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Plan of the lectures

Part I:

o Extreme value theory: a primer

@ Logarithmically correlated processes, examples

@ Extremal behavior — randomly shifted Gumbel PPP
Part II:

@ Some technical proofs: tightness of maximum

@ Invariant point process via Liggett & Choquet-Deny

@ Local time of random walks



Extreme value theory: a primer



Maximum of n i.i.d. r.v.’s

Let Xy, X>, ..., X, beiid., M, := maxj—1, _» X;.
Q: Is there a limit law for appropriately centered and scaled M,,?

Alternatively, let F = CDF of X. Then

Q: For what F are there {4, },>1 and {b, },>1 such that x — F"(a,x + by)
converges to a non-constant limit as n — c0?

Q: What functions G are limits of x — F(a,x + b,)" as n — o0?



Fisher-Tippet-Gnedenko Theorem

Theorem (Fisher-Tippet 1928, Gnedenko 1943)

The set of non-constant limits of x — F(a,x + b,)" as n — oo for some CDF F and
real-valued {ay,},>1 and general {b,},>1 takes the form

{x—> G (ax+b): ye R, ae R\ {0}, be R}

where
expy—(1 + yx)~7 if1+9x>0,
G, () = | P+ 707T} g
0 else,

with the interpretation

Gy(x) :=exp{—e™}, xeR,
ify =0.

We call v the extreme value index.



Three extremal types

e Fréchet v < 0. After a shift/scaling;:

G(x) =exp{—(—x)""}, x<0 (:=0else)
Domain of attraction includes e.g., Cauchy.

e Weibull v > 0. After a shift/scaling:

G(x) =exp{—x""}, x>0 (:=0else)

Domain of attraction includes e.g., uniform or lower tail exponential.

e Gumbel ¥ = 0:
G(x) =exp{—e™}, xeR

Domain of attraction includes e.g., Gaussian and upper tail exponential.

Unified form Jenkinson 1955, von Mises 1936.



Let X4,...,X,, and let

~

Xp =Xy 122X
be its decreasing reordering. We already explored M,, = X.
Q: Given k > 0, is there a joint limit law of appropriately scaled and centered

random vector

~ ~

(an R /Xn—k+1)

asn — o0?



Extreme order statistics
Representation via exponentials

Theorem (Order statistics)
For F := CDF of Xy, assume F(ay, - +b,)" — G, for some 7y € R. Then for all k > 0,

~

(Xn — by 5\(Vl—k+1 - bn)

7 M4

an an
1w (Y§—1 (Y1+Y,)7 -1 (Y1+...Yk)7—1>
100 v 0 0

where Y1, ... Yy arei.i.d. Exponential(1). (For -y = 0 replace u — WT_l by log(u).)

Renyi (v :=1): Xj, ..., X, = Exponential(1)

General case: Analysis of inverse CDFs (see book by de Haan and Ferreira).



Point process formulation

An equivalent formulation looks at convergence of empirical counts

n n
(Z 1{Xz‘>ant1+bn}’ trts Z 1{Xi>antk+bn})
i=1 i=1

for all possible and t; >_ th >+ >t Thes;, are encoded via the empirical
(extremal) point process ;
Mn = Z ) X;—bn
i=1

an

resp., its integrals

Xl - bn
an

)

Key advantage of linearity: multivariate questions handled by

n n k
(A e, Ag) - (2 LiXisauty+b,)r - -+ Z 1{Xi>a,,tk+bn}> = <77n/ Z /\jl(tj,oo)>
-1 i-1 =1

and the Cramér-Wold device. (Upshot: Law of (11,,f) for each f suffices.)

o= [ Fana =35
i=1



Point process limit

Need to show that {1,,, f) admits a weak limit for a sufficiently large class
of f’s. Non-negative continuous f’s with compact support suffice.

Theorem (Poisson convergence)

Suppose F is a CDF such that F(ay, - +b,) — G for some {a,},>1 and {b,},>1 and
some non-constant G. Given i.i.d. r.v.’s X1, X5, ... with CDF F, let

M 1= ZHF@
i=1

an

Then for all f: R — [0, %0) continuous with supp(f) bounded from below,

n—oo

]E(e_<’7”’f>) — exp{— J(l —e7)d(log G)}




Proof of Theorem: Poissonization

Suppose supp(f) < [t,0). By i.i.d. property of X, ..., X,

E(e~P) = E H o (Xi=bn)/a) _ [IE (e—f«xl—bn)/an))]”
i=1

_ [1 ~EB(1- e—f«xl—bn)/an)))]”
= O unless X7 = a,t + b,

= exp{—(l +0(1))nE(1— e*f((xlfb")/“"))}

By a similar argument,

P(X; <ant+0b,)" — G(t) < nP(Xy>ant+b,) — —logG(t)

n—00 n—00

Using continuity of f, hence we get

nE(1—e(Ki=b/m)y (1 —eF)d(logG) O

n—0o0



Interpretation via Poisson point process

Consider independent random variables {N;};>1 and {Yj};>1 with
e N; = Poisson()\))
@ Y;; having distribution y; N;

A naturally associated point process ¢ := Z Z Jy,
j=1li=1
Then for f: R — [0, ) continuous with compact support

E(e &) IEexp{ ZEf ]Z} foe ME(e~in)]"

j>1i=1 j=1n=0
Hexp{ Jl—e f)d‘u]}—exp{ J(l—ef)dy}

provided y := -1 Ajpj is a Radon measure. We call
@ u the intensity measure

@ ( a Poisson point process with intensity measure y;, or PPP(u) for short.



Summary and outlook

Since integrals w.r.t. functions in C/ (R) determine the random measure, the
above Theorem reads |
aw
fn —> PPP (d(log G))

We have thus shown that, for many random variables X:

@ A properly centered and scaled maximum M, := max;<, X; of ni.i.d.
copies Xj, ..., X, of X tends in law to a non-degenerate random variable
with CDF G.

e If this happens, the empirical extremal point process > ; dx, tends in law
to Poisson point process with intensity measure d(log G).

Q: How much does this generalize to dependent random variables?



Logarithmically correlated processes



Setting of log-correlated processes

We need:
@ A metric space (4, 0) of finite diam(Z") := SUpP, e o o(x,y)
@ A random field on Z7;i.e., a random function ¢: 2" — R
Definition

We say that ¢ is logarithmically correlated if (assuming ¢, € L?)

COW¢m4w)=CX1%+gbg<dmnmﬁq>

1+o(xy)
where g := constant and O(1) is bounded locally uniformly on 2" x 2

Key features:
@ Non-trivial correlations up to the system size
e Differences are tight, E((¢x — ¢,)?) = O(1) + glog(1 + o(x,))

@ If p is norm-metric, then ¢ is approximately scale invariant



Examples

Examples to be discussed:

@ Branching Brownian Motion
@ Branching Random Walk
e Two-dimensional Gaussian Free Field

@ Local time of two-dimensional simple random walk (maybe?)

Examples to be ignored:

@ Other Gaussian processes (e.g., the membrane model)
@ Non-Gaussian measures (“Integer-valued” Gaussian, P(¢)-field theory)
@ Characteristic polynomial of a random matrix ensemble

@ Riemann’s zeta function on the critical line



The BBM is a process that “moves” as the standard Brownian motion while
spawning a copy of itself at exponential rate 1.

T

Figs: courtesy of M. Roberts and M. Pain



Branching Random Walk

Given a law on (locally finite) point process 77, the BRW with step 77 is a
sequence {Cy}n>0 of random point measures on R evolving as follows: At each
time, we replace each existing point by an independent copy of .

T

Fig: courtesy Wikipedia

Typically &g := Jy (and typically x := 0).



Branching Random Walk, formal definition

Definition
A BRW with step 7 is a sequence {¢, },>0 of random IN-valued Radon
measures on R such that for each n > 0 and each f € C(R),

IE (e_<§n+1ff> | ‘Fi’l) — e_<§il/f> Where e_f(x) = IE (e_<17/f(x+)>)
Here F,, := 0(Co,...,Cn)-

Explanat1on Write {x;}i>1 for the points of §,,. Then ¢,+1 has points
{x; + y]() > 1} where {y }]>1 enumerates the points of 7 for {5},

iid. copies of n. A computatlon shows

E(e@h | F,) (H [e et
- H]E(e—<v,f(x,-+-)>) - He—f(xi) — o=Enf>

i=1j>1
i=1 i=1

(Note: The marginal laws of (¢,,11,f) for f as above determine the law of §,,41.)



Branching random walk, logarithmic correlations

Suppose for simplicity:
@ branching is always into b “children”
@ positions are chosen independently
ie,n = Zf.;l dy, where Yq,..., Y, areiid.

The total progeny at “time” n is indexed by vertices of b-ary rooted tree T, of
depth n. Write A, := leaves at depth n.

A family history of x € A, is the sequence (xo, x1, ..., X,) of neighbors in T,
where xj := root and x,, = x.

A natural “scale” invariant metric on A, is

_ bl—min{izl,...,n: Xi#Yi} A A

o(x,y) : X#Y

Corresponds, roughly, to natural embedding of A, to [0, 1]. A A

o ded e 4

.



Branching random walk, logarithmic correlations

Forii.d. copies {Yy: x € T,,} of Y, we then have

n
Cn = Z 0y, for @y:= ZYXI,
i=1

XEAy
and so E(¢y) = nE(Y) and
1

Cov(¢x, ¢,) = Var(Y)log, <>, xX#Yy

pxy)
In short, the BRW is log-correlated.



Gaussian Free Field

Let G = (V, E) be connected, unoriented, locally-finite graph. Write deg(x) for
degree of x in G. The simple random walk on G is a Markov chain with state
space V and transition probability

1

P(x,y) i= ——=Luyer
Notations: deg(x) Y

@ X = {Xi}k=0 is a sample path, P* is the law of X with P¥(Xy = x) =1
and E* is associated expectation
@ Given a finite set U < V, the Green function in U is

-1
Gu(x,y) = E"( Z 1{Xk=]/}>
where 117 := inf{k > 0: X; ¢ U} =0
Definition (GFF)

The Gaussian Free Field on U is a Gaussian process {¢,: x € U} with

1
IE(q)x) =0 and COV((PX’ (P]/> = deg(y) Gu(x/y)l RS u




GFF on 74

For G := Z% and Uy := {x € Z%: x/N € U} for U < R? a nice open set,

cilx—y|+O(1), ifd=1
GUN(x,y) = { calx —y>~* +0(1), ifd>3and [x—y| > 1
log (1h=yr 1) +0(1), ifd =2

provided x,y are “deep” inside Uy. (In d > 3 we can take Uy = Z“.)
Upshot: GFF on Z? is logarithmically correlated

It gets event better . ..



GFF on Z? — precise asymptotic & conformal invariance

Ind = 2 and with Uy := {x € Z“: dist,,(x/N,R? \ U) > 1/N} we even get

G (x,x) = % log N + % log 7Y (x/N) + co + o(1)

where 7! (x) := conformal radius of U from x and ¢ is a known constant.

For off-diagonal values we get

GUN(x,y) = GY(x/N,y/N) +o(1)
where

o GYis a continuum Green function in U — solving AGU (x, ) = 6,(-)

@ 0(1) - 0as N — oo uniformly in |x — y| > €N, for each € > 0

Upshot: GFF is asymptotically (as N — o) conformally invariant

Key issue: Pointwise limit does not exist! (Note that Var(¢,) — 0.)



2D Gaussian Free Field — a conformally invariant random fractal

Uy := (0,N)4 n Z4 with N := 500

Level lines described by SLEs-process: Schramm, Sheffield, Miller, etc




GFF is BRW in disguise

"i‘ﬁ C

4 1ol {oit'd {ol1'd ~
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Extremal behavior of log-correlated processes



What can possibly be (and not be) true?

Key observations (based on above examples):

@ Local correlations matter significantly — nearby values remain close so
no “isolated” local maxima possible.

@ Global correlation matter as well albeit by O(1) effects

The PPP limit as for i.i.d. cannot hold but something similar maybe ...

i.i.d. normals GFF



Unified setting

Let {¢x: x € A, } be one of the processes:
@ Branching Brownian Motion at time n
@ Branching Random Walk at time n

@ Gaussian Free Field in a box of side-length 2"

For the BRW, we assume a.s. survival and certain moment conditions.

Denote

M, := max @,
xeA,

Then we have ...



Unified setting — main theorem

Theorem (Randomly-shifted decorated PPP limit)

For each of the above processes there exist constants c1, ¢ € (0, 00) such that, setting
my = cin — ¢ log n, the family {M,, — my},>1 is tight. Moreover, there exists

@ an a.s.-positive random variable Z,

@ a constant « > 0, and

@ a law D on locally finite upper bounded point processes on IR,
such that for all f € CT(R),

-

xeAy
— E<exp{—zfe—“hdh®p(dx)(1 e ) })

n—0o0

where expectation on the right is w.r.t. Z.

Credits go to many people, to be given later.



Unified setting — explanation of the limit

]E(Q*ZXE/\)J.“({’\'*”IH)) N E<e7Z_V07“/’dh®’D(d,\/)(1707<X'f(h+')>))

n—0o0

Sample independent objects:

@ random variable Z,
o {h;:i> 1} := points of PPP(e~*"dh)
° {d](i) :j = 1}i>1 :=1i.d. samples from D, called decorations

Theorem then says

S b B S
Px—Mn a1 logZ-&-hi-&-dj(l)
XEA, ij=1

The quantity a1 log Z is a random shift.

Process on the right called:
Randomly-shifted decorated Poisson point process



Law of the maximum

As a consequence of above Theorem, we get:

Corollary

Let M,, be the maximum of any of the three processes above. Then there exists a
constant c, € (0, ) such that
P (M, < my+u) — ]E(e_c*ze_au), ueR
n—a0
In short, the centered maximum tends to a randomly shifted Gumbel law.

Proof: Approximate P(M,, < my + u) by E(e~/?) for f := AM(y,0) and
take n — o0 and A — oo to represent the limit as

E (exp{—Z j e "dn ® D(dX>1{<x,1(u,,m>>:0} })

As x is upper bounded, the integral is computed to be c,e™*".



Credits

Branching Brownian Motion:
@ McKean (1975), Bramson (1978, 1983), Lalley and Selke (1987)
@ Arguin, Bovier, Kistler (2011, 2012)
Aidekon, Berestycki, Brunnet, Shi (2013)
Branching Random Walk:
e Kingman (1975), Biggins (1976), Biggins and Kyprianou (2005)
e Addario-Berry, Reed (2009), Aidekon, Shi (2010)
@ Aidekon (2013), Madule (2017), Maillard, Mallein (2021)

Gaussian Free Field:
@ Bothausen, Deuschel, Zeitouni (2011), Bramson, Zeitouni (2012)
@ Bramson, Ding, Zeitouni (2016)
@ Biskup and Louidor (2016, 2018, 2020)



Ideas & proofs: 2nd lecture (tomorrow 9AM)



