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PLAN

(1) Historical perspective: theory of phase tran-
sitions

(2) Lee-Yang Circle Theorem (and proof)

(3) Perturbative approach



PHASE TRANSITIONS

Examples:

(1) Water freezes & boils

(2) Permanent magnetism

(3) Superconductivity, etc.

Common feature: collective phenomenon



ISING MODEL
A C Z% finite set
opn € {—1,+1}" spin configuration

Probability measure

P({op}) = —

xeN

Partition function

27w =3 (T1 ") I

(z,y) TEN

Parameters:
J > 0 (coupling constant)
h € R (magnetic field)

Plus-minus symmetry: o < —0c & h <~ —h
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PHASE TRANSITION IN ISING MODEL

e Quantity of interest

d 1
m/\(J7 h) — awlog Z/\(Jv h)

e [ hermodynamic limit

mx(J,h) = Iim ma(J, h)
A 74

o Symmetry: mx(J,—h) = —mx«(J, h)

e Phase transition: In d > 2 3Jc € (0,00)
such that

lim my(J, h)

>0 J > Jc
h10

=0 J<JC
(Jc=00ind=1)



ORIGINS OF SINGULARITY

Free energy/pressure

FOIR) = lim —log Zx(J, h)
AZ4 ||

Non-analyticity at h = 0 when J > Jc:

F(Jh)

N f

But h — ﬁ log ZA(J, k) (real) analytic Vh!
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LEE & YANG'S IDEA

Let 2 = e2" and fix J > 0. Then

ZA(, ) = 27 IN2Q A (2)

where Q|/\|(z) is a polynomial in z with positive
coefficients.

e Non-analyticity caused by complex zeros
of Q\/\\ wandering onto the (physical part
of) real axis.

e Thus, h— f(J,h) has analytic continuation
Into regions where Q5| has no zeros for
any A.



LEE-YANG CIRCLE THEOREM

Theorem 1 (Lee & Yang, 1952) For every
J >0 and all finite A C Z¢, all zeros of Q| lie
on the unit circle in C.



GENERALIZED SETUP

More general setting:

Qn(zla IR Zn) — Z ZS H Ak,ﬁ

Sc{1,...n} k&S
¢S

where z° = [[reg 2k

Theorem 2 (Lee & Yang, 1952) Suppose that
forallk,f =1,...,n the coefficients (A 4) obey

(1) A= Ay
(2) Ak,f € [_17 1]

T hen ‘21|, Ceey |Zn—1| > 1 and Qn(zl, .. .,Zn) =0
imply that |z,| < 1.



CIRLE INVERSION

Lemma 3 For any z1,...,zn € C we have
1 1 1 .

e, | = AT
Qn(z{ z;’fL) (z1...2n)* @nlz1 n)

In particular, if

21| = |z2| = - = [zp-1[ =1

and Qn(z1,...,2n) =0, then |z,| = 1.

Proof. The first line follows from Ay, € R and
the fact that @y is linear in each variable. To
get the rest we note that z — 1/z* is iden-
tity map on {z: |2| = 1}. Thus 1/z; = z; for

every k=1,...,n— 1 and therefore
1 —
o



HOMOGENEITY RELATION

Lemma 4 Suppose that A, ,7# 0. Then

d
—Qn(z1,...,2n)
dZn

= (Ap1---Ann—1) Qn—1<

Z1 Zn—1 )
e e .
An,l An,n—l

Proof. The derivative forces n € S and so the
coefficient of z° contains all A4, , with ¢ ¢ S.
Taking out A, 1...A, -1, We have to divide
each z, by A, j to compensate. [

NOTE: Two-body interaction essential
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PROOF OF THEOREM 2

Continuity: Assume that Ay, € (—1,1) \ {0}.

Induction argument: Holds for n = 1 because
Q1(z1) = 1+ 21.

Now suppose Theorem 2 holds up to n—1 and
fix z1,...,2z,_o outside the open unit disc.

Define a rational function ¢: C — C such that
for each z € C,

Qn(z1,-..,2p-2,9(2),2) = 0.

The proof hinges on the fact that |¢(z)| < 1
for |z| sufficiently large.
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|p(z)| < 1 FOR z LARGE

e ¢(z) bounded for z — oo (Ag, 7 0 implies
that all coefficients nonzero).

e Hence, as z — oo we must have

d
d—Qn(zla ceey Qb(Z), Zn) — 0
Zn

Letting z,_1 = ¢(c0), by Lemma 4 we thus
have

Qn_1< it ):o.

’ ° Y
An,l An,n—l

But |zp/A, k| > |2kl = 1 and so by induction
assumption

Zm —
|Z7”L—1|<‘An 1 ‘<17

n,n—1

i.e. [¢p(c0)| < 1.
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BACK TO THE PROOF

Let now z1,...,2zn € C be such that

z1], .- |zn—1] > 1

Suppose now that |zp| > 1. Then we de-
fine z,_1(A\) = ¢(Azpn) and increase A from 1
to co. By previous reasoning, z,_1(A) must
visit unit disc before \ reaches co. Stop when
unit circle hit.

Do this for all z1,...,2,_1 to produce a collec-
tion z1,...,zp with

Z1] = = [z 1l =1 < |zn| < o0
and Qn(z1,...,2n) = 0. Thisisin contradiction

with Lemma 3. [

13



DEFICIENCIES

(1) Restricted to two-body interactions.

(2) No info where the zeros are.

(3) Too dependent on symmetries.
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PERTURBATIVE APPROACH

Restricted to:
(1) d > 2 (based on phase transition techniques)
(3) A = lattice torus (periodic b.c.)
(4) J> 1 to enable contour arguments.
Notation:

e A\; = lattice torus of L x ... L sites

o Z1(2) = 2Zp,(J,h) for z = el
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REPRESENTATION OF 77,

Theorem 5 (BBCKK, 2003) Let d > 2 and
J > 1. Then there exist functions (+: C — C
such that = defined by

d d _
Zr(2) = ¢ () + ()Y + E0(2)
satisfies, for some r > 0,

—_— _ d d
ZL(2)] < e TFmax{ (¢ ()] 16 ()}
for all z € C and all L sufficiently large.

Moreover, we have

(1) ¢+ are C? everywhere, with {y analytic on
{z:[¢4(2)| > |¢=(2)|} and vice versa.

(2) (£(2) = 2t exp{s(2)} where

5(2)], 1025(2)], 19zs(2)| < e~17
for some c¢1 > 0 and all z € C.
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IDEA OF PROOF

Contour representation:

)

-+ + + + + +]|- -
—_ N s ~ .
++J—+————+—
4 JrJ —
+ —|+ - - - - =+ +

Lw A
+ + + o+ —J+ +]— - | +

\ J
+——++|— —|+++
+ + |-+ + + + +|— -

Each contour ~ “costs” e~2J1l,
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MORE DETAILS

No contours (J = oc0)

d d
Zi(z) = A0 4 L

For J very large, we decompose 7, as follows:
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LOCALIZING ZEROS

Theorem 6 (BBCKK, 2003) There exist con-
stants C,Lg € (0,1) such that for all L > Lo,
all zeros of Zj,

(1) are non-degenerate

(2) lie within Ce~™L of the solutions to
[+ ()] = [¢—(2)]

L% arg¢y(2) —arg¢_(z)) =7 mod 27

(3) lie on the unit circle in C with neighboring
zeros further than O(L—%) apart.
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