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Plan

I Prelude about random fields blame Eviatar!

I DGFF: definitions, level sets, maximum

I Extremal point process

I Some proofs all roads lead back to UCLA

I Conformal invariance rediscovered

I Connection to Liouville Quantum Gravity



Prelude
Stochastic processes vs random fields

A stochastic process: {Xt} where t = time (t ∈N or t ∈R+)

Simple symmetric random walk in d = 1 and d = 2

10,000 steps 682,613 steps, 1000×1000 box

Questions: Scaling limit? Occupation time measure?



Prelude
Stochastic processes vs random fields

A random field: {φx} where x = space (x ∈Zd or x ∈Rd)

Linear b.c. Parabolic b.c.

Questions: Asymptotic shape, correlations, fluctuations?
Refined questions: Local structure, level sets, extreme values?



Random fields in physics
Euclidean theory only

General form of law:

Z−1 e−H(φ )Dφ

where

I Z =
∫

e−H(φ )Dφ = normalization

I H(φ ) = Hamiltonian (energy of φ : Rd →R)

I Dφ = ∏x ν(dφx )

Examples:

I White noise: H = 0, ν ∼ standard normal

I GFF: H(φ ) = 1
2

∫
|∇φ (x)|2dx , ν = Lebesgue

I φ 4-theory: ν = Lebesgue

H(φ ) =
1

2

∫
|∇φ (x)|2dx + λ

∫
φ (x)4dx

Note: (most of the time) ill defined! (no product Lebesgue measure)



Discrete Gaussian Free Field
DGFF for short

Field φ : Zd →R

Gibbs measure: for Λ ⊂Zd finite, φ̄ = boundary condition

µ
φ̄

Λ(dφ ) :=
1

Z
φ̄

Λ

e−HΛ(φ )
∏
x∈Λ

dφx ∏
x 6∈Λ

δφ̄x
(dφx )

Hamiltonian (B(Λ) := n.n. edges incident with Λ)

HΛ(φ ) :=
κ

2 ∑
〈x ,y〉∈B(Λ)

(φx −φy )2

We will choose κ = 1
2d and φ̄x = 0 for all x (zero b.c.)

Model of: crystal deformations, random interface, . . .



Relation to simple random walk
Alternative definitions

Green function: For X = SRW,

GΛ(x ,y) := E x

(
τ−1

∑
k=0

1{Xk=y}

)
where τ := first exit time from Λ

DGFF on Λ = Gaussian process {φx : x ∈Zd} with

E (φx ) = 0 and E (φxφy ) = GΛ(x ,y)

Note: Zero values outside Λ

Alternative def’s: Gaussian Hilbert spaces, Langevin dynamics, . . .



Why 2D?
VN = N×N box, GN = GVN

For x with dist(x ,V c
N) > δ N,

Var(φx ) = GN(x ,x) �


N if d = 1

log N if d = 2

1 if d ≥ 3
In d = 2:

GN(x ,y) = g log N−a(x ,y)+ o(1) N � 1

a(x ,y) = g log |x−y |+ c0 + o(1) |x−y | � 1
where

g :=
2

π
(In physics, g := 1

2π
)

The d = 2 model is asymptotically scale invariant:

G2N(2x ,2y) = GN(x ,y)+ o(1)

In fact: conformally invariant



DGFF on 500×500 square
Uniform color system
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DGFF on 500×500 square
Emphasizing the extreme values
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Level set (fractal) geometry
Some known facts

• O(1)-level sets: SLE4 curves (Schramm & Sheffield)

• O(log N)-level sets: Hausdorff dimension (Daviaud){
x ∈ DN : φx ≥ 2

√
g γ log N

}
, 0 < γ < 1

has N2(1−γ 2)+o(1) vertices. Note: Maximum order log N!



Point of focus
Extreme values of DGFF

Main goal: Describe statistics of extreme values of φ as N → ∞

Question of interest: What’s the role of conformal invariance?

N.B.: Continuum GFF not a function!

Surprise connections:

I Invariant measures for independent particle systems

I Liouville Quantum Gravity, multiplicative cascades, . . .



Further known facts
Absolute maximum

Setting and notation: VN := (0,N)2∩Z2

MN := max
x∈DN

φx and mN := EMN

Leading scale (Bolthausen, Deuschel & Giacomin):

mN ∼ 2
√

g log N (hard to simulate)

Tightness for a subsequence (Bolthausen, Deuschel & Zeitouni):

2E
∣∣MN −mN

∣∣≤m2N −mN

Full tightness (Bramson & Zeitouni):

EMN = 2
√

g log N− 3

4

√
g log log N + O(1)

Convergence in law (Bramson, Ding & Zeitouni)



Some known facts
Extremal process tightness

Ding & Zeitouni, Ding established
extremal process tightness:

Extreme level set:

ΓN(t) := {x ∈ VN : φx ≥mN − t}

∃c ,C ∈ (0,∞) : lim
λ→∞

liminf
N→∞

P
(
ecλ ≤ |ΓN(λ )| ≤ eCλ

)
= 1

and ∃c > 0 s.t.

lim
r→∞

limsup
N→∞

P
(
∃x ,y ∈ ΓN(c log log r) : r ≤ |x−y | ≤ N/r

)
= 0

Generalizes to “bounded and open” domains



Domains we will consider

Class of domains:

D = {D ⊂ C : bounded, open, ∂ D = finite # of pieces
}

Discretized as DN := {x ∈Z2 : dist(x/N ,Dc) > 1/N}.

Really need: Weak convergence of harmonic measures (discrete to continuous)



Setup for extreme order theory
Extremal point process

Full process: Measure ηN on D×R

ηN := ∑
x∈DN

δx/N ⊗δφx−mN

Problem: Values in each “peak” strongly correlated

Local maxima only: Λr (x) := {z ∈Z2 : |z−x | ≤ r}

ηN ,r := ∑
x∈DN

1{φx=maxz∈Λr (x) φz} δx/N ⊗δφx−mN

Including clusters: (work in progress)

η̃N ,r := ∑
x∈DN

1{φx=maxz∈Λr (x) φz} δx/N ⊗δφx−mN
⊗δ{φx −φz : z ∈Zd}



Main result
Convergence to Cox process

Recall GN(x ,x) = g log N + O(1)

Theorem (B.-Louidor 2013, 2014)

There is a random Borel measure ZD on D with 0 < ZD(D) < ∞

a.s. such that for any rN → ∞ and N/rN → ∞,

ηN ,rN
law−→

N→∞

PPP
(

ZD(dx)⊗ e−αφ dφ

)
where α := 2/

√
g =
√

2π.



Corollaries

Asymptotic law of maximum: Setting Z := ZD(D),

P
(
MN ≤mN + t

)
−→
N→∞

E
(
e−α−1Ze−αt)

N.B.: Laplace transform of Z

Joint law position/value: A⊂ D open, Ẑ (A) = ZD(A)/ZD(D)

P
(

MN ≤mN + t, N−1argmax φ ∈ A
)
−→
N→∞

E
(
Ẑ (A)e−α−1Ze−αt)

In fact: Key steps of the proof



Proof of Theorem
Invariance under “Dysonization”

Idea: As {ηN ,rN : N ≥ 1} tight, extract a converging subsequence
and characterize its distribution uniquely.

Abbreviate: 〈η , f 〉 :=
∫

η(dx ,dφ )f (x ,φ )

Proposition (Distributional invariance)

Suppose η := a weak-limit point of some {ηNk ,rNk
}. Then for any

f : D×R→ [0,∞) continuous, compact support,

E
(
e−〈η ,f 〉)= E

(
e−〈η ,ft〉

)
, t > 0,

where
ft(x ,φ ) := − log Ee−f (x ,φ+Bt − α

2 t)

with Bt := standard Brownian motion.



Proposition explained

We may write
η = ∑

i≥1

δ(xi ,φi )

Let {B (i)
t } := i.i.d. standard Brownian motions. Set

ηt := ∑
i≥1

δ
(xi ,φi+B

(i)
t − α

2 t)

Well defined as t 7→ |ΓN(t)| grows only exponentially. Then

E
(
e−〈ηt ,f 〉)= E

(
e−〈η ,ft〉

)
and so Proposition says

ηt
law= η , t > 0

i.e., η invariant under a Dysonization of its points



Proof of Proposition (part 1)

Gaussian interpolation: φ ′,φ ′′ law= φ , independent

φ
law=
(

1− t

g log N

)1/2
φ
′︸ ︷︷ ︸

main term

+
( t

g log N

)1/2
φ
′′︸ ︷︷ ︸

perturbation

For x = large r -local maximum of φ ′:(
1− t

g log N

)1/2
φ
′
x = φ

′
x −

1

2

t

g log N
φ
′
x + o(1)

= φ
′
x −

t

2

mN

g log N
+ o(1)

= φ
′
x−

α

2
t + o(1)



Proof of Proposition (part 2)

Concerning φ ′′, abbreviate

φ̃
′′
x :=

( t

g log N

)1/2
φ
′′
x

Properties of Green function:

Cov
(

φ̃
′′
x , φ̃

′′
y

)
=

{
t + o(1), if |x−y | ≤ r nearly constant

o(1), if |x−y | ≥ N/r nearly independent

So we conclude: The law of{
φ̃
′′
x : x = large local min. of φ

′
}

is asymptotically that of independent B.M.’s



Proof of Theorem continued
Invariant laws for independent particle systems

The question of what limit process we get has been reduced to:

Problem: Characterize point processes on D×R are invariant
under independent Dysonization

(x ,φ ) 7→
(

x ,φ + Bt −
α

2
t
)

of (the “field coordinate” of) its points

Easy to check: PPP(ν(dx)⊗ e−αφ dφ ) okay for any ν (even random)

Any other solutions?



Liggett’s “folk” theorem

Setting:

I Markov chain on (nice space) X w/ transition kernel P

I System of particles evolving independently by P

I I := loc. finite invariant measures on particle systems

Theorem (Liggett 1977)

Assume uniform dispersivity property:

sup
x∈X

Pn
(
x ,C

)
−→
n→∞

0 ∀C ⊂X compact

Then each µ ∈I takes the form PPP(M(dx)), where M is a
random measure satisfying

MP
law= M



Liggett’s 1977 derivation

For t > 0 define Markov kernel P on D×R by

(Pg)(x ,φ ) := E 0g
(
x ,φ + Bt − α

2 t
)

Set g(x ,φ ) := e−f (x ,φ ) for f ≥ 0 continuous with compact support.
Proposition implies

E
(
e−〈η ,f 〉)= E

(
e−〈η ,f (n)〉)

where
f (n)(x ,φ ) = − log(Pne−f )(x ,φ )

P has uniform dispersivity property and so Pne−f → 1 uniformly
on D×R. Expanding the log,

f (n) ∼ 1−Pne−f as n→ ∞



Liggett’s 1977 derivation (continued)

Hence
E
(
e−〈η ,f 〉)= lim

n→∞
E
(
e−〈η ,1−Pne−f 〉) (∗)

But, as P is Markov,

〈η ,1−Pne−f 〉= 〈ηPn,1− e−f 〉

(∗) shows that {ηPn : n ≥ 1} is tight. Along a subsequence

ηPnk (dx ,dφ ) law−→
k→∞

M(dx ,dφ )

and so
E
(
e−〈η ,f 〉)= E

(
e−〈M ,1−e−f 〉)

i.e., η = PPP(M(dx ,dφ )). Clearly,

MP
law= M



Proof of Theorem
Key problem II

Question: What M can we get in our case?

Theorem (Liggett 1977)

MP
law= M implies MP = M a.s. when P is a kernel of

(1) an irreducible, recurrent Markov chain

(2) a random walk on a closed abelian group w/o proper closed
invariant subset

N.B.:(2) covers our case and

MP = M a.s. ⇔ M random mixture of P-invariant laws

For our chain Choquet-Deny (or t ↓ 0) shows

M(dx ,dh) = ZD(dx)⊗ e−αhdh + Z̃D(dx)⊗dh

Tightness of maximum forces Z̃D = 0 a.s.



Proof of Theorem completed
Uniqueness of the limit

We thus know ηNk ,rNk

law−→ η implies

η = PPP
(
ZD(dx)⊗ e−αhdh

)
for some random ZD — albeit possibly depending on {Nk}.

But for Z := ZD(D), this yields

P
(
MNk

≤mNk
+ t
)
−→
k→∞

E
(
e−α−1Ze−αt)

Hence: law of ZD(D) unique if limit law of maximum unique
(and we know this from Bramson & Ding & Zeitouni)

Existence of joint limit of maxima in finite number of disjoint
subsets of D ⇒ uniqueness of law of ZD(dx)

Details: B.-Louidor (arXiv:1306.2602)



Properties of ZD-measure
B.-Louidor (arXiv:1410.4676)

Theorem

The measure ZD satisfies:

(1) ZD(A) = 0 a.s. for any Borel A⊂ D with Leb(A) = 0

(2) supp(ZD) = D and ZD(∂ D) = 0 a.s.

(3) ZD is non-atomic a.s.

Property (3) is only barely true:

Conjecture

ZD is supported on a set of zero Hausdorff dimension



Fancy properties
Gibbs-Markov for ZD measure

Recall D̃ ⊆ D yields φD law= φ D̃ + ϕD,D̃

Fact: ϕD,D̃ law−→ΦD,D̃ on D̃ where

(1) {ΦD,D̃(x) : x ∈ D̃} mean-zero Gaussian field with

Cov
(
ΦD,D̃(x),ΦD,D̃(y)

)
= GD(x ,y)−G D̃(x ,y)

continuum Green functions

(2) x 7→ΦD,D̃(x) harmonic on D̃ a.s.

Theorem (Gibbs-Markov property)

Suppose D̃ ⊆ D be such that Leb(D r D̃) = 0. Then

ZD(dx) law= eαΦD,D̃ (x)Z D̃(dx)



Fancy properties
Conformal symmetry

Theorem (Conformal symmetry)

Suppose f : D→ f (D) analytic bijection. Then

Z f (D) ◦ f (dx) law= |f ′(x)|4ZD(dx)

In particular, for D simply connected and radD(x) conformal radius

radD(x)−4ZD(dx)

is invariant under conformal maps of D.

Note:

(1) Leb◦ f (dx) = |f ′(x)|2 Leb(dx) and so radD(x)−2Leb(dx) is
invariant under conformal maps.

(2) By GM property it suffices to know law(Z D) for D := unit
disc. So this is a statement of universality



Unifying scheme?
Continuum Gaussian Free Field

Continuum GFF := Gaussian on H1
0(D) w.r.t. norm f 7→ π‖∇f ‖2

2

Formal expression: φ (x) = ∑n≥1 Znfn(x) {fn} ONB

Exists only as a linear functional on H1
0(D):

φ (f ) =
√

π ∑
n≥1

Zn〈∇f ,∇fn〉L2(D)

Derivative martingale:

M ′(dx) =
[
2Var(φ (x))−φ (x)

]
e2φ (x)−2Var(φ (x))dx

Defined by smooth approximations to h or expansion in ONB
(Duplantier, Sheffield, Rhodes, Vargas)

KPZ relation links M ′-measure of sets to Lebesgue measure



Unifying scheme?
Liouville Quantum Gravity/Multiplicative Chaos

Liouville Quantum Gravity (LQG):

MD(dx) := radD(x)2 M ′(dx)

Conjecture

There is constant c? ∈ (0,∞) s.t. for all D

ZD(dx) law= c? MD(dx)

Current status: Law of ZD characterized by

I Gibbs-Markov property okay for LQG

I shift and dilation symmetry okay for LQG

I precise upper tails of ZD(A) so far open



Liouville Quantum Gravity
200×200 box



THE END


