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random walks in planar domains
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Abstract

Given a sequence of lattice approximations DN ⊂ Z2 of a bounded continuum do-
main D ⊂ R2 with the vertices outside DN fused together into one boundary vertex %,
we consider discrete-time simple random walks on DN ∪ {%} run for a time propor-
tional to the expected cover time and describe the scaling limit of the exceptional level
sets of the thick, thin, light and avoided points. We show that these are distributed,
up a spatially-dependent log-normal factor, as the zero-average Liouville Quantum
Gravity measures in D. The limit law of the local time configuration at, and nearby,
the exceptional points is determined as well. The results extend earlier work by the
first two authors who analyzed the continuous-time problem in the parametrization by
the local time at %. A novel uniqueness result concerning divisible random measures
and, in particular, Gaussian Multiplicative Chaos, is derived as part of the proofs.
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1 Introduction

This note is a continuation of earlier work by the first two authors who in [1] studied
various exceptional level sets associated with the local time of random walks in lattice
versions DN ⊂ Z2 of bounded open domains D ⊂ R2, at times proportional to the cover
time of DN . The walks in [1] move as the ordinary constant-speed continuous-time
simple symmetric random walk on DN and, upon exit from DN , reenter DN through a
uniformly-chosen boundary edge. The re-entrance mechanism is conveniently realized
by addition to DN of a boundary vertex % with all the edges emanating out of DN on Z2

now ending in %. See Fig. 1 for an example.
In [1], the local time was parametrized by the time spent at %. Through the use

of the Second Ray-Knight Theorem (Eisenbaum, Kaspi, Marcus, Rosen and Shi [17])
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Random walk local time

Figure 1: The graph (V ∪{%}, E) corresponding to DN being the square of 6× 6 vertices
and all edges emanating from DN routed to the boundary vertex %. Note that the graph
(V ∪ {%}, E) is planar whenever Z2 rDN is connected.

this enabled a connection to the level sets of the Discrete Gaussian Free Field (DGFF)
studied earlier by the second author and O. Louidor [8]. The goal of the present paper is
to extend the results of [1] to the more natural setting of a discrete-time random walk
parametrized by its actual time. As we shall see, a close connection to the DGFF still
persists, albeit now to that conditioned on vanishing arithmetic mean over DN . As no
version of the Second Ray-Knight Theorem seems available for this specific setting, we
have to proceed by suitable, and sometimes tedious, approximations. A key point is to
control the fluctuations of the total time of the random walk at a given occupation time
of the boundary vertex.

In order to give the precise setting of our problem, we first consider a general finite,
unoriented, connected graph G = (V ∪ {%}, E), where % is a distinguished vertex (not
belonging to V ). Let X denote a sample path of the simple random walk on G; i.e., a
discrete-time Markov chain on V ∪ {%} with the transition probabilities

P(u, v) :=

{
1

deg(u) , if e := (u, v) ∈ E,
0, otherwise,

(1.1)

where deg(u) is the degree of u in G. As usual, we will write Pu to denote the law of X
subject to the initial condition Pu(X0 = u) = 1.

Given a path X of the chain, the local time at v ∈ V ∪ {%} at time n is then given by

`Vn (v) :=
1

deg(v)

n∑
k=0

1{Xk=v}, n ≥ 0. (1.2)

Our aim is to observe the Markov chain at times when most, or even all, of the vertices
have already been visited. This requires looking at the chain at times (at least) propor-
tional to the total degree deg(V ) :=

∑
v∈V ∪{%} deg(v). To simplify our later notations, we

thus abbreviate, for any t > 0,

LVt (v) := `Vbt deg(V )c(v), v ∈ V. (1.3)

In this parametrization, a variance calculation shows that LVt (v) = t + o(t) with high
probability as t→∞.
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Random walk local time

Our derivations will make heavy use of the connection between the above Markov
chain and an instance of the Discrete Gaussian Free Field (DGFF). Denoting by

Hv := inf
{
n ≥ 0: Xn = v

}
(1.4)

the first hitting time of vertex v, this DGFF is the centered Gaussian process {hVv : v ∈ V }
with covariances given by

E
(
hVu h

V
v

)
= GV (u, v) := Eu

(
`VH%(v)

)
, (1.5)

where E is the expectation with respect to the law of hV and GV is the Green function.
The field naturally extends to % by hV% = 0.

We will apply the above to V ranging through a sequence of lattice approximations of
a well-behaved continuum domain. The following definitions are taken from [6]:

Definition 1.1. An admissible domain is a bounded open subset of R2 that consists of
a finite number of connected components and whose boundary is composed of a finite
number of connected sets each of which has positive Euclidean diameter.

We will write D to denote the family of all admissible domains and let d∞(·, ·) denote
the `∞-distance on R2. The lattice domains are then assumed to obey:

Definition 1.2. An admissible lattice approximation of D ∈ D is a sequence {DN}N≥1

of non-empty subsets DN ⊂ Z2 such that the following holds: There is N0 ∈ N such that
for all N ≥ N0 we have

DN ⊆
{
x ∈ Z2 : d∞

(
x/N,R

2 rD
)
>

1

N

}
(1.6)

and, for any δ > 0 there is also N1 ∈ N such that for all N ≥ N1,

DN ⊇
{
x ∈ Z2 : d∞(x/N,R

2 rD) > δ
}
. (1.7)

As shown in [6, Appendix A], the conditions (1.6–1.7) ensure that the discrete har-
monic measure on DN tends, under scaling of space by N , weakly to the harmonic
measure on D. This yields a precise asymptotic expansion of the associated Green
function; see [3, Chapter 1]. In particular, we have GDN (x, x) = g logN +O(1) for

g :=
1

2π
(1.8)

whenever x is deep inside DN . (This is by a factor 4 smaller than the corresponding
constant in [3,6] due to a different normalization of the Green function.)

2 Main results

Let us move to our main results. We pick an admissible domain D ∈ D and a sequence
of admissible lattice approximation {DN}N≥1 and consider these fixed throughout the
rest of the derivations.

2.1 Setting the scales

We begin by setting the scales for the time that the random walk is observed for and
determining the range of values taken by the local time:

Theorem 2.1. Let {tN}N≥1 be a positive sequence such that, for some θ > 0,

lim
N→∞

tN
(logN)2

= 2gθ. (2.1)
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Random walk local time

Then the following limits hold in P %-probability:

1

(logN)2
max
x∈DN

LDNtN (x) −→
N→∞

2g
(√
θ + 1

)2
(2.2)

and
1

(logN)2
min
x∈DN

LDNtN (x) −→
N→∞

2g
[
(
√
θ − 1) ∨ 0

]2
. (2.3)

The conclusion (2.3) indicates (and our later results on avoided points prove) that
the choice θ := 1 identifies the leading order of the cover time of DN — defined as the
first time that every vertex of the graph has been visited. The cover time is random but
it is typically concentrated (more precisely, whenever the maximal hitting time is much
smaller than the expected cover time; see Aldous [2]). The scaling (2.1) thus corresponds
to the walk run for a θ-multiple of the cover time.

As it turns out, under (2.1), the asymptotic [2gθ+o(1)](logN)2 marks the value of LDNtN
at all but a vanishing fraction of the vertices in DN . In light of (2.2–2.3), this suggests
that we call x ∈ DN a λ-thick point if (for λ ∈ [0, 1])

LDNtN (x) ≥ 2g
(√
θ + λ

)2
(logN)2 (2.4)

and a λ-thin point if (for λ ∈ [0,
√
θ))

LDNtN (x) ≤ 2g
(√
θ − λ

)2
(logN)2. (2.5)

One of our goals is to describe the scaling limit of the sets of thick and thin points. This
is best done via the random measures of the form

ζDN :=
1

WN

∑
x∈DN

δx/N ⊗ δ(LDNtN (x)−aN )/
√

2aN
, (2.6)

where aN is a sequence with the asymptotic growth as the right-hand side of (2.4–2.5)
and WN is a normalizing sequence. The specific choice of the normalization by

√
2aN

reflects on the natural fluctuations of LDNtN (x) (which turn out to be order logN even
between nearest neighbors) and captures best the connection to the corresponding
object for the DGFF to be discussed next. (The normalization could be avoided by

working with
√
LDNtN (x)−√aN instead of (LDNtN (x)−aN )/

√
2aN but this is less convenient

in computations when we relate the local time to discrete GFF.)

2.2 Level sets of zero-average DGFF

Recall that hDN denotes a sample of the DGFF in DN . As shown by Bolthausen, Deuschel
and Giacomin [11], the maximum of hDN is asymptotic to 2

√
g logN and so the λ-thick

points are naturally defined as those where the field exceeds 2λ
√
g logN . Allowing for

sub-leading corrections, these are best captured by the random measure

ηDN :=
1

KN

∑
x∈DN

δx/N ⊗ δhDNx −âN
, (2.7)

where {âN} is a centering sequence with the asymptotic âN ∼ 2λ
√
g logN and

KN :=
N2

√
logN

e−
(âN )2

2g logN . (2.8)

In [8, Theorem 2.1] it was shown that for each λ ∈ (0, 1), there is a constant c(λ) > 0

(independent of D or the approximating sequence {DN}N≥1) such that, relative to the
topology of vague convergence of measures on D × (R ∪ {+∞}),

ηDN
law−→

N→∞
c(λ)ZDλ (dx)⊗ e−αλhdh, (2.9)
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where

α :=
2
√
g

(2.10)

and where ZDλ is a random a.s.-finite Borel measure in D called the Liouville Quantum
Gravity (LQG) at parameter λ-times critical. The measure ZDλ is normalized so that, for
each Borel set A ⊆ D,

EZDλ (A) =

∫
A

rD(x)2λ2

dx, (2.11)

where rD is an explicit bounded, continuous function supported on D that, for D simply
connected, coincides with the conformal radius; see [8, (2.10)].

As was shown in [1], the measures {ZDλ : λ ∈ (0, 1)} are quite relevant for the excep-
tional level sets associated with the continuous-time random walk in the parametrization
by the local time spent in the “boundary vertex.” Somewhat different measures will
arise for the random walk parametrized by its actual time. Let ΠD(x, ·) be the harmonic
measure in D defined, e.g., as the exit distribution from D of a Brownian motion started
at x. The continuum Green function in D with Dirichlet boundary condition is then given
by

ĜD(x, y) := −g log |x− y|+ g

∫
∂D

ΠD(x,dz) log |y − z|. (2.12)

Writing Leb for the Lebesgue measure on R2, let d : R2 → R be defined by

d(x) := Leb(D)

∫
D

dy ĜD(x, y)∫
D×D dz dy ĜD(z, y)

. (2.13)

As is readily checked, d is bounded and continuous, vanishes outside D and integrates
to Leb(D) over D. We also have d ≥ 0 because ĜD ≥ 0 and also that the Laplacian of d is
constant on D (see Fig. 2) but that is of no consequence in the sequel. We claim:

Theorem 2.2. For each λ ∈ (0, 1) and each D ∈ D, there is a unique random measure
ZD,0λ on D such that, for any sequence {DN}N≥1 of admissible approximations of D and
any centering sequence {âN}N≥1 satisfying âN ∼ 2λ

√
g logN as N →∞,(

ηDN

∣∣∣ ∑
x∈DN

hDNx = 0
)

law−→
N→∞

c(λ)ZD,0λ (dx)⊗ e−αλhdh, (2.14)

where c(λ) is as in (2.9). Moreover, if Y is a normal random variable with mean zero and
variance

σ2
D :=

∫
D×D

dxdy ĜD(x, y), (2.15)

then the measure from (2.9–2.11) obeys

Y ⊥⊥ ZD,0λ ⇒ ZDλ (dx)
law
= eλαd(x)Y ZD,0λ (dx). (2.16)

The law of ZD,0λ is determined uniquely by (2.16).

The existence of a random measure ZD,0λ satisfying (2.16) is part of the proof of
(2.14). The uniqueness of the decomposition (2.16) holds quite generally and constitutes
the main technical ingredient of the proof; see Theorem 3.1 which is of independent
interest. The known properties of ZDλ (see [8, Theorem 2.3]) imply that ZD,0λ is a.s.-finite
and charges every non-empty open subset of D a.s.

The random variable Y in (2.16) represents the arithmetic mean of the values of
DGFF for the setting with zero boundary conditions on the left-hand side. The modulation
by d(·) arises from the fact that changing the arithmetic mean affects the remaining
“modes” of the DGFF (with zero boundary condition) in a spatially non-uniform way. See
the proof of Theorem 2.2 for more details.
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Figure 2: A plot of function d on D := (0, 1)2 obtained by solving the differential equation
−∆d = Leb(D)/σ2

D, where ∆ is the Laplacian, with Dirichlet boundary conditions on ∂D.

2.3 Exceptional local-time sets

We are now well equipped to state our results concerning the limits of the random
measures (2.6) for a given centering sequence {aN}N≥1 growing as the right-hand sides
of (2.4–2.5) and the normalizing sequence given by

WN :=
N2

√
logN

e−
(
√

2tN−
√

2aN )2

2g logN . (2.17)

For the thick points we then get:

Theorem 2.3 (Thick points). Suppose {tN}N≥1 and {aN}N≥1 are positive sequences
such that, for some θ > 0 and some λ ∈ (0, 1), (2.1) and

lim
N→∞

aN
(logN)2

= 2g(
√
θ + λ)2 (2.18)

hold true. Then for X sampled from P %, the measures ζDN in (2.6) with WN as in (2.17)
obey

ζDN
law−→

N→∞

√ √
θ√

θ + λ
e−α

2λ2/16 c(λ) eαλ(d(x)−1)Y ZD,0λ (dx)⊗ e−αλhdh (2.19)

in the sense of vague convergence of measures on D× (R∪ {+∞}), where Y = N (0, σ2
D)

and ZD,0λ are independent and c(λ) is as in (2.9).

For the thin points, we similarly obtain:

Theorem 2.4 (Thin points). Suppose {tN}N≥1 and {aN}N≥1 are positive sequences such
that, for some θ > 0 and some λ ∈ (0,

√
θ ∧ 1), (2.1) and

lim
N→∞

aN
(logN)2

= 2g(
√
θ − λ)2 (2.20)

hold true. Then for X sampled from P %, the measures ζDN in (2.6) with WN as in (2.17)
obey

ζDN
law−→

N→∞

√ √
θ√

θ − λ
e−α

2λ2/16 c(λ) eαλ(d(x)−1)Y ZD,0λ (dx)⊗ e+αλhdh (2.21)

in the sense of vague convergence of measures on D× (R∪ {−∞}), where Y = N (0, σ2
D)

and ZD,0λ are independent and c(λ) is as in (2.9).
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The limiting spatial distribution of the λ-thick and λ-thin points (as well as the
distribution of the total number of these points) is governed by the measure

eαλ(d(x)−1)Y ZD,0λ (dx). (2.22)

In light of (2.16), this measure “sits between” the zero-average LQG ZD,0λ and the
“ordinary” LQG ZDλ , which appeared in the limit for the parametrization by the local time
at %. The second component of the measure on the right of (2.19) and (2.21) is exactly
as that for the DGFF (2.9). This is due to the judicious scaling of the second component
of ζDN by

√
2aN rather than just logN , as was done in [1].

As the proof shows, besides the aforementioned connection to the arithmetic mean of
the DGFF, the random variable Y on the right of (2.19) and (2.21) has an interpretation
in the context of the random walk as well. Indeed, it represents suitably normalized
fluctuations of the local time at %. This can be gleaned from Lemma 4.2 and the time
inversion arguments in Section 5; e.g., (5.22). We have no explanation (beyond the
arguments in the proof) as to why, in the above parametrization, the thick and thin points
appear to be related by a simple reflection of λ.

Apart from the thick and thin points, [1] studied also the sets of points where the local
time is order unity, called the light points, and the points where the local time vanishes,
called the avoided points. (The term “late points” is used for these in the literature but
we do not find it sufficiently descriptive.) In both cases, the LQG measure that appears is
for parameter λ :=

√
θ (and θ ∈ (0, 1)). The control extends to the discrete-time problem

parametrized by the total time as well. We start with the light points:

Theorem 2.5 (Light points). Suppose {tN}N≥1 is a positive sequence such that (2.1)
holds for some θ ∈ (0, 1). For X sampled from P %, consider the measure

ϑDN :=
1

ŴN

∑
x∈DN

δx/N ⊗ δLDNtN (x)
, (2.23)

where
ŴN := N2e−

tN
g logN . (2.24)

Then, in the sense of vague convergence of measures on D × [0,∞),

ϑDN
law−→

N→∞

√
2πg c(

√
θ) eα

√
θ(d(x)−1)Y ZD,0√

θ
(dx)⊗ µ(dh), (2.25)

where c(
√
θ) is as in (2.9), Y = N (0, σ2

D) and ZD,0√
θ

are independent and µ :=
∑
n≥0 qnδn/4

for a sequence {qn : n ≥ 0} of non-negative numbers determined uniquely by∑
n≥0

qn(1 + s/4)−n = e
α2θ
2s , s > 0. (2.26)

The fact that µ is supported on 1
4N0 := {0, 1

4 ,
1
2 ,

3
4 , 1, . . . } arises from the normalization

in (1.2). From (2.25) we conclude that the number of the vertices of DN visited exactly n
times during the first

[2gθ + o(1)](logN)2 deg(DN ) (2.27)

steps of the random walk is thus asymptotic to

qn

[√
2πg c(

√
θ)

∫
D

eα
√
θ(d(x)−1)Y ZD,0√

θ
(dx)

]
ŴN , (2.28)

jointly for all n ≥ 0. Noting that q0 = 1, straightforward limit considerations show:

EJP 0 (2023), paper 0.
Page 7/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/23-EJP988
http://www.imstat.org/ejp/


Random walk local time

Theorem 2.6 (Avoided points). Suppose {tN}N≥1 is a sequence such that (2.1) holds for
some θ ∈ (0, 1). For X sampled from P % consider the measure

κDN :=
1

ŴN

∑
x∈DN

1{LDNtN (x)=0} δx/N , (2.29)

where ŴN is as in (2.24). Then, in the sense of vague convergence of measures on D,

κDN
law−→

N→∞

√
2πg c(

√
θ) eα

√
θ(d(x)−1)Y ZD,0√

θ
(dx), (2.30)

where Y = N (0, σ2
D) and ZD,0√

θ
are independent and c(λ) is as in (2.9).

Remark 2.7. The restriction to the walk started from % is done for convenience; indeed,
the above theorems hold verbatim for X sampled from P xN for any xN ∈ DN . The initial
version of the paper was actually written at this level of generality (which in terms of
proofs amounts to estimating the influence of the part of the walk from xN to the first
hit of %) but was reduced in the revised version to make the paper shorter.

The above theorems will be deduced from the corresponding statements for a conti-
nuous-time variant of X observed for a fixed time of order N2(logN)2 (see Proposi-
tions 5.5, 5.9, 5.10 and 5.11). These statements are nearly identical to Theorems 2.3–2.6
above, respectively, except for the term e−α

2λ2/16 in (2.19) and (2.21) that arises from
the fluctuations of the (continuous-time) local time at points where the discrete-time
local time is large, and the measure µ in (2.25) which gets replaced (in Proposition 5.10)
by a continuous, and quite explicit, counterpart.

The fixed-time results for continuous-time random walk will be inferred from the
corresponding results in [1] for the parametrization by the local time at %. The main
difference is that the measure (2.22) gets replaced by the “pure” LQG ZDλ .

2.4 Local structure

Similarly as in [1], we are also able to control the local structure of the above exceptional
sets. For the thick and thin points, this is achieved by considering the measures on
D ×R×RZ2

of the form

ζD,loc
N :=

1

WN

∑
x∈DN

δx/N ⊗ δ(LDNtN (x)−aN )/
√

2aN
⊗ δ{(LDNtN (x)−LDNtN (x+z))/

√
2aN : z∈Z2}, (2.31)

where the third coordinate captures the “shape” of the local-time configuration near
every exceptional point.

In the parametrization by the local time at the boundary vertex, the asymptotic “law”
of the third component in (2.31) turned out be that of the pinned DGFF (i.e., the DGFF
in Z2 r {0}) reduced by a multiple of the potential kernel a. Here we note that, in our
normalization, a is the unique non-negative function on Z2 that is discrete harmonic
on Z2 r {0} and obeys a(0) = 0 and a(x) ∼ g log |x| + O(1) as |x| → ∞. The pinned
DGFF φ then has the covariance structure

Cov(φx, φy) = a(x) + a(y)− a(x− y). (2.32)

As it turns out, a different (albeit closely related) Gaussian process arises for the discrete-
time walk parametrized by its total time:

Theorem 2.8 (Local structure of thick/thin points). For the setting and under the condi-
tions of Theorem 2.3, relative to the vague topology of D × (R ∪ {+∞})×RZ2

,

ζD,loc
N

law−→
N→∞

ζD ⊗ νλ, (2.33)
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where ζD is the measure on the right of (2.19) and νλ is the law of φ̃+ αλa− 1
8αλ1{0}c ,

for φ̃ a centered Gaussian process on Z2 with covariances given by

Cov(φ̃x, φ̃y) = a(x) + a(y)− a(x− y)− 1

8

[
1− δx,0 − δy,0 + δx,y

]
. (2.34)

The same statement (relative to the vague topology on D × (R ∪ {−∞})×RZ2

) holds for
the setting of Theorem 2.4 except that νλ is then the law of φ̃− αλa + 1

8αλ1{0}c .

To demonstrate that φ̃ is indeed closely related to the pinned DGFF φ, we note that,
for {nz : z ∈ Z2} i.i.d N (0, 1

8 ) that are independent of φ̃,

{φz : z ∈ Zd} law
= {φ̃z + n0 − nz : z ∈ Z2}. (2.35)

We will verify this relation, along with the fact that (2.34) is positive semidefinite and
thus the covariance of a Gaussian process, in Lemma 7.4. The i.i.d. normals appear
during a conversion from the continuous-time walk to its discrete-time counterpart. They
represent the scaling limit of the fluctuations of the local time due to the random (i.i.d.
exponential) nature of the jump times.

We will also address the local time structure in the vicinity of the avoided points. This
is done by considering the measure on D × [0,∞)Z

2

defined by

κD,loc
N :=

1

ŴN

∑
x∈DN

1{LDNtN (x)=0} δx/N ⊗ δ{LDNtN (x+z) : z∈Z2}. (2.36)

For reasons explained earlier, the measure is concentrated on D × ( 1
4N0)Z

2

.
Recall from [1, Theorem 2.8] that, for the continuous-time random walk parametrized

by the local time at the boundary vertex and observed at the time corresponding to θ-
multiple of the cover time, the limit distribution of the local configuration is described by
the law νRI

θ of the occupation-time field of random-interlacements at level u := πθ. This
measure was constructed by Rodriguez [25, Theorems 3.3 and 4.2] (see [1, Section 2.6]
for a summary of the construction). For the discrete-time random walk parametrized by
its total time we get a discrete-time counterpart of νRI

θ :

Theorem 2.9 (Local structure of avoided points). For each u > 0, there is a unique Borel
measure νRI, dis

u on [0,∞)Z
2

that is supported on ( 1
4N0)Z

2

and obeys the following: For

(1) {`(z) : z ∈ Z2} a sample from νRI, dis
u , and

(2) {τz,j : z ∈ Z2, j ≥ 1} independent i.i.d. Exponential(1),

we have

νRI
u = law of

{1

4

4`(z)∑
j=1

τz,j : z ∈ Z2
}
. (2.37)

For the setting and under the conditions of Theorem 2.6, for each θ ∈ (0, 1) we then have

κD,loc
N

law−→
N→∞

κD ⊗ νRI, dis
θ , (2.38)

where κD is the measure on the right of (2.30).

Similarly as in [1], we will not attempt to make statements concerning the local
structure of the light points as that would require developing the corresponding extension
of the above occupation-time measure to the situation when the local time at the origin
does not vanish.
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2.5 Remarks

We proceed with a couple of remarks. First note that, along with (2.3) and the fact
that ZD,0√

θ
is supported on all of D a.s., Theorem 2.6 implies that the cover time is indeed

marked by the choice θ := 1. Second, note that an explicit formula for qn can be extracted
from (2.26). This is achieved using the identity

ex
2/s = 1 +

∫ ∞
0

x

2
√
t

et I1(x
√
t) e−(1+s/4)t dt, (2.39)

where I1(z) :=
∑
n≥0

1
n!(n+1)! (z/2)2n+1 is a modified Bessel function. Expanding et and

1√
t
I1(x
√
t) into power series in t and scaling t by (1 + s/4) then readily shows

qn+1 = n!

n∑
j=0

(α2θ/8)j+1

j!(j + 1)!(n− j)!
(2.40)

for each n ≥ 0. See also (4.40) for the corresponding formulas in continuous time.
Third, as we will see in the proofs, the random variable Y in the measure (2.22)

represents the limit of normalized fluctuations of the local time at the boundary vertex
for the first btN deg(DN )c steps of the random walk (see Lemma 4.2). A key point is that
this becomes statistically independent of the level-set statistics in the limit. Incidentally,
from (2.28) we get that the total mass of the measure (2.22) describes the limit law of a
normalized total number of uncovered vertices at the time proportional to λ2-multiple of
the cover time.

Fourth, the reader may wonder why we had to include the degree of % into the
normalization of the local time (1.3) by deg(V ). This is because, although deg(%) =

o(|DN |) under (1.6–1.7) (see Lemma 5.8), once the ratio of deg(%)/|DN | is larger than
order 1/ logN (which can occur under (1.6–1.7)) removing deg(%) from the normalization
changes the scaling of the normalization constants WN and ŴN with N .

Fifth, as in [1], the above statements deliberately avoid various boundary values of
the parameters; i.e., λ = 1 for the thick points, λ =

√
θ ∧ 1 for the thin points and θ = 1

for the light and avoided points. All of these are closely related to the statistics of nearly-
maximal DGFF values, which is different than the regime described in Theorem 2.2.
While the nearly-maximal DGFF values are now well understood thanks to the work
of the second author with O. Louidor [5–7] and with S. Gufler and O. Louidor [4], the
recent work of Cortines, Louidor and Saglietti [13] shows that the connection between
the avoided points at θ = 1 (i.e., the time scale of the cover time) and the DGFF extrema
is considerably more subtle.

Sixth, a natural setting for the above problem is the random walk on a lattice torus
(Z/(NZ))2 started from any given vertex %. Preliminary calculations show that the
problem is considerably more complicated. This arises from the fact that, for random
walks of time-length order N2(logN)2, the local time at the starting point of the walk
exhibits fluctuations of order (logN)3/2 on the torus while these are only of order logN

at the boundary vertex in our planar domains. The latter fluctuations are too large to
make the arguments of the present paper work. We may in fact need an approach that
avoids passage through the problem with a fixed local time at the starting point.

Seventh, we note that exceptional sets of two-dimensional random walks have been
studied by physicists in 1990s; e.g., Brummelhuis and Hilhorst [9, 10], Freund and
Grassberger [18], Caser and Hilhorst [12], van Wijland, Caser and Hilhorst [29]. On
the mathematics side, Dembo, Peres, Rosen and Zeitouni [15,16] and Okada [22–24]
analyzed the fractal nature and clustering of the sets of thick points and avoided points
in the setting of a random walk killed on exit from DN (for the thick points) and on

EJP 0 (2023), paper 0.
Page 10/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/23-EJP988
http://www.imstat.org/ejp/


Random walk local time

two-dimensional torus (for the avoided points). In particular, for 0 < β < 1, the growth
exponents have been obtained for

#
{

(x1, x2) ∈ DN ×DN : |x1 − x2| ≤ Nβ , min{`DNH% (x1), `DNH% (x2)} ≥ s(logN)2
}

(2.41)

with s > 0 and

#
{

(x1, x2) ∈ DN ×DN : |x1 − x2| ≤ Nβ , max{LDNtN (x1), LDNtN (x2)} = 0
}
, (2.42)

as well as the sets where “min” and “max” are swapped — which amounts to changing
from the behavior near a typical point in the level set to a typical point in DN . These
conclusions cannot be gleaned from our results because N−1+β vanishes as N → ∞.
Notwithstanding, the obtained exponents coincide with those for the DGFF thick points
computed by Daviaud [14] and thus affirm the universality of the DGFF.

Eighths, and finally, we note two interesting recent papers of Jego [19,20], where
measures of the kind (2.6) associated with the thick points of planar Brownian motion
run until the first exit from a bounded domain are shown to admit a non-trivial scaling
limit that is identified with the limit of multiplicative chaos measures associated with
the root of the local time. In [20] the limit measure, called the Brownian multiplicative
chaos, is shown to obey a list of natural properties that characterize it uniquely.

2.6 Outline

The rest of this paper is organized as follows. In Section 3 we derive the scaling limit for
the level sets of zero-average DGFF. Section 4 extends the conclusions of [1] on the local
time parametrized by the local time at % to include information on fluctuations of the
total time of the walk. This naturally feeds into Section 5 where we establish the scaling
limit of exceptional points for the local time of the continuous-time random walk in the
parametrization of the total time. In Section 6 we then prove our main theorems above
concerning the discrete-time walk except for the proofs of the local behavior, which are
deferred to Section 7.

3 Zero average DGFF level sets

We are now ready to commence the proofs. As our first item of business, we will address
Theorem 2.2 on the level sets of the zero-average DGFF. Our strategy is to derive the
statement from the unconditional convergence (2.9). This leads to a convolution identity
whose resolution requires a uniqueness statement that pertains to the whole class of
Gaussian Multiplicative Chaos measures:

Theorem 3.1. Given a bounded open set D ⊂ Rd, let MD and M̃D be two random
a.s.-finite Borel measures on D and let Φ be a centered Gaussian field on D independent
of MD and M̃D such that, for some bounded measurable functions hk : D → R,

Cov
(
Φ(x),Φ(y)

)
=

∞∑
k=0

hk(x)hk(y), locally uniformly in x, y ∈ D. (3.1)

Then
eΦ(x)MD(dx)

law
= eΦ(x)M̃D(dx) (3.2)

implies MD law
= M̃D.

We remark that for the present paper it would suffice to treat the case when the sum
in (3.1) consists of only one non-zero term. However, this still constitutes the bulk of the
proof and so we include the more general case as it is interesting in its own right. The
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result extends (with modifications) even to the case when Φ is a generalized Gaussian
Field; i.e., one defined only by projections onto smooth functions. The statement thus
“reverse engineers” the base measure from the associated Gaussian Multiplicative Chaos.
Our setting goes even somewhat beyond that of, e.g., Shamov [28] as we make no
moment assumptions on MD and M̃D.

The proof of Theorem 3.1 hinges on the following technical observation:

Lemma 3.2. Let h : D → R and f : D → [0,∞) be bounded and measurable and let MD

be a random a.s.-finite Borel measure on D. Let Y = N (0, 1) be independent of MD.
Define φ : R× [0,∞)→ [0, 1] by

φ(λ, t) := E
(
e−〈M

D, e
√
th(·)Y−λh(·)f〉). (3.3)

Then φ is continuous on its domain and smooth on the interior thereof. Moreover, φ
satisfies the heat equation,

∂φ

∂t
=

1

2

∂2φ

∂λ2
, (λ, t) ∈ R× (0,∞). (3.4)

Proof. The continuity of φ on R× [0,∞) follows by the Bounded Convergence Theorem.
Using that λ−

√
tY = N (λ, t) and invoking Tonelli’s Theorem we get

φ(λ, t) =

∫
dy√
2πt

e−
(y−λ)2

2t φ(y, 0). (3.5)

As y 7→ φ(y, 0) is bounded, φ is continuously differentiable on R× (0, t). Since the density
of N (0, t) solves the heat equation (3.4), the Dominated Convergence Theorem ensures
that so does φ.

We are now ready to give:

Proof of Theorem 3.1. Let us first assume that Φ takes the form h(x)Y for some bounded
measurable h : D → R and Y = N (0, 1) independent of MD and M̃D. Assume that

eh(x)YMD(dx)
law
= eh(x)Y M̃D(dx). (3.6)

Given any bounded and measurable f : D → [0,∞), let φ(λ, t), resp., φ̃(λ, t) denote the
functions in (3.3) with the random measure MD, resp., M̃D. Since also x 7→ e−λh(x)f(x)

is non-negative and measurable, from (3.6) we then have

φ(λ, 1) = φ̃(λ, 1), λ ∈ R. (3.7)

In light of Lemma 3.2, the difference φ− φ̃ is a bounded solution to the heat equation in
R× (0,∞) with a continuous extension to R× [0,∞). A key point is that the heat equation
is known to exhibit backward uniqueness. More precisely, Seregin and Šverák [27,
Theorem 4.1] showed that every bounded solution to (3.4) that vanishes at a given
positive time vanishes everywhere. Since (3.7) implies that φ − φ̃ vanishes at “time”
t = 1, we have φ = φ̃ on R× [0,∞). From the equality φ(0, 0) = φ̃(0, 0) we then infer

E
(
e−〈M

D,f〉) = E
(
e−〈M̃

D,f〉). (3.8)

Since f was arbitrary, the claim thus holds for any Φ of the form h(·)Y .
To address the general case, we proceed as in Kahane [21] (see [3, Section 5.2] for a

review). First note that by (3.1) we may write

Φ(x)
law
= Φn(x) +

n∑
k=0

hk(x)Yk, (3.9)
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where (Y0, . . . , Yn) are i.i.d. standard normal and where Φn is an independent centered
Gaussian field with covariance

Cov
(
Φn(x),Φn(y)

)
=

∞∑
k=n+1

hk(x)hk(y). (3.10)

The argument for Φ of the form h(·)Y then shows, inductively, that (3.2) implies

eΦn(x)MD(dx)
law
= eΦn(x)M̃D(dx), n ∈ N. (3.11)

Letting f : D → [0,∞) be measurable and supported in a compact set A ⊂ D, the
assumption of locally-uniform convergence in (3.1) implies that, given ε > 0 there is
n ∈ N such that Var(Φn(x)) ≤ ε for all x ∈ A. This also gives Cov(Φn(x),Φn(y)) ≤ ε for
all x, y ∈ A and so Kahane’s convexity inequality along with Jensen’s inequality show, for
Yε = N (0, ε) independent of MD and M̃D,

E
(
e−eYε 〈MD,f〉) = E

(
e−eε/2eYε−ε/2〈MD,f〉)

Kahane
≥ E

(
e−eε/2〈MD, eΦn(·)− 1

2
Var(Φn(·))f〉)

(3.11)
= E

(
e−eε/2〈M̃D, eΦn(·)− 1

2
Var(Φn(·))f〉) Jensen

≥ E
(
e−eε/2〈M̃D,f〉).

(3.12)

Taking ε ↓ 0 and noting that this implies Yε → 0 in probability then shows, with the help
of the Bounded Convergence Theorem,

E
(
e−〈M

D,f〉) ≥ E(e−〈M̃D,f〉). (3.13)

By symmetry, equality must hold for all f as above and so MD law
= M̃D, as desired.

Equipped with Theorem 3.1, we are ready to give:

Proof of Theorem 2.2. Abbreviate

YN :=
1

|DN |
∑
x∈DN

hDNx . (3.14)

Then YN is normal with mean zero and variance

Var(YN ) =
1

|DN |2
∑

x,y∈DN

GDN (x, y). (3.15)

Moreover, denoting

dN (x) :=
|DN |

∑
y∈DN G

DN (bxNc, y)∑
y,z∈DN G

DN (z, y)
(3.16)

a covariance calculation shows that YN is independent of

ĥDNx := hDNx − dN (x/N)YN (3.17)

which, we note, has zero average over DN . Hence, if we define the zero-average variant
of ηDN by

ηD,0N :=
1

KN

∑
x∈DN

δx/N ⊗ δ ĥDNx −âN
, (3.18)

we have
ηD,0N ⊥⊥ YN and ηDN = ηD,0N ◦ θ−1

dN (·)YN , (3.19)
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where θs(·) : D ×R→ D ×R is defined by θs(·)(x, h) := (x, h+ s(x)). The stated indepen-
dence also shows (

ηDN

∣∣∣ ∑
x∈DN

hDNx = 0
)

law
= ηD,0N (3.20)

and so we may and will henceforth focus on the limit of ηD,0N .
Using the uniform bound GDN (x, y) ≤ g log N

|x−y|+1 + c along with

GDN
(
bxNc, byNc

)
−→
N→∞

ĜD(x, y), x, y ∈ D, x 6= y, (3.21)

the Dominated Convergence shows that Var(YN ) converges to σ2
D from (2.15). We thus

have YN
law−→Y = N (0, σ2

D). In particular, {YN : N ≥ 1} is tight and so from the tightness
of ηDN , (3.19) and the uniform boundedness of dN we get

{ηD,0N : N ≥ 1} is tight. (3.22)

Similarly we show that dN → d uniformly on D. (This implies d(x) ≥ 0). Writing the
equality in (3.19) via Laplace transforms against a test function f ∈ Cc(D × R) and
invoking (2.9), any subsequential limit ηD,0 of {ηD,0N : N ≥ 1} thus obeys

ηD,0 ◦ θ−1
d(·)Y

law
= c(λ)ZDλ (dx)⊗ e−αλhdh , (3.23)

where Y = N (0, σ2
D) is such that Y ⊥⊥ ηD,0 on the left-hand side.

Next we note that we may realize (3.23) as an a.s. equality. This is because (3.23)
implies, for any measurable A ⊆ D and B ⊆ R with Leb(A) > 0,

ηD,0 ◦ θ−1
d(·)Y (A×B)

ηD,0 ◦ θ−1
d(·)Y (A× [0, 1])

= αλ(1− e−αλ)−1

∫
B

e−αλh dh a.s. (3.24)

due to the fact that equality in law to a constant implies equality pointwise a.s. We
conclude that the measure

A 7→ αλ[c(λ)(1− e−αλ)]−1 ηD,0 ◦ θ−1
d(·)Y (A× [0, 1]) (3.25)

is equidistributed to ZDλ . Replacing ZDλ by this measure then gives equality in (3.23)
pointwise a.s.

Once we have (3.23) as an a.s. equality, and ZDλ thus as a measurable function of ηD,0

and Y , we apply a routine change of variables to get

ηD,0 = c(λ) e−αλd(x)Y ZDλ (dx)⊗ e−αλhdh. (3.26)

Setting
ZD,0λ (dx) := e−αλd(x)Y ZDλ (dx) (3.27)

the independence of ηD,0 of Y shows ZD,0λ ⊥⊥ Y and thus proves existence of the
decomposition (2.16). Since the decomposition is unique by Theorem 3.1 and the fact
that d is bounded and continuous, the law of ZD,0λ does not depend on the subsequential

limit ηD,0. It follows that all subsequential limits of {ηD,0N : N ≥ 1} are equal in law and
so we get the convergence statement (2.14) as well.

Our use of Theorem 2.2 will invariably come through:

Corollary 3.3. Under the conditions of Theorem 2.2, and for YN as in (3.14),

ηDN ⊗ δYN
law−→

N→∞
c(λ) eαλd(x)Y ZD,0λ (dx)⊗ e−αλhdh⊗ δY , (3.28)

where Y = N (0, σ2
D), for σ2

D as in (2.15), is such that Y ⊥⊥ ZD,0λ .
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Proof. By (3.19) and the fact that Yn → Y in law and dN → d uniformly shows

ηDN ⊗ δYN
law−→

N→∞

(
ηD,0 ◦ θ−1

d(·)Y
)
⊗ δY , (3.29)

where ηD,0 is as in (3.26) and obeys Y ⊥⊥ ηD,0. Invoking (3.27), the claim follows by a
routine change of variables.

4 Augmented boundary vertex measures

We will now move to the discussion of local time level sets. Our proofs build on the
conclusions derived in [1] for the local time parametrized by its value at the boundary
vertex %. In order to transfer these conclusions to the setting of a fixed total time, we
will need to control the fluctuations of the total local time at a fixed local time at %. Our
first step is thus to augment the results of [1] by information about these fluctuations.

We will again introduce the corresponding quantities on a general finite connected
graph with vertex set V ∪ {%}. Consider a joint law of paths X of the discrete-time
random walk on V ∪{%} and an independent sample t 7→ Ñ(t) of a rate-1 Poisson process.
The continuous-time walk is then defined as

X̃t := XÑ(t), t ≥ 0. (4.1)

The local time naturally associated with X̃ is given by

L̃Vt (u) :=
1

deg(u)

∫ t

0

ds 1{X̃s=u}. (4.2)

Denoting τ̂%(t) := inf{s ≥ 0: L̃Vs (%) ≥ t}, the local time parametrized by its value at % is
defined as

L̂Vt (v) := L̃Vτ̂%(t)(v). (4.3)

Note that, in particular, we have L̂Vt (%) = t for all t ≥ 0. The same is true about the
expected value at any vertex; i.e., E%L̂Vt (v) = t for all v ∈ V .

At a given t ≥ 0, the total (continuous) local time of the walk is computed by adding
L̂Vt (v) over all v ∈ V ∪ {%}. The quantity

T (t) :=
1√

2t |V |

∑
v∈V

[
L̂Vt (v)− t

]
(4.4)

then denotes the normalized (empirical) fluctuation of the total local time. (Note that
v = % can be freely added to the sum as L̂Vt (%) = t.) To explain the specific choice of
the normalization, we recall the following result from Eisenbaum, Kaspi, Marcus, Rosen
and Shi [17] with improvements by Zhai [30, Section 5.4] (see also the new approach by
Sabot and Tarres [26]):

Theorem 4.1 (Second Ray-Knight Theorem). For each t > 0 there exists a coupling of
L̂Vt (sampled under P %) and two copies of the DGFF hV and h̃V such that

hV and L̂Vt are independent (4.5)

and

L̂Vt (u) +
1

2
(hVu )2 =

1

2

(
h̃Vu +

√
2t
)2
, u ∈ V. (4.6)

Using the stated coupling, we readily compute

T (t) =
1

|V |
∑
u∈V

h̃Vu +
1√

2t |V |

∑
u∈V

(h̃Vu )2 − (hVu )2

2
. (4.7)
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Note that the first term is the average of the field h̃V .
In what follows, the role of V will be taken by the sets DN and % by the “boundary

vertex.” We let hDN be the DGFF on DN and, given a sequence {tN}N≥1 and for the
continuous-time random walk started at %, let h̃DN be the DGFF such that (4.5–4.6) with
t := tN holds. We then set

TN :=
1√

2tN |DN |
∑
x∈DN

[
L̂DNtN (x)− tN

]
(4.8)

and denote

YN :=
1

|DN |
∑
x∈DN

h̃DNx . (4.9)

We start by noting:

Lemma 4.2. For any {tN}N≥1 with tN →∞ we have

TN − YN −→
N→∞

0, in probability. (4.10)

In particular,

TN
law−→

N→∞
N (0, σ2

D), (4.11)

where σ2
D is as in (2.15).

Proof. The Wick Pairing Theorem gives

Var
( ∑
x∈DN

(hDNx )2
)

=
∑

x,y∈DN

Cov
(
(hDNx )2, (hDNy )2

)
=

∑
x,y∈DN

2
[
E(hDNx hDNy )

]2
= 2

∑
x,y∈DN

GDN (x, y)2.
(4.12)

The uniform bound GDN (x, y) ≤ g log N
|x−y|+1 + c shows that the double sum on the right

is of order |DN |2. From tN →∞ it follows that

1√
2tN |DN |

∑
x∈DN

[
(hDNx )2 − E[(hDNx )2]

]
−→
N→∞

0, in probability. (4.13)

Using this along with E[(hDNx )2] = E[(h̃DNx )2] in (4.7), we get (4.10). For (4.11) we invoke
the argument after (3.21).

We are now ready to state and prove convergence theorems for processes associated
with exceptional level sets of the boundary vertex local time L̂DNtN augmented by informa-
tion about TN . Starting with the thick and thin points, given positive sequences {tN}N≥1

and {aN}N≥1, define

ζ̂DN :=
1

WN

∑
x∈DN

δx/N ⊗ δ(L̂DNtN (x)−aN )/
√

2aN
, (4.14)

where WN is as in (2.17). For the thick points of L̂DNtN , we then have:

Proposition 4.3 (Thick points). Suppose that {tN}N≥1 and {aN}N≥1 are such (2.1) and
(2.18) hold for some θ > 0 and λ ∈ (0, 1). Then for X sampled from P %, relative to the
vague convergence of measures on D × (R ∪ {+∞})×R,

ζ̂DN ⊗ δTN
law−→

N→∞

√ √
θ√

θ + λ
c(λ) eαλd(x)Y ZD,0λ (dx)⊗ e−αλhdh⊗ δY (dt), (4.15)

where Y = N (0, σ2
D), for σ2

D as in (2.15), is such that Y ⊥⊥ ZD,0λ .
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Proof. We will rely heavily on the proof of [1, Theorem 2.2] but, due to a different
normalization of the second coordinate in (4.14) and also the fact that the limit measure
is different than in [1], we need to recount the main steps of the proof. Throughout we
will assume (for each N ≥ 1 and each t := tN ) a coupling of L̂DNtN and an independent

DGFF hDN to a DGFF h̃DN satisfying (4.6).
First, by [1, Corollary 4.2] the measures {ζ̂DN : N ≥ 1} are tight and, by Lemma 4.2,

the same applies to the enhanced measures {ξN : N ≥ 1} where

ξN := ζ̂DN ⊗ δTN . (4.16)

Moreover, [1, Lemma 5.3] shows that if ξNk → ξ in law along some increasing se-
quence {Nk}k≥1, then the extended measures

ξext
N :=

1

WN

∑
x∈DN

δx/N ⊗ δ(L̂DNtN (x)−aN )/
√

2aN
⊗ δTN ⊗ δhDNx /(2aN )1/4 , (4.17)

where we now normalize the second and fourth coordinates differently than in [1], obey

ξext
Nk

law−→
k→∞

ξ ⊗ g (4.18)

in which, using (2.18), g is the law of N (0, 1
α (
√
θ+λ)

).

Let ηDN be the process (2.7) associated with the field h̃DN and the scale function

âN :=
√

2aN −
√

2tN (4.19)

that, by (2.1) and (2.18), scales as âN ∼ 2
√
g λ logN as N →∞. Let YN be the average

of h̃DN over DN ; cf (4.9). Given f ∈ Cc(D × R × R), in the assumed coupling of L̂DNtN ,

hDN and h̃DN , the convergence in Lemma 4.2 tells us

〈ηDN ⊗ δYN , f〉 = o(1) + 〈ηDN ⊗ δTN , f〉, (4.20)

where o(1)→ 0 as N →∞ in probability. The calculation in the proof of [1, Lemma 5.4]
(which is tantamount to applying the coupling of L̂DNtN , hDN and h̃DN while noting that the
field hDN will be typical at most points contributing to ζDN , as shown in [1, Lemma 5.2])
then gives

〈ηDN ⊗ δTN , f〉 = o(1) + 〈ξext
N , fext〉, (4.21)

where
fext(x, `, t, h) := f

(
x, `+ h2

2 , t
)
. (4.22)

Using Corollary 3.3 on the left-hand side of (4.20), from (4.21) and (4.18) and, one more
time, [1, Lemma 5.2] we conclude that every subsequential limit ξ of the measures in
(4.16) satisfies the convolution-type identity

〈ξ, f∗g〉 law
= c(λ)

∫
eαλd(x)Y ZD,0λ (dx)⊗ e−αλ`d` f(x, `, Y ), (4.23)

where Y ⊥⊥ ZD,0λ and

f∗g(x, `, t) :=

∫
g(dh)f

(
x, `+ h2

2 , t
)
, (4.24)

jointly for all f ∈ Cc(D ×R×R). It remains to “solve” (4.23) for ξ.
First we note that the Monotone Convergence Theorem extends (4.23) to all f of the

form f(x, `, t) := 1A(x)f̃(`)1(b,∞)(t), where f̃ ∈ Cc(R) and where A ⊆ D is non-empty and
open. Denoting ξA,b(B) := ξ(A×B × (b,∞)), a calculation then shows

〈ξ, f∗g〉 = 〈ξA,b, f̃ ∗ e〉 (4.25)
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where

e(z) :=

√
β

π

eβz√
−z

1(−∞,0)(z) for β := α
(√
θ + λ

)
. (4.26)

The identity (4.23) also implies that 〈ξA,b, 1[0,∞) ∗ e〉 <∞ a.s. and gives

〈ξA,b, f̃ ∗ e〉 = 〈ξA,b, 1[0,∞) ∗ e〉
∫
αλ e−αλ`f̃(`)d`, (4.27)

where the equality now holds pointwise a.s. because once 〈ξA,b, 1[0,∞) ∗ e〉 > 0 (which is

necessary for the left-hand side to be non-zero), the ratio 〈ξA,b, f̃ ∗ e〉/〈ξA,b, 1[0,∞) ∗ e〉 is
equal in law, and thus pointwise, to the integral on the right.

Denoting µλ(dh) := e−αλhdh, a routine change of variables rewrites (4.27) as

〈ξA,b, f̃ ∗ e〉 = C〈µλ, f̃〉 (4.28)

where C is a random constant that is finite thanks to β > αλ. By [1, Lemma 5.5], there is
at most one Borel measure ξA,b on R satisfying (4.28) and, in fact, ξA,b(d`) = CA,be−αλ`d`
for some (random) constant CA,b. It follows that

ξ(dxd`dt) = M(dxdt)⊗ e−αλ`d`, (4.29)

where, by plugging this in (4.23),

M(dxdt)
law
=
(∫

g(dh)eαλ
h2

2

)−1

c(λ)eαλd(x)Y ZD,0λ (dx)⊗ δY (dt). (4.30)

The integral equals the root of (
√
θ + λ)/

√
θ. The claim follows.

We proceed with the corresponding result for the thin points:

Proposition 4.4 (Thin points). Suppose that {tN}N≥1 and {aN}N≥1 are such (2.1) and
(2.20) hold for some θ > 0 and λ ∈ (0,

√
θ ∧ 1). Then for X sampled from P %, relative to

the vague convergence of measures on D × (R ∪ {−∞})×R,

ζ̂DN ⊗ δTN
law−→

N→∞

√ √
θ√

θ − λ
c(λ) e−αλd(x)Y ZD,0λ (dx)⊗ e+αλhdh⊗ δY (dt), (4.31)

where Y ⊥⊥ ZD,0λ with Y = N (0, σ2
D), for σ2

D as in (2.15).

Proof. The proof is very similar to that of Proposition 4.3 so we indicate only the needed
changes. We will again rely on the coupling of L̂DNtN and two DGFFs hDN and h̃DN such

that (4.5–4.6) for t := tN hold. Let ηDN to denote the process associated with h̃DN and the
centering sequence −âN , where

âN :=
√

2tN −
√

2aN . (4.32)

Note that, under (2.1) and (2.20) we have âN ∼ 2
√
gλ logN . Writing YN for the average

of h̃DN over DN , Corollary 3.3 along with the symmetry hDN
law
= −hDN ensures

ηDN ⊗ δYN
law−→

N→∞
c(λ) e−λαd(x)Y ZD,0λ (dx)⊗ e+αλhdh⊗ δY (dt), (4.33)

where Y = N (0, σ2
D) is independent of ZD,0λ .

The argument now proceeds very much like for the thick points. We consider the
extended measures (4.17), which are tight by [1, Corollary 4.8] and show, with the help
of [1, Lemmas 6.1, 6.2] and (4.33), that every subsequential limit ξ thereof obeys

〈ξ, f∗g〉 law
= c(λ)

∫
e−αλd(x)Y ZD,0λ (dx)⊗ e+αλ`d` f(x, `, Y ), (4.34)
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where f∗g is still defined via (4.24) but with

g := law of N
(
0, 1

α(
√
θ−λ)

)
. (4.35)

The identity (4.34) readily extends to all f of the form f(x, `, t) := 1A(x)f̃(`)1(−∞,b)(t),

where f̃ ∈ Cc(R) and where A ⊆ D is non-empty and open. A calculation then shows
(4.25) with e now defined using β := α(

√
θ − λ). Proceeding via an analogue of (4.27)

(with 1[0,∞) replaced by 1(−∞,0]), using [1, Lemma 6.4] we then again show

ξ(dxd`dt) = M(dxdt)⊗ e+αλ`d`, (4.36)

where, this time,

M(dxdt)
law
=
(∫

g(dh)e−αλ
h2

2

)−1

c(λ)e−αλd(x)Y ZD,0λ (dx)⊗ δY (dt). (4.37)

The integral equals the root of (
√
θ − λ)/

√
θ.

Next we move to the discussion of the light and avoided points. Starting with the
light points, we define

ϑ̂DN :=
1

ŴN

∑
x∈DN

δx/N ⊗ δL̂DNtN (x)
, (4.38)

where ŴN is as in (2.24). We then get:

Proposition 4.5 (Light points). Suppose {tN}N≥1 obeys (2.1) for some θ ∈ (0, 1). Then,
for X sampled from P %, in the sense of vague convergence of measures on D× [0,∞)×R,

ϑ̂DN ⊗ δTN
law−→

N→∞

√
2πg c(

√
θ) e−α

√
θ d(x)Y ZD,0√

θ
(dx)⊗ µ̃(dh)⊗ δY (dt), (4.39)

where Y = N (0, σ2
D) is independent of ZD,0√

θ
and

µ̃(dh) := δ0(dh) +

( ∞∑
n=0

1

n!(n+ 1)!

(α2θ

2

)n+1

hn
)

1(0,∞)(h) dh. (4.40)

Proof. Assuming again the coupling from (4.5–4.6), we set

ξN := ϑ̂DN ⊗ δTN . (4.41)

The family {ξN : N ≥ 1} is tight by [1, Corollary 4.6] and so we may consider a subse-
quential limit ξ thereof. By [1, Lemma 7.1], the extended measure

ξext
N :=

√
logN

ŴN

∑
x∈DN

δx/N ⊗ δL̂DNtN (x)
⊗ δTN ⊗ δhDNx , (4.42)

then converges to ξ⊗ 1√
2πg

Leb along the same subsequence. We now pick a test function

f ∈ Cc(D × [0,∞)×R), denote

fext(x, `, t, h) := f
(
x, `+ h2

2 , t
)

(4.43)

and observe that (4.6) implies∑
x∈DN

fext
(
x/N, L̂

DN
tN (x), TN , h

DN
x

)
=
∑
x∈DN

f
(
x/N,

1
2

(
h̃DNx +

√
2tN

)2
, TN

)
. (4.44)
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Writing this in terms of the above measures, Lemma 4.2 gives

〈ξext
N , fext〉 = o(1) +

〈
ηDN ⊗ δYN , f( · , 1

2 | · |
2, · )

〉
, (4.45)

where ηDN is the DGFF process associated with the scale sequence âN := −
√

2tN . As
âN ∼ −2

√
g
√
θ logN , from (4.33) we get

〈ξ, f∗Leb〉 law
= c(

√
θ)

∫
e−α

√
θ d(x)Y ZD,0√

θ
(dx)⊗ e+α

√
θ hdh f

(
x, 1

2h
2, Y

)
, (4.46)

where

f∗Leb(x, `, t) :=
1√
2πg

∫
dh f

(
x, `+ h2

2 , t
)
. (4.47)

By the Monotone Convergence Theorem, this extends to all f of the form

f(x, `, t) := 1A(x)e−s`1[0,∞)(`)1[b,∞)(t) (4.48)

for A ⊆ D open, b ∈ R and s > 0. For ξA,b(B) := ξ(A×B × [b,∞)), we then get∫ ∞
0

ξA,b(d`)e
−s` law

=
√

2πg c(
√
θ)
(∫

A

e−α
√
θ d(x)Y ZD,0√

θ
(dx)

)
e
α2θ
2s 1[b,∞)(Y ). (4.49)

Since the Laplace transform of a measure, if exists, determines the measure uniquely,
this proves that ξ takes the product form

ξ
law
=
√

2πg c(
√
θ) e−α

√
θ d(x)Y ZD,0√

θ
(dx)⊗ µ̃(d`)⊗ δY (dt) (4.50)

for some deterministic measure µ̃ on [0,∞) with Laplace transform s 7→ e
α2θ
2s . A calcula-

tion shows that the measure (4.40) has this property.

A direct consequence of our control of the light points is:

Proposition 4.6 (Avoided points). Suppose {tN}N≥1 is such that (2.1) holds for some
θ ∈ (0, 1) and let

κ̂DN :=
1

ŴN

∑
x∈DN

1{L̂DNtN (x)=0}δx/N . (4.51)

Then, for X sampled from P %, in the sense of vague convergence of measures on D ×R,

κ̂DN ⊗ δTN
law−→

N→∞

√
2πg c(

√
θ) e−α

√
θ d(x)Y ZD,0√

θ
(dx)⊗ δY (dt), (4.52)

where Y = N (0, σ2
D) is independent of ZD,0√

θ
.

Proof. The proof of [1, Theorem 2.5] carries over essentially verbatim.

5 Fixed total time

Equipped with the enhanced limit results that include the limit value of normalized fluc-
tuations of the total local time, we now proceed to derive from these the corresponding
conclusions for a fixed total time.
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5.1 Time conversions

The transition from a fixed local time at % to a fixed total time is based on a simple
inversion formula. Recall that, in our context,

τ̂%(t) := inf
{
s ≥ 0: L̃DNs (%) ≥ t

}
(5.1)

and deg(DN ) :=
∑
x∈DN∪{%} deg(x). Given a sequence {tN}N≥1 with tN ≥ 1, define

t?N := inf
{
t ≥ 0: τ̂%(t) ≥ deg(DN )tN

}
. (5.2)

This is an inverse of τ̂% evaluated at deg(DN )tN and so we expect τ̂%(t?N ) ≈ deg(DN )tN
and, by (4.3), we should therefore have L̃DN

deg(DN )tN
(·) ≈ L̂DNt?N (·).

Besides their approximate nature, any use of these identifications are complicated by
the appearance of the random time t?N for which we have no better formula than (5.2).
We will thus base the time conversion on a slightly different (still random) quantity that
will turn out to be better adapted to our needs.

Recall the definition of TN from (4.8). We note that this actually coincides with the
value of TN (tN ), where (in accord with (4.4)) we set

TN (t) :=
UN (t)√

2t
for UN (t) :=

1

|DN |
∑
x∈DN

[
L̂DNt (x)− t

]
. (5.3)

Now let

t◦N := tN −
(

1− deg(%)

deg(DN )

)√
2tN TN (tN ). (5.4)

We then have:

Proposition 5.1 (Time conversion). Fix any sequence {bN}N≥1 in (0,∞) such that bN →
∞ and bN/t

1/4
N → 0 as N →∞. Then there exists a constant c1 > 0 such that

τ̂%
(
t◦N − bN t

1/4
N

)
≤ deg(DN )tN ≤ τ̂%

(
t◦N + bN t

1/4
N

)
(5.5)

and thus, in particular,

L̂DN
t◦N−bN t

1/4
N

(·) ≤ L̃DN
deg(DN )tN

(·) ≤ L̂DN
t◦N+bN t

1/4
N

(·) (5.6)

hold true with P %-probability at least 1− c1b−1
N .

The proof will be split into several intermediate results, some of which will be useful
later as well. The first item to note is the “stability” (or slow variation) of the fluctuation
of the total local time:

Lemma 5.2. There exists a constant c2 > 0 such that for all s, t ≥ 0 and all r > 0,

P %
(

sup
0≤u≤t

|UN (s+ u)− UN (s)| ≥ r
)
≤ c2t

r2
. (5.7)

Proof. Note that UN is a compensated compound Poisson process. In view of stationarity,
it suffices to consider the case s = 0. Moreover, since UN is a martingale, Doob’s maximal
inequality is applicable and hence

P %
(

sup
0≤u≤t

|UN (u)| ≥ r
)
≤ 4VarP%(UN (t))

r2
. (5.8)

It suffices to show that VarP%(UN (t)) is bounded by Ct for some C > 0. To this end,
we note that t 7→ (UN (t) + t) is a compound Poisson process with rate deg(%) and jump

EJP 0 (2023), paper 0.
Page 21/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/23-EJP988
http://www.imstat.org/ejp/


Random walk local time

size distributed as
∑
x∈DN `(x)/|DN |, where `(·) is the local time for a single excursion.

Hence we get

VarP%(UN (t)) = VarP%(UN (t) + t) =
tdeg(%)

|DN |2
E%

[( ∑
x∈DN

`(x)

)2
]
. (5.9)

(Alternatively, use that L̂DNt (·) law
=

∑N(t)
i=1 `(i)(·) where {`(i)(·)}i≥1 are i.i.d. copies of

the single excursion local time `(·) and N(t) is an independent Poisson with parame-
ter tdeg(%). A computation gives CovP%(L̂

DN
t (x), L̂DNt (y)) = tdeg(%)E%(`(x)`(y)).) The

expectation in (5.9) can be computed via the Kac moment formula with the result

VarP%(UN (t)) =
2t

|DN |2
∑

x,y∈DN

GDN (x, y). (5.10)

The uniform bound GDN (x, y) ≤ g log N
|x−y|+1 + c shows that the sum is at most a constant

times |DN |2, uniformly in N ≥ 1.

The next lemma quantifies the difference between τ̂%(t?N ) and deg(DN )tN :

Lemma 5.3. Let {bN}N≥1 be as in the statement of Proposition 5.1. Then there exists a
constant c3 > 0 such that∣∣∣∣ τ̂%(t?N )

deg(DN )
− tN

∣∣∣∣ ≤ bN and |t?N − tN | < bN
√
tN (5.11)

hold with P %-probability at least 1− c3b−2
N .

Proof. Note that τ̂%(t) =
∑
x∈DN∪{%} deg(x)L̂DNt (x). The proof is a straightforward appli-

cation of Chebyshev’s inequality together with some variance estimates. We begin by
noting that τ̂%(t?N )−deg(DN )tN is the first time to hit % starting from the point X̃deg(DN )tN

.
Writing H% for the first hitting time of %, the Markov property tells

E%
[(
τ̂%(t

?
N )− deg(DN )tN

)2]
= E%

[
EX̃deg(DN )tN

[
H2
%

]]
≤ max
x∈DN

Ex
[
H2
%

]
. (5.12)

As in the proof of the previous lemma, applying the Kac moment formula shows

Ex
[
H2
%

]
= 2

∑
y,z∈DN

deg(y) deg(z)GDN (x, y)GDN (y, z) ≤ c4|DN |2 (5.13)

for some absolute constant c4 > 0. (This also conforms to the knowledge that the length
of a typical excursion on DN is comparable to the volume of DN .) Then by the Chebyshev
inequality,

P %
(∣∣∣∣ τ̂%(t?N )

deg(DN )
− tN

∣∣∣∣ ≥ bN) ≤ c4|DN |2

(deg(DN )bN )2
≤ c4

16b2N
, (5.14)

where the last step follows from deg(DN ) = deg(%) + 4|DN |. Also, by a computation
similar to the previous proof, we get

E%

[(
τ̂%(t)

deg(DN )
− t
)2
]

=
2t

deg(DN )2

∑
x,y∈DN

deg(x) deg(y)GDN (x, y) ≤ c5t (5.15)

for some constant c5 > 0. So again, by Chebyshev’s inequality,

P %
(
τ̂%(tN − bN

√
tN )

deg(DN )
≥ tN − bN

√
tN/2

)
≤ c5(tN − bN

√
tN )

(bN
√
tN/2)2

≤ 4c5
b2N

(5.16)
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and likewise

P %
(
τ̂%(tN + bN

√
tN )

deg(DN )
≤ tN + bN

√
tN/2

)
≤

4c5(1 + bN t
−1/2
N )

b2N
. (5.17)

Combining (5.14), (5.16), and (5.17) we find that there exists a constant c3 > 0, depend-
ing only on (tN )N≥1 and {bN}N≥1, such that all of

τ̂%(tN − bN
√
tN ) < deg(DN )

(
tN − bN

√
tN/2

)
,

τ̂%(tN + bN
√
tN ) > deg(DN )

(
tN + bN

√
tN/2

)
,∣∣τ̂%(t?N )− deg(DN )tN

∣∣ ≤ deg(DN )bN/2

(5.18)

simultaneously hold with P %-probability at least 1− c3b−2
N . But if all of (5.18) hold, then

we get
τ̂%(tN − bN

√
tN ) < τ̂%(t

?
N ) < τ̂%(tN + bN

√
tN ). (5.19)

By the monotonicity of τ̂%, these altogether imply (5.11) as required.

Next we will quantify the difference between t?N and t◦N :

Lemma 5.4. Assume tN ≥ 1 and let {bN}N≥1 be as in the statement of Proposition 5.1.
Then there exists a constant c6 > 0 such that

|t?N − t◦N | ≤ bN t
1/4
N (5.20)

holds with P %-probability at least 1− c6b−1
N .

Proof. We note that, by (4.3) and the fact that deg(x) = 4 for x ∈ DN ,

UN (t) =
1

|DN |
∑
x∈DN

(
1

deg(x)

∫ τ̂%(t)

0

1{X̃s=x} ds− t

)

=
1

|DN |

(
1

4
(τ̂%(t)− deg(%)t)− |DN |t

)
=
τ̂%(t)− deg(DN )t

4|DN |
.

(5.21)

Rearranging the identity in terms of t, we get

t =
τ̂%(t)

deg(DN )
−
(

1− deg(%)

deg(DN )

)
UN (t). (5.22)

This will be used to prove the desired bound. Plugging t := t?N , we notice that the right-
hand side of (5.22) almost looks like the definition (5.4) of t◦N , except that we need tN
in place of τ̂%(t?N )/deg(DN ) and UN (tN ) in place of UN (t?N ). This amounts to estimating
their respective differences, and this is where the previous lemmas come handy.

First, we plug s := tN − bN
√
tN and t := 2bN

√
tN in (5.7) to get

P %

(
sup

|u|≤bN
√
tN

|UN (tN + u)− UN (tN )| ≥ bN t1/4N

)
≤ 8c2bN

√
tN(

bN t
1/4
N

)2 =
8c2
bN

. (5.23)

Combining this with Lemma 5.3, we can find c7 > 0 such that both (5.11) and

|UN (tN + u)− UN (tN )| ≤ bN t1/4N for all |u| ≤ bN
√
tN (5.24)

hold with P %-probability at least 1− c7b−1
N . Moreover, given (5.11) and (5.24), we also

get |UN (t?N )− UN (tN )| ≤ bN t1/4N . Putting this together, we get

|t?N − t◦N | ≤
∣∣∣∣ τ̂%(t?N )

deg(DN )
− tN

∣∣∣∣+ |UN (t?N )− UN (tN )|

≤ bN
(
1 + t

1/4
N

)
≤ 2bN t

1/4
N .

(5.25)
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Although this bound is slightly larger than that appearing in the statement, we can
repeat all the above argument with {bN/2}N≥1 in place of {bN}N≥1, then the desired
claim follows with c6 = 2c7.

We are now ready to prove the main statement:

Proof of Proposition 5.1. Let {bN}N≥1 be as in the statement. Then by the definition
of t?N and Lemma 5.4,

deg(DN )tN ≤ τ̂%(t?N ) ≤ τ̂%
(
t◦N + bN t

1/4
N

)
(5.26)

holds with P %-probability at least 1−O(b−1
N ). Next, regarding tN 7→ t?N and tN 7→ t◦N as

functions of tN for each fixed N , Lemma 5.3 applied to (tN − bN/4)N≥1 and (bN/4)N≥1

in place of (tN )N≥1 and {bN}N≥1, respectively, show that both

deg(DN )tN ≥ τ̂%
(
(tN − bN/4)?

)
≥ deg(DN )(tN − bN/2) (5.27)

and ∣∣(tN − bN/4)? − tN ∣∣ ≤ bN√tN/2 (5.28)

are satisfied with P %-probability at least 1−O(b−1
N ). Then using (5.24) and repeating the

argument as in the previous proof, we can bound (tN − bN/4)? from below by t◦N − bN t
1/4
N

again with probability at least 1−O(b−1
N ).

5.2 Continuous-time exceptional level sets

We are now ready to adapt the convergence theorems for the exceptional level-set
measures for the boundary-vertex local times L̂DN to those associated with the local
time L̃DN of the continuous-time walk X̃ run for a fixed time of order N2(logN)2. We
begin by the thick points; the arguments will be readily adapted to the other families
of exceptional points as well. Given two positive sequences {tN}N≥1 and {aN}N≥1 as
before, define

ζ̃DN =
1

WN

∑
x∈DN

δx/N ⊗ δ(L̃DN
deg(DN )tN

(x)−aN )/
√

2aN
, (5.29)

where WN is the same as in the case of ζ̂DN . Then

Proposition 5.5 (Continuous-time thick points). Under the setting and notation of Theo-
rem 2.3 and for X sampled from P %, we have

ζ̃DN
law−→

N→∞

√ √
θ√

θ + λ
c(λ) eαλ(d(x)−1)T ZD,0λ (dx)⊗ e−αλhdh, (5.30)

where T and ZD,0λ are independent with T ∼ N (0, σ2
D).

The key point is to carefully track the effects of the random time shift
√

2tN TN in
the quantity t◦N from (5.4). Let {bN}N≥1 be a sequence with bN → ∞ and bN/t

1/4
N → 0.

Consider the event

EN :=
{
τ̂%
(
t◦N − bN t

1/4
N

)
≤ deg(DN )tN ≤ τ̂%

(
t◦N + bN t

1/4
N

)}
∩
{

max
|u|≤bN

√
tN
|UN (tN + u)− UN (tN )| ≤ bN t1/4N

}
∩ {|TN | ≤ bN} . (5.31)

We then have:
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Lemma 5.6. There is a constant c7 > 0 such that the following holds for all N ≥ 1:

P %(EN ) ≥ 1− c7b−1
N (5.32)

and
max

|u|≤bN
√
tN
|TN (tN + u)− TN | ≤ c7bN/t1/4N on EN . (5.33)

Proof. The bound (5.32) follows from Proposition 5.1, Lemma 5.2 and the fact that TN
has asymptotically a Gaussian tail. To get (5.33), note that for |u| ≤ bN

√
tN ,

|TN (tN + u)− TN | ≤
bN t

1/4
N√

2(tN − bN
√
tN )

+
bN |TN |√
tN − bN

√
tN

on EN . (5.34)

As |TN | ≤ bN on EN and {bN/t1/4N }N≥1 is bounded, this is at most order bN/t
1/4
N .

The argument to follow will be based on dividing the event EN depending on the
values of TN . For this we fix an ε > 0, and let {ρk}k∈Z be a family of continuous functions
such that

0 ≤ ρk ≤ 1[(k−1)ε,(k+1)ε] and
∑
k∈Z

ρk = 1. (5.35)

We also define two auxilliary time sequences {t+N,k}N≥1 and {t−N,k}N≥1 by

t+N,k = tN −
(

1− deg(%)

deg(DN )

)
ε(k − 1)

√
2tN + bN t

1/4
N ,

t−N,k = tN −
(

1− deg(%)

deg(DN )

)
ε(k + 1)

√
2tN − bN t1/4N .

(5.36)

We then have:

Lemma 5.7. For each M > 0 there is N0 ∈ N such that for all N ≥ N0 and all k ∈ Z
with |k| ≤M , the following holds on EN ∩ {TN ∈ supp(ρk)}:∣∣TN (t±N,k)− TN

∣∣ ≤ c7bN/t1/4N (5.37)

and
L̂DN
t−N,k

(·) ≤ L̃DN
deg(DN )tN

(·) ≤ L̂DN
t+N,k

(·). (5.38)

Proof. Fix M > 0. As bN → ∞ and bN t
−1/4
N → 0, we can choose N0 ∈ N such that

ε(M + 1)
√

2tN + bN t
1/4
N ≤ bN

√
tN for all N ≥ N0. Then for all N ≥ N0,∣∣t±N,k − tN ∣∣ ≤ bN√tN , −M ≤ k ≤M. (5.39)

The bound (5.37) is then implied by (5.33).
For (5.38) we note that, on {TN ∈ supp(ρk)} we have (k − 1)ε ≤ TN ≤ (k + 1)ε and

thus also
t−N,k ≤ t

◦
N − bN t

1/4
N ≤ t◦N + bN t

1/4
N ≤ t+N,k. (5.40)

The bound (5.38) then follows from the inequalities in (5.31) and the monotonicity of
t 7→ L̂DNt (·).

The inequalities (5.38) thus naturally make us consider the level-set measures ζ̂DN
along different choices of time sequences than the base sequence {tN}N≥1. We will

explicate the dependence on the time sequence by writing ζ̂DN (t′N ) whenever it is along
{t′N}N≥1 rather than {tN}N≥1, and likewise, we will write WN (t′N ) for the normalizing
constants along the sequence {t′N}N≥1. Next we note:
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Lemma 5.8. We have deg(%)/ deg(DN )→ 0 as N →∞. In particular, for each k ∈ Z,

t±N,k ∼ 2gθ(logN)2, N →∞. (5.41)

Moreover,
WN (t+N,k) = WN (tN ) e−αλε(k−1)+o(1),

WN (t−N,k) = WN (tN ) e−αλε(k+1)+o(1),
(5.42)

where o(1)→ 0 uniformly in k ∈ Z with |k| ≤M , for any M > 0.

Proof. We start by showing deg(%)/deg(DN )→ 0. For this we note that deg(DN ) ≥ 4|DN |
while, for any δ > 0 and N sufficiently large, deg(%) ≤ 4|DN rDδ

N |, where Dδ
N := {x ∈

DN : d∞(x,Dc
N ) > δN}. Set also Dδ := {x ∈ D : d∞(x,Dc) > δ}. Definition 1.2 then

ensures

lim sup
N→∞

deg(%)

deg(DN )
≤ lim sup

N→∞

|DN rDδ
N |

|DN |
≤ Leb(D rD2δ)

Leb(D)
. (5.43)

As D2δ ↑ D as δ ↓ 0, we have Leb(D rD2δ)→ 0 as δ ↓ 0.
With deg(%)/ deg(DN )→ 0 settled, the asymptotic (5.41) is now checked readily from

the definition of t±N,k. The bounds in (5.42) follow similarly from the explicit formula
for WN and some routine estimates.

We are now ready for:

Proof of Proposition 5.5. Let f : D × (R ∪ {+∞})→ [0,∞) be a bounded and continuous
function that is non-decreasing in the second coordinate and supported on D × [b,∞] for
some b ∈ R. Then (5.42), (5.38) and (5.37) show

e−2αλε+o(1)e−αλTN (t−N,k)〈ζ̂DN (t−N,k), f〉 ≤ 〈ζ̃DN , f〉

≤ e2αλε+o(1)e−αλTN (t+N,k)〈ζ̂DN (t+N,k), f〉
(5.44)

on EN∩{TN ∈ supp(ρk)}, where o(1) is a deterministic sequence tending to zero uniformly
in k ∈ Z with |k| ≤M .

Define the maximal modulus of continuity of {ρk : |k| ≤M} by

oscM,ε(r) := max
|k|≤M

sup
t,t′∈R
|t−t′|≤r

∣∣ρk(t)− ρk(t′)
∣∣. (5.45)

Relying first on the lower bound of (5.44), we now estimate

E%
(
e−〈ζ̃

D
N ,f〉

)
− P %(Ec

N )− P %
(
|TN | ≥Mε

)
≤

M∑
k=−M

E%
(
e−〈ζ̃

D
N ,f〉ρk(TN )1EN

)
≤

M∑
k=−M

E%
(

e−e−2αλε+o(1)e
−αλTN (t

−
N,k

)〈ζ̂DN (t−N,k),f〉ρk(TN )1EN

)
≤ (2M + 1)oscM,ε

(
c7bN/t

1/4
N

)
+

M∑
k=−M

E%
(

e−e−2αλε+o(1)e
−αλTN (t

−
N,k

)〈ζ̂DN (t−N,k),f〉ρk
(
TN (t−N,k)

)
1EN

)
,

(5.46)
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where in the last step we used (5.37). The key point is that, dropping the indicator of EN ,
the k-th term in the sum is now a continuous function of the process ζ̂DN (t−N,k) and the

time TN (t−N,k). In light of (5.41), Proposition 4.3 gives

E%
(

exp
{
−e−2αλε+o(1)e−αλTN (t−N,k)〈ζ̂DN (t−N,k), f〉

}
ρk
(
TN (t−N,k)

))
−→
N→∞

E
(

e−e−2αλεe−αλT 〈ζ̂D,f〉ρk(T )
)
, (5.47)

where

ζ̂D :=

√ √
θ√

θ + λ
c(λ) eαλd(x)TZD,0λ (dx)⊗ e−αλhdh (5.48)

with T = N (0, σ2
D) independent of ZD,0λ . Dropping the restriction to |k| ≤ M , the

N → ∞ limes superior of the sum on the extreme right of (5.46) is then at most
E(e−e−2αλεe−αλT 〈ζ̂D,f〉). Since oscM,ε(r)→ 0 as r ↓ 0, taking N →∞ followed by M →∞
and ε ↓ 0 shows

lim sup
N→∞

E%
(
e−〈ζ̃

D
N ,f〉

)
≤ E

(
e−e−αλT 〈ζ̂D,f〉), (5.49)

where the two “error” terms on the left-hand side of (5.46) tend to zero in the stated
limits thanks to Lemma 5.6 and the Gaussian (asymptotic) tail of TN .

The argument for a corresponding lower bound is very similar; we need to work
with t+N,k instead of t−N,k and use explicit estimates to get rid of the indicator 1EN and the
restriction to the range of k in the sum. As a conclusion, we get

lim
N→∞

E%
(
e−〈ζ̃

D
N ,f〉

)
= E

(
e−e−αλT 〈ζ̂D,f〉) (5.50)

for any function f as above. This is sufficient to give ζ̃DN
law−→ e−αλT ζ̂D, as desired.

For the thin points we now get:

Proposition 5.9 (Continous-time thin points). Under the setting and notation of Theo-
rem 2.4 and for X sampled from P %, we have

ζ̃DN
law−→

N→∞

√ √
θ√

θ − λ
c(λ) e−αλ(d(x)−1)T ZD,0λ (dx)⊗ e+αλhdh, (5.51)

where T and ZD,0λ are independent with T ∼ N (0, σ2
D).

Proof. The argument is similar to that for the thick points: We need to work with
compactly-supported, continuous test functions f : D × (R ∪ {−∞}) → [0,∞) that are
non-increasing in the second coordinate. The change in monotonicity effectively swaps
the inequalities in (5.44) and, due to a sign change in (5.42), also that in the exponent

of e−αλTN (t±N,k). We also need to rely on Proposition 4.4 instead of Proposition 4.3. We
leave further details to the reader.

Moving to the light points, we define

ϑ̃DN :=
1

ŴN

∑
x∈DN

δx/N ⊗ δL̃DN
deg(DN )tN

(x)
(5.52)

and state:
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Proposition 5.10 (Continuous-time light points). Under the setting and assumptions of
Theorem 2.5 and for X sampled from P %, we have

ϑ̃DN
law−→

N→∞

√
2πg c(

√
θ) e−α

√
θ(d(x)−1)T ZD,0√

θ
(dx)⊗ µ̃(dh), (5.53)

where T = N (0, σ2
D) is independent of ZD,0√

θ
and µ̃ is the measure in (4.40).

Proof. Relying on our convention concerning different time sequences, we start by
noting

ŴN (t+N,k) = ŴN (tN ) eα
√
θε(k−1)+o(1),

ŴN (t−N,k) = ŴN (tN ) eα
√
θε(k+1)+o(1).

(5.54)

Given a compactly-supported, continuous function f : D × [0,∞) → [0,∞) that is non-
increasing in the second coordinate, from (5.54), (5.38) and (5.37) we then have

e−2α
√
θε+o(1)eα

√
θTN (t+N,k)〈ϑ̂DN (t+N,k), f〉 ≤ 〈ϑ̃DN , f〉

≤ e2α
√
θε+o(1)eα

√
θTN (t−N,k)〈ϑ̂DN (t−N,k), f〉.

(5.55)

The rest of the argument for the thick points (with Proposition 4.5 instead of Proposi-
tion 4.3) can now be applied to get

〈ϑ̃DN , f〉
law−→

N→∞
e+α

√
θT 〈ϑ̂D, f〉, (5.56)

where
ϑ̂D :=

√
2πg c(

√
θ) e−α

√
θ d(x)T ZD,0√

θ
(dx)⊗ µ̃(dh). (5.57)

The claim now follows by a density argument.

Finally, for the avoided points we set

κ̃DN :=
1

ŴN

∑
x∈DN

1{L̃DN
deg(DN )tN

(x)=0} δx/N (5.58)

and state:

Proposition 5.11 (Continuous-time avoided points). Under the setting and assumptions
of Theorem 2.5 and for X sampled from P %, we have

κ̃DN
law−→

N→∞

√
2πg c(

√
θ) e−α

√
θ(d(x)−1)T ZD,0√

θ
(dx), (5.59)

where T = N (0, σ2
D) is independent of ZD,0√

θ
.

Proof. Given a continuous f : D → R, the identity (5.55) applies with ϑ̃DN , resp., ϑ̂DN
replaced by κ̃DN , resp., κ̂DN . The argument then proceeds as for Proposition 5.10.

6 Discrete time conclusions

We will now move to the proof of our main results except those on the local structure
which are deferred to Section 7.

Considering, for a moment, a random walk on a general finite, connected graph on
V ∪ {%}, recall that the discrete-time local time LVt is parametrized by the total number
of steps in units of deg(V ) =

∑
u∈V ∪{%} deg(u) while its continuous-time counterpart L̃Vt

is parametrized by the total time. Both of these are naturally realized on the same
probability space through the definition (4.1) of X̃ via the discrete-time walk X and an
independent (rate-1) Poisson point process Ñ(t). A key technical tool in what follows is:
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Lemma 6.1. There is a family of i.i.d. exponentials {τj(v) : j ≥ 1, v ∈ V } with parameter 1

independent of X (but not of Ñ ) such that

L̃Vt (v) =
1

deg(v)

∑
j≥1

τj(v)1{j≤deg(v)LV
Ñ(t)/ deg(V )

(v)}, v 6= X̃t, (6.1)

holds P x-a.s. for each t ≥ 0 and each x ∈ V ∪ {%}.

Proof. Let X be a sample path of the discrete-time random walk and Ñ an independent
rate-1 Poisson process. Writing τ ′0, τ

′
1, . . . for the times between successive jumps of Ñ ,

for each v ∈ V define {nj(v)}j≥1 by n0(v) := −δv,X0
and, recursively, nj+1(v) := inf{n >

nj(v) : Xn = v}. For each j ≥ 1 and v ∈ V , set τj(v) := τ ′nj(v). As X is assumed

irreducible, this constructs τj(v) for all j ≥ 1 and v ∈ V a.s. Since τ ′0, τ
′
1, . . . are i.i.d.

exponentials with parameter 1 independent of X, so are {τj(v) : j ≥ 1, v ∈ V }. The

equality in (6.1) is then readily checked except at v = X̃t where it fails because the walk
is “in-between” jumps there.

Moving back to the random walk on DN ∪ {%}, this readily yields:

Lemma 6.2. For each x ∈ DN , abbreviate

FN (x) :=

{
L̃DN

(tN−1) deg(DN )
(x) ≤ 1

4

∑
j≥1

τj(x)1{j≤4L
DN
tN

(x)} ≤ L̃
DN
(tN+1) deg(DN )

(x)

}
. (6.2)

Then
P %
( ∑
x∈DN

1FN (x)c > 2
)
−→
N→∞

0. (6.3)

Proof. The Central Limit Theorem ensures that (Ñ(t)− t)/
√
t tends in law to a standard

normal as t→∞. As tN = o(deg(DN )), the inequalities

Ñ((tN − 1) deg(DN ))

deg(DN )
≤ tN ≤

Ñ((tN + 1) deg(DN ))

deg(DN )
(6.4)

are satisfied with probability tending to one as N → ∞. Once (6.4) is in force, the
monotonicity of t 7→ LDNt and (6.1) show that the event FN (x) occurs at all x ∈ DN

except perhaps at the position of X̃ at times (tN ± 1) deg(DN ).

With these observations in hand, we are now ready to finally present the proofs of
our main theorems. The easiest case is that of avoided points:

Proof of Theorem 2.6. Note that, whenever FN (x) occurs, L̃DN
(tN+1) deg(DN )

(x) = 0 forces

LDNtN (x) = 0 (a.s.), which in turn forces L̃DN
(tN−1) deg(DN )

(x) = 0. For any f ∈ Cc(D)

with f ≥ 0, on the event
∑
x∈DN 1FN (x)c ≤ 2 we thus have

ŴN (tN + 1)

Ŵ (tN )

〈
κ̃DN (tN + 1), f

〉
− 2

ŴN

‖f‖∞ ≤
〈
κDN , f

〉
≤ ŴN (tN − 1)

Ŵ (tN )

〈
κ̃DN (tN − 1), f

〉
+

2

ŴN

‖f‖∞.
(6.5)

As {tN±1}N≥1 have the same leading-order asymptotic as {tN}N≥1, the random variables

〈κ̃DN (tN ± 1), f〉 have the same weak limit as 〈κ̃DN , f〉. Since ŴN →∞ and also

ŴN (tN ± 1)

ŴN (tN )
−→
N→∞

1, (6.6)

the claim follows from Lemma 6.2 and Proposition 5.11.
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Next we tackle the light points:

Proof of Theorem 2.5. Denote

L
DN
tN (x) :=

1

4

∑
j≥1

τj(x)1{j≤4L
DN
tN

(x)} (6.7)

and consider the auxiliary point measure

ϑ
D

N :=
1

ŴN

∑
x∈DN

δx/N ⊗ δLDNtN (x)
. (6.8)

Thanks to Lemma 6.2, on the event
∑
x∈DN 1FN (x)c ≤ 2, the inequality (6.5) holds for

any non-negative f ∈ Cc(D × [0,∞)) that is non-increasing in the second variable and

with κ̃DN , resp., κDN replaced by ϑ̃DN , resp., ϑ
D

N . As, by Proposition 5.10, ϑ̃DN tends in law to

the measure ϑ̃D on the right of (5.53), we have

〈ϑDN , f〉
law−→

N→∞
〈ϑ̃D, f〉 (6.9)

for any non-negative f ∈ Cc(D × [0,∞)).
Next we observe that, by that fact that for any ε > 0 and any random variable Y

taking values in [0, ε],

exp{−E(Y )} ≤ E(e−Y ) ≤ exp{−e−εE(Y )}, (6.10)

the fact that the random variables {τj(x) : j ≥ 1, x ∈ DN} are independent and also
independent of the discrete-time random walk X implies, via [8, Lemma 3.12],

E%
(
e−E(〈ϑDN ,f〉|σ(X))

)
≤ E%

(
e−〈ϑ

D
N ,f〉

)
≤ E%

(
e−e−‖f‖∞/ŴNE(〈ϑDN ,f〉|σ(X))

)
(6.11)

where the conditional expectation is meaningful because 〈ϑDN , f〉 is a bounded random
variable. Defining f∗e : D × [0,∞)→ R by

f∗e(x, `) := E

[
f
(
x,

1

4

b4`c∑
j=1

τj

)]
, (6.12)

where {τj : j ≥ 1} are i.i.d. Exponential(1), we have

E%
(
〈ϑDN , f〉

∣∣σ(X)
)

= 〈ϑDN , f∗e〉. (6.13)

Hence we get (under P %),

〈ϑDN , f∗e〉
law−→

N→∞
〈ϑ̃D, f〉 (6.14)

for any f ∈ Cc(D × [0,∞)).
We now claim that {ϑDN : N ≥ 1} is tight under P %. For this we pick M ∈ N, denote

fM (x, h) := 1[0,M ](h) and observe that, for all n ∈ N0 := {0, 1, 2, . . . }, we get

f∗eM (x, n/4) = P
(1

4

n∑
j=1

τj ≤M
)
. (6.15)

Markov’s inequality then shows f∗e2M (x, n/4) ≥ 1
21[0,M ](n/4) and, therefore,

ϑDN
(
D × [0,M ]

)
≤ 2〈ϑDN , f∗e2M 〉. (6.16)
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The existence of the limit (6.14) then implies tightness of {ϑDN (D × [0,M ]) : N ≥ 1} for
all M > 0, and thus tightness of {ϑDN : N ≥ 1} as well.

The tightness of {ϑDN : N ≥ 1} permits us to extract a weak subsequential limit ϑD

along a (strictly) increasing sequence {Nk : k ≥ 1} of naturals. This entails the conver-

gence 〈ϑDNk , f〉
law−→〈ϑD, f〉 for every f ∈ Cc(D × [0,∞)). We claim that we even have

〈ϑDNk , f
∗e〉 law−→

k→∞
〈ϑD, f∗e〉 (6.17)

for every f ∈ Cc(D × [0,∞)). (This is not automatic because f∗e is not compactly
supported in general.) First we note that straightforward comparisons with the Lebesgue
measure show, for each M > 0,

lim
n→∞

P
(

1
4

∑n
j=1 τj ≤M

)
P
(

1
4

∑n
j=1 τj ≤ 2M

) = 0. (6.18)

Writing εn for the ratio of the two probabilities, for f supported in D × [0,M ] we have
|f∗e| ≤ ‖f‖∞f∗eM and so, by (6.15),∣∣f∗e(x, n/4)

∣∣ ≤ εn‖f‖∞ f∗e2M (x, n/4), n ∈ N0. (6.19)

It follows that the part of the integral 〈ϑDN , f∗e〉 corresponding to the second coordinate
in excess of n is at most εn‖f‖∞ times 〈ϑDN , f∗e2M 〉, which is tight by (6.14). We can thus
approximate f∗e by a function supported in D × [0, n] and pass to the limit N → ∞
followed by n→∞. This gives (6.17) as desired.

Combining (6.14) with (6.17) we arrive at the convolution identity

〈ϑD, f∗e〉 law
= 〈ϑ̃D, f〉. (6.20)

We have proved this (including the absolute convergence of the integral on the left-hand
side) for f ∈ Cc(D × [0,∞)) but the Monotone Convergence Theorem along with the fact
that the second coordinate of ϑ̃D has subexponentially growing density extends this to
all f ∈ C(D × [0,∞)) such that |f(x, h)| ≤ ce−εh for some ε, c > 0. This permits us to
consider functions of the form gs(x, h) := f̃(x)e−sh for s > 0 and f̃ ∈ C(D), for which

g∗es (x, n/4) = f̃(x)(1 + s/4)−n, n ∈ N0. (6.21)

Since ϑD is supported on D × 1
4N0, it makes sense to denote

ϑD,n(A) := ϑD
(
A× {n/4}

)
. (6.22)

The identity (6.20) then becomes∑
n≥0

〈ϑD,n, f̃〉(1 + s/4)−n
law
= 〈ϑ̃D, gs〉. (6.23)

Assuming f̃ > 0, the explicit form of the right-hand side shows that 〈ϑ̃D, gs〉/〈ϑ̃D, g1〉 is
well-defined and equal to a non-random quantity — namely, the ratio of two Laplace
transforms of µ̃. This turns (6.23) into the pointwise identity∑

n≥0

〈ϑD,n, f̃〉(1 + s/4)−n =

∫
µ̃(dh)e−sh∫
µ̃(dh)e−h

(∑
n≥0

〈ϑD,n, f̃〉(5/4)−n
)

(6.24)

valid, a.s., for each s > 0 and (by elementary extensions) all f̃ ∈ C(D). Thanks to the
monotonicity of both sides in s and almost-sure continuity in f̃ of both sides with respect
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to the supremum norm, the identity actually holds a.s. for all s > 0 and all f̃ ∈ C(D)

simultaneously.
With (6.24) in hand, we are more or less done. Indeed, as the left-hand side is a

generating function of the sequence {〈ϑD,n, f̃〉}n≥0, which determines the sequence
uniquely, all 〈ϑD,n, f̃〉 must be the same deterministic multiple of the quantity in the
large parentheses on the right-hand side. This shows that ϑD must be as on the right-
hand side of (2.25) for some µ of the form µ =

∑
n≥0 qnδn/4 where {qn}n≥0 is uniquely

determined by ∑
n≥0

qn(1 + s/4)−n =

∫ ∞
0

µ̃(dh)e−sh, s > 0. (6.25)

The Laplace transform of µ̃ was calculated in the proof of Proposition 4.5. All subsequen-
tial limits of {ϑDN : N ≥ 1} are thus equal in law and so convergence holds.

Moving to the thick points, we first need a substitute for (6.18):

Lemma 6.3. For {τj : j ≥ 1} be i.i.d. Exponential(1), all k ∈ N and all reals s ≥ t ≥ 0,

P
(∑k

j=1(τj − 1) ≥ s+ t
)

P
(∑k

j=1(τj − 1) ≥ s
) ≤ e−

st
k+s+t . (6.26)

Proof. Since
∑k
j=1 τj has density 1

(k−1)!x
k−1e−x, the change of variables y := x+ t gives

P

( k∑
j=1

(τj − 1) ≥ s
)

=
1

(k − 1)!

∫
x≥k+s

dxxk−1e−x

= et
1

(k − 1)!

∫
y≥k+s+t

dy (y − t)k−1e−y

≥ et
(

1− t

k + s+ t

)k
P

( k∑
j=1

(τj − 1) ≥ s+ t

)
.

(6.27)

Using that s ≥ t, the prefactor can be written as the exponential of

t+ k log
(

1− t

k + s+ t

)
= t− k

∑
n≥1

1

n

tn

(k + s+ t)n

≥ t− kt

k + s+ t
− 1

2

kt2

(k + s+ t)2

∑
n≥0

2−n.

(6.28)

Noting that right-hand side is no less than st
k+s+t , we get the claim.

The convolution identity that inevitably shows up in the proof in turn requires:

Lemma 6.4. Suppose ν is a Borel measure on R such that, for some β ∈ R and some
σ2 > 0 and all f ∈ Cc(R),∫

R

ν(dh)E
[
f(h+N (0, σ2))

]
=

∫
R

dh eβh f(h) (6.29)

Then
ν(dh) = e−

1
2β

2σ2+βhdh. (6.30)

Proof. Consider the measure ν̃(dh) := e−βh+ 1
2β

2σ2

ν(dh). Absorbing the exponential term
on the right of (6.29) into the test function, a calculation shows∫

R×R
ν̃(dh)⊗ dx√

2πσ2
e−

(x−h+βσ2)2

2σ2 f(x) =

∫
R

dh f(h) (6.31)
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for all f ∈ Cc(R). As Cc(R) generates all Borel functions in R, we get

1√
2πσ2

∫
R

ν̃(dh) e−
(x−h+βσ2)2

2σ2 = 1, x ∈ R. (6.32)

This means that ν̂(dh) := 1√
2πσ2

e−
(h−βσ2)2

2σ2 ν̃(dh) obeys∫
R

ν̂(dh)e−xh = e−xβσ
2+x2σ2/2, x ∈ R. (6.33)

The right-hand side is the Laplace transform of N (βσ2, σ2) and so, since the Laplace
transform of a measure, if exists, determines the measure uniquely, ν̂ is the law of
N (βσ2, σ2). Hence ν̃ is the Lebesgue measure, thus proving the claim.

Proof of Theorem 2.3. The proof starts by adapting the argument leading to (6.14).
Indeed, working again in the coupling of the random walk X and the i.i.d. exponentials
{τj(x) : x ∈ DN , j ≥ 1}, let

ζ
D

N :=
1

WN

∑
x∈DN

δx/N ⊗ δ(LDNtN (x)−aN )/
√

2aN
, (6.34)

where L
DN
tN (x) is the quantity from (6.7). Lemmas 6.1-6.2 along with Proposition 5.5

and (6.10) then show

E%
(
〈ζDN , f〉

∣∣σ(X)
) law−→
N→∞

〈ζ̃D, f〉 (6.35)

for every f ∈ Cc(D × (R ∪ {+∞})), where ζ̃D is the measure on the right of (5.30).
Writing {τj : j ≥ 1} for generic i.i.d. exponentials with parameter 1 and denoting, with
some abuse of earlier notation,

fN,∗e(x, h) := E

[
f
(
x, h+

1

4
√

2aN

∑
j≥1

(τj − 1)1{j≤4aN+4h
√

2aN}

)]
, (6.36)

the fact that LDNtN takes values in 1
4N0 then shows

E%
(
〈ζDN , f〉

∣∣σ(X)
)

= 〈ζDN , fN,∗e〉 (6.37)

thus proving

〈ζDN , fN,∗e〉
law−→

N→∞
〈ζ̃D, f〉 (6.38)

for every f ∈ Cc(D × (R ∪ {+∞})).
We will now use (6.38) to control the behavior of the measures {ζDN : N ≥ 1}. First,

writing henceforth 1[M,∞) for the function (x, h) 7→ 1[M,∞)(h) we get

(
1[M,∞)

)N,∗e
(x, h) = P

( k∑
j=1

(τj − 1) ≥ (M − h)4
√

2aN

)
, (6.39)

where k := b4aN + 4h
√

2aNc. Assuming h ≥ 2M with M > 0 large, Markov’s inequality
along with E((τj − 1)2) = 1 then gives

1−
(
1[M,∞)

)N,∗e
(x, h) ≤ 4aN + 4h

√
2aN

32aN (h−M)2
≤ 1

h2
+

1

h
√

2aN
. (6.40)

For M large, the right-hand side is at most 1/2 thus showing

1[2M,∞)(h) ≤ 2
(
1[M,∞)

)N,∗e
(x, h). (6.41)

EJP 0 (2023), paper 0.
Page 33/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/23-EJP988
http://www.imstat.org/ejp/


Random walk local time

From (6.38) and the fact that ζ̃D has an exponentially decaying density in the second
variable we then get, for each ε > 0,

lim
M→∞

lim sup
N→∞

P %
(
〈ζDN , 1[M,∞)〉 > ε

)
= 0. (6.42)

This implies tightness of {ζDN : N ≥ 1} on D × (R ∪ {+∞}) along with their asymptotic
concentration on D ×R. In particular, we may extract a weak subsequential limit ζD.

We would like to use the existence of weak subsequential limits to pass to the
limit N → ∞ inside the integral on the left-hand side of (6.38). For that we need to
deal with the fact that the support of fN,∗e extends to −∞ in the second variable. Pick
any b > 0 and, for any h < −3b, invoke Lemma 6.3 with the choices s := 4

√
2aN (−2b− h),

t := 4
√

2aNb and k as above to conclude that

(
1[−b,∞)

)N,∗e
(x, h) ≤ e

− 32aNb(−2b−h)

4aN−4
√

2aNb
(
1[−2b,∞)

)N,∗e
(x, h), h < −3b. (6.43)

The prefactor decays to zero as h→ −∞ uniformly in N ≥ 1 and so, plugging this into
(6.38) and using that {〈ζDN , (1[−2b,∞))

N,∗e〉 : N ≥ 1} is tight we get, for each bounded,
continuous f with supp(f) ⊆ D × [b,∞] and each ε > 0,

lim
M→∞

lim sup
N→∞

P %
( ∣∣∣ 〈ζDN , fN,∗e1(−∞,−M ]

〉∣∣∣ > ε

)
= 0. (6.44)

Combining this with (6.42), we may truncate the second variable in the integral on the
left of (6.38) to lie in [−M,M ] at the cost of errors that tend to zero in probability as
M →∞. The Central Limit Theorem shows

1

4
√

2aN

∑
j≥1

(τj − 1)1{j≤4aN}
law−→

N→∞
N
(
0, 1

8

)
(6.45)

and a simple estimate based, e.g., on Doob’s L2-martingale inequality to account for the
correction 4

√
2aNh in the number of terms in the sum then gives

lim
N→∞

sup
h∈[−M,M ]

sup
x∈D

∣∣fN,∗e(x, h)− f∗n(x, h)
∣∣ = 0, (6.46)

where
f∗n(x, h) = E

[
f
(
x, h+N (0, 1

8 )
)]
. (6.47)

Taking M →∞ after N →∞ we then readily conclude that every subsequential weak
limit ζD of {ζDN : N ≥ 1} satisfies the distributional identity

〈ζD, f∗n〉 law
= 〈ζ̃D, f〉 (6.48)

for all f ∈ Cc(D × (R ∪ {+∞})). This includes the fact that the integral on the left-hand
side converges absolutely for all such f .

We are now more or less done. Indeed, note that the explicit form of ζ̃D gives, for
f̃ ∈ Cc(R) and A ⊆ D Borel with Leb(A) > 0,

〈ζ̃D, 1A ⊗ f̃〉
〈ζ̃D, 1A ⊗ 1[0,∞)〉

= αλ

∫
dh e−αλhf̃(h), a.s. (6.49)

The right-hand side is non-random and so (6.48) becomes the pointwise equality〈
ζD, (1A ⊗ f̃)∗n

〉
=
〈
ζD, (1A ⊗ 1[0,∞))

∗n〉αλ∫ dh e−αλhf̃(h) (6.50)
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for all f̃ ∈ Cc(R). This shows that, for any B ⊆ R Borel,

ζD(A×B) = αλ
〈
ζD, (1A ⊗ 1[0,∞))

∗n〉⊗ ν(B), (6.51)

where ν is a Borel measure on R that obeys (6.29) with β := −αλ and σ2 := 1/8.
Lemma 6.4 then gives ν(dh) = e−α

2λ2/16−αλh dh and, since the first measure on the right
of (6.51) has the law of the spatial part of ζ̃D, we get

ζD
law
= e−α

2λ2/16 ζ̃D. (6.52)

The claim follows.

Finally, we deal with the changes that are required for the thin points:

Proof of Theorem 2.4. Following the proof of Theorem 2.3, the argument is exactly the
same up to (6.38), except that now f ∈ Cc(D × (R ∪ {−∞})). For the tightness, we then
need to consider

(
1(−∞,−M ]

)N,∗e
(x, h) = P

( k∑
j=1

(τj − 1) ≤ −(M + h)4
√

2aN

)
, (6.53)

where k := b4aN + 4h
√

2aNc. For h ≤ −2M the same estimate as (6.40) then shows
1(−∞,−2M ](h) ≤ 2(1(−∞,−M ])

N,∗e(x, h) and so, for each ε > 0, we get

lim
M→∞

lim sup
N→∞

P %
(
〈ζDN , 1(−∞,−M ]〉 > ε

)
= 0 (6.54)

from (6.38). For the upper tail, we need a variation on Lemma 6.3:

Lemma 6.5. For {τj : j ≥ 1} i.i.d. Exponential(1), all k ∈ N and all s, t ≥ 0 with s+ t < k,

P
(∑k

j=1(τj − 1) ≤ −(s+ t)
)

P
(∑k

j=1(τj − 1) ≤ −s
) ≤ e−

t(s−1)
k−s . (6.55)

To use this, let b > 0 and invoke the choices s := (h− 2b)4
√

2aN , t := 4b
√

2aN and k
as above while noting that, for N large and h > 2b, we have s+ t < k, to get

(
1(−∞,b]

)N,∗e
(x, h) ≤ exp

{
− 4b

√
2aN [(h− 2b)4

√
2aN − 1]

4aN + 4h
√

2aN − (h− 2b)4
√

2aN

}(
1(−∞,2b]

)N,∗e
(x, h).

(6.56)
The exponential prefactor tends to zero as h→∞ uniformly in N sufficiently large and
so, for any bounded and continuous f with supp(f) ⊆ D × (−∞, b] and each ε > 0,

lim
M→∞

lim sup
N→∞

P %
( ∣∣∣ 〈ζDN , fN,∗e1[M,∞)

〉∣∣∣ > ε

)
= 0. (6.57)

This again permits us to truncate the tails and derive (6.48) for each f ∈ Cc(D × (R ∪
{−∞})) and each weak subsequential limit ζD of {ζDN : N ≥ 1}. The rest of the proof of
Theorem 2.3 can be followed literally leading to (6.52), as before.

It remains to give:
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Proof of Lemma 6.5. The explicit form of the density along with the substitution y := x+t

again shows

P

( k∑
j=1

(τj − 1) ≤ −(s+ t)

)
=

1

(k − 1)!

∫
0≤x≤k−s−t

dxxk−1e−x

≤ et
1

(k − 1)!

∫
t≤y≤k−s

dy (y − t)k−1e−y

≤ et
(

1− t

k − s

)k−1

P

( k∑
j=1

(τj − 1) ≤ −s
)
.

(6.58)

Using the bound 1− x ≤ e−x, the prefactor is at most e−
t(s−1)
k−s .

With the help of the above theorems, we can finally settle:

Proof of Theorem 2.1. For the local time L̂DNtN parametrized by the time at the boundary
vertex and the walk started at %, the statement appears as [1, Theorem 2.1]. The
bounds in Proposition 5.1 along with the tightness of {TN : N ≥ 1} then extend the
conclusion to L̂DNtN replaced by L̃DN

deg(DN )tN
. The monotonicity of t 7→ L̃DNt combined with

the inequalities (6.4) then extend the desired conclusion to the discrete-time object LDNtN
as well.

7 Local structure

The last item to be addressed are the proofs of Theorems 2.8 and 2.9 dealing with the
local structure of the local time field near thick/thin and avoided points, respectively. We
will start with the former setting, as it is technically most demanding.

7.1 Thick and thin points

We will again carry the argument primarily for the thick points and only comment on the
changes for the thin points. Assuming henceforth the setting and notation of Theorem 2.3,
we start by converting the continuous-time in the boundary-vertex parametrization to
that parametrized by the total time.

Proposition 7.1. Let ζ
D,loc
N be given by the same formula as ζD,loc

N in (2.31) except with

LDNtN (x) replaced by L
DN
tN (x) from (6.7). Then, under P %,

ζ
D,loc
N

law−→
N→∞

ζ̃D ⊗ ν̂λ, (7.1)

where ζ̃D is the measure on the right of (5.30) and ν̂λ is the law of φ + αλa, for φ the
pinned DGFF; i.e., a centered Gaussian process on Z2 with covariances (2.32).

The proof will rely heavily on the arguments and notation from Sections 5–6. Through-
out, we fix a sequence {bN}N≥1 such that bN →∞ and bN/t

1/4
N → 0. First we condense

the ideas underlying Lemmas 5.6, 5.7 and 6.2 into:

Lemma 7.2. Given ε > 0, let t̃±N,k be the quantity from (5.36) but with bN replaced
by 3bN . Abbreviate

F̃N (x) :=
⋃
k∈Z

({
(k − 1)ε ≤ TN ≤ (k + 1)ε

}
∩
{
L̂DN
t̃−N,k

(x) ≤ LDNtN (x) ≤ L̂DN
t̃+N,k

(x)
})

. (7.2)
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Then

P %
( ∑
x∈DN

1F̃N (x)c > 2
)
−→
N→∞

0. (7.3)

Proof. The tightness of TN allows us to truncate the union in (7.2) to −M ≤ k ≤ M .
Recall the event FN (x) from (6.2) and note that on the event{ ∑

x∈DN

1FN (x)c ≤ 2
}

(7.4)

we have

L̃DN
(tN+1) deg(DN )

(x) ≥ LDNtN (x) ≥ L̃DN
(tN−1) deg(DN )

(x) (7.5)

at all but at most two x ∈ DN . Next set E+
N := EN (tN + 1) and E−N := EN (tN − 1), where

EN (t′N ) is the event EN from (5.31) but for {tN} replaced by {t′N}. Recall the notation
(t′N )◦ for the quantity from (5.4). On E+

N ∩ E
−
N ∩ {(k − 1)ε ≤ TN ≤ (k + 1)ε} we then get

an analogue of (5.40) of the form

(tN + 1)◦ + bN (tN + 1)1/4 ≤ t̃+N,k, (7.6)

(tN − 1)◦ − bN (tN − 1)1/4 ≥ t̃−N,k (7.7)

once N is sufficiently large (independent of k). Consequently, the inequalities

L̂DN
t̃+N,k

(x) ≥ LDNtN (x) ≥ L̂DN
t̃−N,k

(x) (7.8)

apply on the same event as well. Lemma 6.2 shows that (7.8) holds at all but two x ∈ DN

with P %-probability tending to one as N →∞. This proves the claim.

Next comes the main issue to be dealt with in the proof of Proposition 7.1: Since we
are after differences of the local time, we cannot rely on monotonicity as we did earlier;
instead we have to estimate the variation of t 7→ L̂DNt over time intervals of length of
order ε

√
2tN . This is the content of:

Lemma 7.3. For all δ > 0, all b ∈ R and all {t′N}N≥1 satisfying t′N − tN = O(logN),

lim
ε↓0

lim sup
N→∞

1

WN

∑
x∈DN

P %
(
L̂DNt′N

(x) ≥ aN + b logN,

L̂DNt′N
(x)− L̂DN

t′N−ε
√

2tN
(x) > δ

√
2tN

)
= 0. (7.9)

Proof. The proof is based on tail estimates for the local time which will depend, somewhat
sensitively, on a choice of a few parameters. Given δ > 0 let ε0 > 0 and j0 ∈ N be such that

(
√
θ + λ)2 − (1 + ε0)θ > λ2 (7.10)

and that, for all integers j ≥ j0,

(j − δ)
√
δ −√ε0√

δ
> (j + 1)

[
ε0 +

λ√
θ + λ

]
. (7.11)

These choices can be made because (
√
θ + λ)2 − θ > λ2 and λ√

θ+λ
< 1. Assume ε ∈ (0, ε0]

and abbreviate t′′N := t′N − ε
√

2tN and ãN := aN + b logN . Set M = M(N) to the least
integer such that (M + 1)

√
2tN ≥ ãN − (1 + ε0)t′′N .
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Using the Markov property of t 7→ L̂DNt (x), the probability in (7.9) is bounded by

P %
(
L̂DNt′′N

(x) ≥ ãN − j0
√

2tN

)
P %
(
L̂DN
ε
√

2tN
(x) ≥ δ

√
2tN

)
+

M∑
j=j0

P %
(
L̂DNt′′N

(x) ≥ ãN − (j + 1)
√

2tN

)
P %
(
L̂DN
ε
√

2tN
(x) ≥ j

√
2tN

)
+ P %

(
L̂DN
ε
√

2tN
(x) ≥ (M + 1)

√
2tN

)
. (7.12)

We now use [1, Lemma 4.1] to bound the individual probabilities on the right-hand side
as follows. First, noting that by our choice of M ,√

2
(
ãN − (M + 1)

√
2tN

)
−
√

2t′′N (7.13)

grows proportionally to logN as N →∞, [1, Lemma 4.1] may be used for the choices
a := ãN − j0

√
2tN , t := t′′N and b := 0. Noting that WN defined using ãN − j0

√
2tN and t′′N

instead of aN and tN is comparable with WN , the uniform upper bound on GDN (x, x) then
bounds the very first probability in (7.12) by a quantity of order WN/N

2. The Markov
inequality shows

P %
(
L̂DN
ε
√

2tN
(x) > δ

√
2aN

)
≤ ε
√

2tN
δ
√

2aN
(7.14)

and so the first term in (7.12) is order εWN/N
2 (with a constant that depends on j0).

Next we move to the terms under the sum in (7.12). Here we use [1, Lemma 4.1] for
the choices a := ãN , t := t′′N and b := −j

√
2tN to get, for all j = j0, . . . ,M + 1,

P %
(
L̂DNt′′N

(x) ≥ ãN − j
√

2tN

)
≤ c1

WN

N2
exp

{
j

√
2tN

GDN (x, x)

√
2ãN −

√
2t′′N√

2ãN

}
(7.15)

for some constant c1 ∈ (0,∞) independent of N ≥ 1, j = 0, . . . ,M + 1 and x ∈ DN . For
the second probability under the sum in (7.12), we apply [1, Lemma 4.1] with the choices
a := δ

√
2tN , t := ε

√
2tN and b := (j − δ)

√
2tN to get

P %
(
L̂DN
ε
√

2tN
(x) ≥ j

√
2tN

)
≤ c2 exp

{
−(j − δ)

√
2tN

GDN (x, x)

√
δ −
√
ε√

δ

}
(7.16)

for some constant c2 ∈ (0,∞) independent of N ≥ 1, j = 0, . . . ,M + 1 and x ∈ DN .
Putting (7.15) and (7.16) together and invoking (7.11) along with the uniform upper
bound on GDN (x, x), the sum over j = j0, . . . ,M in (7.12) may be performed with the

result of order e−α
√
θj0ε0WN/N

2, uniformly in x ∈ DN .

Finally, for the stand-alone probability in (7.12), one more use of [1, Lemma 4.1] with
the choices a := (M + 1)

√
2tN , t := ε

√
2tN and b := 0 yields

P %
(
L̂DN
ε
√

2tN
(x) ≥ (M + 1)

√
2tN

)
≤ c3√

logN
e
−(1−o(1))

(M+1)
√

2tN

GDN (x,x) (7.17)

for a constant c3 ∈ (0,∞) independent of, and o(1)→ 0 uniformly in, N ≥ 1 and x ∈ DN .

Using the definition of M , the right hand side of (7.17) is order N−2[
√
θ+λ)2−(1+ε0)θ]+o(1)

which is o(WN/N
2) by WN = N2(1−λ2)+o(1) and (7.10), uniformly in x ∈ DN . The claim

follows by taking N →∞, followed by ε ↓ 0 and j0 →∞.

We are ready to give:
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Proof of Proposition 7.1. Let f ∈ Cc(D × R × RZ2

) be such that f(x, h, φ) depends
only on coordinates {φz : z ∈ Λr(0)} for some r > 0 and vanishes unless |h| ≤ b and
maxz∈Λr(0) |φz| ≤ b, for some b > 0. Given ε > 0, let k ∈ Z be such that |TN − kε| < ε.
Pick x ∈ DN and abbreviate

fN,r(x, `) := f

(
x/N,

`(x)− aN√
2aN

,
{`(x)− `(x+ z)√

2aN
: z ∈ Λr(0)

})
. (7.18)

Introducing the oscillation of f by

oscf (δ) := sup
x∈D

sup
u,v∈R,
|u−v|≤δ

sup
φ,φ̃∈RΛr(0),

maxz∈Λr(0) |φz−φ̃z|≤2δ

∣∣f(x, u, φ)− f(x, v, φ̃)
∣∣, (7.19)

the difference
fN,r

(
x, L

DN
tN

)
− fN,r

(
x, L̂DN

t̃−N,k

)
(7.20)

is bounded in absolute value by the sum over z ∈ Λr(x) of two terms: First, 2‖f‖∞1F̃N (z)c

and, second,

1F̃N (z)

(
oscf (δ) + ‖f‖∞1{|LDNtN (z)−L̂DN

t̃
−
N,k

(z)|>δ
√

2aN}

)
×
(

1{L̂DN
t̃
−
N,k

(z)≥aN−2b
√

2aN}
+ 1{LDNtN (z)≥aN−2b

√
2aN}

)
. (7.21)

To simplify estimates, introduce the event

HN (x) :=
{
L̂DN
t̃+N,k

(x) ≥ aN − 2b
√

2aN

}
∩
{
L̂DN
t̃+N,k

(x)− L̂DN
t̃−N,k

(x) > δ
√

2aN

}
. (7.22)

Then (7.21) is bounded by

2oscf (δ)1{(L̂DN ◦θH% )
t̃
+
N,k

(z)≥aN−2b
√

2aN} + 2‖f‖∞1HN (z). (7.23)

Summarizing these estimates, and writing ζ̂D,loc
N (t′N ) for the measure in (2.31) except

with LDN replaced by L̂DN and tN by t′N , we thus get that, on {|TN − kε| < ε},∣∣∣∣〈ζD,loc
N , f〉 −

WN (t̃−N,k)

WN

〈
ζ̂D,loc
N (t̃−N,k), f

〉∣∣∣∣
≤ 4‖f‖∞|Λr(0)| 1

WN

∑
x∈DN

(
1F̃N (x)c + 1HN (x)

)
+ 2 oscf (δ)|Λr(0)|

WN (t̃+N,k)

WN

〈
ζ̂DN (t̃+N,k), 1D ⊗ 1[−2b,∞). (7.24)

Using Lemmas 7.2 and 7.3, the first term on the right tends to zero in P %-probability
as N →∞ and ε ↓ 0 for each δ > 0. The tightness of ζ̂DN measures (under P %) along with
the uniform continuity of f ensure that the second term tends to zero in P %-probability
as N →∞ and δ ↓ 0.

To finish the proof, note that by [1, Theorem 2.6] and the argument underlying
Proposition 4.3 we have, under P %,

ζ̂D,loc
N (t′N )⊗ δTN

law−→
N→∞

ζ̂D ⊗ ν̂λ ⊗ δT (7.25)

for any sequence {t′N}N≥1 such that t′N − tN = o(tN ), where ζ̂D is related to T as in

(5.48). Since WN (t̃−N,k)/WN = e−αλTN (t̃−N,k)+O(ε) on {|TN − kε| < ε} ∩ E−N from (7.24) and
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the tightness of the random variables {TN}N≥1 we get, by taking N → ∞ followed by
ε ↓ 0, δ ↓ 0 and m→∞, under P %,

ζ
D,loc
N

law−→
N→∞

e−αλT ζ̂D ⊗ ν̂λ. (7.26)

This is the desired claim.

With Proposition 7.1 in hand, we are ready to tackle:

Proof of Theorem 2.8, thick points. First observe that the tightness of {ζDN : N ≥ 1}
implies tightness of {ζD,loc

N : N ≥ 1} and so we may consider subsequential distributional
limits ζD,loc of the latter. Using Proposition 7.1 in the argument from the proof of
Theorem 2.3 we conclude that every such subsequential weak limit obeys

〈ζD,loc, f∗n〉 law
= 〈ζ̃D ⊗ ν̂λ, f〉 (7.27)

for all f ∈ Cc(D ×R×RZ2

), where

f∗n(x, h, φ) := E
[
f
(
x, h+ n0, {n0 − nz + φz : z ∈ Z2}

)]
, (7.28)

for {nz : z ∈ Z2} i.i.d. N (0, 1
8 ).

We now proceed similarly as in (6.48–6.51): Given any f̃ ∈ Cc(R × RZ2

) and any
Borel A ⊆ D with Leb(A) > 0, the explicit form of ζ̃D gives the pointwise equality〈

ζD,loc, (1A ⊗ f̃)∗n
〉

=
〈
ζD,loc, (1A ⊗ 1[0,∞) ⊗ 1

RZ
2 )∗n

〉
αλ

∫
dh e−αλh ⊗ ν̂λ(dφ)f̃(h, φ). (7.29)

Abbreviating β := −αλ, for each A as above, the measure ζA on R×RZ2

defined by

ζA(B) :=
ζD,loc(A×B)

αλ
〈
ζD,loc, (1A ⊗ 1[0,∞) ⊗ 1

RZ
2 )∗n

〉 (7.30)

then “solves” for µ from the convolution equation∫
R×RZ2

µ(dhdφ)E
[
f(h+ n0, {n0 − nz + φz : z ∈ Z2})

]
=

∫
R×RZ2

dh eβh ⊗ ν̂λ(dφ) f(h, φ) (7.31)

for all f ∈ Cc(R×RZ2

). To solve this equation, we need:

Lemma 7.4. For each x, y ∈ Z2, let

C̃(x, y) := a(x) + a(y)− a(x− y)− 1

8

[
1− δx,0 − δy,0 + δx,y

]
. (7.32)

Then C̃ is symmetric and positive semidefinite and so there exists a centered Gaussian
process {φ̃x : x ∈ Z2} with covariance C̃. This process then satisfies (2.35).

Proof. Recall that (in our normalization) a solves the equation ∆a = δ0 and so using
Fourier transform techniques we get

a(x) =

∫
(−π,π)2

dk

(2π)2

1− e−ik·x

D̂(k)
, (7.33)
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where
D̂(k) := 4 sin(k1/2)2 + 4 sin(k2/2)2. (7.34)

Let v ∈ `2(Z2) and denote by v̂(k) :=
∑
x∈Z2 v(x)eik·x the Fourier transform of v. A

calculation then shows

(v, C̃v) =

∫
(−π,π)2

dk

(2π)2

(
1

D̂(k)
− 1

8

)∣∣v̂(0)− v̂(k)
∣∣2. (7.35)

Noting that D̂(k) ≤ 8, we get that C̃ is indeed positive semidefinite. We now readily
check that x, y 7→ 1

8 [1 − δx,0 − δy,0 + δx,y] is the covariance of {n0 − nz : z ∈ Z2} for
{nz : z ∈ Z2} i.i.d. N (0, 1

8 ), and so (2.35) holds as well.

The solution of (7.31) will require the following extension of Lemma 6.4:

Lemma 7.5. Let φ̃ be a centered Gaussian process on Z2 such that, for some β ∈ R and
some σ2 > 0, the process {φ̃z + n0 − nz : z ∈ Z2} with {nz : z ∈ Z2} i.i.d. N (0, σ2) has the
law of the pinned DGFF φ. Denote

νλ,β(A) := P

(
φ̃+ λαa + βσ21Z2r{0} ∈ A

)
. (7.36)

Then (7.31) is solved uniquely by

µ(dhdφ) = e−
1
2β

2σ2+βhdh⊗ νλ,β(dφ). (7.37)

Proof. Denote µ̃(dhdφ) := e
1
2β

2σ2−βhµ(dhdφ). Pick {tz : z ∈ Z2} with finite support
and t0 = 0 and, writing 〈·, ·〉 for the inner product in `2(Z2), apply (7.31) to the test
function h, φ 7→ e−βh f(h) exp{〈t, φ〉} with a non-negative f ∈ Cc(R). (This is permissible
in light of the Monotone Convergence Theorem.) Writing x for h + n0 then turns
(7.31) into∫

µ̃(dhdφ)⊗ dx e〈t,φ〉
1√

2πσ2
e−

1
2σ2 (x−h)2

E
(
e−〈t,n〉) et̄(x−h)e−

1
2β

2σ2+βhe−βx f(x)

=

∫
ν̂λ(dφ)⊗ dx e〈t,φ〉f(x) (7.38)

where t̄ :=
∑
z∈Z2 tz. By assumption we have

{φz : z ∈ Zd} law
= {φ̃z + n0 − nz : z ∈ Z2} (7.39)

and so, in light of t0 = 0,∫
ν̂λ(dφ)e〈t,φ〉 =

∫
P (dφ)e〈t,φ+αλa〉

=

∫
P (dφ̃)E

(
e〈t,φ̃+n0−n+αλa〉)

=

∫
νλ,β(dφ̃) e〈t,φ̃〉E

(
e−〈t,n〉

)
E(et̄(n0−βσ2)),

(7.40)

where the expectation is over {nz : z ∈ Z2}. Using this in (7.38) and cancelling E
(
e−〈t,n〉)

on both sides, the identity E(et̄(n0−βσ2)) = e
1
2 t̄

2σ2−βt̄σ2

along with the fact that func-
tions f ∈ Cc(R) separate points yield∫

µ̃(dhdφ) e〈t,φ〉
1√

2πσ2
e−

1
2σ2 (x−h)2

et̄(x−h)e−βxe−
1
2 t̄

2σ2+βt̄σ2

e−
1
2β

2σ2+βh

=

∫
νλ,β(dφ̃) e〈t,φ̃〉 (7.41)
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for all x ∈ R. (Continuity is used to get from Lebesgue a.e. x ∈ R to all x ∈ R.) The five
exponentials on the left combine into

e−
1

2σ2 (x−h−t̄σ2)2−β(x−h−t̄σ2)− 1
2β

2σ2

= e−
1

2σ2 (x−h−t̄σ2+βσ2)2

. (7.42)

Shifting x by t̄σ2 − βσ2 and scaling it by σ2 shows that µ̂(dhdφ) := 1√
2πσ2

e−
1

2σ2 h
2

µ̃(dhdφ)

obeys ∫
µ̂(dhdφ) e〈t,φ〉−xh =

∫
νλ,β(dφ̃) e〈t,φ̃〉e

1
2x

2σ2

(7.43)

for all x ∈ R and all {tz : z ∈ Z2} with finite support and t0 = 0.
The restriction to t0 = 0 is irrelevant in (7.43) since νλ,β is concentrated on {φ : φ0 =

0} and, by (7.31) so is µ and thus also µ̂. The right-hand side of (7.43) is the Laplace
transform of the product of the law of N (0, σ2) and νλ,β . Hence

µ̃(dhdφ) = dh⊗ νλ,β(dφ) (7.44)

and so the claim follows from the definition of µ̃.

Returning to the main line of the proof of Theorem 2.8, it remains to observe that the
denominator in (7.30) has the law of√ √

θ√
θ + λ

c(λ) eαλ(d(x)−1)Y ZD,0λ (dx), (7.45)

for Y = N (0, σ2
D) independent of ZD,0λ . Lemma 7.5 with β := −αλ and σ2 := 1

8 then
yields the claim.

Moving to the thin points, here we go directly for:

Proof of Theorem 2.8, thin points. The proof is considerably simpler because, as a few
times earlier, certain key inequalities go in a more favorable direction. Following the
argument and the notation from the proof for the thick points, we derive an analogue of
(7.24) with the event HN (x) replaced by

H̃N (x) :=
{
L̂DN
t̃−N,k

(x) ≤ aN + 2b
√

2aN

}
∩
{
L̂DN
t̃+N,k

(x)− L̂DN
t̃−N,k

(x) > δ
√

2aN

}
(7.46)

and 1[−2b,∞) replaced by 1(−∞,2b]. Unlike HN (x) which required a non-trivial decom-

position in the proof of Lemma 7.3, the two events constituting H̃N (x) can be directly
separated using the Markov property of t 7→ L̂DNt . The expected sum over 1H̃N (x) is

then shown to be order εWN by (7.14) and the fact that E%〈ζ̂DN (t̃−N,k), 1(−∞,2b]〉 is bounded
in N ≥ 1. As a consequence, we get that, under P %,

ζ
D,loc
N

law−→
N→∞

ζ̃D ⊗ ν̂λ, (7.47)

where ζ̃D is the measure on the right of (2.21) without the term e−α
2λ2/16 and ν̂λ is the

law of φ−αλa. The rest of the argument for the thick points may be followed literally.

7.2 Avoided points

The proof is a variation on the themes encountered in the proof of convergence of the
measure associated with the light and avoided points. In particular, since the local time
vanishes at the avoided points, we will be able to use monotonicity arguments. The
following observation will be useful:
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Lemma 7.6. Let µ be a probability measure on NZ
2

with samples denoted by {n̂z : z ∈
Z2}. Let {τj(x) : j ≥ 1, x ∈ Z2} be i.i.d. Exponential(1), independent of {n̂z : z ∈ Z2}.
Then for any t ∈ (−1,∞)Z

2

with finite support,

E

(
exp
{
−
∑
z∈Z2

t(z)

n̂z∑
j=1

τj(z)
})

= E

(
exp
{
−
∑
z∈Z2

t′(z)n̂z

})
, (7.48)

where t′(z) := log(1 + t(z)).

Proof. This boils down to a calculation of the Laplace transform of Exponential(1).

We are now ready to give:

Proof of Theorem 2.9. We will establish the existence and uniqueness of the law νRI,dis
u

as part of the proof of the convergence. Let f̃ ∈ C(D) be non-negative, pick t ∈ (0,∞)Z
2

with finite support and consider the test function

ft(x, φ) := f̃(x)e−〈t,φ〉 (7.49)

where, abusing notation as before, 〈·, ·〉 denotes the canonical inner product in `2(Z2).
The function x, h, φ 7→ e−hnft(x, φ) is non-increasing in both h and the coordinates of φ
and so, thanks to Lemma 7.2, (5.55) applies to f replaced by e−hnft and ϑ̃DN by

ϑ
D

N :=
1

ŴN

∑
x∈DN

δx/N ⊗ δLDNtN (x)
⊗ δ{LDNtN (x+z) : z∈Z2}. (7.50)

Let κDN be the measure tracking the local behavior of L
DN
tN (x+ z) : z ∈ Z2 around every

point x where L
DN
tN (x) = 0 which, we note, is almost surely equivalent to LDNtN (x) = 0.

Taking the limits N →∞ and n→∞, from [1, Theorem 2.8] we then get, under P %,

〈κD,loc
N , ft〉

law−→
N→∞

〈κ̃D ⊗ νRI
θ , ft〉, (7.51)

where κ̃D is the law on the right-hand side of (5.59).
Next we observe that, by Lemma 7.6 and the fact that 4LDNtn (x) is a natural,

E%
(
〈κD,loc
N , ft〉

∣∣σ(X)
)

= 〈κD,loc
N , ft′〉 (7.52)

where t′(z) := 4 log(1 + t(z)/4). Proceeding as in (6.11) shows that that every subsequen-
tial weak limit κD,loc of {κD,loc

N : N ≥ 1} obeys

〈κD,loc, ft′〉
law
= 〈κ̃D ⊗ νRI

θ , ft〉 (7.53)

jointly for all t ∈ (0,∞)Z
2

with finite support and all f̃ ∈ C(D). Since νRI
θ is non-random,

this is readily turned into the a.s. identity∫
κD,loc(dxd`)f̃(x)e−〈t

′,`〉 =
(∫

κ̃D(dx)f̃(x)
)∫

νRI
θ (dφ)e−〈t,φ〉. (7.54)

This along with the fact that

e−〈t
′,`〉 = E

(
exp

{
−
∑
z∈Z2

t(z)
1

4

4`(z)∑
j=1

τj(z)

})
(7.55)
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for {τj(z) : j ≥ 1, z ∈ Z2} independent i.i.d. Exponential(1) implies that

κD,loc = κ̃D ⊗ νRI,dis
θ (7.56)

where νRI,dis
θ is a measure as described in the statement.

This shows that a measure νRI,dis
u exists with the stated properties for all u ∈ (0, 1).

Since adding independent samples from this measure for parameters u ∈ (0, 1) and v ∈
(0, 1) gives us a sample from the measure for parameter u + v, the existence extends
to all u > 0. The measure is unique by Lemma 7.6 and so is thus the distributional
limit κD,loc. This completes the proof.
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