Chasing a blind snail through a random maze Random walk on random graphs

Marek Biskup

Based on joint work with

Noam Berger

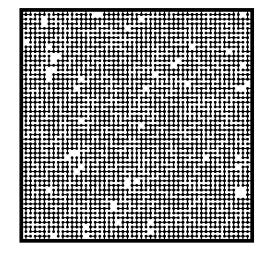
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Random maze Bond percolation on \mathbb{Z}^2

Bond percolation:

- Keep edge with probability p.
- Remove it with probability 1 – p.

Think of $1 - p \ll 1$.



(日) (字) (日) (日) (日)

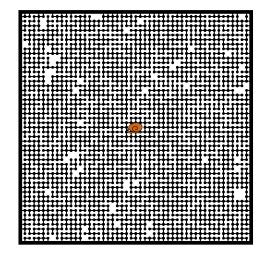
Bond percolation:

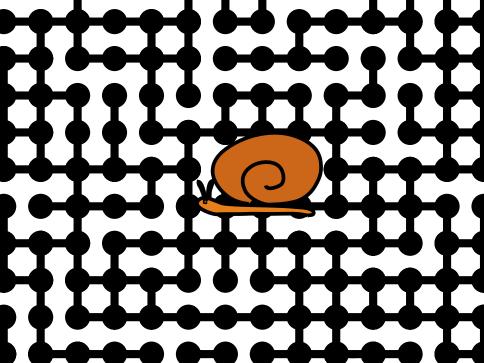
- Keep edge with probability p.
- Remove it with probability 1 – p.

Think of $1 - p \ll 1$.

Snail:

performs random walk





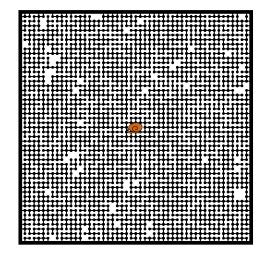
Bond percolation:

- Keep edge with probability p.
- Remove it with probability 1 – p.

Think of $1 - p \ll 1$.

Snail:

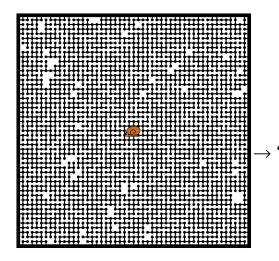
performs random walk



Random maze Snail's random walk

Main questions:

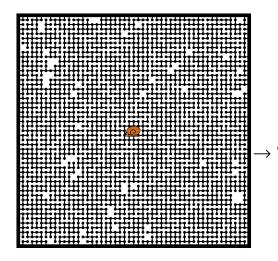
Exit point distribution



Random maze Snail's random walk

Main questions:

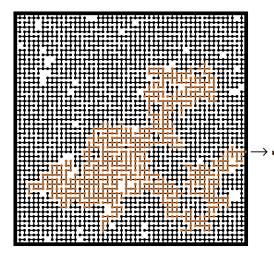
- Exit point distribution
- Time needed to exit



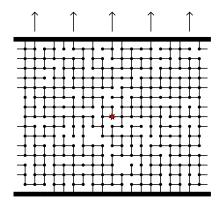
Random maze Snail's random walk

Main questions:

- Exit point distribution
- Time needed to exit
- Snail's path is there a scaling limit?

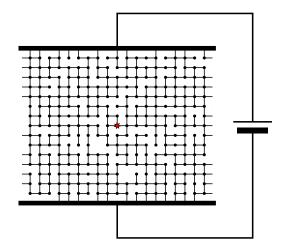


Hitting probability Walk exits through the top side?



Electrostatic version

Potential at the origin?



Discrete harmonic analysis

Definition 1

Let G = (V, E) be a graph. A function $\varphi \colon V \to \mathbb{R}^d$ is called *discrete harmonic* if $\forall x \in V$,

$$(\Delta \varphi)(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{\mathbf{y}: \ (\mathbf{x}, \mathbf{y}) \in E} \left[\varphi(\mathbf{y}) - \varphi(\mathbf{x}) \right] = \mathbf{0}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Discrete harmonic analysis

Definition 1

Let G = (V, E) be a graph. A function $\varphi \colon V \to \mathbb{R}^d$ is called *discrete harmonic* if $\forall x \in V$,

$$(\Delta \varphi)(\mathbf{X}) \stackrel{\text{def}}{=} \sum_{\mathbf{y}: \ (\mathbf{X}, \mathbf{y}) \in E} \left[\varphi(\mathbf{y}) - \varphi(\mathbf{X}) \right] = \mathbf{0}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Automatic properties (no conditions):

(1) Maximum principle

Subtle properties (depend on the graph):

- (2) Lieouville's theorem
- (3) Harnack inequality

Connections with random walk

Let X_1, X_2, \ldots = successive positions of the random walk on *V* Walk started at *x*: Probability distribution P_x , expectation E_x

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
</p

Connections with random walk

Let X_1, X_2, \ldots = successive positions of the random walk on *V* Walk started at *x*: Probability distribution P_x , expectation E_x

Theorem 2 (Dirichlet problem)

Let $V_0 \subset V$ be finite. Let $\varphi : V_0 \to \mathbb{R}$ be harmonic on V_0 with boundary conditions ψ on ∂V_0 . Then

$$\varphi(\mathbf{x}) = E_{\mathbf{x}}(\psi(X_T)), \qquad \forall \mathbf{x} \in V_0,$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where T = first time the walk leaves V_0 .

Connections with random walk

Let X_1, X_2, \ldots = successive positions of the random walk on *V* Walk started at *x*: Probability distribution P_x , expectation E_x

Theorem 2 (Dirichlet problem)

Let $V_0 \subset V$ be finite. Let $\varphi \colon V_0 \to \mathbb{R}$ be harmonic on V_0 with boundary conditions ψ on ∂V_0 . Then

$$\varphi(\mathbf{x}) = E_{\mathbf{x}}(\psi(\mathbf{X}_T)), \qquad \forall \mathbf{x} \in V_0,$$

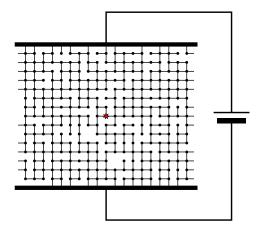
(日) (日) (日) (日) (日) (日) (日)

where T = first time the walk leaves V_0 .

Proof.

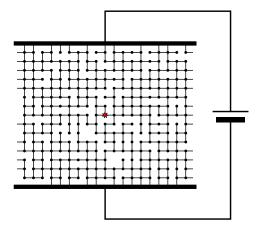
 $x \mapsto E_x(\psi(X_T))$ is discrete harmonic on V_0 with b.c. ψ Maximum principle $\Rightarrow \exists$ at most one such function

Electrostatic problem revisited Geometric embedding



◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

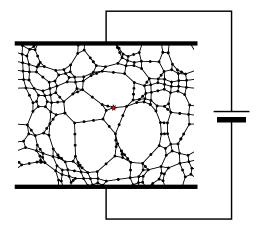
Electrostatic problem revisited Geometric embedding



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The position $\varphi(x) = x$ is *not* discrete-harmonic

Electrostatic problem revisited Harmonic embedding



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

The position $\varphi(x) = x + \chi(x)$ *is* discrete-harmonic

Electrostatic problem "solved"

▲□▶▲□▶▲□▶▲□▶ □ のQで

Notations:

- (1) Infinite slab $\{(x, y) : |y| \le N\}$
- (2) Potential +1 on top bar, -1 on bottom bar
- (3) $x + \chi(x) =$ "new" position of site x

Electrostatic problem "solved"

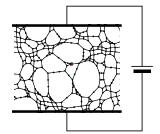
Notations:

- (1) Infinite slab $\{(x, y) : |y| \le N\}$
- (2) Potential +1 on top bar, -1 on bottom bar
- (3) $x + \chi(x) =$ "new" position of site x

Theorem 3

If $\varphi(\mathbf{x})$ is the potential at \mathbf{x} , then

$$\varphi(\mathbf{x}) = \frac{1}{N} \big[(\mathbf{x} + \chi(\mathbf{x})) \cdot \mathbf{e}_2 \big].$$



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Martingales

Definition 4

A sequence of random variables M_0, M_1, \ldots is a martingale if

$$E(M_{n+1}|M_0,\ldots,M_n)=M_n, \qquad n\geq 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

E.g., game with zero expected profit

Martingales

Definition 4

A sequence of random variables M_0, M_1, \ldots is a *martingale* if

$$E(M_{n+1}|M_0,\ldots,M_n)=M_n, \qquad n\geq 0$$

E.g., game with zero expected profit

Theorem 5 (Harmonic + RW = martingale) Let G = (V, E) be a graph and let $\varphi : V \to \mathbb{R}^d$ be harmonic. Let X_0, X_1, \ldots be the random walk on V. Define

$$M_n = \varphi(X_n), \qquad n \ge 0.$$

Then M_0, M_1, \ldots is a martingale.

Hitting probability Martingale calculation

Let $M_n = X_n + \chi(X_n)$. Then M_n is

- random walk on deformed graph
- martingale
- A classic martingale calculation:

$$e_2 \cdot \chi(0) = e_2 \cdot E_0(M_0) = e_2 \cdot E_0(M_T)$$

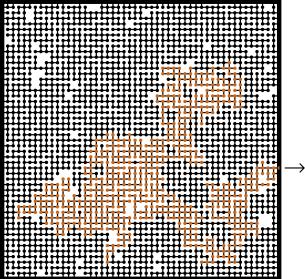
= 2P₀(top hit before bottom) - 1

From here we get

$$P_0(\text{walk exits thru top}) = \frac{1}{2} \left(1 + \frac{e_2 \cdot \chi(0)}{N} \right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Snail's slimy trail



 \rightarrow @

Martingale functional CLT

Diffusive scaling: Scale space by \sqrt{n} and time by *n*. Explicitly

$$B_n(t) = \frac{1}{\sqrt{n}} (M_{\lfloor tn \rfloor} + (tn - \lfloor tn \rfloor)(M_{\lfloor tn \rfloor + 1} - M_{\lfloor tn \rfloor}))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Note: $t \mapsto B_n(t)$ is a continuous path.

Martingale functional CLT

Diffusive scaling: Scale space by \sqrt{n} and time by *n*. Explicitly

$$B_n(t) = \frac{1}{\sqrt{n}} (M_{\lfloor tn \rfloor} + (tn - \lfloor tn \rfloor)(M_{\lfloor tn \rfloor + 1} - M_{\lfloor tn \rfloor}))$$

Note: $t \mapsto B_n(t)$ is a continuous path.

Theorem 6 (Martingale functional CLT—folk version)

If margingale (M_n) has stationary square-integrable increments, then as $n \to \infty$, the law of $(B_n(t): t \ge 0)$ converges to that of Brownian motion.

Precise conditions of this theorem hold for $M_n = X_n + \chi(X_n)$ on almost-every percolation configuration.

Correction on deformation

All those thing under the rug...

Previous slide: Deformed walk \longrightarrow Brownian motion

Need to correct on deformation. We show that

 $\chi(\mathbf{x}) = \mathbf{o}(|\mathbf{x}|)$

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
(日)

(日)

(日)

(日)

(日)

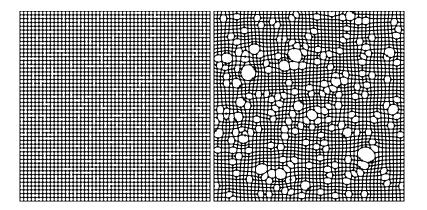
(日)

(日)

(日)
</p

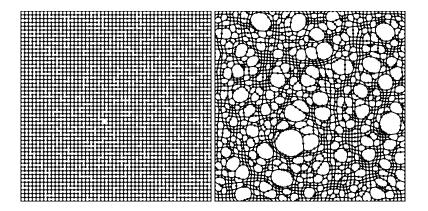
Proof quite nontrivial; see [BB05] for details.

 50×50 box, p = 0.95

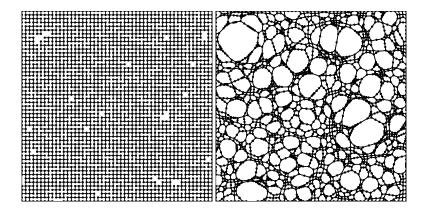


|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 通 = の��

 50×50 box, p = 0.85

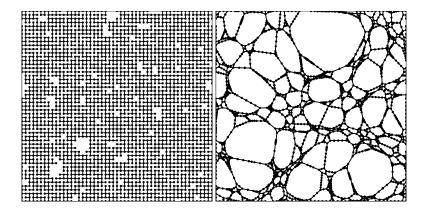


 50×50 box, p = 0.75

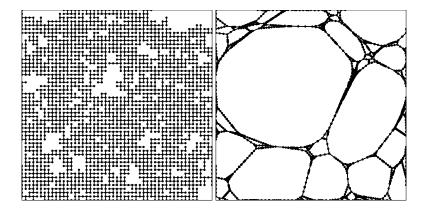


▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

 50×50 box, p = 0.65



 50×50 box, p = 0.55



◆□ > ◆□ > ◆ □ > ◆ □ > → □ = − の < @

THE END

