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Mean-field driven first-order phase transitions
in systems with long-range interactions

Marek Biskup,?® Lincoln Chayes}! and Nicholas Crawford!

We consider a class of spin systemsZhwith vector valued spingSy) that
interact via the pair-potentially y Sx-Sy. The interactions are generally spread-
out in the sense that th s exhibit either exponential or power-law fall-off.
Under the technical condition of reflection positivity and for sufficiently spread
out interactions, we prove that the model exhibits a first-order phase transition
whenever the associated mean-field theory signals such a transition. As a conse-
guence, e.g., in dimensiods> 3, we can finally provide examples of the 3-state
Potts model with spread-out, exponentially decaying interactions, which under-
goes a first-order phase transition as the temperature varies. Similar transitions
are established in dimensiods= 1, 2 for power-law decaying interactions and

in high dimensions for next-nearest neighbor couplings. In addition, we also
investigate the limit of infinitely spread-out interactions. Specifically, we show
that once the mean-field theory is in a unique “state,” then in any sequence of
translation-invariant Gibbs states various observables converge to their mean-
field values and the states themselves converge to a product measure.

Key Words: First-order phase transitions, mean-field theory, infrared bounds,
reflection positivity, mean-field bounds, Potts model, Blume-Capel model.
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1. INTRODUCTION
1.1. Motivation

The understanding of the quantitative aspects of phase transitions is one of
the basic problems encountered in physical (and other) sciences. Most of the
existing mathematical approaches are based on the use of contour expansions
via Pirogov-Sinai theory [41, 42, 50] and/or the use of correlation inequali-
ties [21, 44, 45]. Notwithstanding, many “practical” scientists still rely on the
so-calledmean-field theoryhich, in its systematic form, goes back to the
work of Landau. From the perspective of mathematical physics, it is therefore
desirable to shed as much light as possible on various mean-field theories and,
in particular, attempt to place the subject on an entirely rigorous basis.

In a recent paper [11], two of us have established a direct connection be-
tween temperature-driven first-order phase transitions in certain ferromagnetic
nearest-neighbor spin systems Bt and their mean-field counterparts. The
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principal result of Ref. [11] states that, once the mean-field theory signals a
first-order phase transition, the actual system has a similar transition provided
the dimensiord is sufficiently large and/or the mean-field transition is suffi-
ciently strong. Moreover, the transition happens for the values of parameters
that are appropriately “near” the mean-field transitional values; indeed, the var-
ious error terms tend to zero ds— oc.

The principal goal of the present paper is two-fold. First, we will con-
siderably extend the scope of systems to which the ideas of Ref. [11] apply;
i.e., we will prove discontinuous phase transitions in systems which heretofore
have been beyond the reach of rigorous methods. Second, we will in a general
way expound on thenean-field philosophyin particular, we will demonstrate
that mean-field theory provides an asymptotic description of a certain class of
systems regardless of the nature of their transitions.

Our approach is somewhat akin to the bulk of work on the so-c#lked
limit of lattice [14-17] as well as continuum [30, 36, 37] systems. Here one
considers finite-range interactions of unit total strength which are smeared out
over a region of scal&,. As y tends to zero, each individual site interacts with
larger and larger number of other sites and soyfet 1, one is in the position
to prove that the characteristics of an actual system (e.g., the magnetization)
are close to those of the corresponding mean-field theory. In particular, all
“approximations” (i.e., upper and lower bounds) become exagt|ab.

Notwithstanding, the similarity between the Kac limit and our approach
ends with the above statements: Our technique involves tight bounds on the
fluctuations of the effective field while the analyses of Refs. [14-17] are based
on coarse-graining arguments. As a consequence, we have no difficulty treating
models with complicated single-spin spaces—even those exhibiting continuous
internal symmetries or leading to power-law decay of correlations—or nearest-
neighbor systems in large dimensions. Of course, there is a price to pay: Our
technique requires the infrared bound on two-point correlation function which
is presently available only for models obeying the condition of reflection posi-
tivity. Moreover, unless we assume power-law decaying interactions, the use of
infrared bounds does not permit any statements ia 2, while the Kac-limit
approach works equally well in al > 2.

1.2. Models of interest

For the duration of the paper, as in Ref. [11], we will focus on spin models with
two body interactions as described by the formal Hamiltonian

BA == D Iy (S, Sy) — D (h,So). (1.1)
(X,y) X
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The various objects on the right-hand side are as follgnis:the inverse tem-
peratureX, y) denotes an unordered pair of distinct sitdgy (= Jy,x) is the
coupling constant associated with this pair, the s@nsake values in a com-
pact sefQ c R", the (reduced) external fieldis a vector fromR" and (-, -)
denotes some inner productl®Y. Implicit in the notation is an underlying

priori measure o2 which represents the behavior of the spins in the absence
of interactions. (In principle, the term which describes the coupling to the ex-
ternal field, namely théh, Sx)’s, could be absorbed into the definition of the
priori measure. However, for sesthetic reasons, here we will often retain these
terms as part of the interaction.)

Mean-field behavior is typically anticipated in situations where fluctua-
tions are insignificant and, on general grounds, one expects this to be the case
in high dimensions. These were precisely the operating conditions of Ref. [11]
(as well as of Refs. [13, 34]) where, in a mathematically precise sense, the
stipulation concerning the fluctuations was vindicated. However, an alternative
route for ramping down fluctuations is to consider “spread out” interactions,
I.e., Jx,y's which do not go to zero too quickly. As alluded to earlier, this alter-
native is, in fact, the common starting point for modern mathematical studies
of phase transitions based on mean-field theory, e.g., Refs. [14-17, 36] and
Refs. [26-29, 43].

Unfortunately, we do not have complete flexibility as to how we can
spread out our interactions. Indeed, our principal error estimate requires that
the (Jx,y) satisfy the condition ofeflection positivit RP). Notwithstanding,
the following three classes of interactions are available to our methods:

(1) Nearest along with next-nearest neighbor couplings., potentials
such thatJ,y = 4 if x andy are nearest neighborgyy = «
with 4 > 2(d—1)|«| if x andy are next-nearest neighbors alg, = 0
in the remaining cases.

(2) Yukawa-type potentialsf the form
Iy = e—ﬂIX—YI1’ (1.2)
wherey > 0 and|x — y|1 is the¢!-distance betweex andy.

(3) Power-law decaying interactiored the specific form

1
Iy = | (1.3)

x—yl§
with s > 0.

Aside from these “pure” interactions, reflection positivity holds for
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(4) any combination of the above with positive coefficients.

The derivation of the reflection-positivity property for these interactions goes
back to the classic references on the subject [22—24]; for reader’s convenience
we will provide additional details in Sect. 3.1 and Sect. 4 (Remark 4.5).

We note that for all positive values efthe interactions listed in item (3)
are indeed, in the technical sense, reflection positive. However, some values
of s are not viable and others are not particularly useful. Specificabygifd,
then the interaction is attractive and non-summable so there is no thermody-
namics. Thus we may as well assume that d. Furthermore, id = 1 and
s > 2ord = 2 ands > 4 then our methods break down. With some reason:
In the one dimensional cases wgh- 2, the results of Refs. [3, 19, 20, 39, 47]
indicate (and in specific cases prove) that no magnetic ordering is possible.
Similarly, in the above mentioned two-dimensional cases, magnetic ordering is
precluded in many systems.

To summarize, we will impose the following limitations on our power-law
interactions in Eq. (1.3):

(@ s<2ind=1,
(b) s<4ind =2,
(c) s>dinalld > 1.

Although case (1) does not give us any real options for spreading the inter-
action beyond the previous recourse of takihge> 1, cases (2) and (3) offer

us the possibility to do so on fixed lattice. This is essentially obvious in
case (2)—just take the parametesmall. As for case (3) it is seen, after a lit-

tle thought, that taking close tod presents an additional and powerful method
for smearing interactions.

1.3. Outline of results

Given the ability to smear interactions on a fixed lattice, much of the technol-
ogy developed in Ref. [11] can be applieithoutthe stipulation of d suffi-
ciently large.” Thus it will prove possible to make statements about specific
models on reasonable lattices with (more or less) reasonable interactions.
One such “specific” model will be thg-state Potts model (see Sect. 2.2).
Here, for example, we will establish a discontinuous transition between the or-
dered and disordered states of a 3-state Potts mod&t with interactions de-
caying to zero exponentially. (And similarly for any otheestate Potts model
onZ9 with q > 3 andd > 3.) Analogous first-order phase transitions are also
proved in dimensions one and two provided we have power-law decay of the
couplings as discussed above. For exampld,+n1, for any power-law decay



6 Biskup, Chayes and Crawford

exponents € (1, 2), we produce couplings such that the 3-state Potts model
has a first-order transition as the overall strength of the coupling varies.

As another illustration, we consider the low temperature behavior of the
Blume-Capel model. The system will be described precisely in Sect. 3.4, for
now it suffices to say that the spins take value$-#i, O, +1} with a priori
equal weights. The zero temperature phase diagram of this model has a triple
point where the three states of constant spin are degenerate in energy, however,
as demonstrated in Ref. [46], this degeneracy is broken at finite temperatures
in favor of the state dominated by the zeros. The previous analyses of this
phenomenon required rather detailed contour estimates; here we will establish
similar results by relatively painless methods.

The techniques at our disposal will allow us to put to rest some small
controversies which, in recent years, have been topics of some discussion. For
instance, a conjecture has been made [32,33] which boils down to the statement
that in any one-dimensional finite-state spin system with arbitrary translation-
invariant, summable interaction, the set of phase-coexistence points at positive
temperatures is subsebf the corresponding set at zero temperature. We will
rule this out by our analysis of the Potts models in an external field.

In addition to predicting first-order transitions, our mean-field framework
provides an explicit description of general lattice spin systems in the limit when
the interactions become highly diffuse. In particular we show that, whenever
the mean-field theory is in a unique “state,” the magnetization and the energy
density of the actual system converge to their mean-field counterparts. More-
over,everytranslation invariant Gibbs state converges to a product (i.i.d.) mea-
sure with individual-spin distribution self-consistently adjusted to produce the
correct value of the magnetization. (This vindicates the assumptions typically
used to “justify” mean-field theory; see Sect. 2.1.) Results in this direction
have appeared before; cf Refs. [13, 34], but the main difference is that here we
arenot forcingd — oo and hence it is possible to envision a limiting system
towards which we are heading.

1.4. Organization

The organization of the remainder of this paper is as follows: In Sect. 2.1
we describe, in succinct terms, some general aspects of mean-field theory. In
Sect. 2.2 we discuss the mean-field theory for the Potts model in an external
field—which is the primary model studied in this work. Precise results con-
cerning these situations are the subject of Sect. 2.3.

Sect. 3 is devoted to the statements of our main result. Specifically, in
Sect. 3.1 we formulate a general theorem (Theorem 3.2) that allows us to prove
first-order phase transitions in actual lattice models with interaction (1.1)—and
RP couplings—by comparison to the associated mean-field theory. Sect. 3.2
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provides conditions under which the mean-field theory is obtained as a limit of
lattice systems when the interaction becomes infinitely spread out. Sects. 3.3
and 3.4 contain precise statements of our theorems concerning the behavior
of the specific systems we study: The zero-figidtate Potts models with

g > 3, the same model (with > 4) in an external field which enhances

or supresses—depending on the sign—one of the states, and the Blume-Capel
model near its zero-temperature triple point. Sect. 3.5 mentions some recent
conjectures that can be addressed using our results.

The principal subject of Sect. 4 is to give the proof of our general results
(Theorems 3.2 and 3.3). As part of the proof, we will discuss certain interest-
ing convexity bounds (Sect. 4.1), reflection positivity (Sect. 4.2) and infrared
bounds (Sect. 4.3). In Sect. 4.5 we show how the specific interactions listed
in Sect. 1.2 fit into our general scheme. Sect. 5 is devoted to the mathematical
details of the mean-field theories for all the above mentioned models; in par-
ticular the proofs of all claims made in Sect. 2.3. Sect. 6 then assembles all
ingredients into the proofs for actual lattice systems.

2. MEAN-FIELD THEORY AND THE POTTS MODEL

Here we shall recall to mind a formalism underlying (our version of) mean-
field theory and provide heuristic discussion of the basic facts. The specifics
will be demonstrated on an example of tpstate Potts model in an external
field; first somewhat informally in Sect. 2.2 and then precisely in Sect. 2.3.

2.1. Mean-field heuristic

We will focus on the situations described by the Hamiltonian in Eq. (1.1). Of
course the real models must be carefully defined&.®ms limits of finite vol-

ume measures corresponding to this Hamiltonian at inverse tempefadinck
some sort of boundary conditions. We shall assume the reader is familiar with
this basic theory (enough of the relevant formalism can be found in Sect. 3.1)
and skip right to the consideration of an infinite-volume translation-invariant
Gibbs stateu s 1, corresponding to the Hamiltonian in Eq. (1.1) and inverse
temperaturgs. For convience we will assume here, as in the rest of this paper,

Jx=0, D lhxl<oco and > Ky=1 (2.1)

xezd xezd

We will let Eg 1, denote the expectation with respegt, andEq expectation
with respect to the priori (product) measurggo. (We will of course assume
in the following thatug is supported on more than one point.)

The principal idea is to study the distribution of one spin variable, e.g., the
one at the origin of coordinates. Let denote the expected value of this spin,



8 Biskup, Chayes and Crawford

m = Eg h(So). Then, conditioning on the configuration in the complement of
the origin, we get the identity

Eo(Se(SAmoth))
wheremg is therandomvariable given by the weighted average
mo= > JoxSx. (2.3)

xezd

We emphasize that the expectatip “acts” only onmg while Eq “acts”
only on the auxiliary spin variabl8.

When all is said and done, the underlyimgsumptiorbehind the standard
mean-field theories boils down to the statement that the quamgtis non-
random, and therefore equal to. Postponing, momentarily, any discussion
that concerns the validity of such an assumption, the immediate relevance is
that in Eq. (2.2) we can replacey by m which in turn makes the outer expec-
tation on the right-hand side redundant. We thus arrive at the self-consistency
constraint

]EO(Se(S,[)’m+h))
= Eo(efSAm+h)

which is themean-field equatiofor the magnetization. Clearly, if it can be
established that the fluctuationsrag are negligible, then the actual magneti-
zation must be near a solution of Eq. (2.4).

In this light, our results are not that hard to understand: In most instances
where the mean-field theory predicts a discontinuous transition this prediction
is showcased by the fact that Eq. (2.4) simply does not admit continuous solu-
tions. Thus if the error caused in the approximatimog~ m is much smaller
than the discontinuities predicted in the mean-field approximation, jumps of
the physical magnetization cannot be avoided.

As all of the above is predicated on the near constancy of the random
variablemy, let us turn to a discussion of the fluctuations of this quantity. An
easy calculation shows that

(2.4)

Var(mo) = > JoxJoyEpn((Sx. Sy) — Im|?) (2.5)
X,y

where|m|2 = (m, m). The quantityEzn((Sx, Sy) — Im|?) is the thermal
two-point correlation function which, on general grounds, may be presumed to
tend to zero at large separations. It would thus seem that the stipulation of a
“spread out interaction” along withnysort of decay estimate on the two-point
correlations would allow us to conclude that the varianam@fs indeed small.
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However, while explanations of this sort are satisfactory at a heuristic level,

a second glance at Eq. (2.5) indicates that the task is not necessarily trivial.
Indeed, of actual interest is the decay of correlations within the effective range
of the interaction, which is guaranteed to be delicate. At the core of this paper
is the use ofeflection positivityto provide these sorts of estimates.

In many cases, Eg. (2.4) on its own is insufficient for understanding the
behavior of a system—even at the level of mean-field theory. Specifically, in
the case of a discontinuous transition, Eq. (2.4) will typically have multiple so-
lutions the overall structure of which does not allow for a continuous solution.
While this may have the advantage of signaling the existence of discontinu-
ities, it does not provide any insight as to where the discontinuities actually oc-
cur. Thus, whenever there are multiple solutions to Eq. (2.4), a supplementary
“rule” is needed to determine which of these solutions ought to be selected.

The supplement—or starting point of the whole theory depending on
one’s perspective—is the introduction of timeean-field free-energy func-
tion @4 (M) defined as follows: LeS(m) be theentropy functiorassociated
with the a priori measure on the spins. Formally, this quantity is defined by
means of the Legendre transform

Sm) = inf {G(b) — (b, m)} (2.6)

of the cumulant generating function
G(b) = logEo(e®9). (2.7)

The mean-field free-energy function is then defined as the difference of the
energy functionE(m) = —§|m|2 — (h, m), and the entropy(m):

Dpp(m) = —§|m|2 — (h, m) — S(m). (2.8)

Then, as is not hard to see, the mean-field equation is implied by the condition
that®, n be minimized. Indeed, writingy ®4 h(m) = 0 some straightforward
manipulations give us

m = VG(fm + h), (2.9)

which is exactly Eq. (2.4).

Eqg. (2.8) along with the stipulation to minimize adds a whole new dimen-
sion to the theory that was defined by Eq. (2.4). Foremost, in the case of multi-
ple solutions, we now have a “rule” for the selection of the relevant solutions.
Beyond this, we have a framework resembling a full thermodynamical theory:
A free energy—defined by evaluatirig 1, at the minimizingm—along with
an entropy and energy which are the corresponding functions evaluated at this
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magnetization. In fact, a secondary goal of this work is to demonstrate that this
“more complete” mean-field theory provides an asymptotic description of the
actual theories with spread out interactions.

Remark 2.1. We conclude this subsection with the remark that the
mean-field theory for any particular Hamiltonian of the form (1.1) can be
produced in an actual spin-system by considering the model oodttnglete
graph Explicitly, for a system withN sites, we takely y = % compute all
quantities according to the standard rules of statistical mechanics and then take
N — oo. The result of this procedure is the mean-field theory described in
this subsection for the thermodynamics and a limiting distribution for the spins
which is i.i.d. The connection between mean-field theory and complete graph
models is well known and has been proved in numerous special cases (see,
e.g., Ref. [18] for a recent study of ensemble equivalence for the Potts model
on the complete graph). A complete proof for the general foro¥ogiven in
Eq. (1.1) appears e.g. in Sect. 5 of Ref. [11].

2.2. Potts models in external field

The best example of a system which exhibits a rich spectrum of behaviors
while remaining tractable is the Potts model in an external field. The Potts
model is typically defined using discrete spin variabtgse {1, ..., q} with

no apparent internal geometry. The energy of a configuration is given by the
(formal) Hamiltonian

BH =D I ydoyoy — D 010, (2.10)
X,y X

Here g is the inverse temperature, thig y's are the coupling constants for
the system, and;,, ,, is the Kronecker delta. The reduced external fieid

related to the physical external fididvia h = h/8. We have chosen only the
state “1” as the state affected by the external field even though more general
versions are also possible [7,9,10, 12].

This system is cast in the form of Eqg. (1.1) by using t&ahedral rep-
resentation We take spin variableS, e {Vi,...Vq}, where thely’s are the
vertices of a unit tetrahedron R9~1. Inner products (defined the usual way
for vectors inR9~1) between thé’'s satisfy

L 1, if k=1,
(Vk, W) = [ 1 (2.11)

=1 otherwise

and SO
éox,o SXa Sy . 2.12
y q :l ( ) ( )
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After similar consideration of the magnetic field terms, it is seen that the Hamil-
tonian in Eq. (2.10) is manifestly of the form in Eq. (1.1). To stay in accord
with the classic references on the subject, e.g., Ref. [48], we will keeg-the
dependent prefactor suggested by Eq. (2.12). So, our official Hamiltonian for
the Potts model will read

-1 -1
pA =B D hy (S8~ TP @S0 (219

(x.y)

with the J’s obeying Eq. (2.1) and € R.
The mean-field theory is best expressed in terms of the vector magnetiza-
tion given by
m = XV1 + - - - + XqVq, (2.14)

and the mean-field free-energy function is [11, 48]

q
cp%(m) — Z(—gxf + xk log xk) — hx. (2.15)
k=1

Here the “barycentric” coordinateg are components of a probability vectors,
l.e., we havexx > 0 andxy + - - - + Xq = 1. In the context of the Potts model
on a complete graphy represents the fraction of sites in tkeh spin state.

Let us start with a recapitulation of the zero-field case where the resulting
theory is quite well known. For ead there is a numbeﬁ,&,lqé such that if
p < ﬂ,f,‘ﬂg, the unique global minimizer is the “most symmetric state,= 0,
while for g > ﬂ,f,?g, there are exactly (asymmetric) global minima which
are permutations of one probability vector of the foxm> x; = --- = Xq.
Thus we may express all quantities in terms afcalar magnetization, e.g.,

X1 = (—11+mandx;< = %—q—’fl,k: 2,...,9. Then, whenp > /)’,f,‘ﬁg, the

mean-field magnetization is given byr(f) = qT_lﬁ, whered is the maximal
positive solution to the equation

eft — 1

The crucial point—which can be gleaned form a perturbative analysis of
Eq. (2.16)—is the divisiorat g = 2 of two types of behavior. In particu-
lar, mye(f) tends to a strictly positive value &b | ﬁ,f,lqg for g > 2, while

for g = 2 the limit value is zero. (Indeed, fay = 2, thereare nonontrivial
solutions to Eq. (2.16) & = A2 = 2.)
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Remark 2.2.  Interestingly, the values oﬁ,f,lqg and the limit value
mMp(ﬂ,Sﬂ;) are explicitly computable:

-1 -2
J 23—_2 log(q — 1), mwE(AD) = qT' (2.17)

This observation goes back to at least Ref. [48].

Let us now anticipate, without going to details, what happens fgr 0.
(The full-blown statements and proofs will appear in Sect. 2.3 and Sect. 5, re-
spectively.) We will capitalize on the principle that local minimizers are stable
to small changes in parameters. Consgler 3 andh # 0 such thath| « 1.
The overall situation cannot differ too drastically from the zero-field case; the
only distinction is that folh > 0 only one of the h = 0 asymmetric mini-
mizers” is allowed while foh < 0 the same minimizer is suppressed in favor
of the remainingy — 1 ones. On the other hand, forpositive and large, it is
clear that the minimizer otb(q?,(m) will be unique no matter what is. Thus,
for h > 0 we should have a line of mean-field first-order phase transitions
which terminates at a finite value bf On general grounds, the terminal point
is expected to be a critical point.

Next, let us considen < O with |h| > 1. The situation ah = —o0o is
clear; this is just theq — 1)-state Potts model. Thus for finite but lai@é, we
can see a clear distinction betwegr= 3 andq > 3. In the former cases, the
mean-field transition should be Ising like and hence continuous. In the latter
case, the transition should be discontinuous. Thugj te€3 line should break
at atricritical point followed by a line of continuous transitions while tpr> 3
there will be an unbroken line of discontinuous mean-field phase transitions.

Aside from general interest, the key motivation for obtaining such detailed
knowledge aboumyr is as follows: Under specific conditions on (1.1), virtu-
ally all that has just been discussed pertaining to discontinuous transitions in
these systems can be established with rigor in the spread out “real” systems.
(On the downside is the fact that virtually nothing pertaining to the continuous
transition can be proved by these methods.) To illustrate let us consider the
transition ath > 0 whenq is large. The mean-field picture is as follows: A
non-convexity oftbgﬁ](m) develops wherp is of order unity, but it does not
“touch down” until # is appreciable (of order lag). However, the existence
of a non-convexity suggests that a strong-enough magnetic field can tilt the
balance in favor of a magnetized state, even/fsr of order unity. This is
indeed the case for the MFT as our detailed calculations later show. As a con-
sequence of the general techniques presented here, this result from the MFT
will be processed into a theorem for actual systems.
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2.3. Precise statements for mean-field Potts model

Our precise results for the mean-field theory of the Potts model in an external
field are summarized into two theorems; one for positive fields and the other
for negative fields.

Theorem 2.3. (Positive fields) Let g > 3, letm and the probabil-
ity vector (X, ..., Xq) be related as in Eq(2.14)and Ietd)gi'%(m) denote the
function from Eq(2.15) Let h, denote the quantity

he = logq — Z(qq_ 2. (2.18)

Then there is a continuous functigz?riq): (0, h¢) — (0, o0) such that

(1) Forall (g, h) such that either > hc or g # ﬂfrq) (h), there is a unique
global minimizer of@%(m) with X = --- = Xq. The quantity x
corresponding to this minimizer is strictly larger than the mutual value
ofthe x'sfork =2,...,q.

(2) Forall h < hg, there are two distinct global minimizers (Iii(ﬁ‘?%(m) at
(B (), h).

(3) For (B, h) such that h> hc or f # ﬂf')(h), let ; = x1(f, h) denote
the first coordinate of the global minimizer«bﬁ%(m). Then(p, h) —
X1(f, h) is continuous with well-defined but distinct (one-sided) limits
at(g,h) = (ﬂfrq)(h), h). Furthermore, writing x = %+m, the quantity
0 = qi_lm obeys the equation

eff+h _ 1

in the region of uniqueness. At the poimyﬁf)(h), h), both limiting
values obey this equation.

(4) The function h— ,Bfrq)(h) is strictly decreasing or0, he) with limit
valuesﬂfrq) (h) 1 ,B,Sﬂé = 23—:% log(g—1)ashl 0 andﬁfrq)(h) l %
as h1 he.
In order to preserve uniformity of exposition, we will restrict the statement
of negative-field results tq > 4.

Theorem 2.4. (Negative fields) Letg > 4, letm and the probabil-
ity vector(xy, ..., Xq) be related as in Eq(2.14)and Ietd)rgff%(m) denote the
function from Eq(2.15) Then we have:
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All global minima are permutations in the last¢l variables of vectors
with the representation

Xy < Xp=---=Xg-1 < Xq. (220)

Moreover, there exists a functi(ﬁ*f_Q): (—00,0) = (0, c0) such that the fol-
lowing hold:

(2)

3)

(4)

()

(Symmetric Minimum) For alp < ﬂEQ)(h), there is a unique global

minimum and it has Xx= --- = Xq. Moreover, if m is such thatx=
%— mand x = % + o forallk = 2,...,q, thend = qi_lm
corresponds to a g?obal minimum when
eff-h _1
0 = ) (2.21)
(q—Defi-h 41

There is only oné € [0, q—ll] for which Eq.(2.21)holds.

(Asymmetric Minima) For alp > ﬁ@(h), we have g1 global minima.
These are permutations in the lastql variables of a single minimum
whose coordinate representation takes the form

Xy < Xp="-+=Xg-1 < Xq- (2.22)
Atp = ,B@(h) there are q global minima. One of these is of the type

described in (2)—namely, the symmetric minimum—while the othér q
are of the type described in (3).

The function h— ﬁf‘)(h) is strictly increasing and continuous. More-
over, we have the limits

; (o) _ p@@-1 ; (@) _ p
Jim pOm) = gD and mpYm) = A7 (229

Theorem 2.3 is proved in Sect. 5.3 and Theorem 2.4 is proved in Sect. 5.4.
The corresponding statement for the actual lattice systems is the subject of

Theorem 3.5.

3. MAIN RESULTS

Here we give the statements of the principal theorems which apply to any
model whose interaction is of the type (1.1). Then we apply these to the Potts

and Blume-Capel models.



Mean-field driven first-order phase transitions 15

3.1. General theory

We begin by a precise definition of the class of models we considef2 beta
compact subset &", with the inner product denoted Iy -), and let Con(Q)
denote the convex hull &®. Let o be a Borel probability measure ¢f2, %)
that describes tha priori distribution of the individual spins. We will consider
spin configuration$Sy) from Q2 and, abusing the notation slightly, uggto
denote also the correspondiagpriori product measure.

To define the interacting spin system, let us pick a finite/set Z9, a
spin configuratiorS, € Q" in A and the “boundary conditionSxc € QA°.
For eacth € R" and eactp > 0, we then define the finite-volume Hamiltonian
JEN(Sn, Sac) by

BANSA, Sae) == D Iy (S, Sy) — D (h, S)). (3.)

(X,y) xeA
XeA,yeZd

The first sum goes over all unordered pairs of distinct Sixey) at least one
of which is contained ir\.

The above Hamiltonian can now be used to define the finite-volume Gibbs
measure)(ASA°) on spin configuration fromM* by

@ BHN(Sn,Sc)

(Sac) _
UA (dSA) - ZE\SAC)(ﬁ h)

1o(dSy), (3.2)

where the normalizing constaﬁtf\s”) (5, h) is the patrtition function. Of par-
ticular interest are the (weak subsequential) limits of these measuregxas
pands to fill out the entir&9. These measures obey the DLR-conditions [25]
and are generally referred to as (infinite-volume) Gibbs measures. In this for-
malism,phase coexistends said to occur for parametefsandh if there is

more than one limiting Gibbs measure. Under these conditions the system is
said to exhibit dirst-order phase transition

We proceed by formulating the precise conditions under which our results
will be proved. To facilitate our next definition, for each lattice directfoa
{1,...,d}, letH, denote the half-space

Hy = {X = (X1, ..., Xq) € Z%, x, > O}. (3.3)

We will used ) to denote the reflectiof© : H, — 79\ H, defined explicitly
by the formulad O (x4, ..., Xq) = (X1, . .., Xe—1, 1 — X, Xe41s - - - 5 Xd)-

Definition 3.1. (RP “through bonds”) Consider a collection of
coupling constantgJx y)x yezd. We say that these are RP if the following
conditions hold:
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(1) (translation invariance) for any; y € Z9 we havely y = Jo,y—x-
Moreover, for any lattice directiofi e {1, ..., d},

(2) (reflection invariance) for arny, y € H, we have
Iy = Jlg(f)x,lg((?)y. (3.4)

(3) (reflection positivity) if f : H, — R is absolutely summable with

> f =0, (3.5)
XeH,
then
> Ly fof@Py) >0 (3.6)
xeH,
yeZI\H,

Given a translation-invariant Gibbs measure, we use the wagneti-
zationto denote the expectation of the spin at the origin. The statement of
our general result can then be viewed as a restriction on the possible values
of the magnetization. However, not all magnetizations that can be physically
produced are (provably) accessible to our methods. The reason is that the un-
derlying Gibbs states for which our techniques work will have to satisfy the
conditions of reflection positivity—in particular, they have to be obtained as
weak limits of torus states. Our next item of business will be to define pre-
cisely the set of “allowed values” of the magnetization.

We will proceed as in Ref. [11]. LeZ A (£, h) be the partition function in
volume A—the boundary condition is irrelevant—and E{f, h) denote the
(physical) free energy defined as the Iimit{)f%| log Zx asA increases to fill

the entireZ? (in the sense of van Hove [25]). The functi&(g, h) is jointly
concave, so we may le¥, (4, h) denote the set of all pairg], m,] such that

F(B+ AB, h+ Ah) — F(B,h) <e.AB + (my, Ah) (3.7)

for any A € R and anyAh € R". Now .#;(8, h) is a convex set so we
let .7, (f, h) to denote the set of values, for which there exists as, such
that [e,, m,] is an extreme value of7;(f, h). Our main theorem then reads:

Theorem 3.2.  Consider the spin system &# with the Hamiltonian
(1.1)such that the coupling&ly y) are RP, the inverse temperatyse> 0 and

external fielch € R". For each ke [z, 7]9, let J(k) = 3, ;¢ Jox€K* and
recall that J(0) = 1 by Eq.(2.1). Then for anym, € ., (8, h),

K
@ % i f q) - Py .
p,h(My) < o Ant @ g,h(M) + ﬂnzf (3.8)
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where n is the (underlying) dimension of the spin-space, maxscq |S|? and
dk  9(k)I?
[-7,7]d (271')d 1- j(k)

The useful aspect of Theorem 3.2 is that the error & fn5.# can be
made small by appropriate adjustment of parameters. A general statement of
this sort appears in Proposition 4.10 but, typically, these conditions have to be
verified on a case by case basis. Let us tend to the details of these adjustments
later and, for the time being, simply assume thas small. Then, along with
the obvious supplement of Eq. (3.8)s h(m,) > infmeconv@) Pp,h(M), we
have learned that the allowed values of the magnetization iphisicalsys-
tem nearly minimize thenean-fieldfree energy. In this sense, the mean-field
theory already provides a quantitatively accurate description of the physical
system onc€ « 1. In Sects. 3.3-3.4 we will use this fact to prove a first-order
phase transitions in a few models of interest.

To demonstrate the use of Theorem 3.2, let us consider the “evolution” of
a typical MFT phase transition, in which two local minima®f , exchange
roles of the global minimizer a8 varies. Specifically, leins(8) andma(f)
be local minima ofd 4 »—one of which is always global—fq# near somes;,
and suppose thatg h(ma) > ®p h(ms) for § > By andvice versdor f < f.

Then Theorem 3.2 can be applied under the condition that, outside some small
neighborhoods oms(f) and ma(f) for f ~ fi, N0 magnetizations have a
free energy within€ of the absolute minimum. Fg# 2 f, this stipulation
applies even to the neighborhoodmag(f) and, forg < A, to the neighbor-

hood ofma(f). Then, Theorem 3.2 tells us that in the regipns ft, the
actual magnetization is nears(f), for f ~ f it could be neams or mp, and

for p 2 piitis only nearma(f). On general grounds, as long as the differ-
encema — ms is bounded uniformly away from zero, somewhere nkdnere

has to be a point of phase coexistence.

I =

(3.9)

3.2. Mean-field philosophy

In this section we will state some general facts about spin systems and their
mean-field analogues. The stipulations that govern this section are rather mild;
first we will assume that the Hamiltonian is of the form (1.1) with thg’s
satisfying the conditions of reflection positivity. Second, we will assume that
the associated mean-field free-energy function defined in Eq. (2.8) has a unique
minimizer. Finally, we will investigate the smal¢z behavior of these models.
The preferred viewpoint is a fixed dimensidnwith parameterg—as defined
in Eq. (1.2)—tending to zero &—as defined in Eq. (1.3)—tending tb

We note that special cases (usually restricted to concrete models) have
been addressed elsewhere; see, in particular, Ref. [34] and references therein,



18 Biskup, Chayes and Crawford

but there the only mechanism to forcé — 0 was thed — oo limit which

we find aesthetically somewhat unsatisfactory. Another possibility is to con-
sider the aforementioned Kac limit which more or less boils down to infinite
smearing out of the interaction. A contour-based analysis of this limit has been
carried out, but the technical aspects have so far been overcome only for very
specific models [14-17, 36]. Here we provide a general result in this direction
under the sole condition of reflection positivity.

Theorem 3.3. (Mean-field philosophy) Consider the spin system
as described above and Il€ig, be as in Eq.(2.8). Suppose that the pa-
rametersf > 0 andh e R" are such thatdg ;, has a unique minimizem

on Conv(Q) in Eq. (2.8). Let(J>§f‘)),) be a sequence of coupling constants that

are RP and obey Ed2.1), and Iet(—)%”?1 be a sequence of translation and
rotation-invariant Gibbs states corresponding to these couplings. If the se-

guence of integrals?,, obtained frorr(J@) via Eq.(3.9), satisfies
Iy—> 0 as n— oo, (3.10)

then we have the following facts:

(1) The actual magnetization tendsryi.e.,

(So)M — m. (3.11)

BN nsdo
(2) The energy density tends to its mean-field value, i.e.,
()
((So, Gmo+h)) — E(m), (3.12)

wheremg is as in Eq.(2.3)and E(m) is as in Sect. 2.1.

In particular, in the limit n— oo, the spin variables at distinct sites become
independent with distribution given by the product of the titled measures

e(S’ﬁm+h)_G(ﬁm+h)uo(dS). (3.13)
Here uo is thea priorimeasure.

The preceding—as is the case in much of the principal results of this
paper—reduces (theZ — 0 limit of) the full problem to a detailed study of
the associated mean-field theory. Two specific models will be analyzed in great
detail shortly (see Sects. 3.3 and 3.4); let us mention two other well known (or
well studied) examples.

First are theO(n) spin systems at zero external field. Here e8¢lakes
values on the unit sphere R" with a priori uniform measure. In the mean-
field theory of these models, the scalar magnetizatigf) vanishes fops less
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than somes; while for f > S it is the maximal positive solution of a certain
transcendental equation (see, e.g., Ref. [34]). In particular, this solution rises
continuously from zero according to

Im(B)l = (B — o) 2[C) +0()], B L fe. (3.14)

By Theorem 3.3, the actual magnetization converges to this function but, un-
fortunately, our control is not strong enough to rule out the possibility of small
discontinuities (which vanish ag — 0).

A less well known but very interesting example is theic modelvhere
the spins point to the center of a face onradimensional unit hypercube,
i.e.,Sx € Q = {£&,...,x&}. Forr > 3 the transition in this model is
first order (and was analyzed in Ref. [11]). The case- 2 reduces to an
Ising system but the borderline case= 3, while still continuous, features
a somewhat anomalous (namely, tricritical) behavior. Indeed, for this system,
the mean-field magnetization obeys

Im(B) = (B —Bo)“[C+0D)], B L (3.15)

wheref. = 3. Once again, the actual magnetization converges to such a func-
tion but the control is not sufficient to rule out small discontinuities.

While these sorts of results do not estabksty critical behavior in par-
ticular systems, they could represent a first step in proving that a variety of
(mean-field) critical behaviors are possible.

3.3. Results for the Potts model

Our first result concerns the zero-fietgstate Potts model witly > 3.
Let F (B, h) denote the free energy of the Potts model with the Hamiltonian
in Eq. (2.10) and lein,(p) be the quantity

0
oh+

(An alternative definition ofn, () would be the limiting probability that the
spin at the origin is “1” in the state generated by the boundary spins all set
to “1.”) Let myr = mye(B) be related to the maximal positive soluti@rof

Eq. (2.16) bymye = qT_le. Then we have:

1
F(8, h) o g (3.16)

m*(ﬁ) =

Theorem 3.4. Letq > 3 be fixed. For eacla > O there exist$ > 0
with the following property: For any d> 1 and any collection of coupling
constantg Jy y) on 74 that are RP, obey2.1)and for which the integral? in
Eq.(3.9)satisfiess < ¢, there exists a numbégik € (0, oo) such that

Bt — Bll < € (3.17)
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holds and such that the physical magnetizatign=anm, () of the correspond-
ing g-state Potts model obeys the bounds

m.(B) <e for B <pi (3.18)

and
My (B) —mye(B)| <e for B> B (3.19)

In particular, whenever the integra¥ is sufficiently smallg — m,(8) under-
goes a jump near the vall,@f,‘ﬂé. A similar jump occurs (at the same point) in
the energy density.

This statement extends Theorem 2.1 of Ref. [11] to a class of spread-out
RP interactions. (A minor technical innovation is that the bound in Eq. (3.19)
holds uniformly.) As a consequence, we are finally able to provide examples of
interactions for which thg = 3 state Potts models in dimensidrn= 3 can be
proved to have a first-order transition. Similar conclusion holds foq at 3
but, unfortunately, our requirements on the “smallness” of the corresponding
parameters are not uniform

Ind = 1, we show that the long-range Potts models with power-law de-
caying interactions go first order once the exponent of the power-decay is be-
tween one and two. Models in this category have been studied in Ref. [40] in
the context of percolation; the domination techniques of, e.g., Ref. [3] then im-
ply the existence of a low temperature phase. However, the percolation-based
approach alone is unable to tell whether the transition is discontinuous or not.
Some additional discussion is provided in Sect. 3.5.

Our next item of interest will be the same system in an external field, as
described by the full Hamiltonian (2.10). For reasons alluded to in Sect. 2.2,
we will restrict our attention to thg > 4 cases.

Theorem 3.5. Letg > 4 be fixed and let us consider the g-state Potts
model with coupling constants J that are RP and obey E@2.1). Then there
existsdp > 0 and a function §: (0, dg]— [0, h¢), where h is as in Eq.(2.18),
such that if (3.9) obeys.Z < ¢§ with somed < dp, then there exists a func-
tion Si: (—o0, hg) — (0, oo) with the following properties:

(1) A first-order transition (accompanied by a discontinuity in the energy
density and the magnetization) occurs at the parameters;(h)), for
any external field ke (—o0, ho).

(2) Letm(p, h) be the “spin-1 density” defined by the right partial deriva-
tive ahi+F(ﬁ, h). Then there exists anth= hi(d) < 0 such that
h — m, (8, h) has a discontinuity at field strengthsuch thaps = g(h)
provided thath € (hy, ho).
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The function i is decresing while his increasing. Moreovetims;oho(d) =
hc andlimgw h1(5) = —OQ.

The second part of the theorem asserts that, even if state “1” is suppressed
by the field, the order-disorder transition will be felt by the “spin-1 density”
m,.(5, h). There is no doubt in our mind that the restrictiorhte> h1 in this
claim is only of technical nature. Our lack of control fovery large negative
stems from the fact that the jump in the mean-field counterpam,gf, h)
decreases exponentially with) ash — —oo. Theorems 3.4 and 3.5 are
proved in Sect. 6.

3.4. Results for the Blume-Capel model

The Blume-Capel model is a system whose spipgake values in the set
Q = {—1,0, 1} with a priori equal weights. The Hamiltonian is given most
naturally in the form

pA (@)= D, hylox—0yp? =4 (@:0°=hD ox.  (3.20)
x,y) X X

As is easy to see, a temporary inclusion of the terms proportiorakis into
the single-spin measure shows that this Hamiltonian is indeed of the general
formin Eq. (1.1).

If we consider the situation at zero temperatyse=£ oo) with A andh
finite we see that in thél, h)-plane there are three regions of constant spin
which minimize f.7¢ (o). The regions all meet at the poiht= 0, 4 = 0;
tentatively we will call the origin a triple point (and the lines phase boundaries).
Ostensibly one would wish to establish that this entire picture persists at finite
temperature. However, we will confine attention to the lne 0 which is of
the greatest interest. We will show, both in the context of mean-field theory
and, subsequently, realistic systems that there is indeed a finite temperature
first order transition at som& (). Of significance is the fact that this occurs
at a ¢ which is strictly positive; i.e., for 1<« S < oo, the pointA = 0 lies
inside the phase which is dominated by zeros.

We remark that results of this sort are far from new; indeed the proof
of this and similar results represented one of the early triumphs of low tem-
perature techniques Ref. [46]. The physical reason behind the shifting of the
phase boundary is the enhanced ability of the “zero” phase over the plus and
minus phases to harbor elementary excitations. Interestingly, in spite of the
fact that our method relies osuppressiorof fluctuations, the corresponding
entropic stabilization is nevertheless manifest in our derivation. In addition,
while the contour-based approaches require a non-trivial amount of “low tem-
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perature labor” to ensure that the interactions between excitations are limited,
our methods effortlessly incorporate whatever interactions may be present.

To simplify our discussion, from now on we will focus on the situation
at zero external field, i.eh = 0, and suppress from the notation. First let
us take a look at the mean-field theory. Here we find it useful to express the
relevant quantities in terms of mole fractioxs xp, X—1 of the three spin states
in Q. To within an irrelevant constant, the mean-field free-energy function is

Dp ; = 4fX1X_1 + fXo(1 — Xg) + AXo + Z Xy l0g X, . (3.21)
oc=+1,0

Here we have used the fact that+ xo+ x_1 = 1. Our main result concerning
the mean-field theory of the Blume-Capel model is now as follows:

Theorem 3.6. Forall # > Oandalli € R, all local minima ofdg ;
obey the equations

x &1 = x_ e = xpef(1=20+4 (3.22)

Moreover, there exists figp < oo such that for allp > So, any such (local)
minimum is of the form that two component$xaf xp, X_1) are very near zero
and the remaining one is near one. Explicitly, there exists a constaat#o
such that

(1) If Xp is the dominant index, then x= x_1 = %(1 — Xp) and we have
that (1 — Xg) < Ce™#+4,

(2) If x1 is the dominant index, then.x < Ce~* while x < Ce /=4, A
corresponding statement is true for the situation wheqnig dominant.

Furthermore, consider two local minima g6, 1), one dominated bygxand
the other dominated by;x Let ¢o(f5, 1) be the mean-field free energy corre-
sponding to the former minimum and &it(5, 1) be that corresponding to the
latter minimum. Then

$o(B, 1) — ¢1(B, 2) = . —e T 1 O(pe™ ) (3.23)

where Qfe~?#) denotes a quantity bounded by a constant tigfies? for
all A in a neighborhood of the origin. In particular, for alt sufficiently large
there existsimr(8) = e~ + O(pe?#) such that the global minimizes &fs ,
have x.1 < 1for A < Amp(p) and <« 1for A > Amp(f).

Theorem 3.6 is proved in Sect. 5.1. Next we will draw our basic conclu-
sions about the actual system:
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Theorem 3.7.  Consider the Blume-Capel model in E¢3.20), with
zero field (h= 0), inverse temperaturg and the coupling constanigl,y)
that are RP and obey E@2.1). Let.# be the integral in Eq(3.9). There exist
constantsfy e (0, oo) and C < oo such that ifp > o andf.# « €77, then
there is a functiori: [B1, f2]— R satisfying|A:(8) — e~#| < f.# such that
any translation-invariant Gibbs state-)z , obeys

(1) (o2)p, < CePif A < (),
(2) (02)p, >1—CePif 2> L(p).

Moreover, at. = 4¢(f), there exist three distinct, translation-invariant Gibbs
states(—);‘u, with o € {+1, 0, —1}, the typical configuration of which con-

tains fraction at leas. — Ce™# of the corresponding spin state.

We remark that the phase transition happens at a valugvbich (at least
for > 1) is strictly positive. This demonstrates the phenomenon of entropic
suppression (of-1 ground states &t = 0) established previously in Ref. [46]
by the contour-expansion techniques. The entropic nature of the above transi-
tion is also manifested by the fact that the free-energy “gap” separating the
distinct statedecreasesasff — oo. This is the reason why, to maintain
uniform level of control, we need” to be smaller for smaller temperatures.
Theorem 3.7 is proved in Sect. 6.

3.5. Discussion

We close this section with a discussion of some conjectures that can be ad-
dressed via the above theorems.

Starting with the intriguing results in Ref. [31] and culminating in
Refs. [32,33], A. Kerimov formulated the following conjecture (we quote ver-
batim from the latter pair of references): “Any one-dimensional model with
discrete (at most countable) spin space and with a unique ground state has a
unique Gibbs state if the spin space of this model is finite or the potential of this
model is translationally invariant.” The conclusions of Theorem 3.4 manifestly
demonstrate that this conjecture fails for the 1D Potts model in external field.
Indeed, forg > 3, h > 0 and interactions decaying like'®® with s € (1, 2)
which are RP and satisfy the condition that the integral in Eq. (3.9) is suffi-
ciently small, the Potts model has phase coexistence at some positive tempera-
ture. However, it is clear that this system enjoys a unique ground state.

In a recent paper [4], N. Berger considered random-cluster models with
parameteiq and interactions between sitgsand y decaying agx — y| 5,
whered < s < 2d. He proved, among other results, that at the percola-
tion threshold there is no infinite cluster in the measure generated by the free
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boundary conditions. For ordinary percolation (igg+= 1), this implies con-
tinuity of the infinite cluster density. As to the wired boundary conditions,
for g = 2—i.e., the Ising model—the classic results of Refs. [1, 2] show that
the magnetization vanishes continuously once the model is in the “mean-field
regime”s e (1, 3»). However, for general random-cluster models vejtly 1

and wired boundary conditions, the situation remained open.

While we cannot quite resolve the situatianthe percolation threshold,
our results prove that, for sufficiently spread out random-cluster models with
RP couplings, there is a point where the free and wired densities are indeed
different. To resolve the full conjecture from Ref. [4], one would need to es-
tablish that the only place such a discontinuity can occur is at the percolation
threshold.

Our third application concerns the problem of partition function zeros of
the Potts model in @omplexexternal field with Rén < 0. Here there have
been numerical results [35] claiming that no such zeros occur for the nearest-
neighbor 2D Potts model with < 7. On the basis of the classic Lee-Yang
theory [38, 49], absence of such zeros would imply analyticity of the spin-1
density. The results of Refs. [5, 6, 8-10] rule this out dowery large and
Theorem 3.5(2) also makes this impossible for reasonable valuparaf suf-
ficiently spread-out interactions (of course, b= 1, 2 this requires a power-
law interaction).

4. PROOFS: GENERAL THEORY

The goal of this section is to prove Theorems 3.2 and 3.3. In Sect. 4.1 we
present some general convexity results that provide the framework for the
derivation of our results. However, the driving force of our proofs are the clas-
sic tools of reflection positivity and infrared bounds which are reviewed (and
further developed) in Sects. 4.2 and 4.3. The principal results of this section
are Theorem 4.1 and Lemmas 4.2, 4.8 and 4.9.

4.1. Convexity bounds

We begin with an intermediate step to Theorem 3.2 which gives an estimate on
how far above the mean-field free energy evaluatedpaitysicalmagnetization
is from the absolute minimum.

Theorem 4.1.  SupposgJy,y) are translation and rotation invariant
couplings onZY such that Eq.(2.1) holds. Letvgh be a translation and
rotation-invariant, infinite volume Gibbs measure correspondinggte> 0
andh € R". Let(-) s,h denote the expectation with respectutp, and let
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m, = (So)p,h. Then

Qg n(m,) < inf\m) @ n(m) + {—;{((So, mo))ﬁ’h — |m*|2}, (4.1)

meCon

wheremg = >, .7d Jo,xSx.

Proof. The proof is very similar to that of Theoreml1lof Ref. [11].
Let A be aboxofL x - - - x L sites inZ4 and letM  be the total spinin\, i.e.,
Ma = D 4ca Sx. Letus also recall the meaning of the mean-field quantities
from (2.6—2.8). The starting point of our derivations is the formula

g AGDb) _ (e(b,M A)+B AN (SAISAC) ZA(SAC)) beR", (4.2)

B.h
which is obtained by invoking the DLR conditions for the Gibbs sigi@.
Here 77\ (Sp|Sac) is as in EQ. (3.1) and A (Spc) is a shorthand for the parti-
tion function inA givenSxc.

The goal is to derive a lower bound on the right-hand side of Eq. (4.2).
First we provide a lower bound ol (Spc) which is independent of bound-
ary conditions. To this end, lét-)op denote expectation with respect to the
product measure

e®MDTINEO T 11o(dSy) (4.3)
XeA

and letmy, denote the expectation of any spinArwith respect to this measure.
Jensen’s inequality then gives us

ZA(SAC) = e|A|G(b)<e_(b,M/\)—ﬂ<%0/\ (SAISAC)>

> elAMIGD)—(b,mp)] o= (BH#A(SAISA))op @9

Now, (2.6-2.7) imply thatG(b) — (b, mp) = S(myp), while the absolute
summability ofx — Jox implies that for alle > 0 there is aC; < oo,
depending o, the Jx y's and the diameter a2, so that

~(BAN(SAISAO)) g, = IAIE(MD) — Be|Al = BCalOAl,  (4.5)

with E(my) denoting the mean-field energy function from Sect. 2.1. (Note
that we used also the normalization condition (2.1).) Invoking Eq. (2.8) and
optimizing over allb € R", we thus get

ZA(Spc) > g~ |AIFwr (B, —fel Al=fCaloAl (4.6)

whereFvr(f, h) is the absolute minimum ab; (M) over allm € Conv(£2).
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Having established the desired lower bound on the partition function, we
now plug the result into Eq. (4.2) to get

AICE) 5 (@DMOTALASAS) g IAIFUEAI—AAI-ACAI - (4.7)

The expectation can again be moved to the exponent using Jensen’s inequality,
now taken with respect to measurgy. Invoking the translation and rotation
invariance of this Gibbs state, bounds similar to Eg. (4.5) imply

(ﬁt%ﬂA(SMSAC))ﬂ,h
> —IAI( > gJO,x((Sx, o))y + (h.my) — 6) — C2loA]. (4.8)
xeZd

Plugging this back into Eq. (4.7), taking logarithms, dividing lay and letting
|A| = oo (with |6A]/|A] — 0) followed bye |, 0, we arrive at the bound

G(b) — (0. m,) = ~5 > J0.{(Sc. S0, — (M) — Fue(B. ). (49)

xezd

Optimizing overb gives

p
Sm,) = (h,m.) <5 > Jox((Sc: o))y, + Fur (8, h) (4.10)
xezd
from which Eq. (4.1) follows by subtractir|%|m*|2 on both sides. |

Similar convexity estimates allow us to establish also the following
bounds between the energy density and fluctuations of the weighted magne-
tizationmg:

Lemma4.2. Letk = sups.o(S,S) and let(Jx,y) be a collection of
couplings satisfying Eq2.1). For eachp > 0 andh e R" there exists a
numbern: = s(f, h) such that for any translation and rotation invariant Gibbs
state(—)s,n we have

Br{Imo —mul?), | < ((So, M), = IMul? < B (Imo — m. %), (4.11)
wheremg = >, 74 Jox andm, = (So) g n.

Proof. We begin with a rewrite of the correlation function in the middle
of EqQ. (4.11). First, using the DLR equations to condition on the spins in the
complement of the origin, we have

((mo, so))ﬁ,h = ((mo, VG(Bmo + h))ﬁ’h. (4.12)
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Next, our hypotheses imply that, = (mg)gnh = (VG(Smg + h)) g n, and so

((mo, VG (Mo + h)), = Im,J?
= ((mg — m,, VG(Bmg + h) — VG(Bm, + h)))ﬁ’h. (4.13)

For the rest of this proof, lef abbreviate the inner product in the expectation
on the right-hand side.
We will express=' using the mean value theorem

Z = (mg—m,, [VVG(b)](mo — m,)), (4.14)

whereb is a point somewhere on the line betwegmo + h and fm, + h.
The double gradienVVG(b) is a matrix with componentéVVG(b))i ; =
<Sg')3()”)o,b — (S()')>o,b($()”)o,b- As was shown in Ref. [11], thé&?-operator
norm of VVG(b) is bounded by = sups.o(S, S) and so we have

Z < BrImo—m,|?. (4.15)

Taking expectations on both sides, and invoking Egs. (4.12—-4.13), this proves
the upper bound in Eq. (4.11).

To get the lower bound we note thaty almost surely, the double gra-
dientVVG(b) is positive definite on the linear subspace generated by vectors
from Q. (We are using tha® is the support of tha priori measureug.) Since
pmo + h takes values in a compact subset of this subspace, we have

5 > Br|mo — m,|? (4.16)
for some (existential) constant > 0. Taking expectations, the left inequality
in (4.11) follows. 1

We emphasize that in its present form, the bounds (4.1) and (4.11) are es-
sentially of complete generality. Underlying most of the derivations in this pa-
per is the observation that the variance term on the right-hand side of Eq. (4.11)
is sufficiently small. Via Eq. (4.1), the physical magnetizationis then forced
to be near one of the near minima of the mean-field free energy. This reduces
the problem of proving discontinuous phase transitions to:

(1) controlling the variance term in Eq. (4.11),
(2) adetailed analysis of the minimizers®df p,.

For (1), we will use the method of reflection positivity/infrared bounds dis-
cussed in the following subsections. As mentioned before, this does impose
some restrictions on our interactions and our Gibbs states. Part (2) is model
specific and, for the Potts and Blume-Capel models, is the subject of Sect. 5.
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4.2. Reflection positivity

Our use of reflection positivity (RP) will require that we temporarily restrict our
model to the toru§| of L x --- x L sites. In order to define the interaction
potential on this torus, we recall that tlig y's are translation invariant and
define their “periodized” version by

J)ELy) = Z Ix.y+Lzs (4.17)

ze7d

whereL z is the site whose coordinates dremultiples of those of. The torus
version of the Hamiltonian (1.1) is then defined by

BAS) == D BEE(SHSy) — D (S h. (4.18)
(X,y) xeTL
x,yeT
(Here, as in Eq. (1.1), the first sum is over all unordered pairs of sites.)
Let P, denote the Gibbs measure @1t whose Radon-Nikodym derivative
with respect to the priori spin distributionuo(dS) is the properly normal-
ized e A7),

Let us suppose thdt is even and let us temporarily regdifgd as a pe-
riodized box{1, ..., L}9. Let ’JI‘J[ be those sites whoseth coordinate ranges
between 1 and./2 and letT, be the remaining sites. The two parts of the
torus are related to each other by a reflection in the “hyperpl&niat sepa-
rates the two halves from each other. (The geometrical image of the plane has
two components.) Given such a plaRe we Ietﬁ;r denote ther-algebra of
events that depend on the configuratiofTjn, and similarly for.#5 andT; .

Let ¥p denote the reflection takin@,” onto T, andvice versa(cf. the
definition of ¥ ® in Sect. 3.1). In the natural wayp induces an operataty
on the set of real-valued functions 2™t). Then we have:

Definition 4.3. (RP on torus) We say thaiP_ is reflection positive
if for every planeP as described above and any two bouncﬁ’g‘,—measurable
random variableX andY,

EL (X95(Y)) = EL (YO5(X)) (4.19)

and
EL (Xﬁg(X)) > 0. (4.20)

HereE, is the expectation with respecti .

Condition (4.20) in the above definition is often too complicated to be
verified directly. Instead we verify a convenient sufficient condition which we
will state next:



Mean-field driven first-order phase transitions 29

Lemma 4.4.  Consider a collection of coupling constart y)y yezd
satisfying the properties of Definition 3.1 in Sect. 3.1. Then the medsyre
defined ol using the periodized coupling constants from EQl17) is re-
flection positive in the sense of Definition 4.3.

Proof. This is a multidimensional version of Proposition 3.4 of [22]}

Remark 4.5. We note that the three classes of interactions listed in
Sect. 1.2 are reflection positive. For the most part, interactions of this sort
were discussed in Ref. [22]; however, for reader’s convenience, we provide the
relevant calculations below.

(1) Nearest-neighbor/next-nearest neighbor couplings: Consider a func-

tion f: Hy — C which is nonzero only on the sites &f; that are adjacent

to 9 \ Hy. (By inspection of Eq. (3.6), for nearest and next-nearest neigh-
bor interactions, this is the most general function that need to be considered.)
Pick 7 € R and consider the function

gi(xX) = f(x) + nf(x+ &), j=2,...,d, (4.21)

and define a collection of coupling constafdg y) by the formula

Dy fOf@Pyy = > > gi(0gj(x) (4.22)
XxeHq j=2 ..... d xeHq
yeZ4\ Hy

Now the right-hand side is clearly positive and so fhe's satisfy the condi-
tion in Eqg. (3.6).

It remains to identify the explicit form of these coupling constants.
Let x € Hj be a boundary site and let = 9 x be its nearest neighbor
in Z4 \ Hy. First we note that, for eack and j, there is an interaction of
“strength”  betweenx and its next-nearest neighbrf + & and a similar
interaction between and the sitex’ — &j. So, the next-nearest neighbors
have coupling strength. As to the nearest-neighbor terms, for a fixednd
fixed j, there is the direct interaction witkl of strength 1 and there is a term
of strengthy2. Thus, upon summing, the nearest-neighbor interaction has total
strength(d — 1)(1 + 7?).

Since the overall strength of the interaction is irrelevant, the ratio of the
strength of the next-nearest neighbor to the nearest-neighbor couplings has to

be a number of the forrﬁf—l ng which, in particular, permits any ratio whose

absolute value is bounded laydl_—l).

(2) Yukawa potentials: Reflection positivity for the Yukawa potentials can be
shown by applying the criterion from Lemma 4.4: Fix> 0 and let)y y =
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e~ #Ix=Yl1 Then for any observablé: H; — R,

> dyfofly)
XeHy
yeZd\H;

- 3 ko Zemiw)(Xemim). @2

X2,...,Xd€Z X1>0 y1>0

where the operator kernef : Z9-1 — 79-1 is defined byK(x,y) =
exp{—u Z?=2|xj — yjl}. This operator is symmetric and diagonal in the
Fourier basis; a direct calculation shows tlkathas only positive eigenval-
ues. This means that the right-hand side is non-negative, proving condition (3)
of Definition 3.1. (The other conditions are readily checked as well.)

(3) Power-laws: We begin by noting that all conditions ady y in Defini-

tion 3.1 are linear inJyy. Therefore, any linear combination of reflection
positive Jy y's with non-negative coefficients is also reflection positive. In par-
ticular, if we integrate a one parameter family of interactions against a positive
measure, the result must also be RP. Now if we let

o0
Iy = / uS~lte#X=Yhd,  fors > 0, (4.24)
0

thenJy y = C(s)|x — y|;S and so the power laws are RP as well.

We observe that in the classics, particularly, Refs. [22,23], the above types
of interactions are treated and the RP properties established with all distances
expressed iff2-norms. The derivations therein all rely, to some extent, on lat-
ticization of the field-theoretic counterparts to reflection positivity which were,
perhaps, better known in their heyday. Gurderivations, while being a more
pedestrian method of extension frain= 1, have the advantage that they are
self-contained.

4.3. Infrared bounds

Our principal reason for introducing reflection positivity is to establish an upper
bound on the two point correlation term in Theorem 4.1. This will be achieved
by invoking the connection between reflection positivity and infrared bounds.
For spin systems this connection goes back to Ref. [24] where infrared bounds
were used to provide proofs of phase coexistence in certain continuous-spin
models at low temperature. Here we will follow the strategy of Ref. [11], and
so we will keep our discussion brief.

In order to apply infrared bounds to the problem at hand we must first
restrict consideration to those Gibbs states with the following two properties:
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Property 1. (Torus state) An infinite volume Gibbs measurg is
called atorus statef it can be obtained as a weak limit of finite-volume states
with periodic boundary conditions. (The torus states need not correspond ex-
actly to the valueg andh.)

Property 2. (Block averages) An infinite volume Gibbs mea-
surevg  is said to havéblock average magnetization, if

1
lim — =m,, v h-almost surely. 4.25
ATZS |A| ZSX * £,h Y ( )

Similarly, the measure is said to hallock average energy densay if

i 1
lim —~ Z Iy (Sx, Sy) =&, vg.h-almost surely. (4.26)

(x,y)
X, yeA

Here in Egs. (4.25-4.26) the limits are along increasing sequences of square
boxes centered at the origin.

It is conceivable that not every (extremal) Gibbs state will obey these re-
strictions, so the reader might wonder how we are going to detect the desired
phase transitions. We will use an approximation argument which goes back to
Ref. [11]. Recall the definition of the se#, (S, h) of “extremal magnetiza-
tions” from the paragraph before Theorem 3.2. Then we have:

Lemma4.6. Forall > 0,heR"andallm, € .Z. (8, h), there ex-
ists an infinite volume Gibbs statg , for interaction(1.1) which obeys Prop-
erties 1 and 2.

Proof. This is, more or less, Corollary 3.4 from Ref. [11] enhanced to
include the block average energy densityl

Our next goal is to show that the right-hand side of Eq. (4.1) can be
controlled for any Gibbs state satisfying Properties 1 and 2. To this end let
D~1(x, y) denote the inverse of the (weighted) Dirichlet lattice Laplacian de-
fined using thely y's. Explicitly, we have

dk ek x=y)
D1 = S 4.27
il /[_n,n]d (27)9 1 — J(k) (4-27)

whereJ(k) = 3, .,¢ Jo.x€**. We will always work under the conditions for
which the integral is convergent. Our principal estimate is now as follows:
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Lemma 4.7. (Infrared bound) ~ Assume that k> (1 — J(k))~tis
Riemann integrable. FiY > 0, h € R" and letvg y be an infinite-volume
Gibbs measure for interactiail.1)that satisfies Properties 1 and 2. Let) s
denote the expectation with respectulg, and let n be the dimension of the
underlying spin space. Then the bound

> odyl(Sc— M Sy = m) < 2 S oiyDHX,y)  (4.28)

x,yeZd x,yeZd

holds for allv: Z9 > C such thatd_, .4 [ox| < o0.

Proof. As this lemma and its proof are similar to Lemma 3.2 of Ref. [11]
we will stay very brief. LetJ)E,Ly) denote the periodized interactions correspond-
ing to the torusT_ and let

2 2

[:{(—nnl,...,—nnd):lgni < L} (4.29)
L L

be the reciprocal torus. Itis easy to see thakthle Fourier componeni® (k)

of the J{)'s satisfiesi (L) (k) = J(k) for all k € T;. This means that the in-

verse Dirichlet Laplacian ofi_ can be written in terms of the original coupling

constants, i.e.,

eik'(x_y)

>
Ll keT; {0} 1-J

D x,y) = (4.30)

The infrared bound of Ref. [22] then says that, for any Gibbs $ta)t%% onT.
we have

> (e SOy, S < 5 2 (mWyDxy)  (43D)

x,yeZd x,yeZd

for any absolutely summable collection of complex vect@vsy), .
with Rewy, Imwy € R"and>’, .. wy = 0.

Now let us consider a torus statg, with almost-surely constant block
magnetization. We will first prove thai; ,, satisfies thel — oo version of
Eq. (4.31). By the assumption on the Riemann mtegrablllty—dja‘(?

DE (X: y) L——>_)OO D_l(X> y)’ (432)

independently ok, y. Letting allwy be parallel, i.e.wx = wx€, whereg is a
unit vector inR", and passing to the limlt — oo, we thus get

D iy ((Sx, sy)ﬁh_ > wxyDTHX,y)  (4.33)

x,yezd x,yezd

B
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wheneven: Z9 — C is absolutely summable arjd,, ;4 wx = O.

In order to make then,’s appear explicitly on the left-hand side, we need
to relax the condition on the total sum of thg's. Under the condition in
Property 2, this is done exactly as in Lemma 3.2 of Ref. [11}.

4.4. Actual proofs

A key consequence of the infrared bound is the following estimate on the vari-
ance of the quantityng = >, .4 Jo.xSx:

Lemma 4.8. (Variance bound) Consider a collection(Jy y) of
coupling constants that are RP and obey E2.1), and let.# be the inte-
gralin Eq.(3.9). Let(—)g n be a translation and rotation invariant Gibbs state
satisfying Properties 1 and 2 and let, = (Sp)s,h. Then

B {Imo — m*lz)ﬁ)h <ns. (4.34)

Proof. We have to show how the bound (4.28) is used to estimate the
variance ofmg. Let (vx) be defined byyx = Jox. Using Lemma 4.7 and
Lemma 4.6, for any—) s as above, this choice of thg’s leads to the variance
of mg on the left-hand side of Eq. (4.28), while on the right-hand side the sum
turns into the integral?. |

The proof of Theorem 3.2 is now reduced to two lines:

Proof of Theorem 3.2. Combining Lemmas 4.6 and 4.8 with
Egs. (4.11) and (4.1), we obtain Egs. (3.8-3.91

Armed with the conclusions of Theorem 3.2, we can now finish also the
proof of Theorem 3.3:

Proof of Theorem 3.3. In light of the previous derivations, the claims
in Theorem 3.3 are hardly surprising. The difficulty to be overcome is the
fact that the limits in Egs. (3.11-3.12) are claimed for sequencasyadtates,
regardless of whether they obey Properties 1 and 2 above.

We begin with the proof of part (1); namely, Eq. (3.11). Simees the
unique minimizer ofdy 1, for eache > 0 there exist$ > 0 such that

{m’ e Conv(Q): ®pn(m’) < Fmr(B, h) + 6} (4.35)

is contained in a ball/.(m) of radius e centered atm. By Eq. (3.8),
oncepn%s.s < 4, all of ., (8, h) must be contained in this ball. Bu#, (8, h)
is the set of extremal magnetizations, and any magnetizatiotihat can be
achieved in a translation-invariant state is thus in the convex hu#ois, h).
It follows thatm’ € U/ (m), proving Eq. (3.11).
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To prove Eq. (3.12), letd,, m,] be an extremal pair iz, (5, h). (See the
discussion prior to Theorem 3.2 for the definition of these objects.j-+gfn
be a translation and rotation invariant state for which

& =((So, 5Mo+h)),,, and m,. = (Sohsn (4.36)

and suppose the state satisfies Properties 1 and 2. (The existence of such a state
is guaranteed by Lemma 4.6.) Combining Egs. (4.11) and (4.34), we get

0 < {(So. o)) 5, = Im,|? < kn.7, (4.37)

and so, invoking the result of part (1) of this theoresn,s close toE(m,)
once.7 is sufficiently small. But this is true for all extremal pairs.ifi. (S, h)
and so it must be true fall pairs in.Z.(f, h). Hence J#. (4, h) shrinks to a
single point as# |, 0, which is what is claimed in part (2) of the theorem.

To conclude the proof of the theorem, we need to show that the spin
configuration converges in distribution to a product measure. Applying the
DLR conditions, the conditional distribution & given a spin configuration
inzd\ {0} is

e(So.fmoth) =G (fmoth) |, 0 (4sy), (4.38)

i.e., the distribution ofSy depends on the rest of the spin configuration only
viamp = >, d Jo.xSx. Hence, it clearly suffices to show thap converges

to m—the unique minimizer ofb s »—in probability. But this is a direct con-
sequence of the convexity bound on the left-hand side of Eq. (4.11) which tells
us that, once the magnetization and energy density converge to their mean-field
values, the variance ofg tends to zero. |

While we cannot generally prove that, in systems with interaction (1.1)
the magnetization increases wghthe estimates in the previous proof provide
a bound on how bad the non-monotonicity can be:

Lemma 4.9. (Near monotonicity of magnetization) Let (Jx,y)
be coupling constants that are RP and obey E4l1), and let.# be the in-
tegral in EQ.(3.9). Letp < p’ and letm, € Z.(f,h) andm’, € .Z. (5, h).
Then we have:

Im,|? < |m. |2+ «n.7. (4.39)

Proof. Let (—)sh and (—)p nh be (translation and rotation invariant)

states satisfying Properties 1 and 2 in which the above magnetizations are
achieved. (Such states exist by Lemma 4.6.) By Eq. (4.11) we have

((So, M) 5, = IM.2, (4.40)
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and Egs. (4.11) and (4.37) yield
((So, o)) 5., < IMJ? + k.7 (4.41)

But the quantities on the left are, more or less, derivatives of the physical free
energy with respect tg (in the parametrization introduce in Eq. (1.1)). Hence,
standard convexity arguments give us

((SO> mO))ﬁ’,h > <(SO, mO))ﬁ,h' (4.42)

Combining these inequalities the claim follows|j

4.5. Bounds for specific interactions

Having presented the main theorem, we now argue that by appropriately ad-
justing the parameterg ands in the Yukawa and power law terms of an in-
teraction, one can make the integrdlas small as desired. We begin with a
general criterion along these lines:

Proposition 4.10. Let(J@) be a family of translation and reflection-
invariant couplings depending on a paramefer Assume that the ﬁ/? obey

Eqg.(2.1)and letJ; (k) = > ezd Ju)e'k X be the Fourier components. Suppose
that the following two condltlons are true:

(1) There exists @ > 0 and a constant C> 0 such that for all sufficiently
small 4, we have

1—J,(k)
W >C, ke[-m, x]%\{0}. (4.43)

(2) Thef2-norm of(Jéf;()) tends to zeroas — 0, i.e.,

lim > [32] =o0. (4.44)

Then we have:

lim

4.45
A—0 ( )

/ dk |5 0PF
gt @091 5,k

Proof. Note that, by Eq. (2.1) and condition (1) above we hay@) = 1
and J;(k) < 1 forallk # 0. (The reflection invariance guarantees thats
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an even and real function &f) First we will bound the part of the integral
corresponding t& ~ 0. To that end we pick > 0 and estimate

dk 13012 / dk 1 5
=S —— = CqI°, 4.46
/|k|<r @0)91— 5,k ~ Jer @o)ECKE T (4.46)

whereCy, = C1(4,d, C) < . Ngxt we will attend to the rest of the integral.
Let M(r) be the supremum @fL— J; (k)) "L overallk € [—z, z]9 with |k| > r.
By condition (1) above, we have thist(r) < %r‘s‘d. Therefore,

dk TP _ (2
[ 4.47
Ae[—n n]d (2r)d1 - ], (k) M )xéi ’ ( )

where we also used Parseval’s identity. By condition (2) above, this vanishes
asi — 0, while the integral in (4.46) can be made as small as desired by
lettingr | 0. From here the claim follows. |

Now we apply the above lemma to our specific interactions. We begin
with the Yukawa potentials:

Lemma4.11. Let (J(")) be the Yukawa interactions with parame-
ter u—as described in Sect. 1.2—and suppose these are adjusted so that
Eq. (2.1) holds. Ther(J(")) obey conditions (1) and (2) of Proposition 4.10
asu | Owith o = d — 2. Consequently, in dimensions> 3, the correspond-
ing integral in Eqg.(3.9)tends to zero ag | 0.

Proof. Let (J(")) be as above and 16}, denote the Fourier transform. In
order to handle the overall normalization effectively, we introduce the quantity
Cu by Cuu® Yy 0e7#™t = 1 and note thaC, converges to a finite and
positive limit asi | 0. From here we check that t#é-norm in Eq. (4.44)
scales ag 9 and so condition (2) of Proposition 4.10 follows.

It remains to prove that + JAﬂ (k) is bounded from below by a positive
constant timegk|2, wherelk| denotes thé&2-norm ofk. First we claim that for
all > O there exists a constaAt < oo such that for alk € [—z, z]9,

Juk<1—n, |k > Au (4.48)

Indeed, an explicit calculation gives us

||:]a

jﬂ(k) = ,UdC/J Ze—,ulxh—i—ikx < ,u

X#0 { —e ﬂ+"‘ } (4.49)

where we first neglected the condltltxn;é 0, then wrote the result as the
product over lattice directions and, finally, threw away some negative constants
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from each term in the product (the real parts are positive). Introducing the
abbreviationsa = €7#, ¢ = 1 —aandAj = 1 — cogk;), thee-multiple of
the j-th term in the product is now

1 _62+aAje

€ Re = )
1—e#Hk €24 2aA;

(4.50)

Now if €2 > Aj the right-hand side is less thantlae, while if €2 < Aj, then

itis less thanr+%g—zj, whichis< 1 oncec? « Aj. Going back to Eq. (4.49),

if at least one component &fexceeds large constant timegwhich is itself of
ordere), then the right-hand side of Eq. (4.49) is small. This proves Eq. (4.48)
for u small; for all otheru this holds existentially.

The condition (4.48) implies Eq. (4.44) ftf > Au. As for the comple-
mentary values ok, here we pick a small numbérand write

1- 3,k = Cuu® D e M1 —cogk-x)]. (4.51)

x#0
[X]1<60/u

By the fact thatk| < Au, the conditionx|1 < 8/u (with 6 sufficiently small)
implies that 1— cogk - x) > c(k - x) for somec > 0. Plugging this into

Eq. (4.51) and using that the domain of the sum is invariant under reflection
of any component of, the result will be proportional tik|2. The constant of
proportionality is of ordep: ~? and so condition (1) is finally proved. i

Next we attend to the power laws:

Lemma 4.12. Let (Jf‘g,) be the power-law interactions with expo-
nent s> d—see Sect. 1.2—and suppose these are adjusted so th@ Bq.
holds. Ther(Jf‘z,) obey conditions (1) and (2) of Proposition 4.10 ag
with anyé < d. Consequently, the corresponding integral in E319) tends to
zeroass, dinalld > 1.

Proof. Our first item of business will again be the overall normalization.
Let Cs be the constant defined by

Cs(s—d) D IxI7°=1. (4.52)
X#£0

As is not hard to checkCs tends to a positive and finite limit as | d.
Since Zx¢0|x|[25 is uniformly bounded for alls > d, the ¢2-norm in
EqQ. (4.44) is proportional tgs — d). This proves condition (2) of Proposi-

tion 4.10.
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In order to prove condition (1), we first write

1—Js(k) = Cs(s—d) D Ix|7%(1 = cosk - x)), (4.53)
X#£0

where J is the Fourier transform of th(a]f‘g,). Consider the seRk = {X €
79: cogk - x) < 0}, which we note is the union of strips of width—and
separation—of the ordéd(1/|k|) which are perpendicular to vectkr A sim-
ple bound gives us

D X3 (1 —cogk-x) = D |x|;. (4.54)

X#£0 XeRk

Next we letR, = {X € Z9: |x - k| > =}. The fact thaﬂx|[S decreases with
distance allows us to bound the second sum in Eq. (4.54) by a similar sum
with x € R;. Using the usual ways to bound sums by integrals, we thus get

dx

Toe0
x|z IXI®

1— Js(k) > C(s—d) (4.55)

whereC is a positive constant (independentshfand|x| is the£2-norm of x.
Extracting a factor ofk|5~9, the resulting integraimes(s — d) is uniformly
positive for alls > d. Hence we proved that for sonse> 0,

1— Js(k) > c'|k|5¢ (4.56)

foralls > d and allk € [—z, z]9, and so condition (1) of Proposition 4.10
holds as stated. ||

5. PROOFS: MEAN-FIELD THEORIES
5.1. Blume-Capel model

We begin by giving the proof of Theorem 3.6 which deals with the mean-field

theory of the Blume-Capel model. The core of this proof, and other proofs

in this paper, are certain facts about the mean-field theory of the Ising model
in an external field. In the formalism of Sect. 2.2, this model corresponds to
theq = 2 Potts model. The magnetizations are parameterized by a pair of
guantities(z1, z—1), wherez; + z_1 = 1, which represent the mole-fractions

of plus and minus spins. The mean-field free energy is given by

Oyjh=Jz1z_1—hzz+z1logz1 + z_1logz_;. (5.1)

The following properties are the results of straightforward calculations:
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(12) If h=0andJ < 2, then the only local—and global—minimum occurs
atz; = z_1.

(12) If h=0andJ > 2, then there is only one local minimum with > z_4
and it satisfieslz; > 1 > Jz_1. A corresponding local minimum with
with z; > z_; exists and obeydz 1 > 1> Jz.

(I3) Let now h be arbitrary. 1f(z1,z-1) is a local minimimum of®;p,
thenm = z; — z_ satisfiesJ(1 — m?) < 1.

These properties are standard; for some justification see, e.g., the proof of
Lemma 4.4 in Ref. [11].

Proof of Theorem 3.6. Let (X1, Xo, X—1) be a triplet of positive vari-
ables which corresponds to a local minimum of the Blume-Capel free-energy
function @4 ; from Eq. (3.21). A simple calculations shows that the deriva-
tive of the entropy part ofbz ; is singular in the limit when any component
of (X1, Xo, X—1) tends to zero, while nothing spectacular happens to the energy.
Therefore, the minimum must lie strictly inside the simplex of allowed values.
Accounting for the constraint; + Xo+ X_1 = 1, the condition that the gradient
of @y ; vanish at(x;, Xo, X_1) translates into the equations (3.22).

Due to the symmetry between and x_;, we may (and will) assume
for simplicity thatx; > x_j. First we claim that, under this condition, we
have x_; < 1. Indeed, for a fixedkg, the Blume-Capel mean-field free
energy®; ; expressed in terms dfi, z_1), wherezy; = X41/(1 — Xo), is
proportional to the Ising free energy (5.1) with= 45(1 — Xg). Since the
Ising pair(z1, z_1) is at its local minimum, we havédz_ 1 = 4fx_1 < 1 by
property (12) above.

Once we know thax_j is small, the question is whetheg andx; divide
the amount 1- x_1 democratically or autocratically. Here we observe that,
once again, for a fixed_1, the (x1, Xp)-portion of the Blume-Capel mean-
field free energydy ; is proportional to its Ising counterpart in Eq. (5.1) with
J = B(1 - x_1) andh = 3fx_1 — A. In light of property (I3) above, the
magnetization variable = (x; — Xg) /(1 — X_1) thus satisfies the bount{1—

m?) < 1. Using the inequality/1 — a > 1 — a valid for alla < 1, we have

X1 — Xol S 1_ 1
1-x1 B(L—x_1)
oncey is sufficiently large. Some simple algebra now shows that this implies

(5.2)

2 min{x1, Xo} < L. (5.3)

Using these findings in EqQ. (3.22) and extracting appropriate inequalities we
derive the bounds listed in (1) and (2) withbeing a numerical constant.
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To derive the asymptotics (3.23) on the free-energy gag fsr 0, let us
first evaluate the free energy at a generic local minimum. Supp@s®y, X_1)
obey Eg. (3.22) and le? denote the logarithm of the quantity in Eq. (3.22). A
direct calculation shows that then

Dpp = —4fxix_1 + x5 + 6. (5.4)

Now let us consider a minimum witky dominant. Then the inequalify(1 —
Xo) = B(X1 + X—1) < 34 < 1 shows that th€x1, Xx_1) Ising pair is subcritical.
By (I11) above we must have, = x_; = %(1 — Xp) and, as is seen by a direct
calculation xg can be determined from the equation

1—X0_

2e P+, (5.5)
X0

In particular, forl bounded we have & xg = 2e7#+* 4 O(e~?). Similarly,
if the minimum corresponds to a triple dominated Xy our bounds show
thatxg = 1 — x1 + O(e~*) and so we have

X1 = (1—x1 + O(e~¥))ef+/+00e™), (5.6)

From here we have X x; = e~ 4 O(ge~%).
Now we are ready to derive EqQ. (3.23). First, using tBat= logxg +
S (1 —2Xp) + 4 we have

Po(B, 1) = —4BxaX-1+ B(1 — X0)? + X + l0gXo
=) -2 L 0@, (5.7)
Next, in light of ® = logx; + 45x_1 and the bounds proved ot in (2)
above we have
$1(B, 2) = —ABxix_1 + BX§ + logxs + 4fx_1
= —e 7" L o(pe™). (5.8)
Combining Egs. (5.7-5.8), the desired relation (3.23) is provdl.

We finish this section with a computational lemma that will be useful in
the proof of Theorem 3.7:

Lemma5.1. There existsx > 0 and, for each C> 1, there exists
Po < oo such that the following is true for ap > fo and all A with |1]| <
Ce~ P If (xq, X0, X_1) is a triplet with
max{Xy, Xo, X_1} =1 — Ce_ﬁ, (5.9)
then
(I)ﬂ’g(xl, X0, X—1) — Iinf Dp s > o.(Clog C)e_ﬁ. (5.10)
Here ®; , is the function in Eq(3.21)andinf @4 ; is its absolute minimum.
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Proof. An inspection of Egs. (5.7-5.8) shows that, optde< Ce™#, we
have thaf inf @4 ;| is proportional tocCe~# and so we just have to prove that,
onceC is sufficiently large®g ; (X1, Xo, X—1) is proportional to(C log C)e A,

We will focus on the situation when the maximum in Eq. (5.10) is achieved
by x1; the other cases are handled similarly.

By our assumption we have tha andx_; are quantities less tha@e 7.
Inspecting the various terms in Eq. (3.21), we thus have

Bxo(1 - Xx0) = fxo + O(BC%e™¥),
Bxix_1 = 4Bx_1 + O(BC%e™ ), (5.11)
xilogxy = —Ce™# + O(C?%e™ %),

Plugging these back into the definition®f; , we get

@y, (X1, X0, X-1) = Xo[B + l0g Xo]+x-1[45 + logX_1]
+ Axg — Ce™? + O(pC2e™%). (5.12)

Now |[Axg| < || < Ce™#, and if fg is such thaipCe™# « 1, the last three
terms on the right-hand side are all of ord@@ /. It thus suffices to to prove
that the first two terms exceed a constant tirf@sg C)e™7.

We first replace & by £ in Eq. (5.12) and then substituig = ype™”
andx_1 = y_1e 4. The relevant two terms on the right-hand side then equal
e P[yologyo + y_1logy_1]. Under the condition (5.9)—which implies that
at least one of thg’s is larger tharf/>—this is a number of order#C logC
(for C > 1). The right-hand side of Eq. (5.12) is thus of ordef€ logC
whenevers > o, which proves the desired claim.}j

5.2. Potts model: Preliminaries

Next we turn our attention to the mean-field theory of the Potts model. In
the present section we will first establish some basic properties of the (local)
minimizers of the Potts mean-field free energy. The proof of Theorem 2.3
dealing with positive fields is then the subject of Sect. 5.3. The negative-field
portion of our results (Theorem 2.4) is somewhat more involved and we defer
its discussion to Sect. 5.4.

We invite the reader to recall the representation of magnetizations in
terms of barycentric coordinates in Eq. (2.14), the mean-field free-energy func-
tion @4, from Eq. (2.15) and the transitional coupliﬁﬁq; for theqg-state Potts
model from Eq. (2.17). We begin with some general monotonicity properties
of the minimizers:

Lemma 5.2. (Monotonicity in  h)  Foranyf > 0we have:
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(1) Leth < h, let x; be the first barycentric coordinate of a global mini-
mum ofd)éqh and let X be the first barycentric coordinate of a global

minimum ofd)%qgl, Then x < X;.

(2) Let(Xy,...,Xq) be the probability vector corresponding to a global
minimizer ofd)fgq). If h > Othen x > maxxy, ..., Xq}. Similarly,
ifh < Othenx < min{xy, ..., Xq}.

(3) Ifh— m(p,h) is a differentiable trajectory of local extrema, then
d
G @h(mB. ) = —xa(.h). (5.13)

where %(f, h) is the first component ah(f, h) in the decomposition
into (Vyq, ..., Vq).

Proof. (1) Letm € ConvQ. Then we have
o (m) — O (m) = (0 — h)xq, (5.14)

wherex; is the first component afn. Let x; andx; be as above and len
andm’ be the corresponding minimizers. Then Eqg. (5.14) implies

O (m) — o) ()

X1 < v (5.15)
Similar reasoning gives
(Q) (m) q)(Q) /(m/)
x| > b7 (5.16)

h" —h

Combining Egs. (5.15) and (5.16) gives the result.

(2) Leth > 0 and let(xy, ..., Xq) be a probability vector withx; <
X2. Interchangingx; andx, shows that, due to the interaction with the field,
the g-tuple (x2, X1, ..., Xq) has strictly lower free energy thaix,, ..., Xq),
l.e., (X1, ..., Xq) could not have been a global minimizer. Henge> x,. To
rule outx; = X2 we note thakj, x» > 0 and so the gradient of the free energy,
subject to the constraing; + X2 = const, must vanish. Henoge /4N —
x2e~ %2 which forcesx; # X2. The cased < 0 are handled similarly.

(3) This is a consequence of the fact that the grao%h}f?l vanishes at
any local extremum in the interior of Cox2). |
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Lemma 5.3. (Monotonicityin f) FixheR. If f+— m(f,h)isa
differentiable trajectory of local extrema, then

ﬁ o (m(g, hy) = ——Im(ﬁ h)[2. (5.17)

Proof. The proof is analogous to that of Lemma 5.2(3}
The next lemma significantly narrows the list of possible candidates for

global minimizers:

Lemma 5.4. (Symmetries of global minimizers) Let (D(Q) n (M)
be the mean-field free-energy function. e ConvQ be a global m|n|mum

of (ID(ﬁq and let (X, ..., Xq) be the corresponding probability vector of
barycentric coordinates.

(1) Ifh> 0, then

Xy > Xo =" =Xq. (5.18)

(2) Ifh <0, then(xy, ..., Xq) is a permutation in indicesyX. .., Xq of a
vector with

X1 < Xp == Xg-1 < Xq. (5.19)

Proof. The main idea of the proof is that the variables. . ., xq, prop-
erly scaled, behave like @ — 1)-state, zero-field Potts model. Abusing the
notation slighly, let us wrltd);gq (X1, . .., Xq) instead ofd (m) whenevem
corresponds to the probability vect@q,.. , Xg)- In Iookmg for global min-
ima, we may assume that al}’s satisfyxx € (0, 1). Letting

Xk
1-x1 ’

Zx = k=2 ...,q, (5.20)

this allows us to write

O (1. %) = A= x) @Y (22 Zg) + RO, (5.21)

whereR(x1) is a function ofx; (andg andh). The rest of the proof is based
on some basic properties of the zero-field Potts free energy for which we refer
the reader back to Sect. 2.2.

Let (Xg, ..., Xq) correspond to a global minimum. A principal conclu-
sion coming from Eq. (5.21) is that the components of the ve@tar. . ., Xq),
ordered increasingly, satisfyp = --- = Xq_1 < Xq. Using part (2) of
Lemma 5.2, this immediately implies Eq. (5.19). To prove Eq. (5.18), let
h > 0 and let(Xy, ..., Xq) be a global minimizer at zero field with maximal
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value ofX;. By general facts about the zero-field problem, this forg€s—
X1) < /)’,f,‘ﬂF_l) and, since part (2) of Lemma 5.2 implies that > Xi, also

L(A—X1) < ﬂ,ffﬂF_l). Hence, the variable@, . . ., zq) correspond to a subcrit-
ical Potts model and thug = --- = 7. Invoking again Lemma 5.2(2), we

have Eq. (5.18). 1

5.3. Potts model: Positive fields

Next we will focus on the cases with> 0. Our first step is to characterize the
local and global minima ah — (D%q},(m) for mrestricted to satisfy Eq. (5.18).
While we could appeal to the “on-axis” formalism from Ref. [11], we will keep
the requisite calculations more or less self-contained.

For any probability vector satisfying Eq. (5.18), let us consider the
parametrizatio® = —-3-m, wherem denotes the scalar magnetization defined

q-1
via x1 = % + mandxy = % — 555, k= 2,...,q. (The physical values df
ared € [0, 1].) Letpg n(0) denote the value obffﬁ(m) wherem corresponds
to the aboveXxy, ..., Xq). Then we have:
Lemma 5.5. (“On-axis” minima) The local minima ofd
¢p,n(0) are solutions to the equatigh= f (9), where
eﬂ@—{—h -1
f0) = ——7+——. 5.22
O = gr g -1 (5.22)

Moreover, letfy = 4qT_1' Then

(1) Forall p < poand all h € R, the equatiord = f(8) has only one
solution.

(2) For B > po there exists an intervalh_, hy) such that? = f(0) has
three distinct solutions once & (h_, h,) and only one solution for k¥
[h_, hy]. At h = hg, there are two distinct solutions. OncesA h,
only the extreme solutions (the largest and the smallest) correspond to
local minima oft = ¢4 n(0).

Finally, for eachp > po, there exists a numbernh= h1(f) € (h_, hy) such
that the global minimizer of — ¢ h(0) is unique as long as B h;. On
the other hand, for h= h; there are two distinct global minimizers (the two
extreme solutions ¢f = f (9)).

Remark 5.6.  Although the above holds as stated in complete gener-
ality, it is only useful (in the present context) f@r < ,B,E,lq; In particular,
for p > ﬁ,f,‘ﬂé, while h1(f) continues on taking negative values, it does not
correspond to any equilibrium commaodity.
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Proof of Lemma 5.5. Since the derivative df = ¢4 1 (0) diverges ag
tends to either zero or one, all local minima will lie (@, 1). Differentiating
with respect ta¥ we find that these must satisfi(9) = 6 with f as given
above.

In order to characterize the solutiongte= f (0), let us calculate the first
two derivatives of this function:

6+h

f0) :ﬂm(

1- 1)) (5.23)

and
6+h 6+h

ef
£(0) = IBZW(l i) (1 — ZW) . (5.24)

Since we also havd () < 1, we find thatf is strictly increasing, strictly
convex for@ < 6, and strictly concave fof > 6, whered, is the inflection
point of f, which is given by

ehf+h 1

—_ = — 5.25
it (5.25)

i.e., #9th = q — 1. In particular, the derivativd’(9) is maximal a¥) = 6,
where it equalst’(6)) = 4525

Let us suppose that’(4)) < 1, which is equivalent tgg < fo. Then
there is only one solution #® = f (¢), proving (1) above. Let us now assume
that f'(#)) > 1. The fact that increasing amounts to “shifting the graph
of f to the left” implies that there exists dry such tha®), solvesd = f (@)
for h = hg. Similar arguments show that there exists a unique value- hg
such that the diagonal line (at95s tangent to the graph df at some) < 6,
and a similar valué_ < hg such that the diagonal line is tangent to ¢he 6,
portion of the graph off. Forh € [h_, hy], there are altogether three solu-
tions, labeled, < 6y < 6y, wheref’(#) < 1atd = 6., 6y while f'(Oy) > 1
(with the inequalities strict wheh £ h.).

The “dynamics” of these solutions d&schanges is easy to glean from
the above picture. Firgi is defined for alh < h while 8y is defined for all
h > h_. Now, ash decreases throudh_, the middles and uppe#fy solutions
merge and disappear; and similarly fa andd_ ash increases through, .
Only the remaining solution continues to exist in the complementary part of
theh-axis. Clearly, botl#) andédy are continuous and strictly increasing on the
domain of their definition witl¥, — 0 ash - —oco andfy — 1 ash — oo.
Sincegp h(0) has local maxima at = 0 and 1, we must have that andéy
are local minima andy is a local maximum ofps 1. (These are strict except
perhaps ah # h_..) This finishes the proof of (2).
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It remains to prove the existence of the transitional field-strehgttBy
Lemma 5.4, every global minimizen — CD;‘T%(m) corresponds to eithel
or 9y. Observe that, sinag; andd_ never enter the portion of the graph bf
where f’ exceeds one, we hawgy > 6y(hy) > 6.(h-) > 6. and so the
differencedy — 6. is uniformly positive. Consequently, the valuﬁ,qz, at
the corresponding magnetizations change at a strictly different rat \.(ME
Lemma 5.2). In particular, there exists a unique pbitp) € (h_, h;), where
the status of the global minimizer changes frénto 6y. By continuity, ath =
h1, both one-sided limits are minimizers &f; . |l

Now we are ready to finish the prove of Theorem 2.3.

Proof of Theorem 2.3. Most of the claims of the theorem have already
been proved. Indeed, I&h be as in Lemma 5.5 and I¢t > ﬁ,f}ﬂ;. By the
properties of the zero-field Potts model, the maximal solutiof te f (@) is
a global minimizer of) = ¢ 0(0). It follows thath;(8) < O for g > /3,5,?;.
Invoking also Lemma 5.4(1), we thus conclude thatfok S or f > ,B,f,‘ﬂg
andh > 0, the global minimizer om — @%(m) IS unique, while fors €

(Po, ,b’,f,‘ﬂé) this is only true wherh # h1(f). This establishes parts (2) and
(3) of the theorem. It thus remains to prove the strict inequality between
andxy = --- = xp in part (1)—the rest follows by Lemma 5.4(1)—and the
properties ofs — h1(f) in part (4).

First, it is easy to see thél is continuous. Indeed, 1" € (fo, /)’,f,?é
and suppose that — hi(f) has two limit points agg — p’. By a simple
compactness argument, there are two distinct minimizeaﬁé‘?g;ﬁor h at these
limit points, which contradicts the uniquenessgts’). Applying this tog’ =

,f,?; we thus have thdt;(f) — 0 asg — ﬁ,f,cﬂ;.

Second, we claim that — h1(f) is actually strictly decreasing. To this
end, letm(f) andm_(p) denote the values of the two global minimizers
of m = cD/(;R](m) ath = hy(p) and Ietxf(ﬁ) andx; (f) denote the corre-
sponding first components. From Lemmas 5.2 and 5.3 we can now extract

d _1my(B)IP = Im_(B)I?
dp 2 X (B) = x (B)

which the reader will note is the Clausius-Clapeyron relation. Since Xoth
and |m| are increasing with the scalar magnetization, the right hand side is
negative and s¢ — h1(p) is strictly decreasing.

Third, we turn our attention to the inequaligf > x; = --- = Xq
onceh > 0. In light of Eq. (5.18), it suffices to show that, for> 0, the state
with equal barycentric coordinates is not a local minimum dmce0. This is
directly checked by differentiating Eq. (2.15) subject to appropriate constraints.

hi(f) = ; (5.26)
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Finally, we will compute the value df at the end of the lindh — g, (h).
Letd, (h) andd_(h) denote the two distinct (extremal) solutionsfo®) = 9,
with f as in Eqg. (5.22), forp = pf+(h). As h increases; decreases
to fo andé. converge to a single valugag—the uniquesolution of f (§) = 6
atf = fo. But the inflection pointd,, is always squeezed betwegnandd_,
and so we must havéy = 6,. Now the inflection point is characterized
by €#%+h = q — 1 and the equatiod = f(9) gives us thaig,.(h) = o
ath=he. |

5.4. Potts model: Negative fields

The goal of this section is to give the proof of Theorem 2.4. The difficulty here
is that, on the basis of Eq. (5.19), the full-blown optimization problem is in-
trinsically two-dimensional. We begin with some lemmas that encapsulate the
computational parts of the proof. First we will address the symmetric minima
by describing the solutions to the “on-axis” equation:

Lemma5.7. Letp > 0Oand h < 0and let g [0, q—fl]—> R be the
function

efi-h—1
90) = 9—h :
@-1eff"+1
Then g is increasing, concave and satisfié8)g>- 0 and g@) < 1. In partic-
ular, the equation ¢) = 6 has a unique solution oj®, q—fl].

(5.27)

Proof. This is a result of straightforward computations which are not
entirely dissimilar from those in Egs. (5.23-5.24)}

The two-parameter nature of solutions of the form (5.19) will be handled
by fixing the first barycentric coordinate and optimizing over the remaining
ones. Here the following property of the resulting “partial minimum?” will turn
out to be very useful:

Lemma5.8. Letp > ﬂ,f}ﬂgl) and leta be the minimum o4 and

the quantity a satisfyingf(1 — a) = ,f,qu_l). For each x € [0, 4],
let z(x), ..., zq(X) denote the vector corresponding to the asymmetric min-
imizer of (22, ...,2q) — CDE),q(IPX) oz, ...,z Withz = --- =251 < Z4.

Let w (x) denote the quantitsb%(m) evaluated am = m(x) where

m(X) = XV 4+ (L = X)Zo(X)V2 + - - - + (1 = X)Zq(X)Vq. (5.28)

Then
" (x) <0 forallx [0, a]. (5.29)
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Proof. Let w(X) be as stated above. Let=t(x) = f(1 — x) and let

Z(X) = (22(X), . .., Zq(x)) denote the asymmetric global minimum@f?)s,l()).

This allows us to rewritey (X) as

w(X) = —/—;xz + xlog(x) + (1 — x) log(1 — x) — hx

+ Q-0 Y@x).  (5.30)

We will write 2, = - = zq_1 = q—fl — ;“T(t% andzq = q—fl + m(t), where
m(t) is the maximal positive solution to

expftizzm()} — 1
q-2 B exp{tg—jm(t)}+q—2'

(5.31)

The various steps of the proof involve two specific functioris) and o (t)
defined by

qg-—-1
=t—— 32
u(t) tq — 2m(t) (5.32)
and u(t) u(t)
€ eV -1
a(t):eu(t)+q—2(1_eu(t)+q—2)' (5.33)

We state these definitions here to facilitate later reference.

A simple argument gives that— m(t) is smooth whert > ﬂ,f,?;l), o)
w (X) is differentiable. The actual proof then commences by the calculation of
the third derivative ofy (x):

1 1
"
X)=——+——
p(X) x2+(1—x)2

q—2 u®)\2/ me) m m'(t) 2
+2q—1(1—x) (3m(t) +tm(t) +t(m(t)) ) (5.34)

wherem’ and m” denote the first and second derivativetof> m(t) and
where we have used Lemma 5.3 to diﬁerentiﬁq@b_l). Since we want to
show y”’(x) < 0 and we know thak < a < Y5, it suffices to prove the

inequality

m'(t) m’”(t) m'(t)\ 2
TR +t(m(t)) <0. (5.35)
Differentiating both sides of Eq. (5.31) and solving fof(t) yields
m)  a) (5.36)

mt) 1—ta(t)’
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Taking another derivative with respect ttallows us to express’(t)/m(t)

in terms ofa(t) anda’(t). In conjunction with Eq. (5.36), this shows that
Eq. (5.35) is equivalent to

a'(t)

3+t < 0. (5.37)
a(t)
Differentiating Eq. (5.33) and applying Egs. (5.32) and (5.36), we have
ey u(t) e'®

Writing Eq. (5.37) back in terms af(t), we see that Eq. (5.35) is equivalent to
the inequality

_ el ut _
3(1 tg-1e )<u(t)e—q+2

- . 5.39
(e'® 4+ q — 2)? e'®4q-—2 (5-39)

The rest of the proof is spent on proving Eq. (5.39).

We first use thak < & impliest > ﬂ,ﬁfgl) = 23—:5 log(g — 2) and so the
left-hand side of Eq. (5.39) increases if we replabgﬁ,f,lq;l). After this, there
is no explicit dependence drand so we may regard the result as an inequality

for the quantityu. Clearing denominators, substitutisg= €, and recalling
thatu(t) > 2log(q — 2) for x < &, it suffices to show that

y(S) = Aqs + s?logs — 2% logs — 3s® — 322 (5.40)
is strictly positive for alls > 12 and allq > 4, wherel = q — 2 and
Aq =30 - Dpyr " - 6@ -2 (5.41)

Sinceﬁ,f}ﬂF_l) > 2.5 forq > 4, we easily check thadg > 10 onceq > 4.
First we will observe that is actually increasing for a > A2. Indeed, a
simple calculation shows that, for sushwe havey’(s) > w(s), where

o(S) = Ag — 1+ 2slogs — 5s. (5.42)

Next we find that mig-gw(s) = Aq — 1 — 2e’2. Since é2 ~ 4.48 and
Aq > 10, we have thatv—and hencey’—are strictly positive fors > 22
Hencey is increasing for al of interest.

Once we know thap is increasing, it suffices to show thati?) is posi-
tive. Here we note that

—1
107 = [ =30-27((@~34+6)210g0 -2 =30~ (G -3} (5.4
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and soy(19) is positive once

@-1)@-3

2100(q — 2) > 3 .
004 -2) > 3757 5

(5.44)

Noting that the right-hand side is less than 3, and using that 2 leg% this
holds trivially forg > 7. In the remaining cas&s= 4, 5, 6, the inequality is
verified by direct calculation. i

Using Lemma 5.8 we arrive at the following conclusion:

Corollary5.9. Letg> 4,4 >0and h< Q. ThenCD(q) has at most
one (symmetric) global minimizer with x x, = = Xq and at most one
(asymmetric) global minimizer withyx< Xo = -+ - = Xg—1 < Xg.

Proof. Let(Xy, ..., Xq) correspondtoamlnlmlzerm(q) Sinceh < 0,
Lemma 5.4 allows us to assume that< X = --- = Xg—1 < Xq. If X0 =

- = Xq, then a simple calculation shows that the quargtityvhich is related

to x3 viax; = & — =g, obeys the equatiog(d) = 4, whereg is as in

Eq. (5.27). By Lemma 5.7, such a solution is unique and so there is at most
one symmetric minimizer.
Next let us assume that exceeds the remaining components. Note that

we must have tha#(1—x;) > ,B,&,?F_l) because otherwise Eq. (5.21) implies that
(X2, ..., Xq), properly scaled, would correspond to tloe-1)-state Potts model
in the high-temperature regime. Since in additan< 14, we are permitted
to use Lemma 5.8 and conclude tlxatis a minimizer of the functiony from
Eq. (5.30). As is seen from its definition and Eq. (5.2@)starts off convex
(and decreasing) at = 0 and, asx increases, may eventually turn concave.
In particular, there could be at most two points ingDwhere y achieves its
absolute minimum—one i(D, &) and the other &.

We claim that ify’(&) < 0 then& cannot be the first coordinate of an
asymmetric global minimizer. Indeed, ¥f is strictly decreasing &, then
the free energy could be lowered by increasing the first component b&yond
Therefore, ify’(a) < 0, theny has at most oneslevantminimum in [, &].

On the other hand, the above concavity-convexity picture implies that, once
w'(&) > 0, there isonly onepoint in [0, &] where y is minimized. Hence, in
all cases, there is at most one asymmetric minimizdy.

The proof of Theorem 3.5 will require some comparisons between the two
minimizers allowed by Corollary 5.9. These are stated in the following lemma.
Lemma5.10. Letg> 4,8 >0andhe (-0, 0). Suppose thal)gn
has two minimizers, one symmetric Wltﬁ)x< x( S == x ) and the
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other asymmetric with %’ < x{ = .. = x* < x{". Then
xM <x®¥ and A <xM. (5.45)

Moreover, letg = [x\V]12+ ... +[x{V]12and & = [x\V]2+ - - - +[x’]2 Then
there exists a constang c> 0 such that for any he [—oo, 0) and anyg > 0
where both minimizes m“” “coexist,” we have

€a — €s > Cy. (5.46)

Both parts of this lemma are based on the foIIowing fact.(kef. .., Xq)

be a minimizer ofd);q ordered such that; < xp = = Xg-1 < Xq. The
stationarity condition yields

x €PN =y — .. = xqe7F%, (5.47)

and so let® denote the common value of this equality. Then we have:

Lemma5.11. Leth < Oandp > 0. If ® and®’ correspond to two

minimizers ofd)f),qﬁ], and ® = @’, then the minimizers are the same (up to
permutations in the last & 1 indices).

Proof. Suppose that both minimizers are ordered increasinghh ByO

and Lemma 5.2x; < X2 = .-+ = Xq-1. The fact that({*%-, ..., — Xl)
is the minimizer ofd>(q(11)X ).n—see Eq. (5.21)—then implieSxx < 1 for
alk = 1,...,q — 1. Since the functiom(x) = xe™#* is invertible forx

with fx < 1, equality of the®’s implies equality of the first) — 1 coordinates.
The constraint on the total sum implies equality of #y& as well. |

Proof of Lemma 5.10. We will first attend to the proof of Eq. (5.45).

In light of Eqg. (5.21), the(q — 1)-state Potts system ofxo, ..., Xq) is at
the effective temperaturﬁeff = (1- xf’))ﬂ for the symmetric minimizer
andﬂéﬁ) =(1- x(A)),b’ for the asymmetric minimizer. But for both symmetric
and asymmetric minimizers to “coexist’ we must hgt§ < 9= < g%
and sox(A) < xis) To rule out the equality sign, we note thaixﬁA) = xis),
then the corresponding’s are the same and Lemma 5.11 thus forces equality
of all components. Onc,é(s) ,B(A) is known, x(S) < x(A) follows.

In order to prove Eq. (5.46), let be the common value 01)24) for the
two minimizers and leBa and®g be the correspondin@’s. Let us take the
logarithm of every term in (5.47), multiply the result for theth term byx;
and add these all up to get

¢ — ges =log®s and ¢ — geA = log O. (5.48)
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As xiA) < xis) < Y4, we have®p < Ogsforallh € (—oo, 0); forh =0, —co

this holds by a direct argument for the zero-field Potts model. Hegice e
whenever the two minimizers are “coexist.”

To see that the positivity oBa — es holds uniformly in (h, 8) €
[—o0, 0]%[0, 0], we use a compactness argument. First, we only need to
worry about theg’s in a finite, closed intervaly. Indeed, the effective temper-
ature of the Potts modefesr = f(1—x1), is a number betweehandf (1—1/q)
and so if eithep < ﬁ,f,‘ﬂF_l) orf(1-1yq) > ﬂ,fj‘gl), then no coexistence of min-
imizers is possible.

Next let us consider a sequence(bf 8) in [—oo, 0] x Iq with a topology
that makes this set compact. df — es tends to zero along this sequence,
the above arguments imply that the asymmetric and symmetric minimizers
must coalesce as the parameters tend to a limiting point. But this is impos-
sible because by the second half of Eq. (2.17), the scalar magnetization of the
correspondingq — 1)-state Potts model, which is proportional to the ratio of

X" = x5" and 1— ), is always at leas}=3.

Remark 5.12.  The previous proof kept the distinctnessgfande, in
the realm of the existential. A calculation actually shows that, fortary O,
there are constangs < e depending only o such thakes < e; andea > &
whenever the two minimizers “coexist.”

Proof of Theorem 2.4. Fix § > 0 andh < 0. Corollary 5.9 implies
that, up to a permutation in all-but-the-first compon@lﬁ) has at most two
global minimizers: one symmetritis and one asymetrimA. This proves
part (1) of the theorem.

Among the global minima, the first barycentric coordinate= x; (£, h)
is (strictly) increasing inh (see Lemma 5.2) and so the effective coupling
Peri(h) = L1 — x1(B, h)), which governs thgq — 1)-state Potts model
on (Xo, ..., Xq), is decreasing. Now ifes(h) > ﬂ,f,‘ﬂF_l) then only the asym-
metric minimum is relevant, while if(h) < ﬁ,fjﬂ;l) then only the symmetric
minimum applies. Hence, fgf € (ﬂ,f,qu_l), ﬁ{j‘;), there is a uniquz = ha(p)
such that the role of minimizers changeshascreases through,. (For S
outside(ﬁ,f,?;l), ﬁ,f,lqg), the minimizers are in qualitative agreement with those
of h = —oo orh = 07.) In particular, the minimizer is unique for # ha(5)
and both minimizers “coexist” fan = ha(f).

Modulo the definition of functiorﬂ@, parts (2-4) of the theorem are
proved. It remains to show th# — hy(p) is strictly increasing (and thus
invertible), continuous and with limits-co and 0 at the left and right end-
points of(ﬁ,f,‘ﬂF_ 1), ﬂ,f,‘ﬂg), respectively. By Lemma 5.10, the quantitegsandes
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are separated by a “gap.” A simple limiting argument (not dissimilar to that
used in the proof of Theorem 2.3) now shows tiais continuous. Moreover,

by Lemma 5.3, the norm-squared of all minimizers increasesgyitnd sdh;

is strictly monotone and the limits &f; at the endpoints c(f/;’,ffp_l), /)’,f,lqé) must

be as stated. These facts allow us to deﬂﬁ% as the inverse dfi; and verify

all its properties in part (5) of the theorem}

6. PROOFS: ACTUAL SYSTEMS

Here we will provide the proofs of our results for actual spin systems. The
main portion of the arguments has already been given in Sects. 4 and 5. We
will draw freely on the notation from these sections. The proofs are fairly
straightforward (and mostly existential) and so we will stay rather brief.

First we will attend to the zero-field Potts model:

Proof of Theorem 3.4. The proof is more or less identical to that of
Theorem 2.1 of Ref. [11]; the only substantial difference is that now we are
not permitted to assume that the magnetization is monotone (indeed, some of
the Jy y's may be negative). We will base our arguments on the mean-field
properties of the zero-field Potts model, as outlined in Sect. 2.2.

Recall the mean-field free-energy functimﬁ% from Eq. (2.15). By

the fact that the global minimizer 01)2% changes from symmetric to asym-

metric asp increases througjﬁ,f,?g, we can make the following conclusions:

Givenp ~ ﬂ,f,‘ﬂg, leti/. be ane-neighborhood om = 0 and letV, be the union
of e-neighborhoods of the asymmetric minimizers. Then for eachO, there
existso > 0 such that for alfp with | — ﬁ,f,% < € the set

05 = {m e Conv(Q): @y(m) — Fur(B. 0) < 5} (6.1)

is contained in{. U V.. Moreover, iff = ﬁﬁﬂq; — ¢, thenOs c U, while
atp = ﬁ,f,‘ﬂé + €, we haveO; C V..

Let Z.(f, 0) be the set of “extremal magnetizations.” By Theorem 3.2, if
the integral’ in Eq. (3.9) is so small thgt5n./ = ﬂq—;lf < ¢ for all g with
B < ﬁ,f,(ﬂ; + ¢, then.Z, c Os. Now the asymmetric minimizers have norm at
leastl/, and the near-monotonicity of the magnetization from Lemma 4.9 thus
implies that, at somg; with | f; —ﬂ,ff,‘;| < ¢, the physical magnetization jumps
from some value insid&, to some value insid®,. The jump (of this size) is
unique by Lemma 4.9. From here the claims (3.17-3.19) folloy.

Next we dismiss the cases with non-zero field:
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Proof of Theorem 3.5. Let he be the quantity from Theorem 2.3

and/)’,f,(ﬂ%(h) be the concatenation of functiops. and f_ from Theorems 2.3
and 2.4. An argument similar to the one used in the previous proof shows that,

for eache > O there exist$ > 0, such that itﬁ,f,‘ﬂé%nﬂ <odandh < hc—e¢,a

strong first-order transition occurs at sofén) which is withine of ﬂ,f?;(h).
This transition is manifested by a jump in both magnetization and energy den-
sity. This proves part (1) of the theorem.

As to part (2), by Lemma 5.10 we know that the first components of the
two minimizers are uniformly separated whenelies confined to a compact
subset of(—o0, h¢). Since our general bounds in Theorem 3.2 imply that the
physical magnetizations ét, pi(h)) are very near their mean-field values pro-
vided .7 is sufficiently small, also the first components thereof must be dif-
ferent. Using the monotonicity of the first component of physical minimizers
in h, the existence of a jump im. (£, h) on the transition line follows. 1

Proof of Theorem 3.7. The proof is based on Theorem 3.6 and
Lemma 5.1. Indeed, Theorem 3.6 implies that all minima are characterized
by the fact that one ofxy, g, X_1) is larger than - Ce#. These minima
are nearly degenerate fdrof order e with free energy difference given
by A — e # + O(pe™F). The goal is to show that the free energy is uniformly
large (on the scale of @ in the complement of th€e#-neighborhood of
these minima.

Let C > 1 be the number exceeding the corresponding constant from
Theorem 3.6 and suppose thal < Ce™?. Consider the seOy of all
triplets (X1, Xo, X—1) With X1 + Xo + X—1 = 1, such that mafxs, Xg, X—_1} >
1 — Ce#. We claim that forg > o (with 5o depending or€),

inf ®p.1 (X1, X0, X-1) > a(ClogC)e™7, (6.2)
(X1, X0,X-1)€0f
wherea is a positive number independent©f Indeed, Theorem 3.6 implies
that all local minima of®; ; lie in Og, and so the absolute minimum &f; ;
must occur on the boundary (ﬁ;. But the “outer” boundary OOE’ is not a
possibility, and so the mimimum occurs at a point with faxxg, Xx_1} =
1— Ce~#. The bound (6.2) is then a consequence of Lemma 5.1.

Let now the integral? in Eq. (3.9) be such tha8.# « (ClogC)e=".
Then Theorem 3.2 ensures that all physical magnetizations (#Qirare con-
tained inside®;. However, by Eq. (3.23), fof such thatt —e=# > O(Be™F)
the setOp contains no triplets with dominant;, while for 1 — e/ <
O(pe "), there are nop-dominant states. The standard thermodynamic ar-
guments imply that the amount of zero-ness decreasésraseases. Hence,
there must be a jump at sonie = e/ + O(pe™#) from states dominated
by O’s to those where Q’s are very sparse. This finishes the prdpf.
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