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Plan of the lectures 2

Part I:
Extreme value theory: a primer
Logarithmically correlated processes, examples
Extremal behavior — randomly shifted Gumbel PPP

Part II:
Some technical proofs: tightness of maximum
Invariant point process via Liggett & Choquet-Deny
Local time of random walks
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Extreme value theory: a primer



Maximum of n i.i.d. r.v.’s 4

Let X1, X2, . . . , Xn be i.i.d., Mn :“ maxi“1,...,n Xi.

Q: Is there a limit law for appropriately centered and scaled Mn?

Alternatively, let F “ CDF of X. Then

PpMn ď tq “ Fptqn

Q: For what F are there tanuně1 and tbnuně1 such that x ÞÑ Fnpanx` bnq

converges to a non-constant limit as n Ñ8?

Q: What functions G are limits of x ÞÑ Fpanx` bnq
n as n Ñ8?



Fisher-Tippet-Gnedenko Theorem 5

Theorem (Fisher-Tippet 1928, Gnedenko 1943)

The set of non-constant limits of x ÞÑ Fpanx` bnq
n as n Ñ8 for some CDF F and

real-valued tanuně1 and general tbnuně1 takes the form
 

x ÞÑ Gγpax` bq : γ P R, a P R r t0u, b P R
(

where

Gγpxq :“

#

exp
 

´p1` γxq´γ
(

if 1` γx ą 0,
0 else,

with the interpretation

Gγpxq :“ expt´e´xu, x P R,
if γ “ 0.

We call γ the extreme value index.



Three extremal types 6

‚ Fréchet γ ă 0. After a shift/scaling:

Gpxq “ exp
 

´p´xq´γ
(

, x ă 0 p:“ 0 elseq
Domain of attraction includes e.g., Cauchy.

‚Weibull γ ą 0. After a shift/scaling:

Gpxq “ exp
 

´x´α
(

, x ą 0 p:“ 0 elseq
Domain of attraction includes e.g., uniform or lower tail exponential.

‚ Gumbel γ “ 0:
Gpxq “ expt´e´xu, x P R

Domain of attraction includes e.g., Gaussian and upper tail exponential.

Unified form Jenkinson 1955, von Mises 1936.



Extreme order statistics 7

Let X1, . . . , Xn and let
pXn ě pXn´1 ě ¨ ¨ ¨ ě pX1

be its decreasing reordering. We already explored Mn “ pXn.

Q: Given k ě 0, is there a joint limit law of appropriately scaled and centered
random vector

`

pXn, . . . , pXn´k`1
˘

as n Ñ8?



Extreme order statistics 8

Representation via exponentials

Theorem (Order statistics)

For F :“ CDF of X1, assume Fpan ¨ `bnq
n Ñ Gγ for some γ P R. Then for all k ě 0,

ˆ

pXn ´ bn

an
, . . . ,

pXn´k`1 ´ bn

an

˙

law
ÝÑ
nÑ8

ˆ

Yγ
1 ´ 1
γ

,
pY1 `Y2q

γ ´ 1
γ

, . . . ,
pY1 ` . . . Ykq

γ ´ 1
γ

˙

where Y1, . . . Yk are i.i.d. Exponential(1). (For γ “ 0 replace u ÞÑ uγ´1
γ by logpuq.)

Renyi (γ :“ 1): X1, . . . , Xn = Exponential(1)
General case: Analysis of inverse CDFs (see book by de Haan and Ferreira).



Point process formulation 9

An equivalent formulation looks at convergence of empirical counts
ˆ n
ÿ

i“1

1tXiąant1`bnu, . . . ,
n
ÿ

i“1

1tXiąantk`bnu

˙

for all possible and t1 ą t2 ą ¨ ¨ ¨ ą tk. These are encoded via the empirical
(extremal) point process

ηn :“
n
ÿ

i“1

δXi´bn
an

resp., its integrals

xηn, f y :“
ż

f dηn “

n
ÿ

i“1

f
´Xi ´ bn

an

¯

Key advantage of linearity: multivariate questions handled by

pλ1, . . . , λkq ¨

ˆ n
ÿ

i“1

1tXiąant1`bnu, . . . ,
n
ÿ

i“1

1tXiąantk`bnu

˙

“

B

ηn,
k
ÿ

j“1

λj1ptj,8q

F

and the Cramér-Wold device. (Upshot: Law of xηn, f y for each f suffices.)



Point process limit 10

Need to show that xηn, f y admits a weak limit for a sufficiently large class
of f ’s. Non-negative continuous f ’s with compact support suffice.

Theorem (Poisson convergence)

Suppose F is a CDF such that Fpan ¨ `bnq Ñ G for some tanuně1 and tbnuně1 and
some non-constant G. Given i.i.d. r.v.’s X1, X2, . . . with CDF F, let

ηn :“
n
ÿ

i“1

δXi´bn
an

Then for all f : R Ñ r0,8q continuous with supppf q bounded from below,

E
`

e´xηn, f y˘ ÝÑ
nÑ8

exp
"

´

ż

p1´ e´f qdplog Gq
*



Proof of Theorem: Poissonization 11

Suppose supppf q Ď rt,8q. By i.i.d. property of X1, . . . , Xn,

E
`

e´xηn, f y˘ “ E

n
ź

i“1

e´f ppXi´bnq{anq “

”

E
`

e´f ppX1´bnq{anq
˘

ın

“

”

1´E
`

1´ e´f ppX1´bnq{anq
loooooooooomoooooooooon

“ 0 unless X1 ě ant` bn

q
˘

ın

“ exp
!

´
`

1` op1q
˘

nE
`

1´ e´f ppX1´bnq{anq
˘

)

By a similar argument,

PpX1 ď ant` bnq
n ÝÑ

nÑ8
Gptq ô nPpX1 ą ant` bnq ÝÑnÑ8

´ log Gptq

Using continuity of f , hence we get

nE
`

1´ e´f ppX1´bnq{anq
˘

ÝÑ
nÑ8

ż

p1´ e´f qdplog Gq



Interpretation via Poisson point process 12

Consider independent random variables tNjujě1 and tYj,iuj,iě1 with
Nj “ Poisson(λj)
Yj,i having distribution µj

A naturally associated point process ξ :“
ÿ

jě1

Nj
ÿ

i“1

δYj,i

Then for f : R Ñ r0,8q continuous with compact support,

E
`

e´xξ, f y˘ “ E exp

#

´
ÿ

jě1

Nj
ÿ

i“1

f pYj,iq

+

“
ź

jě1

ÿ

ně0

λn
j

n!
e´λj

“

Epe´f pYj,1q
‰n

“
ź

jě1

exp
"

´λj

ż

p1´ e´f qdµj

*

“ exp
"

´

ż

p1´ e´f qdµ

*

provided µ :“
ř

jě1 λjµj is a Radon measure. We call
µ the intensity measure
ζ a Poisson point process with intensity measure µ, or PPP(µ) for short.



Summary and outlook 13

Since integrals w.r.t. functions in C`c pRq determine the random measure, the
above Theorem reads

ηn
law
ÝÑ
nÑ8

PPP
`

dplog Gq
˘

We have thus shown that, for many random variables X:
A properly centered and scaled maximum Mn :“ maxiďn Xi of n i.i.d.
copies X1, . . . , Xn of X tends in law to a non-degenerate random variable
with CDF G.
If this happens, the empirical extremal point process

řn
i“1 δXi tends in law

to Poisson point process with intensity measure dplog Gq.

Q: How much does this generalize to dependent random variables?
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Logarithmically correlated processes



Setting of log-correlated processes 15

We need:
A metric space pX , $q of finite diampX q :“ supx,yPX $px, yq

A random field on X ; i.e., a random function ϕ : X Ñ R

Definition

We say that ϕ is logarithmically correlated if (assuming ϕx P L2)

Covpϕx, ϕyq “ Op1q ` g log
ˆ

diampX q

1` $px, yq

˙

where g :“ constant and Op1q is bounded locally uniformly on X ˆX

Key features:
Non-trivial correlations up to the system size
Differences are tight, Eppϕx ´ ϕyq

2q “ Op1q ` g logp1` $px, yqq
If ρ is norm-metric, then ϕ is approximately scale invariant



Examples 16

Examples to be discussed:

Branching Brownian Motion
Branching Random Walk
Two-dimensional Gaussian Free Field
Local time of two-dimensional simple random walk (maybe?)

Examples to be ignored:

Other Gaussian processes (e.g., the membrane model)
Non-Gaussian measures (“Integer-valued” Gaussian, Ppφq-field theory)
Characteristic polynomial of a random matrix ensemble
Riemann’s zeta function on the critical line



Branching Brownian Motion 17

The BBM is a process that “moves” as the standard Brownian motion while
spawning a copy of itself at exponential rate 1.

Figs: courtesy of M. Roberts and M. Pain



Branching Random Walk 18

Given a law on (locally finite) point process η, the BRW with step η is a
sequence tξnuně0 of random point measures on R evolving as follows: At each
time, we replace each existing point by an independent copy of η.

Fig: courtesy Wikipedia

Typically ξ0 :“ δx (and typically x :“ 0).



Branching Random Walk, formal definition 19

Definition
A BRW with step η is a sequence tξnuně0 of random N-valued Radon
measures on R such that for each n ě 0 and each f P C`c pRq,

E
`

e´xξn`1, f y ˇ
ˇFn

˘

“ e´xξn, f̃ y where e´f̃ pxq :“ E
`

e´xη, f px`¨qy˘

Here Fn :“ σpξ0, . . . , ξnq.

Explanation: Write txiuiě1 for the points of ξn. Then ξn`1 has points
txi ` ypiqj : i, j ě 1uwhere typiqj ujě1 enumerates the points of ηpiq for tηpiquiě1

i.i.d. copies of η. A computation shows

E
`

e´xξn`1, f y ˇ
ˇFn

˘

“ E

ˆ

ź

iě1

ź

jě1

e´f pxi`ypiqj q

ˇ

ˇ

ˇ

ˇ

Fn

˙

“
ź

iě1

E
`

e´xη, f pxi`¨qy
˘

“
ź

iě1

e´ f̃ pxiq “ e´xξn, f̃ y

(Note: The marginal laws of xξn`1, f y for f as above determine the law of ξn`1.)



Branching random walk, logarithmic correlations 20

Suppose for simplicity:
branching is always into b “children”
positions are chosen independently

i.e., η “
řb

i“1 δYi where Y1, . . . , Yb are i.i.d.

The total progeny at “time” n is indexed by vertices of b-ary rooted tree Tn of
depth n. Write Λn :“ leaves at depth n.

A family history of x P Λn is the sequence px0, x1, . . . , xnq of neighbors in Tn
where x0 :“ root and xn “ x.

A natural “scale” invariant metric on Λn is

$px, yq :“ b1´minti“1,...,n : xi‰yiu, x ‰ y

Corresponds, roughly, to natural embedding of Λn to r0, 1s.



Branching random walk, logarithmic correlations 21

For i.i.d. copies tYx : x P Tnu of Y, we then have

ξn “
ÿ

xPΛn

δϕx for ϕx :“
n
ÿ

i“1

Yxi

and so Epϕxq “ nEpYq and

Cov
`

ϕx, ϕy
˘

“ VarpYq logb

ˆ

1
ρpx, yq

˙

, x ‰ y

In short, the BRW is log-correlated.



Gaussian Free Field 22

Let G “ pV, Eq be connected, unoriented, locally-finite graph. Write degpxq for
degree of x in G. The simple random walk on G is a Markov chain with state
space V and transition probability

Ppx, yq :“
1

degpxq
1px,yqPE

Notations:
X “ tXkukě0 is a sample path, Px is the law of X with PxpX0 “ xq “ 1
and Ex is associated expectation
Given a finite set U Ĺ V, the Green function in U is

GUpx, yq :“ Ex
ˆ τU´1

ÿ

k“0

1tXk“yu

˙

where τU :“ inftk ě 0 : Xk R Uu

Definition (GFF)

The Gaussian Free Field on U is a Gaussian process tϕx : x P Uuwith

Epϕxq “ 0 and Cov
`

ϕx, ϕyq “
1

degpyq
GUpx, yq, x, y P U



GFF on Zd 23

For G :“ Zd and UN :“ tx P Zd : x{N P Uu for U Ď Rd a nice open set,

GUNpx, yq “

$

’

&

’

%

c1|x´ y| `Op1q, if d “ 1
cd|x´ y|2´d ` op1q, if d ě 3 and |x´ y| " 1
log

` N
1`|x´y|

˘

`Op1q, if d “ 2

provided x, y are “deep” inside UN. (In d ě 3 we can take UN “ Zd.)

Upshot: GFF on Z2 is logarithmically correlated

It gets event better . . .



GFF on Z2 — precise asymptotic & conformal invariance 24

In d “ 2 and with UN :“ tx P Zd : dist8px{N, Rd r Uq ą 1{Nuwe even get

GUNpx, xq “
1

2π
log N`

1
2π

log rUpx{Nq ` c0 ` op1q

where rUpxq :“ conformal radius of U from x and c0 is a known constant.
For off-diagonal values we get

GUNpx, yq “ pGU`x{N, y{N
˘

` op1q
where

pGU is a continuum Green function in U — solving ∆pGUpx, ¨q “ δxp¨q

op1q Ñ 0 as N Ñ8 uniformly in |x´ y| ě εN, for each ε ą 0

Upshot: GFF is asymptotically (as N Ñ8) conformally invariant

Key issue: Pointwise limit does not exist! (Note that Varpϕxq Ñ 8.)



2D Gaussian Free Field — a conformally invariant random fractal 25

UN :“ p0, Nqd XZd with N :“ 500

Level lines described by SLE4-process: Schramm, Sheffield, Miller, etc



GFF is BRW in disguise 26
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Extremal behavior of log-correlated processes



What can possibly be (and not be) true? 28

Key observations (based on above examples):
Local correlations matter significantly — nearby values remain close so
no “isolated” local maxima possible.
Global correlation matter as well albeit by Op1q effects

The PPP limit as for i.i.d. cannot hold but something similar maybe . . .

i.i.d. normals GFF



Unified setting 29

Let tϕx : x P Λnu be one of the processes:
Branching Brownian Motion at time n
Branching Random Walk at time n
Gaussian Free Field in a box of side-length 2n

For the BRW, we assume a.s. survival and certain moment conditions.

Denote
Mn :“ max

xPΛn
ϕx

Then we have . . .



Unified setting — main theorem 30

Theorem (Randomly-shifted decorated PPP limit)

For each of the above processes there exist constants c1, c2 P p0,8q such that, setting
mn :“ c1n´ c2 log n, the family tMn ´mnuně1 is tight. Moreover, there exists

an a.s.-positive random variable Z,
a constant α ą 0, and
a law D on locally finite upper bounded point processes on R,

such that for all f P C`c pRq,

E

ˆ

exp
!

´
ÿ

xPΛn

f pϕx ´mnq
)

˙

ÝÑ
nÑ8

E
ˆ

exp
!

´Z
ż

e´αhdhbDpdχq
`

1´ e´xχ, f ph`¨qy˘
)

˙

where expectation on the right is w.r.t. Z.

Credits go to many people, to be given later.



Unified setting — explanation of the limit 31

Epe´
ř

xPΛn fpϕx´mnqq ÝÑ
nÑ8

Epe´Z
ş

e´αhdhbDpdχqp1´e´xχ, fph`¨qyqq

Sample independent objects:
random variable Z,
thi : i ě 1u :“ points of PPPpe´αhdhq

tdpiqj : j ě 1uiě1 :“ i.i.d. samples from D, called decorations

Theorem then says
ÿ

xPΛn

δϕx´mn
law
ÝÑ
nÑ8

ÿ

i,jě1

δ
α´1 log Z`hi`dpiqj

The quantity α´1 log Z is a random shift.

Process on the right called:
Randomly-shifted decorated Poisson point process



Law of the maximum 32

As a consequence of above Theorem, we get:

Corollary

Let Mn be the maximum of any of the three processes above. Then there exists a
constant c‹ P p0,8q such that

P
`

Mn ď mn ` u
˘

ÝÑ
nÑ8

E
`

e´c‹Ze´αu˘
, u P R

In short, the centered maximum tends to a randomly shifted Gumbel law.

Proof: Approximate PpMn ď mn ` uq by Epe´xηn,f yq for f :“ λ1pu,8q and
take n Ñ8 and λ Ñ8 to represent the limit as

E
ˆ

exp
!

´Z
ż

e´αhdhbDpdχq1txχ,1pu´h,8qy“0u

)

˙

As χ is upper bounded, the integral is computed to be c‹e´αu.
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McKean (1975), Bramson (1978, 1983), Lalley and Selke (1987)
Arguin, Bovier, Kistler (2011, 2012)
Aı̈dekon, Berestycki, Brunnet, Shi (2013)

Branching Random Walk:
Kingman (1975), Biggins (1976), Biggins and Kyprianou (2005)
Addario-Berry, Reed (2009), Aı̈dekon, Shi (2010)
Aı̈dekon (2013), Madule (2017), Maillard, Mallein (2021)

Gaussian Free Field:
Bothausen, Deuschel, Zeitouni (2011), Bramson, Zeitouni (2012)
Bramson, Ding, Zeitouni (2016)
Biskup and Louidor (2016, 2018, 2020)
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Ideas & proofs: 2nd lecture (tomorrow 9AM)


