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Abstract: We study exceptional sets of the local time of the continuous-time simple ran-
dom walk in scaled-up (by N) versions DN ⊆ Z2 of bounded open domains D ⊆ R2.
Upon exit from DN , the walk lands on a “boundary vertex” and then reenters DN through
a random boundary edge in the next step. In the parametrization by the local time at the
“boundary vertex” we prove that, at times corresponding to a θ-multiple of the cover time
of DN , the sets of suitably defined λ-thick (i.e., heavily visited) and λ-thin (i.e., lightly vis-
ited) points are, as N → ∞, distributed according to the Liouville Quantum Gravity ZD

λ
with parameter λ-times the critical value. For θ < 1, also the set of avoided vertices
(a.k.a. late points) and the set where the local time is of order unity are distributed ac-
cording to ZD√

θ
. The local structure of the exceptional sets is described as well, and is

that of a pinned Discrete Gaussian Free Field for the thick and thin points and that of
random-interlacement occupation-time field for the avoided points. The results demon-
strate universality of the Gaussian Free Field for these extremal problems.

1. INTRODUCTION

1.1 Motivation.

In a famous paper from 1960, Erdős and Taylor [23] studied the most-frequently visited
site by the simple random walk on Z2 of time-length n. They showed that the time
spent at that site is of order (log n)2 and conjectured that the time is asymptotically
sharp on that scale. This conjecture was proved in 2001 by Dembo, Peres, Rosen and
Zeitouni [15] (see also Rosen [34]) who in addition described the multifractal structure
of the set of thick points; namely, those points where the local time is at least a given
positive multiple of its maximum. The problem has been revisited numerous times; e.g.,
by Dembo, Peres, Rosen and Zeitouni [16] who studied random walk late points, by
Okada [32] who studied the most visited site on the inner boundary of the range, or by
Jego [24] who extended the results of [15, 34] to more general random walks.

Over the past two decades, it has become increasingly clear that many questions
about the local time can be usefully rephrased as questions about an associated Discrete
Gaussian Free Field (DGFF). This connection, discovered originally in mathematical
physics (Symanzik [39], Brydges, Fröhlich and Spencer [12]), is now elegantly expressed
via Dynkin-type Isomorphism/Second Ray-Knight theorems (Dynkin [20], Eisenbaum,
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2 Y. ABE AND M. BISKUP

Kaspi, Marcus, Rosen and Shi [22]). Isomoporphism results of this kind drive the anal-
ysis of many important objects; for instance, random interlacements (Sznitman [40], Ro-
driguez [35], etc), loop-soups (Lawler and Werner [29], Le Jan [30], Lupu [31], etc) and
the cover time (Ding, Lee and Peres [19], Ding [18], etc).

In the present paper we use the Second Ray-Knight theorem of [22] to study the pre-
cise statistics of the thick points for the simple random walk run for times proportional
to the cover time of an underlying “planar” graph. In addition to the thick points, we
analyze also the sets of thin points, which are those where the local time is less than a
fraction of its typical value, avoided points, which are those not visited at all, and light
points, where the local time is at most a given constant. We show that all these level
sets are intimately connected with the corresponding (so called intermediate) level sets
of the Discrete Gaussian Free Field studied earlier by O. Louidor and the second au-
thor [10]. In particular, their limiting statistics is captured by the Liouville Quantum
Gravity measures introduced and studied by Duplantier and Sheffield [21].

1.2 Setting for the random walk.

In order to take full advantage of the prior work [10] on the DGFF, we will consider
a slightly different setting than the earlier references [15, 23] and Abe [1], who stud-
ied the leading order of the number of thick and thin points for random walk on two-
dimensional lattice tori. Indeed, our random walk will behave as the simple random
walk only inside a large finite subset of Z2; when it exits this set it reenters in the next
step through a uniformly-chosen boundary edge.

To describe the dynamics of our random walk, consider first a general finite, unori-
ented, connected graph G = (V ∪ {$}, E), where $ is a distinguished vertex (not be-
longing to V). We assume that each edge e ∈ E is endowed with a number ce > 0,
called the conductance of e. Let X denote a continuous-time (constant-speed) Markov
chain on V ∪ {$} that makes jumps at independent rate-1 exponential random times to
a neighbor selected with the help of transition probabilities

P(u, v) :=

{
ce

π(u) , if e := (u, v) ∈ E,

0, otherwise,
(1.1)

where π(u) is the sum of ce for all edges incident with u. We will use Pu to denote the
law of X with Pu(X0 = u) = 1.

Given a path X of the above Markov chain, the local time at v ∈ V ∪ {$} at time t is
then given by

`V
t (v) :=

1
π(u)

∫ t

0
ds 1{Xs=u}, t ≥ 0, (1.2)

where the normalization by π(u) ensures that the leading-order growth of t 7→ `V
t (v)

is the same for all vertices. We will henceforth work in the time parametrization by the
local time at the distinguished vertex $. For this we set τ̂$(t) := inf{s ≥ 0 : `V

s ($) > t}
and denote

LV
t (v) := `V

τ̂$(t)(v). (1.3)
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FIG. 1 The graph corresponding to V being the square of 6× 6 vertices. Each
vertex on the outer perimeter of V has an edge to the “boundary vertex” $;
the corner vertices that have two edges to $. The “boundary vertex” plays the
role of the wired boundary condition used often in statistical mechanics. For
us this ensures that the associated DGFF vanishes outside V.

In this parametrization, t is the expected (and leading-order) value of LV
t (v) under P$,

for every v ∈ V ∪ {$}.
Our derivations will make heavy use of the connection of the above Markov chain

with an instance of the Discrete Gaussian Free Field (DGFF). Denoting by

Hv := inf
{

t ≥ 0 : Xt = v
}

(1.4)

the first hitting time of vertex v, this DGFF is the centered Gaussian process {hV
v : v ∈ V}

with covariances given by

E
(
hV

u hV
v
)
= GV(u, v) := Eu(`V

H$
(v)
)
. (1.5)

Here and henceforth, E denotes expectation with respect to the law P of hV . The field
naturally extends to $ by hV

$ = 0.

Returning back to random walks on Z2, in our setting V stands for a large finite sub-
set V ⊆ Z2 while $ is the boundary vertex obtained by collapsing the set of vertices
outside V to a single point. The set of edges E is that between the nearest-neighbor pairs
in V plus all the edges from V to Z2 r V that now “end” in $; see Fig. 1. The transition
rule of the Markov chain is that of the simple random walk on the underlying graph;
indeed, all conductances take a unit value, ce := 1, at all the involved edges includ-
ing those incident with $. The DGFF associated with this network then corresponds to
the “standard” DGFF in V (cf the review by Biskup [6]) with zero boundary conditions
outside V except that our normalization is slightly different than the one used in [6] —
indeed, our fields are half the size of those in [6].

For the lattice domains, we will take sequences of subsets of Z2 that approximate, in
the scaling limit, well-behaved continuum domains. The following definitions are taken
from Biskup and Louidor [8]:
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Definition 1.1 An admissible domain is a bounded open subset of R2 that consists of a fi-
nite number of connected components and whose boundary is composed of a finite number of
connected sets each of which has a positive Euclidean diameter.

We write D to denote the family of all admissible domains and let d∞(·, ·) denote the
`∞-distance on R2.

Definition 1.2 An admissible lattice approximation of D ∈ D is a sequence {DN}N≥1 of
subsets of Z2 such that the following holds: There is N0 ∈N such that for all N ≥ N0 we have

DN ⊆
{

x ∈ Z2 : d∞
(

x/N, R2 r D
)
>

1
N

}
(1.6)

and, for any δ > 0 there is N1 = N1(δ) ∈N such that for all N ≥ N1,

DN ⊇
{

x ∈ Z2 : d∞(x/N, R2 r D) > δ
}

. (1.7)

As shown in [8], these choices ensure that the discrete harmonic measure on DN tends,
under the scaling of space by N, weakly to the harmonic measure on D. This yields a
precise asymptotic expansion of the associated Green functions; see [6, Chapter 1] for a
detailed exposition. In particular, we have GDN (x, x) = g log N + O(1) for

g :=
1

2π
(1.8)

whenever x is deep inside DN . (This is by a factor 4 smaller than the corresponding
constant in [6, 8] due to a different normalization of our fields.)

Our random walk will invariably start from the “boundary vertex” $; throughout we
will thus write P$ for the corresponding law of the Markov chain X. (This law depends
on N but we suppress that notationally.)

2. MAIN RESULTS

Our aim in this work is to describe the random walk at times that correspond to a θ-
multiple of the cover time, for every θ > 0. Recall that the cover time of a graph is the first
time that every vertex of the graph has been visited. Although this is a random quantity,
it is quite well concentrated (provided that the maximal hitting time is of smaller order
than the expected cover time; see Aldous [4]). In particular, at the cover time of DN
the local time at a typical vertex is asymptotic to 2g(log N)2. This suggests that we
henceforth take t proportional to (log N)2 as N → ∞.

2.1 Maximum, minimum and exceptional sets.

Let us begin by noting the range of values that the local time takes on DN :

Theorem 2.1 Let {tN}N≥1 be a positive sequence such that, for some θ > 0,

lim
N→∞

tN

(log N)2 = 2gθ. (2.1)
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Then for any D ∈ D, any admissible sequence {DN}N≥1 of lattice approximations of D, the
following limits hold in P$-probability:

1
(log N)2 max

x∈DN
LDN

tN
(x) −→

N→∞
2g
(√

θ + 1
)2 (2.2)

and
1

(log N)2 min
x∈DN

LDN
tN

(x) −→
N→∞

2g
[
(
√

θ − 1) ∨ 0
]2. (2.3)

These conclusions have previously been obtained by Abe [1, Corollary 1.3] for the
continuous-time walk on the N × N torus. As is checked from (2.3), the cover time
indeed corresponds to θ = 1. Noting that the typical value of the local time at a θ-
multiple of the cover time is asymptotic to 2gθ(log N)2, we are naturally led to consider
the set of λ-thick points,

T +
N (θ, λ) :=

{
x ∈ DN : LDN

tN
(x) ≥ 2g(

√
θ + λ)2(log N)2

}
, λ ∈ (0, 1], (2.4)

and λ-thin points,

T −N (θ, λ) :=
{

x ∈ DN : LDN
tN

(x) ≤ 2g(
√

θ − λ)2(log N)2
}

, λ ∈ (0,
√

θ ∧ 1], (2.5)

where the upper bounds on λ reflect on (2.2–2.3). As a boundary case of T −N (θ, λ), we
single out the set of r-light points,

LN(θ, r) :=
{

x ∈ DN : LDN
tN

(x) ≤ r
}

, r ≥ 0, (2.6)

including the special case of the set of avoided points,

AN(θ) :=
{

x ∈ DN : LDN
tN

(x) = 0
}

(2.7)

(Dembo, Peres, Rosen and Zeitouni [16] refer to (2.7) as the late points but we prefer the
above in order to make the distinction between (2.6) and (2.7) clear.) By (2.3), the latter
two sets will only be relevant for θ ∈ (0, 1]. Our aim is to describe the scaling limit of all
these sets in the limit as N → ∞. As shown in Figs. 2 and 3, this scaling limit should be
a random fractal.

2.2 Digression on exceptional sets of DGFF.

As noted previously, Biskup and Louidor [10] have addressed similar questions in the
context of the DGFF. There the maximum of hDN is asymptotic to 2

√
g log N and so the

set of λ-thick points is naturally defined as that where the field exceeds 2λ
√

g log N. It
was noted that taking a limit of these sets directly does not lead to interesting conclu-
sions as, after scaling space by N, they become increasingly dense in D. A proper way
to capture their structure is via the random measure

ηD
N :=

1
KN

∑
x∈DN

δx/N ⊗ δ
hDN

x −aN
, (2.8)
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FIG. 2 Plots of the λ-thick (left) and λ-thin (right) level sets for the same
sample of the random walk on a square of side length 1000 and parameter
choices θ := 10 and λ := 0.1.

where {aN}N≥1 is a centering sequence with the asymptotic aN ∼ 2λ
√

g log N and

KN :=
N2√
log N

e−
a2

N
2g log N . (2.9)

In [10, Theorem 2.1] it was then shown that, for each λ ∈ (0, 1) there is c(λ) > 0 such
that, in the sense of vague convergence of measures on D× (R∪ {+∞}),

ηD
N

law−→
N→∞

c(λ) ZD
λ (dx)⊗ e−αλhdh, (2.10)

where α := 2/
√

g and ZD
λ is a random measure in D called the Liouville Quantum

Gravity (LQG) at parameter λ-times critical. (While ηD
N is defined a priori as a measures

on D ×R, we will at times regard it as a measure on D × (R ∪ {+∞}), where D is the
closure of D and the topology on R ∪ {+∞} extends that on R so that the intervals of
the form [a,+∞] are compact.) The constant c(λ), given explicitly in terms of λ and the
constants in the asymptotic expansion of the potential kernel on Z2, allows us take ZD

λ
to be normalized so that, for each Borel set A ⊆ D,

EZD
λ (A) =

∫
A

r D(x)2λ2
dx, (2.11)

where rD is an explicit function supported on D that, for D simply connected, is simply
the conformal radius; see [10, (2.10)].

A construction of the LQG measures goes back to Kahane’s Multiplichative Chaos
theory [27]; they were recently reintroduced and further studied by Duplantier and
Sheffield [21]. Shamov [38] neatly characterized the LQG measures for all λ ∈ (0, 1)
by their expected value and the behavior under Cameron-Martin shifts of the underly-
ing continuum Gaussian Free Field.
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2.3 Thick and thin points.

Inspired by the above developments, we will encode the level sets T ±N (θ, λ) via the ran-
dom measures

ζD
N :=

1
WN

∑
x∈DN

δx/N ⊗ δ
(LDN

tN
(x)−aN)/ log N

, (2.12)

where {aN}N≥1 is a centering sequence and {tN}N≥1 is a sequence of times, both grow-
ing proportionally to (log N)2, and

WN :=
N2√
log N

e−
(
√

2tN−
√

2aN )2

2g log N . (2.13)

The normalization by log N in the second delta-mass in (2.12) indicates that we are track-
ing variations of the local time of scale log N. (As we will see in Section 2.5, this is also
the order of the variation of the local time between nearest neighbors.) We then get:

Theorem 2.2 (Thick points) Suppose {tN}N≥1 and {aN}N≥1 are positive sequences such
that, for some θ > 0 and some λ ∈ (0, 1),

lim
N→∞

tN

(log N)2 = 2gθ and lim
N→∞

aN

(log N)2 = 2g(
√

θ + λ)2. (2.14)

For any D ∈ D, any sequence {DN}N≥1 of admissible approximations of D, and for X sampled
from P$, in the sense of vague convergence of measures on D× (R∪ {+∞}),

ζD
N

law−→
N→∞

θ1/4

2
√

g (
√

θ + λ)3/2
c(λ)ZD

λ (dx)⊗ e−α(θ,λ)hdh, (2.15)

where α(θ, λ) := 1
g

λ√
θ+λ

and c(λ) is as in (2.10).

For the thin points, we similarly obtain:

Theorem 2.3 (Thin points) Suppose {tN}N≥1 and {aN}N≥1 are positive sequences such that,
for some θ > 0 and some λ ∈ (0, 1∧

√
θ),

lim
N→∞

tN

(log N)2 = 2gθ and lim
N→∞

aN

(log N)2 = 2g(
√

θ − λ)2. (2.16)

For any D ∈ D, any sequence {DN}N≥1 of admissible approximations of D, and for X sampled
from P$, in the sense of vague convergence of measures on D× (R∪ {−∞}),

ζD
N

law−→
N→∞

θ1/4

2
√

g (
√

θ − λ)3/2
c(λ)ZD

λ (dx)⊗ e+α̃(θ,λ)hdh, (2.17)

where α̃(θ, λ) := 1
g

λ√
θ−λ

and c(λ) is as in (2.10).

Note that, under (2.14) or (2.16), the above implies

|T ±N (θ, λ)| = N2(1−λ2)+o(1), (2.18)

where o(1) → 0 in probability. This conclusion has previously been obtained by the
first author in [1, Theorem 1.2], albeit for random walks on tori and under a different
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parametrization of the level sets. The present theorems tell us considerably more. In-
deed, they imply that points picked at random from T ±N (θ, λ) have asymptotically the
same statistics as those picked from the set where the DGFF is above the λ-multiple of
its absolute maximum.

The connection with the DGFF becomes nearly perfect if instead of log N we normal-
ize the second coordinate of ζD

N by
√

2aN . In that parametrization, the resulting measure
coincides (up to reversal of the second coordinate for the thin points) with that for the
DGFF up to an overall normalization constant. This demonstrates universality of the
Gaussian Free Field in these extremal problems.

2.4 Light and avoided points.

The level sets (2.4–2.5) are naturally nested which suggests that, for θ ∈ (0, 1), also the
sets of r-light points LN(θ, r) and avoided points AN(θ) bear a close connection to an
intermediate level set of the DGFF, this time with λ :=

√
θ. As the next theorem shows,

this is true albeit under a different normalization:

Theorem 2.4 (Light points) Suppose {tN}N≥1 is a positive sequence such that

θ :=
1

2g
lim

N→∞

tN

(log N)2 ∈ (0, 1). (2.19)

For any D ∈ D, any sequence {DN}N≥1 of admissible approximations of D, and for X sampled
from P$, consider the measure

ϑD
N :=

1
ŴN

∑
x∈DN

δx/N ⊗ δ
LDN

tN
(x)

, (2.20)

where
ŴN := N2e−

tN
g log N . (2.21)

Then, in the sense of vague convergence of measures on D× [0, ∞),

ϑD
N

law−→
N→∞

√
2πg c(

√
θ) ZD√

θ
(dx)⊗ µ(dh), (2.22)

where c(λ) is as in (2.10) and µ is the Borel measure

µ(dh) := δ0(dh) +
( ∞

∑
n=0

1
n!(n + 1)!

(α2θ

2

)n+1
hn
)

1(0,∞)(h)dh. (2.23)

Note that the density of the continuous part of the measure in (2.23) is uniformly
positive on [0, ∞) and grows exponentially in

√
h. Naturally, the atom at zero has the

interpretation of the contribution of the avoided points and so we also get:

Theorem 2.5 (Avoided points) Suppose {tN}N≥1 is a positive sequence such that (2.19)
holds. For any D ∈ D, any sequence {DN}N≥1 of admissible approximations of D, and for X
sampled from P$, consider the measure

κD
N :=

1
ŴN

∑
x∈DN

1{LDN
tN

(x)=0} δx/N , (2.24)
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FIG. 3 The sets of avoided points for a sample of the random walk on a square
of side-length N = 2000 observed at times corresponding to θ-multiple of the
cover time for θ := 0.1 (left) and θ := 0.3 (right).

where ŴN is as in (2.21). Then, in the sense of vague convergence of measures on D,

κD
N

law−→
N→∞

√
2πg c(

√
θ) ZD√

θ
(dx), (2.25)

where c(λ) is again as in (2.10).

We conclude that, at times asymptotic to a θ-multiple of the cover time with θ < 1, the
total number of avoided points is proportional to ŴN = N2(1−θ)+o(1). Moreover, when
normalized by ŴN , it tends in law to a constant times the total mass of ZD√

θ
.

2.5 Local structure: thick and thin points.

Similarly to the case of the DGFF treated in [10], the convergence of the point measures
associated with the exceptional sets can be extended to include information about the
local structure of the exceptional sets under consideration. For the case of thick and thin
points, this structure is captured by the measure on Borel subsets of D×R×RZ2

(under
the product topology) defined by

ζ̂D
N :=

1
WN

∑
x∈DN

δx/N ⊗ δ
(LDN

tN
(x)−aN)/ log N

⊗ δ{(LDN
tN

(x)−LDN
tN

(x+z))/ log N : z∈Z2}. (2.26)

In order to express the limit measure, we need to introduce the DGFF φ on Z2 pinned to
zero at the origin. This is a centered Gaussian field on Z2 with law ν0 determined by

Eν0(φxφy) = a(x) + a(y)− a(x− y), (2.27)

where a : Z2 → [0, ∞) is the potential kernel, i.e., the unique function with a(0) = 0
which is discrete harmonic on Z2 r {0} and satisfies a(x) = g log |x|+O(1) as |x| → ∞.
For the thick points, we then get:
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Theorem 2.6 (Local structure of the thick points) Under the conditions of Theorem 2.2 and
denoting by ζD the limit measure on the right of (2.15),

ζ̂D
N

law−→
N→∞

ζD ⊗ νθ,λ, (2.28)

where νθ,λ is the law of 2
√

g(
√

θ + λ)(φ + αλa) under ν0.

For the thin points, we in turn get:

Theorem 2.7 (Local structure of the thin points) Under the condition of Theorem 2.3 and
denoting by ζD the limit measure on the right of (2.17),

ζ̂D
N

law−→
N→∞

ζD ⊗ ν̃θ,λ, (2.29)

where ν̃θ,λ is the law of 2
√

g(
√

θ − λ)(φ− αλa) under ν0.

As shown in [10], the field φ + λαa describes the local structure of the DGFF near the
points where it takes values (close to) 2

√
gλ log N. As before, the prefactor 2

√
g(
√

θ± λ)

disappears when instead of log N we normalize the third coordinate of ζ̂D
N by

√
2aN . The

above results thus extend the universality of the DGFF to the local structure as well.

2.6 Local structure: avoided points.

The local structure of the local time near the avoided points will be radically different.
Indeed, in the vicinity of an avoided point, the local time will remain of order unity and
so a proper way to extend the measure κD

N is

κ̂D
N :=

1
ŴN

∑
x∈DN

1{LDN
tN

(x)=0}δx/N ⊗ δ{LDN
tN

(x+z) : z∈Z2}, (2.30)

which is now a Borel measure on D× [0, ∞)Z2
. Moreover, near an avoided point x, the

walk itself should behave as if conditioned not to hit x. This naturally suggests that
its trajectories will look like two-dimensional random interlacements introduced recently
by Comets, Popov and Vachkovskaia [13] and Rodriguez [36], building on earlier work
of Sznitman [40] and Teixeira [41] in transient dimensions. In order to state our limit
theorem, we need to review some of the main conclusions from [13, 36].

First we need some notation. Let W be the set of all doubly-infinite transient random-
walk trajectories on Z2; namely, piece-wise constant right-continuous maps X : R→ Z2

that make only jumps between nearest neighbors and spend only finite time (measured
by the Lebesgue measure) in every finite subset of Z2. We endow W with the σ-fieldW
generated by finite-dimensional coordinate projections,W := σ(Xt : t ∈ R). For A ⊆ Z2

finite, we write WA for the subset of W of the trajectories that visit A.
Next we will put a measure Q0,Z2

A on WA as follows. Let hA denote the harmonic
measure of A from infinity (i.e., the distribution of the first entry point to A by a random
walk started at infinity). Assume 0 ∈ A and let P̂x denote the law of a constant-speed
continuous-time random walk on Z2 r {0} started at x with conductance a(y)a(z) at
nearest-neighbor edges (y, z) in Z2. By Doob’s h-transform argument, P̂x is the law
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FIG. 4 Samples of the occupation-time field near two randomly-selected
avoided points of a random walk run for 0.2-multiple of the cover time in
a square of side-length N = 2000. Only the square of side-length 81 centered
at the chosen avoided point is depicted.

of the simple random walk on Z2 started from x and conditioned to avoid 0. For all
cylindrical events E+, E− ∈ σ(Xt : t ≥ 0) and any x ∈ Z2, we then set

Q0,Z2

A

(
(X−t)t≥0 ∈ E−, X0 = x, (Xt)t≥0 ∈ E+

)
:= 4 a(x)hA(x)P̂x(E+)P̂x(E− |HA = ∞). (2.31)

Note that, since cylindrical events are unable to distinguish left and right path continuity,
writing (X−t)t≥0 ∈ E− is meaningful. The transience of P̂x implies P̂x(HA = ∞) > 0
whenever hA(x) > 0 and so the conditioning on the right is non-singular.

The measure Q0,Z2

A represents the (un-normalized) law of doubly-infinite trajectories
of the simple random walk that hit A (recall that hA(x) = 0 unless x ∈ A) but avoid 0 for
all times. As the main results of [13,36] show, the normalization is chosen such that these
measures are consistent, albeit only after factoring out time shifts. To state this precisely,
we need some more notation. Regarding two trajectories w, w′ ∈ W as equivalent if
they are time shifts of each other — i.e., if there is t ∈ R such that w(s) = w′(s + t) for
all s ∈ R — we use W? to denote the quotient space of W induced by this equivalence
relation. Writing Π? : W → W? for the canonical projection, the induced σ-field on W?

is given byW? := {E ⊆W? : Π−1
? (E) ∈ W}. Note that W?

A := Π?(WA) ∈ W?.
Theorems 3.3 and 4.2 of [36] (building on [41, Theorem 2.1], see also [13, page 133])

then ensure the existence of a (unique) measure on W? such that for any finite A ⊆ Z2

and any E ∈ W?,

ν0,Z2
(E ∩W?

A) = Q0,Z2

A ◦Π−1
? (E ∩W?

A). (2.32)

Since Q0,Z2

A is a finite measure and the set of finite A ⊆ Z2 is countable, ν0,Z2
is σ-finite.

We may thus consider a Poisson point process on W?× [0, ∞) with intensity ν0,Z2 ⊗ Leb.
Given a sample ω from this process, which we may write as ω = ∑i∈N δ(w?

i ,ui), and any
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u ∈ [0, ∞), we define the occupation time field at level u by

Lu(x) := ∑
i∈N

1{ui≤u}
1
4

∫
R

dt 1{wi(t)=x}, x ∈ Z2, (2.33)

where wi ∈ W is any representative of the class of trajectories marked by w?
i ; i.e.,

Π?(wi) = w?
i . (The integral does not depend on the choice of the representative.) We are

now ready to state the convergence of the measures κ̂D
N .

Theorem 2.8 (Local structure of the avoided points) Under the conditions of Theorem 2.5
and for κD denoting the measure on the right of (2.25),

κ̂D
N

law−→
N→∞

κD ⊗ νRI
θ , (2.34)

where νRI
θ is the law of the occupation time field (Lu(x))x∈Z2 at u := πθ.

We expect a similar result to hold for the light points as well but with the random
interlacements replaced by a suitably modified version that allows the walks to hit the
origin but only accumulating a given (order unity) amount of local time there. Samples
of the occupation time field near an avoided point are shown in Fig. 4.

3. MAIN IDEAS, EXTENSIONS AND OUTLINE

Let us proceed by a brief overview of the main ideas of the proof and then a list of
possible extensions and refinements. We also outline the remainder of this paper.

3.1 Main ideas.

As already noted, key for all developments in this paper is the connection of the local
time LV

t and the associated DGFF hV . Our initial take on this connection was through
the fact that the DGFF represents the fluctuations of LV

t at large times via

LV
t (·)− t√

2t
law−→

t→∞
hV (3.1)

which is proved by decomposing the local time in individual excursions and applying
the Central Limit Theorem. (The observation (3.1) also guided the parametrization in the
earlier work on this problem, e.g., [1].) However, as noted at the end of Subsection 2.3,
for the thick and thin points, the effective t in the correspondence (3.1) of the local time
with the DGFF turns out to be aN , rather than tN , due to conditioning on large local time.
In particular, approximating the local time fluctuations by the DGFF becomes accurate
only beyond the times of the order of the cover time.

We thus base our proofs on a deeper version of the connection, known under the
name Second Ray-Knight Theorem after Ray [33] and Knight [28] or Dynkin isomorphism
after Dynkin [20], although the statement we use is due to Eisenbaum, Kaspi, Marcus,
Rosen and Shi [22] (with an interesting new proof by Sabot and Tarres [37]):

Theorem 3.1 (Dynkin isomorphism) Consider the random walk on V ∪ {$} as detailed in
Section 1.2. For each t > 0 there exists a coupling of LV

t (sampled under P$) and two copies of
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the DGFF hV and h̃V such that

hV and LV
t are independent (3.2)

and

LV
t (u) +

1
2
(hV

u )
2 =

1
2
(
h̃V

u +
√

2t
)2, u ∈ V. (3.3)

This is usually stated as a distributional identity; the coupling version is then a result of
abstract-nonsense theorems in probability (see Zhai [42, Section 5.4]).

Our proofs are based on the following natural idea: If we could simply disregard the
DGFF on the left-hand side of (3.3), the relation would tie the level set corresponding
to LDN

tN
≈ aN to the level sets of the DGFF where

either h̃DN ≈
√

2aN −
√

2tN or h̃DN ≈ −
√

2aN −
√

2tN . (3.4)

For aN → ∞, the second level set lies further away from the mean of h̃DN than the first
and its contribution can therefore be disregarded. (This is true for the thick and thin
points; for the light and avoided points both levels play a similar role). One could then
simply hope to plug to the existing result (2.10).

Unfortunately, since Var(hDN
x ) is of order log N, the square of the DGFF on the left

of (3.3) is typically of the size of the anticipated fluctuations of LDN
tN

and so it definitely
affects the limiting behavior of the whole quantity. The main technical challenge of the
present paper is thus to understand the contribution of this term precisely. A key obser-
vation that makes this possible is that even for x ∈ DN where LDN

tN
(x) + 1

2 (h
DN
x )2 takes

exceptional values, the DGFF hDN
x remains typical (and LDN

tN
(x) is thus dominant). This

requires proving fairly sharp single-site tail estimates for the local time and combining
them with the corresponding tail bounds for the DGFF.

Once that is done, we include the field hDN , properly scaled, as a third “coordinate”
of the point process and study weak subsequential limits of these. For instance, for the
thick and thin points this concerns the measure

1
WN

∑
x∈DN

δx/N ⊗ δ
(LDN

tN
(x)−aN)/ log N

⊗ δ
hDN

x /
√

log N
. (3.5)

Here the key is to show that the DGFF part acts, in the limit, as an explicit deterministic
measure. For instance, for the thick and thin points this means that if ζD

N converges to
some ζD along a subsequence of N’s, the measure in (3.5) converges to ζD ⊗ g where g
is the normal law N (0, g); see Lemma 5.3.

Denoting by ` the second variable and by h the third variable in (3.5), the Dynkin
isomorphism now tells us that the “law” of `+ h2

2 under any weak subsequential limit of
the measures in (3.5) is the same as the limit “law” of the DGFF centered at

√
2aN−

√
2tN

(for the thick points) which we know from (2.10). This produces a convolution-type
identity for subsequential limits of the local-time point process. Some technical work
then shows that this identity has a unique solution which can be identified explicitly in
all cases of interest.
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We note that an important benefit of our reliance on the Dynkin isomorphism is that
our arguments — and, in particular, the proof of convergence of the measures in (3.5)
— avoid the need to work with the second moments of the local time. Unlike the first
moments, these are harder to control explicitly and that particularly so under additional
truncation that would be required to cover the whole regime of interesting behavior.

Our control of the local structure of the exceptional points also relies on isomorphism
theorems. For the thick and thin points, we combine the Dynkin isomorphism with
Theorem 2.1 of [10] that captures the local structure of intermediate level sets of the
DGFF. For the avoided points, we instead invoke the Pinned Isomorphism Theorem of
Rodriguez [36, Theorem 5.5] that links the random-interlacement occupation-time field
(Lu(x))x∈Z2 introduced in (2.33) to the pinned DGFF φ defined via (2.27) as follows:

Theorem 3.2 (Pinned Isomorphism Theorem) Let u > 0 and suppose that (Lu(x))x∈Z2

with law νRI
u/π is independent of {φx : x ∈ Z2} with law ν0. Then

Lu +
1
2

φ2 law
=

1
2
(
φ + 2

√
2u a

)2, (3.6)

where a is the potential kernel. (The extra factor of 2 compared to [36, Theorem 5.5] is due to
different normalizations of the local time, the pinned field and the potential kernel.)

It is exactly the generalization of this theorem that blocks us from extending control
of the local structure to the light points. Indeed, we expect that, for the light points, the
associated process is still that of random interlacements but with the local time at the
origin fixed to a given positive number. Developing the theory of this process explicitly
goes beyond the scope of the present paper.

3.2 Extensions and refinements.

We see a number of possible ways the existing conclusions may be refined so let us
discuss these in some more detail.

Other “boundary” conditions: Perhaps the most significant deficiency of our setting is
the somewhat unnatural mechanism by which the walk returns back to DN after each
exit. Contrary to the intuition one might have, this does not lead to the local time ex-
ploding near the boundary; see Fig. 5 or the fact that ZD

λ puts no mass on ∂D. The main
reason for using the specific setting worked out here is that it allows us to seamlessly
plug in the existing results from [10] on the “intermediate” level sets of the DGFF. The
natural alternatives are

(1) running the walk on an N × N torus, or
(2) running the walk as a simple random walk on all of Z2 but only recording the

local time spent inside DN .

Both of these require developing the level-set analysis of a DGFF on a finite graph pinned
at one vertex.

Time parametrization: Another feature for which our setting may be considered some-
what unnatural is the parametrization of the walk by the time spent at the “bound-
ary vertex.” A reasonable question is then what happens when we instead use the
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FIG. 5 Left: Plot of the trajectory of the random walk on a 200× 200 square
run for 0.3-multiple of the cover time. The time runs in the vertical direction.
Right: The corresponding local time profile. Note that while short excursions
near the boundary are numerous, most contribution to the local time profile
comes from the excursions that reach “deep” into the domain.

parametrization by the actual time of the walk (continuous-time parametrization), or
even by the number of discrete steps that the walk has taken (discrete-time parametriza-
tion). The main problem here is the lack of a direct connection with the underlying
DGFF; instead, one has to rely on approximations.

Preliminary calculations have so far shown that, at least approximately, the local time
in the continuous-time parametrization is still connected with the DGFF as in (3.3) but
now with the field h̃DN reduced by its arithmetic mean over DN . This implies that,
for both continuous and discrete-time analogues of the measures ζD

N , ϑD
N and κD

N , their
N → ∞ limits still take the product form as in (2.15), (2.17), (2.22) and (2.25), respec-
tively, albeit now with ZD

λ replaced by a suitable substitute reflecting on the reduction
of the CGFF by its arithmetic mean. Update in revision: These statements have now been
established rigorously in Abe, Biskup and Lee [3].

Critical cases: Another natural extension to consider concerns various borderline pa-
rameter regimes left out in the present paper; namely, λ := 1 for the λ-thick points
and λ :=

√
θ ∧ 1 for the λ-thin points as well as θ := 1 for the avoided points. In

analogy with the corresponding question for the DGFF (Biskup and Louidor [7–9]), we
expect that the corresponding measures will require a different scaling — essentially,
boosting by an additional factor of log N — and the limit spatial behavior will be gov-
erned by the critical LQG measure ZD

1 . For the simple random walk on a homogeneous
tree of depth n, this program has already been carried out by the first author (Abe [2]).
A breakthrough result along these lines describing the limit law of the cover time on
homogenous trees has recently been posted by Cortines, Louidor and Saglietti [14] and
by Dembo, Rosen and Zeitouni [17]. Update in revision: The limit law of the maximum
cover time has recently been established by Biskup and Louidor [11]. .
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Brownian local time: Yet another potentially interesting extension concerns the corre-
sponding problem for the Brownian local time. This requires working with the ε-cover
time defined as the first time when every disc of radius ε > 0 inside D has been visited;
the limit behavior is then studied as ε ↓ 0. We actually expect that, with proper defini-
tions, very similar conclusions will hold here as well although we presently do not see
other way to prove them than by approximations via random walks.

Jego [25] recently posted a preprint that proves the existence of a scaling limit for the
process associated, similarly to our ζD

N from (2.12), with the local-time thick points of
the Brownian path killed upon first exit from D. As it turns out, the limit measure still
factors into a product of a random spatial part, defined via limits of exponentials of the
root of the local time, and an exponential measure. However, although the spatial part
of the measure obeys the expectation identity of the kind (2.11), it is certainly not one
of the LQG measures ZD

λ above, due to the limited time horizon of the Brownian path.
In [26], Jego characterized the limit measure directly by a list of natural properties.

3.3 Outline.

The rest of this paper is organized as follows. In the next section (Section 4) we derive
tail estimates for the local time that will come handy later in the proofs. These are used
to prove tightness of the corresponding point measures. Section 5 then gives the proof
of convergence for the measure associated with the λ-thick points following the outline
from Section 3.1. This proof is then used as a blue print for the corresponding proofs for
the λ-thin points (Section 6) and the light and avoided points (Section 7). The results on
the local structure are proved at the very end (Section 8).

4. TAIL ESTIMATES AND TIGHTNESS

We are now ready to commence the proofs of our results. All of our derivations will per-
tain to the continuous-time Markov chain started, and with the local time parametrized
by the time spent, at the “boundary vertex.” Let us pick a domain D ∈ D and a se-
quence {DN}N≥1 of admissible approximations of D and consider these fixed through-
out the rest of this paper. Recall the notation ζD

N , ϑD
N and κD

N for the measures in (2.12),
(2.20) and (2.24), respectively.

4.1 Upper tails.

We begin with estimates on the tails of the random variable LDN
tN

(x) which then readily
imply tightness of the random measures of interest. We first derive these estimates in
the general setting of a random walk on a graph with a distinguished vertex $ and only
then specialize to N-dependent domains in the plane. We begin with the upper tail:

Lemma 4.1 (Local time upper tail) Consider the random walk on V ∪ {$} as detailed in
Section 1.2. For all a, t > 0 and all b ∈ R such that a + b > t, and all x ∈ V,

P$
(

LV
t (x) ≥ a + b

)
≤

√
GV(x, x)√

2(a + b)−
√

2t
e
− (
√

2a−
√

2t)2

2GV (x,x) e
−b

√
2a−
√

2t
GV (x,x)

√
2a . (4.1)



RANDOM WALK LOCAL TIME 17

Proof. We will conveniently use estimates developed in earlier work on this problem.
Denoting by (Ys)s≥0 the 0-dimensional Bessel process and writing Pa

Y for its law with
Pa

Y(Y0 = a) = 1, Lemma 3.1(e) of Belius, Rosen and Zeitouni [5] shows

LV
t (x) under P$ law

=
1
2

(
YGV(x,x)

)2
under P

√
2t

Y . (4.2)

(Strictly speaking, the derivations in [5] are restricted to random walks on linear graphs.
To make them applicable to our setting, we invoke a “network reduction” argument
that effectively replaces the underlying graph by a single edge connecting $ to x. The
reduction preserves both GV(x, x) and the law of LV

t (x) under P$.)
Let Pr

B be a law under which (Bs)s≥0 is a standard Brownian motion on R starting at r.
The process Y is absolutely continuous with respect to B up to the first time it hits zero;
after that Y vanishes identically. The Radon-Nikodym derivative takes the explicit form
(see, for example, [5, (2.13)])

dPr
Y

dPr
B

∣∣∣
FH0∧t

=

√
r
Bt

exp
{
−3

8

∫ t

0
ds

1
B2

s

}
, on {H0 > t}, (4.3)

where Ft is the σ-field generated by the process up to time t and Ha is the first time the
process hits level a.

The identification (4.2) along with the assumptions a + b > 0 translates the event
{LV

t (x) ≥ a + b} to {Yt ≥
√

2(a + b)} intersected by {H0 > t}. For r :=
√

2t, the
assumption a + b > t implies that the quantity in (4.3) is less than one everywhere on
the event of interest. Hence,

P$
(

LV
t (x) ≥ a + b

)
≤ P

√
2t

B

(
BGV(x,x) ≥

√
2(a + b)

)
= P0

B

(
BGV(x,x) ≥

√
2(a + b)−

√
2t
)

.
(4.4)

In order to get (4.1) from this, we invoke the Gaussian estimate P(N (0, σ2) ≥ x) ≤
σx−1e−

x2

2σ2 valid for all x > 0 along with the calculation(√
2(a + b)−

√
2t
)2

= 2(a + b) + 2t− 2
√

2a
√

2t
(

1 +
b
a

)1/2

≥ 2(a + b) + 2t− 2
√

2a
√

2t
(

1 +
b

2a

)
=
(√

2a−
√

2t
)2

+ 2b
√

2a−
√

2t√
2a

,

(4.5)

where in the middle line we used that (1 + x)1/2 ≤ 1 + x/2 holds for all x > −1. �

From this we readily obtain:

Corollary 4.2 (Tightness for the thick points) Suppose that tN and aN are such that the
limits in (2.14) exist for some θ > 0 and some λ ∈ (0, 1). For each b ∈ R, there is c1(b) ∈ (0, ∞)
such that for all A ⊆ R2 closed,

lim sup
N→∞

E$
[

ζD
N
(

A× [b, ∞)
)]
≤ c1(b)Leb(A ∩ D). (4.6)
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Proof. It suffices to prove the bound for all b < 0 with |b| sufficiently large. Pick x ∈ DN .
If GDN (x, x) ≥ g

b2 log N, then Lemma 4.1 with a := aN , t := tN and b replaced by b log N
and the uniform bound GDN (x, x) ≤ g log N + c give

P$
(

LDN
tN

(x) ≥ aN + b log N
)
≤ c̃√

log N
e−

(
√

2aN−
√

2tN )2

2g log N eβ|b|3 , (4.7)

for some constants c̃ < ∞ and β > 0 independent of b and N, once N is sufficiently
large. This is of order WN/N2. If, on the other hand, GDN (x, x) ≤ g

b2 log N, then we use
that GDN (x, x) ≥ 1

4 in the second exponential on the right of (4.1) to get

P$
(

LDN
tN

(x) ≥ aN + b log N
)
≤ c̃′√

log N
e−b2 (

√
2aN−

√
2tN )2

2g log N eβ′|b| log N , (4.8)

where again c̃′ < ∞ and β′ > 0 do not depend on b or N once N is sufficiently large.
Since the first exponent in (4.8) is of order log N, for |b| large enough, this is again at
most order WN/N2. Now write Aε := {x ∈ R2 : d∞(x, A) < ε} and note that, in light of
(1.6), we have

#
{

x ∈ DN : x/N ∈ A
}
≤ N2Leb(A1/N ∩ D). (4.9)

Summing the relevant bound from (4.7–4.8) over x ∈ DN with x/N ∈ A, the claim
follows by noting that, since A is closed, Leb(A1/N ∩ D)→ Leb(A ∩ D) as N → ∞. �

4.2 Lower tails.

For the lower tail we similarly get:

Lemma 4.3 (Local time lower tail) Consider the random walk on V ∪ {$} as in Section 1.2.
For all a, t > 0 and all b′ < b such that a + b′ > 0 and a + b < t, and all x ∈ V,

P$
(

LV
t (x)− a ∈ [b′, b]

)
≤
( t

a + b′
)1/4

√
GV(x, x)√

2t−
√

2(a + b)
e
− (
√

2t−
√

2a)2

2GV (x,x) e
+b

√
2t−
√

2a
GV (x,x)

√
2a . (4.10)

Proof. We use again the passage (4.2–4.3) via the Bessel process and Brownian motion
except that here we can no longer bound the prefactor in (4.3) by one. Instead, we get
the root of the ratio of the roots of 2t and 2(a + b′). Therefore, (4.4) is replaced by

P$
(

LV
t (x)− a ∈ [b′, b]

)
≤
( t

a + b′
)1/4

P0
B

(
BGV(x,x) ≤

√
2(a + b)−

√
2t
)

. (4.11)

Noting that the difference in the probability on the right is negative, the rest of the cal-
culation is exactly as before. �

Postponing the tightness of the thin points to the end of this subsection, we first deal
with estimates for the light and avoided points:

Lemma 4.4 (Vanishing local time) For each t > 0 and each x ∈ V,

P$
(

LV
t (x) = 0

)
= e

− t
GV (x,x) . (4.12)
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In fact, for every b ≥ 0, we have

P$
(

LV
t (x) ≤ b

)
≤ e

− t
GV (x,x)

exp{− b
GV (x,x)

} ≤ e
− t

GV (x,x)
+b t

GV (x,x)2 . (4.13)

Proof. Here we proceed by a direct argument based on excursion decomposition (see,
however, Remark 4.5). Writing Ĥu for the first time to return to u after the walk left u,
consider the following independent random variables:

(1) N := Poisson(t/GV(x, x)),
(2) {Zn : n ≥ 1} := i.i.d. Geometric with parameter p := Px(H$ < Ĥx),
(3) {Tk,j : k, j ≥ 1} := i.i.d. Exponentials with mean one.

We then claim

π(x)LV
t (x) law

=
N

∑
k=1

Zk

∑
j=1

Tk,j. (4.14)

To see this, note that thanks to the parametrization by the local time at $, the value LV
t (x)

is accumulated through a Poisson(π($)t) number of independent excursions that start
and end at $. Each excursion that actually visits x, which happens with probability
P$(Hx < Ĥ$), contributes a Geometric(p)-number of independent exponential random
variables to the total time the walk spends at x. By Poisson thinning, the number of
excursions that visit x is Poisson with parameter π($)P$(Hx < Ĥ$)t. We claim that this
equals t/GV(x, x). Indeed, since the walk is constant speed, reversibility gives

π($)P$(Hx < Ĥ$) = π(x)Px(H$ < Ĥx). (4.15)

As was just noted, under Px the quantity π(x)`H$(x) is the sum of Geometric(p) inde-
pendent exponentials of mean one. From (1.5) we then get π(x)GV(x, x) = 1/p.

With (4.14) in hand, to get (4.12) we just observe that, modulo null sets, the sum
in (4.14) vanishes only if N = 0. To get (4.13) we note that, for LV

t (x) ≤ b we must
have ∑Zk

j=1 Tk,j ≤ bπ(x) for each k = 1, . . . , N. The probability that the sum of Zk inde-

pendent exponentials is less than bπ(x) equals 1− e−bpπ(x), and that this happens for all
k = 1, . . . , N thus has probability at most

∞

∑
n=0

(t/GV(x, x))n

n!
[
1− e−bpπ(x)]ne

− t
GV (x,x) = e

− t
GV (x,x)

e−bpπ(x)

. (4.16)

The claim again follows from 1/p = π(x)GV(x, x) and the bound e−x ≥ 1− x. �

Remark 4.5 We note that a proof based on the connection with the 0-dimensional Bessel
process is also possible. Indeed, by Belius, Rosen and Zeitouni [5, (2.8)], given x > 0 the
law of (Ys)2 under Px

Y is given by

e−
x
2s δ0(dy) + 1(0,∞)(y)

1
2s

√
x
y

I1

(√xy
s

)
e−

x+y
2s dy, (4.17)

where I1(z) := ∑∞
k=0

(z/2)2k+1

k!(k+1)! . The identity (4.12) follows immediately from (4.2) and

I1

( √
2ts

GV(x, x)

)
≤

√
2ts

2GV(x, x)
e

ts
2GV (x,x)2 (4.18)
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then implies the inequality in (4.13) as well.

From Lemma 4.4 we get:

Corollary 4.6 (Tightness for the light and avoided points) Suppose tN is such that (2.19)
holds with some θ ∈ (0, 1). For each b > 0 there is a constant c2(b) ∈ (0, ∞) such that for each
A ⊆ R2 closed,

lim sup
N→∞

E$
[

ϑD
N(A× [0, b])

]
≤ c2(b)Leb(A ∩ D). (4.19)

In particular,

lim sup
N→∞

E$
[

κD
N(A)

]
≤ c2(b)Leb(A ∩ D). (4.20)

Proof. It suffices to prove just (4.19) and that for b > 0 sufficiently large. Denote c̃ :=
supN≥1 tN/(log N)2. We then claim

P$
(

LDN
tN

(x) ≤ b
)
≤ e−btN(log N)−1

+ e
− tN

GDN (x,x)
+c̃b3e8b

. (4.21)

Indeed, the first term arises for x with GDN (x, x) ≤ b−1e−4b log N by the first inequality
in (4.13) along with GDN (x, x) ≥ 1

4 . The second term controls the remaining x; we invoke
the second inequality in (4.13) along with btN/GDN (x, x)2 ≤ c̃b3e8b.

For b sufficiently large, the first term on the right of (4.21) is o(ŴN/N2) independently
of x ∈ DN . The second term is in turn O(ŴN/N2), with the implicit constant depending
on b, by the fact that that GDN (x, x) ≤ g log N + c, uniformly in x ∈ DN . The sum over
such x ∈ DN with x/N ∈ A is now handled via (4.9). �

4.3 Some corollaries.

Combining the conclusions of Lemmas 4.3 and 4.4, we can now derive the easier halves
of Theorem 2.1:

Lemma 4.7 Suppose θ > 0 is related to tN as in (2.1). Then for each ε > 0, the bounds

1
(log N)2 max

x∈DN
LDN

tN
(x) ≤ 2g

(√
θ + 1

)2
+ ε (4.22)

and
1

(log N)2 min
x∈DN

LDN
tN

(x) ≥ 2g
[
(
√

θ − 1) ∨ 0
]2 − ε (4.23)

hold with P$-probability tending to one as N → ∞.

Proof. For the maximum, pick ε > 0 and abbreviate aN := 2g
(√

θ + 1 + ε
)2
(log N)2.

Then use (4.1) with b := 0 and a := aN to bound the probability that LDN
tN

(x) ≥ aN by
order N−2(1+ε)+o(1) uniformly in x ∈ DN . The union bound then gives (4.22).

For the minimum, it suffices to deal with the case θ > 1. We pick ε > 0 such that√
θ > 1+ ε. Abbreviate aN := 2g

(√
θ− 1− ε

)2
(log N)2 and apply Lemma 4.3 to get, for
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any b > 0,

P$
(

LDN
tN

(x) ≤ aN
)

= P$
(

LDN
tN

(x) ≤ b
)
+ P$

(
b < LDN

tN
(x) ≤ aN

)
≤ P$

(
LDN

tN
(x) ≤ b

)
+

(
tN

b

)1/4 √
GDN (x, x)√

2tN −
√

2aN
e
− (
√

2tN−
√

2aN )2

2GDN (x,x) .

(4.24)

The proof of Corollary 4.6 bounds the first probability by N−2θ+o(1), with o(1) → 0
uniformly in x ∈ DN . (As the quantity is non-decreasing in b, the requirement that b
be sufficiently large is achieved trivially.) Hence, even after summing over x ∈ DN , the
contribution of this term is negligible.

For the second term on the right of (4.24) we note that, invoking the uniform upper
bound GDN (x, x) ≤ g log N + c, the above choice of aN yields

(
√

2tN −
√

2aN)
2

2GDN (x, x)
≥ 2

(
1 + ε + o(1)

)2 log N (4.25)

uniformly in x ∈ DN . As the prefactors produce only polylogarithmic terms in N, also
the second term on the right of (4.24) is o(N−2) as N → ∞. �

A similar argument will allow us to deal with the tightness of the thin points:

Corollary 4.8 (Tightness for the thin points) Suppose that tN and aN are such that the limits
in (2.16) exist for some θ > 0 and some λ ∈ (0,

√
θ ∧ 1). For all b ∈ R there is c3(b) ∈ (0, ∞)

such that for all A ⊆ R2 closed,

lim sup
N→∞

E$
[

ζD
N
(

A× (−∞, b]
)]
≤ c3(b)Leb(A ∩ D). (4.26)

Proof. We proceed as in the proof of Lemma 4.7. Let aN ∼ 2g(
√

θ − λ)2(log N)2 be as
given, pick ε ∈ (0,

√
θ − λ) an abbreviate âN := 2gε2(log N)2. Then for any b′ > 0,

P$
(

LDN
tN

(x) ≤ aN + b log N
)
= P$

(
LDN

tN
(x) ≤ b′

)
+ P$

(
b′ < LDN

tN
(x) ≤ âN

)
+ P$

(
âN < LDN

tN
(x) ≤ aN + b log N

)
. (4.27)

Exactly as in (4.24), the first term on the right is estimated to be N−2θ+o(1) = o(WN/N2)

uniformly in x ∈ DN , where we used that WN = N2−2λ2+o(1) and λ <
√

θ. The second
term is bounded as in (4.24) by N−2(

√
θ−ε)2+o(1) = o(WN/N2) by our choice of ε.

For the last term we invoke Lemma 4.3 with a+ b′ and a+ b set to âN and aN + b log N,
respectively. This allows for b in (4.10) to be negative which permits bounding the last
factor on the right by one while keeping the prefactors in (4.10) bounded by a constant
that depends only on ε, uniformly in x ∈ DN . Hence, the last term in (4.27) is O(WN/N2)
uniformly in x ∈ DN . The observation (4.9) then helps us deal with the sum over x ∈ DN
subject to x/N ∈ A. �

Remark 4.9 The reason for using the expressions Leb(A ∩ D) to control the first mo-
ments of the measures of interest is that this will later allow us to restrict attention
to A ⊆ D open with A ⊆ D in the arguments to follow. Indeed, taking {An}n≥1 open
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with An ↑ D, as n → ∞ the expected measure of the complement D r An tends to zero
by the fact that Leb(D r An)→ 0.

5. THICK POINTS

We are now ready to move to the proof of the stated convergence for the point measure
associated with λ-thick points. Throughout we will assume that aN and tN satisfy (2.14)
with some θ > 0 and some λ ∈ (0, 1). Introduce the auxiliary centering sequence

âN :=
√

2aN −
√

2tN (5.1)

and note that âN ∼ 2λ
√

g log N as N → ∞. The arguments below make frequent use of
the coupling of LDN

tN
and an independent DGFF hDN to another DGFF h̃DN via the Dynkin

isomorphism (Theorem 3.1). We will use these notations throughout and write η̂D
N to

denote the DGFF process associated with h̃DN and the centering sequence âN . A key
point to note is that WN then coincides with normalizing constant from (2.9).

5.1 Tightness considerations.

The proof of Theorem 2.2 naturally divides into two parts. In the first part we domi-
nate ζD

N using η̂D
N and control the effect of adding hDN to the local time LDN

tN
. The sec-

ond part is then a derivation, and a solution, of a convolution-type identity linking the
weak-limits of ζD

N to those of η̂D
N . Our tightness considerations start by the following

domination lemma:

Lemma 5.1 (Domination by DGFF process) For any b ∈ R and any measurable A ⊆ D,

ζD
N
(

A× [b, ∞)
) law
≤ η̂D

N

(
A×

[ 1
2
√

g
b√

θ+λ
, ∞
))

+ o(1) (5.2)

where o(1) → 0 in probability as N → ∞. Similarly, for any measurable A ⊆ D × D and
any b ∈ R,

ζD
N ⊗ ζD

N
(

A× [b, ∞)2) law
≤ η̂D

N ⊗ η̂D
N

(
A×

[ 1
2
√

g
b√

θ+λ
, ∞
)2
)
+ o(1). (5.3)

Proof. Let us start by (5.2). The Dynkin isomorphism shows

LDN
tN
≤ LDN

tN
+

1
2
(hDN )2 =

1
2
(
h̃DN +

√
2tN
)2. (5.4)

For expression on the left of (5.2) we then get

ζD
N
(

A× [b, ∞)
)
≤ 1

WN
∑

x∈DN
x/N∈A

1{|h̃DN
x +

√
2tN |≥
√

2aN+2b log N}. (5.5)

Pick any b′ < b 1
2
√

g
1√

θ+λ
. Once N is sufficiently large, the asymptotic formulas for aN

and tN give
√

2aN + 2b log N ≥
√

2aN + b′ and so

1{|h̃DN
x +

√
2tN |≥
√

2aN+2b log N} ≤ 1{h̃DN
x ≥âN+b′} + 1{h̃DN

x ≤−
√

2aN−
√

2tN−b′} . (5.6)
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Writing ηD
N for the process associated with the field −h̃DN and the centering sequence√

2aN +
√

2tN , and K̄N for the associated normalization from (2.9), we thus have

ζD
N
(

A× [b, ∞)
)
≤ η̂D

N
(

A× [b′, ∞)
)
+

K̄N

WN
ηD

N
(

A× [b′, ∞)
)
. (5.7)

Noting that {ηD
N : N ≥ 1} is tight on D× (R∪{+∞}) and K̄N = o(WN), the second term

is o(1) in probability as N → ∞. To get (5.2) we now take b′ to b 1
2
√

g
1√

θ+λ
and invoke the

continuity of the limit measure in (2.10) in the second variable.
The proof of (5.3) is completely analogous. Indeed, the same reasoning implies, for

any Borel A ⊆ D× D,

ζD
N ⊗ ζD

N
(

A× [b, ∞)2) ≤ η̂D
N ⊗ η̂D

N
(

A× [b′, ∞)2)+ K̄N

WN
η̂D

N ⊗ ηD
N
(

A× [b′, ∞)2)
+

K̄N

WN
ηD

N ⊗ η̂D
N
(

A× [b′, ∞)2)+ ( K̄N

WN

)2
ηD

N ⊗ ηD
N
(

A× [b′, ∞)2). (5.8)

Replacing A by D × D in the last three terms shows, via K̄N = o(WN), that these three
terms are again all o(1) in probability as N → ∞. A continuity argument in the second
variable then proves (5.3) as well. �

Note that Lemma 5.1 provides an independent proof of the tightness of the mea-
sures ζD

N . Based on the proof one might think that ζD
N is asymptotically close to η̂D

N ,
but this is false: Although (5.6) is asymptotically sharp, the inequalities in (5.4–5.5) are
not. To account for this fact, we have to carefully examine the effect of adding the half
of the DGFF-squared to the local time. In particular, we have to ensure that the DGFF
remains typical even at the points where the local time combined with half of its square is
large. This rather important step is the content of:

Lemma 5.2 Let 0 < β < 1
2g

√
θ√

θ+λ
. Then for each b ∈ R there is c4(b) ∈ (0, ∞) such that for

all M ≥ 0, all sufficiently large N and all x ∈ DN ,

P$ ⊗P

(
LDN

tN
(x) +

(hDN
x )2

2
≥ aN + b log N,

|hDN
x |√

log N
≥ M

)
≤ c4(b)

WN

N2 e−βM2
. (5.9)

Proof. Since the b log N-correction can be absorbed into a re-definition of aN , which
thanks to the assumed asymptotic behavior of aN and tN only changes WN by a mul-
tiplicative constant, we may assume for simplicity that b = 0. Assume also that M is an
integer and pick δ with

0 < δ < 2
√

θλ. (5.10)
Partitioning the event in (5.9) according to which interval of the form [n, n+ 1), with n ∈
N subject to n ≥ M2, the ratio (hDN

x )2/ log N lies in, the probability in (5.9) is bounded by

P
(
|hDN

x | ≥ 2
√

g
√

λ2 + δ log N
)

+ ∑
M2≤n≤4g(λ2+δ) log N

P
(
(hDN

x )2 ≥ n log N
)

P$
(

LDN
tN

(x) ≥ aN −
1
2
(n + 1) log N

)
. (5.11)
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A standard Gaussian bound estimates the first probability by a constant times N−2(λ2+δ)

which is o(WN/N2) as N → ∞. Concerning the terms in the sum, here we first note that
for all n under the summation symbol,

aN −
1
2
(n + 1) log N ≥ 2g

[
(
√

θ + λ)2 − (λ2 + δ) + o(1)
]
(log N)2

= tN + 2g
(
2
√

θλ− δ + o(1)
)
(log N)2.

(5.12)

Hence, under (5.10), Lemma 4.1 can be applied. Using GDN (x, x) ≤ g log N + c, the term
corresponding to integer n in the sum is thus bounded by

c̃
WN

N2 exp
{

1
2g

[
(n + 1)

√
2aN −

√
2tN√

2aN
− n

]}
, (5.13)

where c̃ is a constant that depends on θ, λ and our choice of δ but not on N or x or n.
Since the assumptions on aN and tN give

√
2aN −

√
2tN√

2aN
−→
N→∞

λ√
θ + λ

< 1− 2gβ (5.14)

as soon as N is sufficiently large, the quantity in (5.13) is summable on n and the sum in
(5.11) is thus dominated by the term with n = M2. The claim follows. �

5.2 Convolution identity.

We now move to the second part which consists of the derivation of, and a solution to,
a convolution identity that links weak (subsequential) limits of ζD

N to those of η̂D
N . A key

input here is the observation that, at the scale of its typical fluctuations, the field hDN

that we add to LDN
tN

in the Dynkin isomorphism acts like white noise:

Lemma 5.3 Suppose {Nk} is a subsequence along which ζD
N converges in law to ζD. Then

1
WN

∑
x∈DN

δx/N ⊗ δ
(LDN

tN
(x)−aN)/ log N

⊗ δ
hDN

x /
√

log N
law−→

N=Nk
k→∞

ζD ⊗ g, (5.15)

where g is the law of N (0, g).

Proof. Denote by ζD,ext
N the measure on the left of (5.15). We need to show that the

integral of any f ∈ Cc(D ×R×R) with respect to ζD,ext
N converges in law to that with

respect to ζD ⊗ g. The restrictions on f imply that there is a compact set A ⊆ D and a
number b > 0 such that∣∣ f (x, `, h)

∣∣ ≤ ‖ f ‖∞1A(x)1[−b,∞)(`)1[−b,b](h). (5.16)

The argument is based on a conditional second moment calculation and domination by
the DGFF process from Lemma 5.1.
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Abbreviate L(x) := (LDN
tN

(x) − aN)/ log N and hx := hDN
x /

√
log N. Writing VarP,

resp., CovP for the conditional variance, resp., covariance given the local time, we have

VarP

(
〈ζD,ext

N , f 〉
)
=

1
W2

N
∑

x,y∈DN

CovP

(
f
(

x/N, L(x), hx
)
, f
(

y/N, L(y), hy
))

. (5.17)

Pick ε > 0 and split the sum according to whether |x − y| ≥ εN or not. Focusing first
on the former case, we use the Gibbs-Markov decomposition to write hDN using the
value hDN

x and an independent DGFF in DN r {x} as

hDN law
= hDN

x bDN ,x(·) + ĥDNr{x}, hDN
x ⊥⊥ ĥDNr{x}, (5.18)

where bDN ,x : Z2 → [0, 1] is the unique function that is discrete harmonic on DN r {x},
vanishes outside DN and equals one at x. A key point, proved with the help of mono-
tonicity of D 7→ bD,x(y) with respect to the set inclusion, is

max
x,y∈DN
|x−y|≥εN

bDN ,x(y) ≤
c(ε)

log N
, (5.19)

where c(ε) ∈ (0, ∞) is independent of N.
Write R f (δ) is the maximal oscillation of f in the third variable on intervals of size δ.

In light of (5.16) we then get

EP

(
f (. . . , hx) f (. . . , hy)

)
≤ ‖ f ‖∞R f

( bc(ε)√
log N

)
+ EP

(
f (. . . , hx)

)
EP

(
f (. . . , ĥy)

)
, (5.20)

where ĥ abbreviates the field ĥDNr{x} and the dots stand for the remaining arguments
of f that are not affected by the expectation with respect to P. As to the expectation on
the right, for any M > b we similarly obtain∣∣∣EP

(
f (. . . , ĥy)

)
− EP

(
f (. . . , hy)

)∣∣∣ ≤ R f

( Mc(ε)√
log N

)
+ 2e−c̃M2‖ f ‖∞ (5.21)

by splitting the expectations depending on the containment in {|hx| ≤ M
√

log N} or
not and estimating each term separately. The (positive) constant c̃ can be taken as close
to (2g)−1 as desired by taking M sufficiently large.

Putting (5.20–5.21) together and invoking (5.16), the contribution of the pairs (x, y)
with |x− y| ≥ εN to (5.17) is thus at most

2‖ f ‖∞

(
R f

( Mc(ε)√
log N

)
+ e−c̃M2‖ f ‖∞

)
ζD

N ⊗ ζD
N
(

D× D× [−b, ∞)2), (5.22)

Writing the product-measure term on the right of (5.22) as the square of ζD
N(D× [−b, ∞))

we note that this term is stochastically bounded in the limit as N → ∞ by Corollary 4.2
(or by the domination argument from Lemma 5.1). Since R f (δ) → 0 as δ ↓ 0 by the
uniform continuity of f , taking N → ∞ followed by M → ∞ shows that the sum (5.17)
restricted to |x− y| ≥ εN vanishes in P$-probability as N → ∞ for every ε > 0.
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Moving to the part of the sum in (5.17) corresponding to |x − y| ≤ εN, using (5.16)
this is bounded by ‖ f ‖2

∞ times

ζD
N ⊗ ζD

N

({
(x, y) : |x− y| ≤ ε

}
× [−b, ∞)2

)
(5.23)

which by Lemma 5.1 is stochastically bounded by

η̂D
N ⊗ η̂D

N

({
(x, y) : |x− y| ≤ ε

}
× [− 1

2
√

g
b√

θ+λ
, ∞)2

)
+ o(1). (5.24)

As {(x, y) : |x − y| ≤ ε} is closed and âN ∼ 2λ
√

g log N as N → ∞, (2.10) and the
Portmanteau Theorem show that this expression is, in the limit N → ∞, stochastically
dominated by a b-dependent constant times

ZD
λ ⊗ ZD

λ

(
{(x, y) : |x− y| ≤ ε}

)
. (5.25)

This tends to zero as ε ↓ 0 a.s. due to the fact that ZD
λ has no point masses a.s.

We conclude that VarP(〈ζD,ext
N , f 〉) tends to zero in P$-probability. This implies

〈ζD,ext
N , f 〉 −E

(
〈ζD,ext

N , f 〉
)
−→
N→∞

0, in P$ ⊗P-probability. (5.26)

To infer the desired claim, abbreviate

fg(x, `) :=
∫

g(dh) f (x, `, h) (5.27)

and note that, since A in (5.16) is compact, hDN
x /

√
log N tends in law to N (0, g) uni-

formly for all x ∈ {y ∈ DN : y/N ∈ A}. The continuity of f along with (5.16) yield

E
(
〈ζD,ext

N , f 〉
)
− 〈ζD

N , fg〉 −→
N→∞

0, in P$-probability. (5.28)

Combining (5.26) and (5.28) we then get (5.15). �

As a consequence of the above lemmas, we now get:

Lemma 5.4 Recall that g is the law of N (0, g). Given f ∈ Cc(D×R) with f ≥ 0, let

f ∗g(x, `) :=
∫

g(dh) f
(

x, 1
2
√

g(
√

θ+λ)

(
`+ h2

2

))
. (5.29)

Then for every subsequential weak limit ζD of ζD
N , simultaneously for all f as above,

〈ζD, f ∗g〉 law
= c(λ)

∫
ZD

λ (dx)⊗ e−αλhdh f (x, h), (5.30)

where, we recall, α := 2/
√

g and c(λ) is as in (2.10).

Proof. Pick f as above. Suppressing, for the duration of this proof, the index DN on
the fields and the local time, let the DGFF h̃ in DN be related to the local time LtN and
an independent DGFF h in DN via the Dynkin isomorphism. Recalling (5.1), for large
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enough N ≥ 1 we then have

〈η̂D
N , f 〉 = 1

WN
∑

x∈DN

f
(

x/N, h̃x − âN
)

=
1

WN
∑

x∈DN

f
(

x/N,
√

2LtN (x) + h2
x −
√

2aN

)
1{h̃x=

√
2LtN (x)+h2

x−
√

2tN}

=
1

WN
∑

x∈DN

f
(

x/N,
√

2LtN (x) + h2
x −
√

2aN

)
− 1

WN
∑

x∈DN

f
(

x/N,
√

2LtN (x) + h2
x −
√

2aN

)
1{h̃x=−

√
2LtN (x)+h2

x−
√

2tN}
,

(5.31)

where we noted that only the positive sign in h̃x = ±
√

2LtN (x) + h2
x −
√

2tN can con-
tribute in the second line once N is large due to f having a compact support and the fact
that âN → ∞ implied by λ > 0.

We start by treating the second term on the extreme right of (5.31) which we note is
bounded in absolute value by

‖ f ‖∞
1

WN
∑

x∈DN

1{h̃x≤−
√

2aN}. (5.32)

The result of [10], or even just a simple first-moment estimate, shows that the sum is
at most N2[1−(

√
θ+λ)2]+o(1) with high probability. As WN = N2(1−λ2)+o(1) and θ > 0, the

expression in (5.32) tends to zero in probability as N → ∞.
We thus need to extract the limit of the first term on the right of (5.31). For this we need

to first truncate hx to values of order
√

log N. Let χ : [0, ∞) → [0, 1] be non-increasing,
continuous with χ(x) = 1 for 0 ≤ x ≤ 1 and χ(x) = 0 for x ≥ 2. Then the first term on
the right of (5.31) can be written as

1
WN

∑
x∈DN

f
(

x/N,
√

2aN + 2[ LtN (x)− aN ] + h2
x −
√

2aN

)
χ
( |hx|

M
√

log N

)
(5.33)

plus a quantity bounded, in absolute value, by

‖ f ‖∞
1

WN
∑

x∈DN

1{
√

2LtN (x)+h2
x≥
√

2aN−b}1{|hx |≥M
√

log N}, (5.34)

where b > 0 is such that supp( f ) ⊆ D× [−b, b]. Lemma 5.2 shows that the L1-norm of
(5.34) under P$ ⊗P is of order e−βM2

, uniformly in N ≥ 1, and so we just need to focus
on taking the N → ∞ limit of (5.33).

The truncation ensures that, for x to contribute to the sum in (5.33), both h2
x and

LtN (x) − aN must be at most order log N. Expanding the square root and using the
uniform continuity of f along with the tightness of ζD

N to replace aN by its asymptotic
expression then recasts (5.33) as

1
WN

∑
x∈DN

fext

(
x/N,

LtN (x)−aN
log N , hx√

log N

)
χ
( |hx|

M
√

log N

)
+ o(1), (5.35)
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where
fext(x, `, h) := f

(
x, 1

2
√

g(
√

θ+λ)

(
`+ h2

2

))
. (5.36)

The function `, h 7→ fext(x, `, h)χ(|h|/M) that effectively appears in (5.35) is compactly
supported in both variables; Lemma 5.3 then shows that, along subsequences where ζD

N
converges in law to some ζD, the expression in (5.35) converges to 〈ζD, f ∗gM 〉 where f ∗gM is
defined by (5.29) with g(dh) replaced by χ(|h|/M)g(dh). From the known convergence
of η̂D

N (see (2.10)) we thus conclude

〈ζD, f ∗gM 〉+ O(e−βM2
)

law
= c(λ)

∫
ZD

λ (dx)⊗ e−αλhdh f (x, h), (5.37)

where O(e−βM2
) is a random quantity with L1-norm at most a constant times e−βM2

.
Taking M→ ∞ via the Monotone Convergence Theorem now gives (5.30). �

Working towards the proof of Theorem 2.2, a key remaining point to show is that the
class of f ∗g arising from functions f for which the integral on the right of (5.30) con-
verges absolutely is sufficiently rich so that (5.30) determines the measure ζD uniquely.
For this we note that, by an application of the Dominated and Monotone Convergence
Theorems, (5.30) extends from Cc(D ×R) to the class of functions (x, h) 7→ 1A(x) f (h),
where A ⊆ D is open with A ⊆ D and f ∈ C∞

c (R) with f ≥ 0. The transformation (5.29)
only affects the second variable on which it takes the form f 7→ ( f ∗ e) ◦ s, where the
convolution is with the function

e(z) :=

√
β

π

eβz
√
−z

1(−∞,0)(z) for β := α
(√

θ + λ
)

(5.38)

and where h 7→ s(h) is the scaling map

s(h) :=
h

2
√

g(
√

θ + λ)
. (5.39)

As it turns out, it then suffices to observe:

Lemma 5.5 Denote µλ(dh) := e−αλhdh and let e(·) be as in (5.38) with β > αλ. Then there
is at most one Radon measure ν on R such that for all f ∈ C∞

c (R) with f ≥ 0,〈
ν, f ∗ e

〉
= 〈µλ, f 〉. (5.40)

Proof. Writing (5.40) explicitly using integrals and using the fact that the class of all
f ∈ C∞

c (R) with f ≥ 0 separates Radon measures on R shows∫
R

ν(ds)e(s− h) = e−αλh, h ∈ R. (5.41)

Abbreviating νλ(dh) := eαλhν(dh) and eλ(h) := e−αλhe(h), this can be recast as∫
R

νλ(ds)eλ(s− h) = 1, h ∈ R. (5.42)

Integrating this against suitable test functions with respect to the Lebesgue measure and
applying the Dominated Convergence Theorem, we conclude〈

νλ, f ∗ eλ

〉
= 〈Leb, f 〉, f ∈ S(R), (5.43)
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where S(R) is the Schwartz class of functions on R. Note that this identity entails that
the integral on the left-hand side converges absolutely.

Since S(R) separates Radon measures on R, to conclude the statement from (5.40) it
suffices to prove that, for θ > 0,

f 7→ f ∗ eλ is a bijection of S(R) onto itself. (5.44)

The Fourier transform maps S(R) bijectively onto itself and so we may as well prove
(5.44) in the Fourier picture. For this we note that, as θ > 0 we have β̃ := β− αλ > 0
and so z 7→ eλ(z) decays exponentially as z→ −∞. In particular, eλ is integrable and so
in the Fourier transform, f 7→ f ∗ eλ is reduced to the multiplication by

êλ(k) :=
∫

R
dz eλ(z)e2πikz =

√
β

π

∫
(0,∞)

dx
1√
x

e−β̃(1+2πik/β̃)x. (5.45)

Hereby we readily check that k 7→ êλ(k) is C∞(R) with bounded derivatives which
implies that f 7→ eλ ∗ f maps S(R) into S(R). Using the substitution x = y2 and
computing the complex-Gaussian integral we find that∣∣êλ(k)

∣∣ = √β

β̃

1
|1 + 2πik/β̃|1/2

. (5.46)

As |̂eλ(k)| > 0 for all k ∈ R, the map f 7→ eλ ∗ f is injective; the fact that |̂eλ(k)|−1 is
bounded by a power of |k| then shows that it is also onto. Hence (5.44) follows. �

We are now ready to give:
Proof of Theorem 2.2. Consider a subsequential limit ζD, pick f ∈ Cc(R) with f ≥ 0 and
let A ⊆ D be open with A ⊆ D. Using the notation (5.38–5.39) we then have〈

ζD, (1A ⊗ f )∗g
〉
=
〈
ζD

A , ( f ∗ e) ◦ s
〉
=
〈
ζD

A ◦ s−1, f ∗ e
〉
, (5.47)

where ζD
A is a Borel measure on R defined by ζD

A(B) := ζD(A× B). Writing µλ(dh) :=
e−αλhdh, the identity (5.30) then translates into〈

ζD
A ◦ s−1, f ∗ e

〉 law
= c(λ)ZD

λ (A)〈µλ, f 〉, (5.48)

where the equality in law holds simultaneously for all A and f as above.
To infer the product form of ζD from (5.48), define (for a given A and a given realiza-

tion of ζD) a Borel measure on R by

ν :=
[
αλ
〈
ζD

A ◦ s−1, 1[0,∞) ∗ e
〉]−1

ζD
A , (5.49)

where the conditions on A imply ZD
λ (A) > 0 a.s. and so, by (5.48), the quantity in the

square bracket is strictly positive a.s. By (5.48) we have 〈ν ◦ s−1, f ∗ e〉 = 〈µλ, f 〉 for
all f ∈ Cc(R) and so, by Lemma 5.5, ν ◦ s−1, and thus also ν, is determined uniquely. In
particular, ν is the same for all A as above and for a.e. realization of ζD. Using (5.48) in

(5.49) then shows ζD
A(dh) law

= c(λ)ZD
λ (A)ν(dh). As this holds simultaneously for all A

as above, Remark 4.9 permits us to conclude

ζD law
= c(λ)ZD

λ ⊗ ν, (5.50)
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where ν is a uniquely-determined deterministic Radon measure on R.
It remains to derive the explicit form of ν which, thanks to its uniqueness, we can

do by plugging the desired expression on the left-hand side of (5.30) and checking for
equality. Abbreviate α̃ := α(θ, λ) and note that

α̃ =
1

2
√

g(
√

θ + λ)
αλ. (5.51)

Pick f ∈ Cc(D×R) and perform the following calculation where, in the last step, we in-
voke the substitution r := 1

2
√

g(
√

θ+λ)
(`+ h2

2 ) and separate integrals using Fubini-Tonelli:

∫
D×R

ZD
λ (dx)⊗ e−α̃`d` f ∗g(x, `)

=
∫

D×R×R
ZD

λ (dx)⊗ e−α̃`d`⊗ g(dh) f
(

x, 1
2
√

g(
√

θ+λ)

(
`+ h2

2

))
=
∫

D×R×R
ZD

λ (dx)⊗ e−α̃(`+ h2
2 )d`⊗ e α̃ h2

2 g(dh) f
(

x, 1
2
√

g(
√

θ+λ)

(
`+ h2

2

))
= 2
√

g(
√

θ + λ)
(∫

R
g(dh)e α̃ h2

2

) ∫
D×R

ZD
λ (dx)⊗ e−αλrdr f (x, r) .

(5.52)

As α̃ < 1/g, the first integral on the last line converges to the root of (1− α̃g)−1 =
√

θ+λ√
θ

while (5.30) equates the second integral to c(λ)−1〈ζD, f ∗g〉 in law. This implies

ζD law
=

θ1/4

2
√

g (
√

θ + λ)3/2
c(λ)ZD

λ (dx)⊗ e−α̃`d`. (5.53)

In particular, all weakly converging subsequences of {ζD
N : N ≥ 1} converge to this ζD,

thus proving the desired claim. �

6. THIN POINTS

Our next task is the convergence of point measures ζD
N associated with λ-thin points. The

argument proceeds very much along the same sequence of lemmas as for the λ-thick
points and so we will concentrate on the steps where a different reasoning is needed.
Throughout we assume that tN and aN are sequences satisfying (2.16) with some θ > 0
and some λ ∈ (0, 1∧

√
θ). The auxiliary centering sequence âN is now defined by

âN :=
√

2tN −
√

2aN (6.1)

which ensures that we still have âN ∼ 2λ
√

g log N as N → ∞. Appealing to the coupling
of LDN

tN
and hDN to h̃DN via the Dynkin isomorphism, we use η̂D

N to denote the point
process associated with h̃DN and the centering sequence −âN .

The proof again opens up by proving suitable tightness and joint-convergence state-
ments. We start with an analogue of Lemma 5.2:
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Lemma 6.1 Let 0 < β < 1
2g

λ√
θ−λ

. Then for each b ∈ R there is c5(b) ∈ (0, ∞) and, for each
M ≥ 0, there is N′ = N′(b, M) such that for all N ≥ N′ and all x ∈ DN ,

P$ ⊗P

(
LDN

tN
(x) +

(hDN
x )2

2
≤ aN + b log N,

|hDN
x |√

log N
≥ M

)
≤ c5(b)

WN

N2 e−βM2
. (6.2)

Proof. Let us again for simplicity just deal with the case b = 0. Pick 0 < δ <
√

θ − λ.
Then the probability in question is bounded by

P$
(

LDN
tN

(x) ≤ 2g(
√

θ − λ− δ)2(log N)2
)

+ P$
(

2g(
√

θ − λ− δ)2(log N)2 ≤ LDN
tN

(x) ≤ aN −
1
2

M2 log N
)

. (6.3)

Invoking the calculation in (4.24), the first term is at most order N−2(λ+δ)2+o(1) which is
o(WN/N2). The second term is now bounded using Lemma 4.3 and the fact that, by the
uniform bound GDN (x, x) ≤ g log N + c with c independent of N, we have

min
x∈DN

log N
(√

2tN −
√

2aN
)

GDN (x, x)
√

2aN
≥ 1

g
λ√

θ − λ
+ o(1) (6.4)

in the limit N → ∞. Indeed, this shows that the last exponential in (4.10) for the choice
b := − 1

2 M2 log N is less than e−βM2
once N is sufficiently large. �

Next we will give an analogue of Lemma 5.3 which we restate verbatim, albeit with a
somewhat different proof:

Lemma 6.2 Suppose {Nk} is a subsequence along which ζD
N converges in law to ζD. Then

1
WN

∑
x∈DN

δx/N ⊗ δ
(LDN

tN
(x)−aN)/ log N

⊗ δ
hDN

x /
√

log N
law−→

N=Nk
k→∞

ζD ⊗ g, (6.5)

where g is the law of N (0, g).

Proof. Let ζD,ext
N denote the measure on the left and let f ∈ Cc(D×R×R) obey f ≥ 0.

As for Lemma 5.3, the argument hinges on proving

VarP

(
〈ζD,ext

N , f 〉
)
−→
N→∞

0, in P$-probability, (6.6)

where VarP denotes the variance with respect to the law of hDN , conditional on LDN
tN

.
Invoking (5.17), we treat the sum over the pairs |x− y| ≥ εN via the argument following
(5.18–5.19). The key difference is that we no longer have the domination of ζD

N by a
DGFF process in this case and so we have to control the sum over the pairs x, y ∈ DN
with |x− y| ≤ εN differently.
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Since f is non-negative and compactly supported, we in fact just need to show that,
for any M > 0, the L1(P)-norm of

1
W2

N
∑

x,y∈DN
|x−y|≤εN

1{LDN
tN

(x)≤aN+M2 log N}1{|hDN
x |≤M

√
log N}

× 1{LDN
tN

(y)≤aN+M2 log N}1{|hDN
y |≤M

√
log N} (6.7)

vanishes in P$-probability in the limit as N → ∞ and ε ↓ 0. To this end we note that,
dropping the indicators involving the DGFF, (6.7) is bounded by [ζD

N(D × (−∞, M2])]2

which by Corollary 4.8 is bounded in probability as N → ∞. Therefore, it suffices to
prove that (6.7) vanishes in the stated limits in P$ ⊗P-probability.

To this end pick b > M2
√

g(
√

θ−λ)
and note that, as soon as N is sufficiently large, the

asymptotic forms of aN along with the Dynkin isomorphism yield

1{LDN
tN

(x)≤aN+M2 log N}1{|hDN
x |≤M

√
log N}

≤ 1{(h̃DN
x +

√
2tN)2≤2aN+3M2 log N} ≤ 1{h̃DN

x ≤−âN+b}. (6.8)

It follows that (6.7) is bounded by

η̂D
N ⊗ η̂D

N

({
(x, y) : |x− y| ≤ ε

}
× (−∞, b]2

)
(6.9)

whose N → ∞ and ε ↓ 0 limits are now handled as before. �

Our next task is a derivation of a convolution identity that will, as for the thick points,
ultimately characterize the limit measure uniquely:

Lemma 6.3 Given f ∈ Cc(D×R) with f ≥ 0, let (abusing our earlier notation)

f ∗g(x, `) :=
∫

g(dh) f
(

x, 1
2
√

g(
√

θ−λ)

(
`+ h2

2

))
. (6.10)

Then for every subsequential weak limit ζD of ζD
N , simultaneously for all f as above,

〈ζD, f ∗g〉 law
= c(λ)

∫
ZD

λ (dx)⊗ eαλhdh f (x, h), (6.11)

where α := 2/
√

g and c(λ) is as in (2.10).

Proof. Pick f as above and let χ be the function as in the proof of Lemma 5.4. The fact
that f has compact support gives

1
WN

∑
x∈DN

f
(

x/N, h̃DN
x + âN

)
=

1
WN

∑
x∈DN

f
(

x/N,−
√

2aN +
√

2LDN
tN

(x) + (hDN
x )2

)
(6.12)

and Lemma 6.1 then bounds this by O(e−βM2
) plus

1
WN

∑
x∈DN

f
(

x/N,−
√

2aN +
√

2LDN
tN

(x) + (hDN
x )2

)
χ
( |hDN

x |
M
√

log N

)
. (6.13)
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The truncation of the field now forces LDN
tN
− aN to be of order log N. Expanding the

square root and using the uniform continuity with the help of Corollary 4.8 rewrites
this as

1
WN

∑
x∈DN

f̃ext

(
x/N,

LDN
tN

(x)−aN

log N , hDN
x√
log N

)
χ
( |hDN

x |
M
√

log N

)
+ o(1), (6.14)

where

f̃ext(x, `, h) := f
(

x, 1
2
√

g(
√

θ−λ)

(
`+ h2

2

))
. (6.15)

The rest of the proof now proceeds as before. (The exponential on the right-hand side
of (6.11) does not get a negative sign because η̂D

N is centered along negative sequence of
order log N.) �

Using the Dominated and Monotone Convergence Theorems, we now readily extend
(6.11) to functions of the form 1A ⊗ f where A ⊆ D is open with A ⊆ D and f ∈ Cc(R)
obeys f ≥ 0. For such f we then get

(1A ⊗ f )∗g = 1A ⊗ ( f ∗ e′) ◦ s′ (6.16)

where e′ is given by the same formula as e in (5.38) but with β replaced by

β′ := α
(√

θ − λ
)

(6.17)

and s′(h) := h/(2
√

g(
√

θ − λ)). We then state:

Lemma 6.4 Denote µ′λ(dh) := eαλhdh and let e′ be as above with β′ > −αλ. Then there is
at most one Radon measure ν on R such that for all f ∈ C∞

c (R) with f ≥ 0,〈
ν, f ∗ e′

〉
= 〈µ′λ, f 〉. (6.18)

Proof. As in the proof of Lemma 5.5, we recast (6.18) as〈
νλ, f ∗ e′λ

〉
= 〈Leb, f 〉 (6.19)

where νλ(dh) = e−αλhν(dh) and e′λ(h) = eαλhe′(h). Since β̃′ := β′ + αλ > 0, we again
get that e′λ is integrable. Replacing β̃ by β̃′, the rest of the argument is then identical to
that in the proof of Lemma 5.5. �

We are now ready to give:
Proof of Theorem 2.3. The argument proving that (6.11) determines ζD uniquely is the
same as for the thick points so we just need to perform the analogue of the calculation
in (5.52). Denoting, for the duration of this proof,

α̂ :=
1

2
√

g (
√

θ − λ)
αλ, (6.20)
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we get∫
D×R

ZD
λ (dx)⊗ eα̂`d` f ∗g(x, `)

=
∫

D×R×R
ZD

λ (dx)⊗ eα̂`d`⊗ g(dh) f
(

x, 1
2
√

g(
√

θ−λ)

(
`+ h2

2

))
=
∫

D×R×R
ZD

λ (dx)⊗ eα̂(`+ h2
2 )d`⊗ e−α̂ h2

2 g(dh) f
(

x, 1
2
√

g(
√

θ−λ)

(
`+ h2

2

))
= 2
√

g(
√

θ − λ)
(∫

R
g(dh)e−α̂ h2

2

) ∫
D×R

ZD
λ (dx)⊗ eαλrdr f (x, r) .

(6.21)

The Gaussian integral on the last line equals the root of
√

θ−λ√
θ

. It follows that ζD
N con-

verges in law to the measure

θ1/4

2
√

g (
√

θ − λ)3/2
c(λ)ZD

λ (dx)⊗ eα̂`d`. (6.22)

This is the desired claim. �

7. LIGHT AND AVOIDED POINTS

In this section we will deal with the point measures ϑD
N and κD

N associated with the light
and avoided points, respectively. The argument follows the blueprint of the proof for
the λ-thick and λ-thin points although important changes arise due to a different scaling
of ŴN with N compared to WN . As before, a key point of the argument is the extension
of the convergence by adding information about an independent DGFF. The difference
now is that this field comes without any normalization:

Lemma 7.1 Suppose {Nk} is a subsequence along which ϑD
N converges in law to ϑD. Then√

log N

ŴN
∑

x∈DN

δx/N ⊗ δ
LDN

tN
(x)
⊗ δ

hDN
x

law−→
N=Nk
k→∞

ϑD ⊗ 1√
2πg

Leb. (7.1)

Proof. Let ϑD,ext
N denote the measure on the left and pick f ∈ Cc(D× [0, ∞)×R). Suppose

that f (x, `, h) = 0 unless x ∈ A, where A is an open set with A ⊆ D, and unless `, h2 ≤ M
for some M > 0. Noting that the probability density of hDN

x is (1 + o(1))(2πg log N)−1/2

with o(1) → 0 as N → ∞ uniformly over any compact interval shows, with the help of
the tightness of {ϑD

N : N ≥ 1} proved in Corollary 4.6, that

E
〈
ϑD,ext

N , f
〉
= o(1) +

1√
2πg

〈
ϑD

N ⊗ Leb, f
〉
, (7.2)

where o(1)→ 0 in P$-probability as N → ∞. The claim thus reduces to proving concen-
tration of 〈ϑD,ext

N , f 〉 around the (conditional) expectation with respect to hDN .
Due to the additional

√
log N factor in the normalization ϑD,ext

N , the domination ar-
guments for the conditional second moment of 〈ϑD,ext

N , f 〉 of the kind (5.18–5.25) for the
thick points and (6.7–6.9) for the thin points seem to fail, so we will instead work with
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the Laplace transform of 〈ϑD,ext
N , f 〉. This is motivated by noting that, for f ≥ 0, the

conditional Jensen inequality and (7.2) yield

E$ ⊗E
(
e−〈ϑ

D,ext
N , f 〉) ≥ eo(1)E$

(
e−(2πg)−1/2〈ϑD

N⊗Leb, f 〉
)

. (7.3)

It thus suffices to derive the opposite inequality which will require a somewhat technical
argument. A key point is to restrict the measure ϑD,ext

N by a suitable truncation.
We start with the definition of a truncation event. Writing temporarily L(x), resp., hx

instead of LDN
tN

(x), resp., hDN
x , given any ε, δ > 0, let

FN,M,ε,δ(x) :=
{

∑
y∈DN
|x−y|<εN

1{L(y)+ 1
2 h2

y≤2M} ≤ δ
ŴN√
log N

}
. (7.4)

We claim that, with probability tending to one as N → ∞ and ε ↓ 0 (for any δ > 0
fixed), the event FN,M,ε,δ(x) will not occur for any x ∈ DN . For this let Br(x) := {y ∈
R2 : |y − x| < r} and let x1, . . . , xm ∈ D be such that {Bε(xi) : i = 1, . . . , m} cover D.
Writing η̂D

N for the DGFF measure associated with the field h̃DN and centering sequence
{
√

2tN}N≥1 and noting that the normalization factor ŴN/
√

log N in (7.1) then coincides
with KN (for the centering sequence

√
2tN), the coupling from Theorem 3.1 yields⋃

x∈DN

FN,M,ε,δ(x)c ⊆
m⋃

i=1

{
η̂D

N
(

B2ε(xi)× [−2
√

M, 2
√

M]
)
> δ

}
. (7.5)

Since η̂D
N is known to converge to a measure with no-atoms, the probability of the event

on the right-hand side tends to zero as N → ∞ and ε ↓ 0 for any δ > 0, as claimed.
Introduce the truncated measure

ϑD,ext
N,M,ε,δ :=

1
KN

∑
x∈DN

1FN,M,ε,δ(x) δx/N ⊗ δL(x) ⊗ δhx , (7.6)

where we write KN for ŴN/
√

log N. We then get

lim
ε↓0

lim sup
N→∞

P
(
〈ϑD,ext

N,M,ε,δ, f 〉 6= 〈ϑD,ext
N , f 〉

)
= 0 (7.7)

for any δ > 0 (and any f and M as above). Next we will invoke the fact that, for
each M > 0 and each A ⊆ D open with A ⊆ D,{

η̂D
N(A× [−M, M]) : N ≥ 1

}
is uniformly integrable, (7.8)

which follows from the convergence in the mean and control of moments implied by [10,
Lemmas 4.1 and 4.2]. Theorem 3.1 then extends (7.8) to the uniform integrability of
{〈ϑD,ext

N , f 〉 : N ≥ 1}. Using (7.7) we then get

lim
ε↓0

lim sup
N→∞

∣∣∣∣E$ ⊗E
(
〈ϑD,ext

N , f 〉 e−s〈ϑD,ext
N , f 〉

)
− E$ ⊗E

(
〈ϑD,ext

N , f 〉 e−s〈ϑD,ext
N,M,2ε,δ, f 〉

)∣∣∣∣ = 0 (7.9)
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uniformly in s ∈ [0, 1]. (We write 2ε for reasons to be clear in a moment.) As a conse-
quence, we may thus focus on the second expectation from now on.

We first use the explicit form of the measure ϑD,ext
N and, noting that f ≥ 0, apply the

conditional Jensen inequality as

E$ ⊗E
(
〈ϑD,ext

N , f 〉 e−s〈ϑD,ext
N,M,2ε,δ, f 〉

)
=

1
KN

∑
x∈DN

x/N∈A

E$ ⊗E
(

f
(
x/N, L(x), hx

)
e−s〈ϑD,ext

N,M,2ε,δ, f 〉
)

≥ 1
KN

∑
x∈DN

x/N∈A

E$ ⊗E
(

f
(
x/N, L(x), hx

)
e−sE(〈ϑD,ext

N,M,2ε,δ, f 〉|σ(hx))
)

.

(7.10)

Reflecting on the positivity and support restrictions for f , the conditional expectation in
the exponent is dominated via

E
(
〈ϑD,ext

N,M,2ε,δ, f 〉
∣∣ σ(hx)

)
≤ 1

KN
∑

y∈DN
|x−y|≥εN

E
(

f
(
y/N, L(y), hy

) ∣∣∣ σ(hx)
)

+
‖ f ‖∞

KN
E

(
∑

y∈DN
|x−y|<εN

1{L(y)+ 1
2 h2

y≤2M}1FN,M,2ε,δ(y)

∣∣∣ σ(hx)
)

. (7.11)

As a result of the truncation, since the ball of radius 2εN around any y with |y− x| < εN
includes the ball of radius εN around x, as soon as FN,M,2ε,δ(y) occurs for at least one y
with |y− x| < εN, the sum in the second term on the right is at most δKN . This bounds
the second term on the right of (7.11) by δ‖ f ‖∞ pointwise.

We have reduced estimating the conditional expectation to a bound on the first term
on the right of (7.11). Denoting, for any r > 0,

osc f ,M(r) := sup
z∈D

sup
`≤M

sup
h,h′∈[−

√
M,
√

M]
|h−h′|≤r

∣∣ f (z, `, h)− f (z, `, h′)
∣∣, (7.12)

the decomposition of hy = bDN ,x(y)hx + ĥy from (5.18), where ĥy is the DGFF in DN r{x}
independent of hx, along with the support restrictions on f show that, on {h2

x ≤ M},∣∣∣∣E( f
(
y/N, L(y), hy

) ∣∣∣ σ(hx)
)
−E

(
f
(
y/N, L(y), hy

))∣∣∣∣
≤
[

osc f ,M

(
bDN ,x(y)

[√
M + (log N)3/4)

])
P
(
|ĥy| ≤

√
M + bDN ,x(y)(log N)3/4

)
+ ‖ f ‖∞ P

(
|hx| > (log N)3/4)] 1{L(y)≤M}, (7.13)

where the two terms in the large square bracket arise by splitting the second expectation
in the absolute value on the left according to whether the (implicit) absolute value of the
DGFF at x is less than or in excess of (log N)3/4. Next observe that, since |y− x| ≥ εN,
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the bound (5.19) applies. Using that osc f ,M(r) → 0 as r ↓ 0 by the uniform continuity
of f and that ĥy and hx have variance of order log N, the right-hand side of (7.13) is at
most o((log N)−1/2)1{L(y)≤M} uniformly in y.

Invoking o((log N)−1/2)/KN = o(1/ŴN) we conclude that, for a non-random o(1)
that obeys o(1)→ 0 as N → ∞ followed by ε ↓ 0, uniformly on {h2

x ≤ M},

E
(
〈ϑD,ext

N,M,2ε,δ, f 〉
∣∣ σ(hx)

)
≤ δ‖ f ‖∞ + E

(
〈ϑD,ext

N , f 〉
)
+ o(1)ϑD

N
(

D× [0, M]
)
. (7.14)

Plugging this in (7.9–7.10), invoking (7.2) along with the tightness of {ϑD
N : N ≥ 1} and

the uniform integrability of {〈ϑD,ext
N , f 〉 : N ≥ 1} implied by (7.8) and, finally, taking δ ↓ 0

after N → ∞ (and, now implicit, ε ↓ 0) shows

E$ ⊗E
(
〈ϑD,ext

N , f 〉 e−s〈ϑD,ext
N , f 〉

)
≥ o(1) + (2πg)−1/2E$

(
〈ϑD

N ⊗ Leb, f 〉 e−s(2πg)−1/2〈ϑD
N⊗Leb, f 〉

)
, (7.15)

where o(1) → 0 as N → ∞ uniformly in s ∈ [0, 1]. Integrating both sides over s ∈ [0, 1]
with respect to the Lebesgue measure then gives

E$ ⊗E
(
e−〈ϑ

D,ext
N , f 〉) ≤ o(1) + E$

(
e−(2πg)−1/2〈ϑD

N⊗Leb, f 〉
)

. (7.16)

This, in combination with (7.3), proves the desired claim. �

Next we prove an analogue of Lemma 5.4:

Lemma 7.2 Given f ∈ Cc(D× [0, ∞)) with f ≥ 0 denote

f ∗Leb(x, `) :=
1√
2πg

∫
R

dh f
(
x, `+ h2

2

)
. (7.17)

Then for every weak subsequential limit ϑD of ϑD
N ,〈

ϑD, f ∗Leb〉 law
= c(

√
θ)
∫

ZD√
θ
(dx)⊗ eα

√
θ hdh f

(
x, h2

2

)
(7.18)

simultaneously for all f as above.

Proof. Pick f ∈ Cc(D× [0, ∞)) with f ≥ 0 and set f ext(x, `, h) := f (x, `+ 1
2 h2). Then

∑
x∈DN

f
(

x/N,
1
2
(h̃DN

x +
√

2tN
)2
)
= ∑

x∈DN

f
(

x/N, LDN
tN

(x) +
1
2
(hDN

x )2
)

= ∑
x∈DN

f ext
(

x/N, LDN
tN

(x), hDN
x

)
.

(7.19)

Since f ext is compactly supported in all variables, Lemma 7.1 tells us that, after multi-
plying by

√
log N /ŴN and specializing N to the subsequence along which ϑD

N tends in
law to ϑD, the right-hand side tends to

〈
ϑD, f ∗Leb〉. By (2.10) and the fact that

√
2tN ∼

2
√

g
√

θ log N, the left-hand side tends to the measure on the right of (7.18). �

With these in hand we are ready to prove convergence of ϑD
N’s:
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Proof of Theorem 2.4. Pick A ⊆ D open with A ⊆ D. Taking a sequence of compactly
supported functions converging upward to f (x, h) := 1A(x)e−sh1[0,∞)(h), where s > 0,
and denoting

µ̃A(B) := ϑD(A× B), (7.20)

the Tonelli and Monotone Convergence Theorems yield∫ ∞

0
µ̃A(d`)e−`s law

=
√

2πg c(
√

θ)ZD√
θ
(A) e

α2θ
2s , s > 0. (7.21)

Note that s 7→ e
α2θ
2s is the Laplace transform of the measure in (2.23). Since the Laplace

transform determines Borel measures on [0, ∞) uniquely, the claim follows by the fact
that the right-hand side is a Borel measure in A which is determined by its values on A
open with the closure in D. �

In order to extend Theorem 2.4 to the control of the measure κD
N associated with the

avoided points, we need the following estimate:

Lemma 7.3 Let A ⊆ D be open with A ⊆ D. Then

lim
ε↓0

lim sup
N→∞

N2

ŴN
max
x∈DN

x/N∈A

P$
(

0 < LDN
tN

(x) ≤ ε
)
= 0. (7.22)

Proof. First note that, using Dynkin’s isomorphism, we get

P$
(

0 < LDN
tN

(x) ≤ ε
)

P
(1

2
(hDN

x )2 ≤ ε
)

≤ P$ ⊗P
(

LDN
tN

(x) +
1
2
(hDN

x )2 ≤ 2ε, LDN
tN

(x) > 0
)

= P
(1

2
(h̃DN

x −
√

2tN)
2 ≤ 2ε

)
−P

(1
2
(hDN

x )2 ≤ 2ε
)

P$
(

LDN
tN

(x) = 0
)
.

(7.23)

The fact that |GDN (x, x)− g log N| is bounded uniformly for all x ∈ DN with x/N ∈ A
then shows

P
(1

2
(h̃DN

x −
√

2tN)
2 ≤ ε

)
=
(
2 + o(1)

)√
2ε

1√
2πGDN (x, x)

e
− tN

GDN (x,x) (7.24)

while

P
(1

2
(hDN

x )2 ≤ ε
)
=
(
2 + o(1)

)√
2ε

1√
2πGDN (x, x)

, (7.25)

where o(1) → 0 as ε ↓ 0 uniformly in N ≥ 1 and x as above. In light of (4.12), the
right-hand side of (7.23) divided by ŴN/N2-times the DGFF probability on the extreme
left tends to zero as N → ∞ and ε ↓ 0. �

We are ready to give:
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Proof of Theorem 2.5. Take fn ∈ Cc([0, ∞)) such that fn(h) := (1− nh)∨ 0 and pick A ⊆ D
open with A ⊆ D. Then

E$
∣∣〈κD

N , 1A〉 − 〈ϑD
N , 1A ⊗ fn〉

∣∣ ≤ 2
ŴN

∑
x∈DN

x/N∈A

P$
(
0 < LDN

tN
(x) ≤ 1/n

)
. (7.26)

By Lemma 7.3, the sum on the right-hand side tends to zero in the limits N → ∞ fol-
lowed by n→ ∞. Theorem 2.4 in turn shows that

〈ϑD
N , 1A ⊗ fn〉

law−→
N→∞

√
2πg c(

√
θ)ZD√

θ
(A)

[
1 +

∫
(0,1/n]

µ(dh) fn(h)
]
, (7.27)

where µ is the measure in (2.23). The claim follows by noting that the integral on the
right tends to zero as n→ ∞. �

8. LOCAL STRUCTURE

In this section we deal with local structures of the exceptional level sets associated with
the local time LDN

tN
. Throughout we again rely on the coupling of LDN

tN
and an indepen-

dent DGFF hDN to another DGFF h̃DN via the Dynkin isomorphism (Theorem 3.1). We
start with the thick points.

8.1 Local structure of thick points.

Let aN and tN satisfy (2.14) with some θ > 0 and some λ ∈ (0, 1) and recall the no-
tation ζ̂D

N for the extended point measures from (2.26) that describe the λ-thick points
along with their local structure. Let âN be the sequence given by (5.1). We will com-
pare ζ̂D

N to the point measures

η̂D
N :=

1
WN

∑
x∈DN

δx/N ⊗ δ
h̃DN

x −âN
⊗ δ{

2
√

2aN+2(h̃
DN
x −âN )+(h̃

DN
x+z−h̃

DN
x )

2 log N (h̃DN
x −h̃DN

x+z) : z∈Z2

} (8.1)

associated with the DGFF h̃DN . For that we need:

Lemma 8.1 (Gradients of squared DGFF) For all b ∈ R, all M ≥ 1 and all r > 0,

lim
N→∞

1
WN

∑
x∈DN

P$
(

LDN
tN

(x) ≥ aN + b log N
)

×P

( ⋃
z∈Λr(0)

{∣∣(hDN
x )2 − (hDN

x+z)
2∣∣ > (log N)3/4, |hDN

x | ≤ M
√

log N
})

= 0, (8.2)

where Λr(x) := {z ∈ Z2 : |z− x| ≤ r}.

Proof. When |hDN
x | ≤ M

√
log N, we have∣∣(hDN

x )2 − (hDN
x+z)

2∣∣ ≤ ∣∣hDN
x − hDN

x+z
∣∣2 + 2M

√
log N

∣∣hDN
x − hDN

x+z
∣∣. (8.3)



40 Y. ABE AND M. BISKUP

Thus, for M ≥ 1, the term corresponding to x ∈ DN on the left-hand side of (8.2) is
bounded from above by

∑
z∈Λr(0)

P$
(

LDN
tN

(x) ≥ aN + b log N
)
P
(∣∣hDN

x − hDN
x+z
∣∣ > (4M)−1(log N)1/4

)
. (8.4)

For ε > 0, abbreviate Dε
N := {x ∈ DN : d∞(x, Dc

N) > εN}. Then for any x ∈ Dε
N and

z ∈ Λr(0), VarP(h
DN
x − hDN

x+z) is equal to

GDN (x, x) + GDN (x + z, x + z)− 2GDN (x, x + z)

= g log N + g log N − 2g log(N/(1 + |z|)) + O(1)

≤ 2g log(1 + r) + O(1). (8.5)

The standard Gaussian tail estimate bounds (8.4) by o(1)P$(LDN
tN

(x) ≥ aN + b log N)
with o(1) → 0 uniformly in x ∈ Dε

N . Lemma 4.1 subsequently shows that the sum over
x ∈ Dε

N on the left-hand side of (8.2) is o(1) as N → ∞. The sum over x ∈ DN r Dε
N is

bounded from above by E$(ζD
N(D r Dε × [b, ∞))) which tends to 0 as N → ∞ followed

by ε ↓ 0 by Corollary 4.2. �

We are ready to give:

Proof of Theorem 2.6. Pick any f = f (x, `, φ) ∈ Cc(D×R×RZ2
) which depends only on

a finite number of coordinates of φ, say, those in Λr(0) for some r > 0. The following
identity is key for the entire proof{√

2aN + (h̃DN
x − âN) +

1
2
(h̃DN

x+z − h̃DN
x )

}
(h̃DN

x − h̃DN
x+z)

= LDN
tN

(x)− LDN
tN

(x + z) +
1
2
(hDN

x )2 − 1
2
(hDN

x+z)
2. (8.6)

Indeed, writing ∇zs(x) := s(x) − s(x + z) for a version of the discrete gradient of
s : Z2 → R, we then get

〈η̂D
N , f 〉 = o(1) +

1
WN

∑
x∈DN

f

(
x
N

,
√

2LDN
tN

(x) + (hDN
x )2 −

√
2aN ,

{∇zLDN
tN

(x)
log N

+
∇z(hDN )2(x)

2 log N
: z ∈ Z2

})
, (8.7)

where o(1) stands for the analogue of the second term on the extreme right of (5.31); this
term tends to zero in probability as N → ∞ by exactly the same argument.

In order to control the gradients of the DGFF squared that appear on the right-hand
side of (8.7), set

GN,r(x) :=
⋂

z∈Λr(0)

{∣∣∇z(hDN )2(x)
∣∣ ≤ (log N)3/4

}
(8.8)

and let, as before, χ : [0, ∞) → [0, 1] be a non-increasing, continuous function with
χ(x) = 1 for 0 ≤ x ≤ 1 and χ(x) = 0 for x ≥ 2. By Lemmas 5.2 and 8.1, we may
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truncate (8.7) by introducing 1GN,r(x) and χ(M−1|hDN
x |/

√
log N) for M > 0 under the

sum and write 〈η̂D
N , f 〉 as a random quantity whose L1 norm is at most a constant times

‖ f ‖∞e−βM2
uniformly in N plus the quantity

1
WN

∑
x∈DN

1GN,r(x) f

(
x
N

,
√

2LDN
tN

(x) + (hDN
x )2 −

√
2aN ,

{∇zLDN
tN

(x)
log N

+
∇z(hDN )2(x)

2 log N
: z ∈ Z2

})
χ

(
|hDN

x |
M
√

log N

)
. (8.9)

Using the uniform continuity of f and Corollary 4.2 and Lemma 8.1, we rewrite (8.9) by
a random quantity which tends to 0 as N → ∞ in probability plus the quantity

1
WN

∑
x∈DN

fext

(
x
N

,
LDN

tN
(x)− aN

log N
,
{∇zLDN

tN
(x)

log N

}
z∈Z2

,
hDN

x√
log N

)
χ

(
|hDN

x |
M
√

log N

)
, (8.10)

where we introduced

fext(x, `, φ, h) := f
(

x,
1

2
√

g(
√

θ + λ)

(
`+ 1

2 h2), φ

)
. (8.11)

Note that Corollary 4.2 implies that {ζ̂D
N : N ≥ 1} is tight. Let ζ̂D be a subsequential

weak limit of ζ̂D
N along the subsequence {Nk}. By the same argument as in the proof of

Lemma 5.3, as k→ ∞ followed by M→ ∞, 〈η̂D
Nk

, f 〉 converges in law to∫
ζ̂D(dx d`dφ)⊗ g(dh) fext(x, `, φ, h). (8.12)

On the other hand, noting that
√

2aN/ log N → 2
√

g(
√

θ + λ), [10, Theorem 2.1] shows
that 〈η̂D

N , f 〉 converges, as N → ∞, in law to∫
c(λ)ZD

λ (dx)⊗ e−αλhdh⊗ νθ,λ(dφ) f (x, h, φ). (8.13)

The arguments in the proof of Theorem 2.2 show that the class of functions fext arising
from f ∈ Cc(D×R×RZ2

) above determines the measure ζ̂D uniquely from (8.12); the
calculation (5.52) then gives

ζ̂D law
=

θ1/4

2
√

g(
√

θ + λ)3/2
c(λ)ZD

λ (dx)⊗ e−α(θ,λ)`d`⊗ νθ,λ(dφ). (8.14)

This is the desired claim. �

8.2 Local structure of thin points.

We move to the proof of the convergence of point measures ζ̂D
N associated with λ-thin

points. The proof follows very much the same steps as for the thick points so we stay
quite brief. Assume that aN and tN satisfy (2.16) with some θ > 0 and some λ ∈ (0, 1 ∧√

θ). As a counterpart to Lemma 8.1, we need the following:
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Lemma 8.2 (Gradients of squared DGFF) For all b > 0, all M ≥ 1 and all r > 0,

lim
N→∞

1
WN

∑
x∈DN

P$
(

aN − b log N ≤ LDN
tN

(x) ≤ aN + b log N
)

×P

( ⋃
z∈Λr(0)

{∣∣(hDN
x )2 − (hDN

x+z)
2∣∣ > (log N)3/4, |hDN

x | ≤ M
√

log N
})

= 0. (8.15)

Proof. The proof is the same as that of Lemma 8.1 except that we use Lemma 4.3 and
Corollary 4.8 instead of Lemma 4.1 and Corollary 4.2, respectively. �

We are again ready to start:
Proof of Theorem 2.7. Set

âN :=
√

2tN −
√

2aN (8.16)

and pick any f = f (x, `, φ) ∈ Cc(D×R×RZ2
) that depends only on a finite number of

coordinates of φ. Let η̂D
N be the point process obtained from (8.1) by replacing âN by−âN .

Using the calculation{√
2aN + (h̃DN

x + âN) +
1
2
(h̃DN

x+z − h̃DN
x )

}
(h̃DN

x − h̃DN
x+z)

= LDN
tN

(x)− LDN
tN

(x + z) +
1
2
(hDN

x )2 − 1
2
(hDN

x+z)
2 (8.17)

we then again have (8.7) for 〈η̂D
N , f 〉. Using Corollary 4.8 and Lemmas 6.1 and 8.2, we

rewrite (8.7) as a random quantity whose L1 norm is at most a constant times ‖ f ‖∞e−βM2

uniformly in N plus (8.10), where, in this case,

fext(x, `, φ, h) := f
(

x,
1

2
√

g(
√

θ − λ)

(
`+ 1

2 h2), φ

)
. (8.18)

Note that Corollary 4.8 implies the tightness of {ζ̂D
N : N ≥ 1}. Let ζ̂D be any subsequen-

tial weak limit of ζ̂D
N along the subsequence {Nk}. By the same argument as in the proof

of Lemma 6.2, as k→ ∞ and M→ ∞, 〈η̂D
Nk

, f 〉 tends in law to∫
ζ̂D(dx d`dφ)⊗ g(dh) fext(x, `, φ, h). (8.19)

On the other hand, by [10, Theorem 2.1], as N → ∞, 〈η̂D
N , f 〉 converges in law to∫

c(λ)ZD
λ (dx)⊗ eαλhdh⊗ ν̃θ,λ(dφ) f (x, h, φ). (8.20)

The arguments in the proof of Theorem 2.3 and the calculation (6.21) then show

ζ̂D law
=

θ1/4

2
√

g(
√

θ − λ)3/2
c(λ) ZD

λ (dx)⊗ eα̃(θ,λ)`d`⊗ ν̃θ,λ(dφ). (8.21)

This is the desired claim. �
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8.3 Local structure of avoided points.

In this section we will prove the convergence of the point measures associated with
the local structure of the avoided points. The proof will make use of the Pinned Isomor-
phism Theorem (see Theorem 3.2) but that so only at the very end. Most of the argument
consists of careful manipulations with the doubly extended measure

κ̂D,ext
N :=

√
log N

ŴN
∑

x∈DN

1{LDN
tN

(x)=0}δx/N ⊗ δ{LDN
tN

(x+z) : z∈Z2} ⊗ δ
hDN

x
⊗ δ
{ĥDNr{x}

x+z : z∈Z2}
,

(8.22)
where, for bDN ,x as in (5.18),

ĥDNr{x}
z := hDN

z − hDN
x bDN ,x(z), z ∈ Z2. (8.23)

By (5.18), ĥDNr{x} is the field hDN conditioned on hDN
x = 0. In particular,

ĥDNr{x} ⊥⊥ hDN
x . (8.24)

Corollary 4.6 implies that {κ̂D,ext
N : N ≥ 1} is tight with respect to vague convergence of

measures on the product space D× [0, ∞)Z2 ×R×RZ2
. As before, a key ingredient we

need is factorization of the subsequential limits:

Lemma 8.3 Suppose {Nk} is a subsequence along which κ̂D
N converges in law to κ̂D. Then

κ̂D,ext
N

law−→
N=Nk
k→∞

1√
2πg

κ̂D ⊗ Leb⊗ ν0. (8.25)

Proof. Let f = f (x, `, h, φ) : D × [0, ∞)Z2 ×R×RZ2 → R be a continuous, compactly-
supported function that depends only on a finite number of coordinates of ` and φ, say,
those in Λr0(0) for some r0 > 0. Suppose in addition that f (x, `, h, φ) = 0 unless x ∈ A
for some open A ⊆ D with A ⊆ D, and unless |h|2 ≤ M and `z, |φz| ≤ M for all
z ∈ Λr0(0) for some M > 0.

Noting that only the second pair of the variables of κ̂D,ext
N is affected by expectation E

with respect to the law of hDN , we now claim

E〈κ̂D,ext
N , f 〉 = 1√

2πg
〈κ̂D

N ⊗ Leb⊗ ν0, f 〉+ o(1), (8.26)

where o(1) → 0 in P$-probability as N → ∞ and where ν0 the law of the pinned DGFF.
As in the proof of Lemma 7.1, (8.26) follows by noting that the probability density of hDN

x
multiplied by

√
log N tends to (2πg)−1/2 uniformly over any compact interval and by

the fact (ĥDNr{x}
x+z )z∈Λr0 (0)

tends in law to (φz)z∈Λr0 (0)
(which can be gleaned from the

representation of the Green function by the potential kernel, see [9, Lemma B.3], and
the asymptotic expression for the potential kernel, see [9, Lemma B.4]). These two con-
vergences may be applied jointly in light of the independence (8.24) and the Bounded
Convergence Theorem enabled by the tightness of {κ̂D

N : N ≥ 1}.
In order to convert the convergence in the mean to the convergence in law, we proceed

as in the proof of Lemma 7.1. Let us abbreviate LDN
tN

(x), hDN
x and ĥDNr{x}

x+z by L(x), hx
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and φ
(x)
z , respectively, for the duration of this proof. Recall the event FN,M,ε,δ(x) in the

proof of Lemma 7.1. By the argument leading up to (7.9), for the truncated measure

κ̂D,ext
N,M,ε,δ :=

1
KN

∑
x∈DN

1FN,M,ε,δ(x) 1{L(x)=0} δx/N ⊗ δ{L(x+z) : z∈Z2} ⊗ δhx ⊗ δ{φ(x)
z :z∈Z2}, (8.27)

where KN abbreviates ŴN/
√

log N we get

lim
ε↓0

lim sup
N→∞

∣∣∣∣E$ ⊗E
(
〈κ̂D,ext

N , f 〉 e−s〈κ̂D,ext
N , f 〉

)
− E$ ⊗E

(
〈κ̂D,ext

N , f 〉 e−s〈κ̂D,ext
N,M,2ε,δ, f 〉

)∣∣∣∣ = 0 (8.28)

uniformly in s ∈ [0, 1]. Focusing attention on the second expectation and writing Gr0(x)
for the σ-field generated by {hx+z : z ∈ Λr0(0)}, the conditional Jensen inequality shows

E$ ⊗E
(
〈κ̂D,ext

N , f 〉 e−s〈κ̂D,ext
N,M,2ε,δ, f 〉

)
≥ 1

KN
∑

x∈DN
x/N∈A

E$ ⊗E
(

1{L(x)=0} f
(
x/N, L(x + ·), hx, φ(x))e−sE(〈κ̂D,ext

N,M,2ε,δ, f 〉|Gr0 (x))
)

. (8.29)

The conditional expectation in the exponent is bounded by

E
(
〈κ̂D,ext

N,M,2ε,δ, f 〉
∣∣ Gr0(x)

)
≤ 1

KN
∑

y∈DN
|x−y|≥εN

1{L(y)=0}E
(

f
(
y/N, L(y + ·), hy, φ(y)) ∣∣∣ Gr0(x)

)

+
‖ f ‖∞

KN
E

(
∑

y∈DN
|x−y|<εN

1{L(y)+ 1
2 h2

y≤2M}1FN,M,2ε,δ(y)

∣∣∣ Gr0(x)
)

. (8.30)

As in (7.11), the second term on the right is bounded by δ‖ f ‖∞ pointwise.
Concerning the first term on the right of (8.30), we consider the analogue of the quan-

tity osc f ,M(r) in (7.12) defined, for any r > 0, by

sup
z∈D

sup
`∈[0,M]Λr0 (0)

sup
h,h′∈[−

√
M,
√

M]
|h−h′|≤r

sup
φ,φ′∈[−M,M]Λr0 (0)

|φz−φ′z|≤r, ∀z∈Λr0 (0)

∣∣ f (z, `, h, φ)− f (z, `, h′, φ′)
∣∣. (8.31)

Consider the decomposition of hy = ∑z∈Λr0 (0)
b(x)

z (y)hx+z + hx,r0
y , where b(x)

z (y) :=
Py(HΛr0 (x) < H$, XHΛr0 (x) = x + z) and hx,r0

y is the DGFF in DN r Λr0(x) independent
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of hx+z, z ∈ Λr0(0). On the event {h2
x ≤ M} ∩⋂z∈Λr0 (0)

{|φ(x)
z | ≤ M}, we have∣∣∣∣E( f

(
y/N, L(y + ·), hy, φ(y)) ∣∣∣ Gr0(x)

)
−E

(
f
(
y/N, L(y + ·), hy, φ(y)))∣∣∣∣

≤ osc f ,M

(
2b(x)(y)

[
2M + (log N)3/4)

])
P
(
|hx,r0

y | ≤
√

M + b(x)(y)(log N)3/4
)

+ ‖ f ‖∞ ∑
z∈Λr0 (0)

P
(
|hx+z| > (log N)3/4), (8.32)

where b(x)(y) := maxz∈Λr0 (0)
Py+z[HΛr0 (x) < Hρ]. Since |y− x| ≥ εN, the bound (5.19)

dominates b(x)(y) by c(log N)−1, where c > 0 depends on ε and r0.
Using these observations (as in (7.14)), the conditional expectation on the right of (8.29)

is at most E(〈κ̂D,ext
N , f 〉) + δ‖ f ‖∞ + o(1) where o(1) → 0 in probability as N → ∞. The

rest of the proof of Lemma 7.1 then applies to give the desired claim. �

We are now ready to give:

Proof of Theorem 2.8. Consider the coupling from Theorem 3.1 between the local time LDN
tN

and two copies hDN and h̃DN of the DGFF in DN , with the former independent of LDN
tN

. Re-

call the definition of ĥDNr{x} from (8.23), write φ
(x)
z := ĥDNr{x}

x+z and abbreviate∇zs(x) :=
s(x)− s(x + z). Then for each x ∈ DN and z ∈ Z2, we have(

h̃DN
x +

√
2tN −

1
2
∇zh̃DN (x)

)(
−∇zh̃DN (x)

)
= −∇zLDN

tN
(x) +

1
2
(

φ
(x)
z + bDN ,x(x + z)hDN

x
)2 − 1

2
(hDN

x )2. (8.33)

Let Φx(z) and Ψx(z) denote the left-hand side and the right-hand side of (8.33), respec-
tively. Then for each f : D× [0, ∞)×RZ2 → R,√

log N

ŴN
∑

x∈DN

f
(

x/N,
1
2
(h̃DN

x +
√

2tN)
2, {Φx(z) : z ∈ Z2}

)

=

√
log N

ŴN
∑

x∈DN

f
(

x/N, LDN
tN

(x) +
1
2
(hDN

x )2, {Ψx(z) : z ∈ Z2}
)

. (8.34)

Next pick F : RZ2 → R that is continuous and depends only on a finite number of coor-
dinates, say, in Λr(0), and obeys F(φ) = 0 unless |φz| ≤ M for all z ∈ Λr(0) for some
M > 0. Then set f (x, `, φ) := 1A(x) fn(`)F(φ), where A ⊆ D is an open set with A ⊆ D
and fn : [0, ∞) → [0, 1] are given by fn(`) := (1− n`) ∨ 0. The Bounded Convergence
Theorem ensures that (8.34) applies to these f ’s as well so we will now explicitly com-
pute both sides (suitably scaled) in the joint distributional limit as N → ∞ and n → ∞.
Note that taking the limit jointly preserves pointwise equality.

Starting with the right hand side of (8.34), the uniform continuity of F and Corol-
lary 4.6, we may rewrite it as a random quantity whose L1-norm under P$⊗P is at most
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o(1)n−1/2, with o(1)→ 0 as n→ ∞, plus the quantity√
log N

ŴN
∑

x∈AN

fn

(
LDN

tN
(x) +

1
2
(hDN

x )2
)

F
({

LDN
tN

(x + z) +
1
2
(φ

(x)
z )2 : z ∈ Z2

})
, (8.35)

where we denoted AN := {x ∈ Z2 : x/N ∈ A}. Decomposing the sum over x with
LDN

tN
(x) = 0 and the sum over x with LDN

tN
(x) > 0 and applying Lemma 7.3 to the latter,

we rewrite (8.35) as√
log N

ŴN
∑

x∈AN

1{LDN
tN

(x)=0} fn

(1
2
(hDN

x )2
)

F
({

LDN
tN

(x + z) +
1
2
(φ

(x)
z )2 : z ∈ Z2

})
(8.36)

plus a random quantity whose L1-norm under Pρ⊗P is at most o(1)n−1/2 with o(1)→ 0
as N → ∞ followed by n → ∞. Let κ̂D be a (subsequential) weak limit of κ̂D

N along the
subsequence {Nk}. By Lemma 8.3, as k→ ∞, (8.36) converges in law to

1√
2πg

∫
κ̂D(dx d`)⊗ dh⊗ ν0(dφ)1A(x) fn

( h2

2

)
F
({

`z +
1
2

φ2
z : z ∈ Z2

})
=

4
3
√

πgn

∫
κ̂D(dx d`)⊗ ν0(dφ)1A(x)F

({
`z +

1
2

φ2
z : z ∈ Z2

})
(8.37)

where we used the explicit form of fn to perform the integral over h. Multiplying this by
3
4

√ n
2 , as n→ ∞ this converges to

1√
2πg

∫
κ̂D

A(d`)⊗ ν0(dφ)F
({

`z +
1
2

φ2
z : z ∈ Z2

})
(8.38)

as n → ∞ where κ̂D
A(B) := κ̂D(A × B). This is the N → ∞ and n → ∞ limit of the

(rescaled) right-hand side of (8.34).
Concerning the left-hand side of (8.34), whenever A is such that Leb(∂A) = 0 (which

implies ZD√
θ
(∂A) = 0 a.s.), [10, Theorem 2.1] yields convergence to

c(
√

θ)ZD√
θ
(A)

∫
dh⊗ ν√θ(dφ) eα

√
θh fn

( h2

2

)
F
({(

h− 1
2 φz
)
(−φz) : z ∈ Z2

})
, (8.39)

where ν√θ is the law of φ + α
√

θ a with φ distributed according to ν0. Using that∫
dh eα

√
θh fn

( h2

2

)
=

4
√

2
3
√

n
+ O(n−3/2), n→ ∞, (8.40)

(8.39) multiplied by 3
4

√ n
2 converges to

c(
√

θ)ZD√
θ
(A)

∫
ν0(dφ)F

({ 1
2 (φz + α

√
θ a)2 : z ∈ Z2}) (8.41)

as n→ ∞. This is the N → ∞ and n→ ∞ limit of the (rescaled) left-hand side of (8.34).
We now finally have a chance to invoke the Pinned Isomorphism Theorem of [36].

Indeed, since 2
√

2u = α
√

θ implies u = πθ, (3.6) equates (8.41) (and thus (8.38)) with

c(
√

θ)ZD√
θ
(A)

∫
νRI

θ (d`)⊗ ν0(dφ)F
({

`z +
1
2 φ2

z : z ∈ Z2}). (8.42)
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The Bounded Convergence Theorem extends the equality of (8.38) and (8.42) to F of
the form F(`) := exp{−∑z∈Λr(0) bz`z} for any bz ≥ 0. This effectively transforms the
term 1

2 φ2
z away from both expressions and, thanks to the Cramér-Wold device, implies

κ̂D
A(d`)

law
=
√

2πg c(
√

θ)ZD√
θ
(A) νRI

θ (d`). (8.43)

As this holds for all open A ⊆ D with A ⊆ D, the claim follows. �
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