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Prelude about random fields  biame Eviatar
DGFF: definitions, level sets, maximum
Extremal point process

Some proofs  ail roads lead back to UCLA

Conformal invariance rediscovered
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Connection to Liouville Quantum Gravity
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Prelude

Stochastic processes vs random fields

A stochastic process: {X;} where t = time (t€ N or t € R})

Simple symmetric random walk in d =1 and d =2

¥

10,000 steps 682,613 steps, 1000x 1000 box

Questions: Scaling limit? Occupation time measure?




Prelude

Stochastic processes vs random fields

A random field: {¢,} where x = space (x € Z9 or x € RY)
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Linear b.c Parabolic b.c.

Questions: Asymptotic shape, correlations, fluctuations?
Refined questions: Local structure, level sets, extreme values?




Random fields in physics

Euclidean theory only

General form of law:

Z7te "0 99

where
> /= fefH(‘P).@(]) = normalization
» H(¢) = Hamiltonian (energy of ¢: RY — R)
> 7¢ =Tl v(d¢x)

Examples:
» White noise: H =0, v ~ standard normal
» GFF: H(¢) = 3 [|V¢(x)|?dx, v = Lebesgue
» ¢*theory: v = Lebesgue

H(0) =5 [ 190 0Pax-+ [ 9(x)"ax

NOte: (mOSt Of the tlme) i" defined! (no product Lebesgue measure)



Discrete Gaussian Free Field
DGFF for short

Field ¢: Z¢ — R

Gibbs measure: for A C Z4 finite, § = boundary condition

ug (do) == —5e~ @) TT dg, TT 85, (dox)
Z\ x€A  x¢A

Hamiltonian (B(A) := n.n. edges incident with A)

Hn(0):=5 X (0—9))?

(x.y)€B(A)

We will choose k = 5 and ¢, = 0 for all X (o be)

Model of: crystal deformations, random interface, ...




Relation to simple random walk

Alternative definitions

Green function: For X = SRW,

7—1
Ga(x.y) == EX( ) 1{Xk=y}>
k=0

where 7 := first exit time from A

DGFF on A = Gaussian process {¢y: x € Z} with

E(¢x) =0 and E(¢x@y) = Ga(x.y)

Note: Zero values outside A

Alternative def’s: Gaussian Hilbert spaces, Langevin dynamics, ...




Why 2D?

VN=N><NbOX, GN:GVN

For x with dist(x, V}y,) > 6N,

N ifd=1
Var(¢y) = Gy (x,x) < < logN ifd=2
1 ifd>3

Ind=2:
Gn(x,y) = glogN —a(x,y)+o(1) N> 1

a(x,y) =glog|x—y|+c+o(l) |x—y[>1
where

2 ) 1
g:= (In physics, g := 5-)
The d =2 model is asymptotically scale invariant:

G2N(2X, 2y) = GN(X,y) + O(].)

In fact: conformally invariant









Level set (fractal) geometry
Some known facts

e O(1)-level sets: SLE, curves (Schramm & Sheffield)

e O(log N)-level sets: Hausdorff dimension (Daviaud)
{x € Dn: ¢« >2,/g7logN}, 0<y<l1

has N2(1=7")+o(1) yertices. Note: Maximum order log N!



Point of focus
Extreme values of DGFF

Main goal: Describe statistics of extreme values of ¢ as N — oo

Question of interest: What's the role of conformal invariance?

N.B.: Continuum GFF not a function!

Surprise connections:
» Invariant measures for independent particle systems

» Liouville Quantum Gravity, multiplicative cascades, ...



Further known facts
Absolute maximum
Setting and notation: Vy := (0,N)?NZ?

Mp = max ¢, and mpy:= EMy
x€Dy

Leading scale (Bolthausen, Deuschel & Giacomin):

mpy ~ 2\/§|Og N (hard to simulate)

Tightness for a subsequence (Bolthausen, Deuschel & Zeitouni):

2E’MN—mN‘ < moy—mpy

Full tightness (Bramson & Zeitouni):
3
EMy =2,/glog N — Z\/EloglogN—k Oo(1)

Convergence in law (Bramson, Ding & Zeitouni)



Ding & Zeitouni, Ding established
extremal process tightness:

Extreme level set:

FN(t) = {XE Vn: O > my — t}
Je, C € (0,00):

and dc > 0 s.t.

lim limsup P

r—ee N—boo

(Elx,y €Tln(cloglogr): r<|x—y| < N/r) =0

Generalizes to “bounded and open” domains

lim liminf P(ec’l <|Ty(A)] < eCl) =1

[m]

&



Domains we will consider

Class of domains:
D ={D C C: bounded, open, dD = finite # of pieces}
Discretized as Dy := {x € Z?: dist(x/N, D) > 1/p}.
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Really need: Weak convergence of harmonic measures (discrete to continuous)



Setup for extreme order theory

Extremal point process

Full process: Measure ny on D x R

M= Y, S/n®8p—my

xeDy

Problem: Values in each “peak” strongly correlated

Local maxima only: A,(x):={z€Z?: |z—x| <r}

M= Y Lgommany, ) 02} Ox/N @ B, —my
XGDN

Including C|USteI’S: (work in progress)

M= Y Lgmmanen, 00 O/ N @ Bommy @81y 4., c 79

x€Dy



Recall Gy (x,x) = glogN+ O(1)

There is a random Borel measure ZP on D with 0 < ZP (D) <

a.s. such that for any ry — oo and N/ ry — oo,

My 2 PPP(ZD(dx)®e‘“¢d¢)
where o :=2/./g = \/21.



Corollaries

Asymptotic law of maximum: Setting Z := ZP(D),

P(My < my+t) — E(e® 2%

N—oo

N.B.: Laplace transform of Z

Joint law position/value: A C D open, Z(A) = ZP(A)/ZP (D)

P(MN < mpy+t, N targmax ¢ € A) — E(?(A)eforlze*m)

N—soo

In fact: Key steps of the proof



Proof of Theorem

Invariance under “Dysonization”

Idea: As {nn,,: N> 1} tight, extract a converging subsequence
and characterize its distribution uniquely.

Abbreviate: <Tl,f> — /n(dX,d¢)f(X,¢)
Proposition (Distributional invariance)

Suppose 1 := a weak-limit point of some {nNk,,Nk }. Then for any
f: DxR — [0,) continuous, compact support,

E(e= M) = E(e~Mf),  t>0,

where
fr(x,¢) := —log Eef(x:9+B:—3t)

with B; := standard Brownian motion.



Proposition explained

We may write

n= Z 6(Xis¢i)
i>1
Let {Bt(i)} := i.i.d. standard Brownian motions. Set

e = Z 6(Xi!¢i+3t(i) - 51)

i>1
Well defined as t — |y (t)| grows only exponentially. Then
E(ef<ntsf>) — E(ei<n’ft>)
and so Proposition says
law

Nne =N, t>0

i.e., 1 invariant under a Dysonization of its points



Proof of Proposition (part 1)

. . 1 :
Gaussian interpolation: ¢’,¢” = ¢, independent

law t 1/2 t 1/2
w1 — ) / ( "
¢ ( gloghN o+ glogN) ¢

main term perturbation

For x = large r-local maximum of ¢:

t 1
<1_glogN> 0 = 9%~ 2g|ogN¢X o(1)
o(1)

my

=9 2 glogN

= ¢>/<*§t +o(1)



Concerning ¢”, abbreviate

/R

t 1/2
v+ (Fogn)
Properties of Green function:

n
glog N X
COV( ’V)/(/’ N}///) _ t+ 0(1), |f |X—y| S r nearly constant
o(1), if [ x—y|>N/r
So we conclude: The law of

nearly independent

{ . x = large local min. of ¢'}
is asymptotically that of independent B.M.’s

DA



Proof of Theorem continued

Invariant laws for independent particle systems

The question of what limit process we get has been reduced to:

Problem: Characterize point processes on D x R are invariant
under independent Dysonization

(x,0) — (X,(])—f—Bt—%t)

of (the “field coordinate” of) its points

Easy to check: PPP(v(dx) ®e *?d¢) okay for any v (even random)

Any other solutions?



Liggett's “folk” theorem

Setting:
» Markov chain on (nice space) 2~ w/ transition kernel P
» System of particles evolving independently by P

» 7 .= loc. finite invariant measures on particle systems

Theorem (Liggett 1977)

Assume uniform dispersivity property:
sup P”(x, C) — 0 VC C % compact
xeX s

Then each 1 € .¥ takes the form PPP(M(dx)), where M is a
random measure satisfying

law

MP = M



Liggett’s 1977 derivation

For t > 0 define Markov kernel P on D x R by
(Pg)(x.9) := E°%(x.¢ + B: — §t)

Set g(x,¢) := e 9 for f >0 continuous with compact support.
Proposition implies

E(e 1)) = E(e‘<"f(")>)

where
F (x,0) = —log(P"e ") (x,9)

P has uniform dispersivity property and so P"e~ — 1 uniformly
on D xIR. Expanding the log,

£~ 1-pref as n— oo



Liggett’s 1977 derivation (continued)

Hence .
E(e*<"’f>) = lim E(e*m’l*Pn( >)

n—oo

But, as P is Markov,

(M. 1-Pe ") = (nP"1-¢")

(x) shows that {nP": n>1} is tight. Along a subsequence
nP™ (dx,d¢) —> L M(dx,d9)

and so
E(e 1) = E(e=MA=¢)
i.e., 1 =PPP(M(dx,d¢)). Clearly,

law

MP =M



Proof of Theorem
Key problem Il

Question: What M can we get in our case?

Theorem (Liggett 1977)
MP 2 M implies MP = M a.s. when P is a kernel of

(1) an irreducible, recurrent Markov chain
(2) a random walk on a closed abelian group w/o proper closed
invariant subset
N.B.:(2) covers our case and
MP =M as. < M random mixture of P-invariant laws

For our chain Choquet-Deny (or t | 0) shows
M(dx,dh) = ZP(dx) @ e~ *"dh+ ZP (dx) @ dh

Tightness of maximum forces ZP =0as.



Proof of Theorem completed

Uniqueness of the limit

We thus know 1y, y, 1%, 1 implies
n =PPP(ZP(dx) ® e~ *dh)
for some random ZP — albeit possibly depending on {N,}.
But for Z := ZP(D), this yields
_ —1Z —ot
P(I\/Ingme—l—t)k::E(ea ) )

Hence: law of ZP(D) unique if limit law of maximum unique
(and we know this from Bramson & Ding & Zeitouni)

Existence of joint limit of maxima in finite number of disjoint
subsets of D = uniqueness of law of ZP(dx) O

Details: B.-Louidor (arXiv:1306.2602)



The measure ZP satisfies:

(1) ZP(A) =0 a.s. for any Borel A C D with Leb(A) =0
(2) supp(ZP) =D and ZP(dD) =0 a.s.
(3) ZP is non-atomic a.s.

Property (3) is only barely true:

ZP is supported on a set of zero Hausdorff dimension




Recall D C D yields P 2 90 4 pP.D

Fact: 920 2% ®P.D on D where

(1) {(I)D’E)(X)Z x € D} mean-zero Gaussian field with

Cov (@72 (x),@2P(y)) = 6P (x.y) — G (x.y)
(2) x— (I)D’b(X) harmonic on D as.

continuum Green functions

Suppose D C D be such that Leb(D~ D) = 0. Then

ZD (dX) lgv eaCI>D'5(x) ZE) (dX)

[m]

&



Fancy properties

Conformal symmetry

Theorem (Conformal symmetry)
Suppose f: D — f(D) analytic bijection. Then
Zf(P) o £ (dx) v £ (x)[*ZP (dx)
In particular, for D simply connected and radp(x) conformal radius
radp (x) ~*ZP (dx)
is invariant under conformal maps of D.

Note:
(1) Lebof(dx) = |f'(x)|*Leb(dx) and so radp(x) ?Leb(dx) is
invariant under conformal maps.

(2) By GM property it suffices to know law(ZP) for ID := unit
disc. So this is a statement of universality



Unifying scheme?

Continuum Gaussian Free Field

Continuum GFF := Gaussian on H}(D) w.r.t. norm f + 7||Vf||3
Formal expression: ¢(x) =Y. ,>1 Znfn(x) (£} ONB

(
Exists only as a linear functional on H}(D):

=V Y Z,(VE.VE) 120D

Derivative martingale:
M'(dx) = [2Var(9(x)) — ¢ (x)] >0~ 200D ax

Defined by smooth approximations to h or expansion in ONB
(Duplantier, Sheffield, Rhodes, Vargas)

KPZ relation links M'-measure of sets to Lebesgue measure



Unifying scheme?
Liouville Quantum Gravity/Multiplicative Chaos
Liouville Quantum Gravity (LQG):
MP (dx) := radp(x)* M’(dx)

Conjecture

There is constant ¢, € (0,00) s.t. for all D

ZP(dx) & ¢, MP (dx)

Current status: Law of ZP characterized by
> GIbbS—MarkOV property okay for LQG
» shift and dilation symmetry okay for LQG

> pl’eCise upper talIS Of ZD(A) so far open



Liouville Quantum Gravity
200x200 box
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THE END



