IL,| = b" and so n?logb = lolgb (log|IL,|)? in accord with [ET60]




What is Z?

Theorem (B.-Louidor (2021))
There is c. € (0, 00) such that Z from previous theorem obeys

e b2 Y (myflogh =\ fbr, (1) ) b, (0114 2VIE VD) 2, g

n—0o0

xe]Ln

Take-home message:
@ maxyel, 4/, (x) centered & scaled tends to a randomly shifted Gumbel

@ The shift takes a “derivative martingale” form
Confirms emergent universality among log-correlated fields.

Branching Brownian motion (Bramson 1978, Lalley and Selke 1987, ...), Branching
random walk (Aidekon 2013, ...), discrete GFF in d = 2 (Bramson, Ding, Zeitouni
2015, ...), membrane model in d = 4 (Schweiger 2020), ...

Note for experts: 2nd order term in centering sequence different from BRW



Proof ideas: reduction to walk started at the root

Recall that Ly (x) := £r,()(x) where Ty(t) := inf{s > 0: £s(0) > t}
Tree geometry implies:

Lemma

Set
Hypp := {max L(x) > 0} = {IL, hit before T,(t)}

xell,

Then for any x,, € L,

W n
L Li(x) under P?(-| Hut) i ¢z, (x) under P*

So we first control maxyey,, Li(x) under P2( - | Hy)

Note: Need a version of Lemma that is uniform in 7.



Favorite leaf for walk started from the root

Forany t > 0 set

Zy(t) == b2 3 (mlogh — VL) ) L) 4 VIRt VI,

xell,

Note: if leaves not hit by T, (t), then Z,(t) = 0.

Theorem

Forall t > 0, we have Z,(t) h—vj;o Z(t) where Z(t) is a.s.-finite and non-negative.
n—

lim P?
n—oo

max Ly(x) > 0) — P(Z(t) > 0) € (0,1)

xell,

Moreover, (

and there is c. € (0, 00) such that for all u € R,

(emerZe iy

pe Li(x) < 1 1 — E
(are\af t(x) < ny/logb — \/7 ogn+u> = e




Key technical tool

The local time field {L¢(x): x € T,} enjoys a spatial Markov property.

Notation: Given x € Ly, let T,,_(x) := subtree rooted at x.

Lemma (Spatial Markov property)
Foranyk=1,...,.n—1,xelyandu: T, — R,

{Li(2): z € T,_x(x)} under P? ( ‘Lt(-) — u(-) on Ty ~ Tn,k(x))

is equidistributed to
{Lu)(2): z € T,_} under P?

This makes local time L; similar to Branching random walk albeit with a
Markovian (rather than i.i.d.) step distribution.




Proof strategy: condition on the favorite leaf

Main idea of work on the maximum of BRW (Aidekon 2013) and extremal
process of GFF (B.-Louidor 2016, 2018, 2020):

@ Condition on favorite leaf to be x € IL,, and the local time along the path
from o to x to grow roughly linearly.

@ Local time in subtrees “hanging off” the path are curbed from above.
@ This results in entropic repulsion for local time trajectory along the path.



Towards tightness

In principle, we can use this as a bootstrap method: Assume decay of the
upper tail of the maximum to control of lower tail and vice versa.

The argument is easier when the upper tail is known:

Lemma (Abe 2018)
Fort>0andn > 1 let

3 n++/t
an(t) :== m/logb—mlogn 4\/@ ( )

Then
P9<max«/Lt —Vt—a,(t) = ) < c(1 + u)e~2uV/1osb

xelL,

Proof: Calculations using “barrier estimate” and known facts about law of L;.

Note: a,(t) captures the crossover between L; and GFF/BRW



Uniform tightness

A “barrier calculation” then yields

inf inf P9<max v/ Le(x) = \/E+an(t)) >0

t=1n=1 xell,
This gives tightness: Recall H,,; := {maxyer, L¢(x) > 0}. Then

Theorem (Uniform tightness)

There are c1,cy > O such that foralln > 1, all t > 0 and all u € [0,n],

< max«/Lt \/—antvl)‘>u

xell,
In particular, for each t > 0, the family

{ law of {Créﬁi( A/Le(x) (1 /logbn — \/7 log n) under P°( - | Hp 1) }

of probability measures on R is tight.

Hn t> cie —ot

n=1




From tightness to weak limit

Condition on L;(x) for x € IL; and show that only x with L;(x) large can
support a near-maximal leaf vertex. So it suffices:

Proposition (Sharp upper tail)

There is c. € (0,00) such that o(1) = o0y, (1) defined for integer n > 1 and real t > 0
and u > 0 by

P9<rr€11%x«/Lt(x) —Vt—a,(t) > u) = c*ue’Z”\/@(l +0(1))
obeys

lim sup limsup ’ on,t,u(l)’ =0.
M=Py>m n—owo

Note: Uniformity allows to study crossover to GFF asymptotic as t — oo




What to tackle next?

@ Location of maximum (for walk started on a leaf).

e Extremal process (governed by a measure Z(dx)) and cluster distribution
(identical to that of GFF/BRW).

e Limit for the time spent at favorite point by SRW on Z2. (A. Jego already
constructed a candidate for limit measure Z(dx).)
@ Broader perspective of universality. Recent work of

@ Zeitouni and Schweiger on GFF in random environment
© Hofstetter et al on sine-Gordon model and P(¢) models
© my work with a student on DG model

© gradient fields by Belius and Wu

@ etc

@ Unified theory of extremal properties of log-correlated processes?



