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Mean-field driven first-order phase transitions
in systems with long-range interactions

Marek Biskup,1 Lincoln Chayes,1 and Nicholas Crawford1

We consider a class of spin systems onZd with vector valued spins(Sx) that
interact via the pair-potentialsJx,y Sx ·Sy. The interactions are generally spread-
out in the sense that theJx,y’s exhibit either exponential or power-law fall-off.
Under the technical condition of reflection positivity and for sufficiently spread
out interactions, we prove that the model exhibits a first-order phase transition
whenever the associated mean-field theory signals such a transition. As a conse-
quence, e.g., in dimensionsd ≥ 3, we can finally provide examples of the 3-state
Potts model with spread-out, exponentially decaying interactions, which under-
goes a first-order phase transition as the temperature varies. Similar transitions
are established in dimensionsd = 1,2 for power-law decaying interactions and
in high dimensions for next-nearest neighbor couplings. In addition, we also
investigate the limit of infinitely spread-out interactions. Specifically, we show
that once the mean-field theory is in a unique “state,” then in any sequence of
translation-invariant Gibbs states various observables converge to their mean-
field values and the states themselves converge to a product measure.
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1. INTRODUCTION

1.1. Motivation

The understanding of the quantitative aspects of phase transitions is one of
the basic problems encountered in physical (and other) sciences. Most of the
existing mathematical approaches are based on the use of contour expansions
via Pirogov-Sinai theory [41, 42, 50] and/or the use of correlation inequali-
ties [21, 44, 45]. Notwithstanding, many “practical” scientists still rely on the
so-calledmean-field theorywhich, in its systematic form, goes back to the
work of Landau. From the perspective of mathematical physics, it is therefore
desirable to shed as much light as possible on various mean-field theories and,
in particular, attempt to place the subject on an entirely rigorous basis.

In a recent paper [11], two of us have established a direct connection be-
tween temperature-driven first-order phase transitions in certain ferromagnetic
nearest-neighbor spin systems onZd and their mean-field counterparts. The
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principal result of Ref. [11] states that, once the mean-field theory signals a
first-order phase transition, the actual system has a similar transition provided
the dimensiond is sufficiently large and/or the mean-field transition is suffi-
ciently strong. Moreover, the transition happens for the values of parameters
that are appropriately “near” the mean-field transitional values; indeed, the var-
ious error terms tend to zero asd → ∞.

The principal goal of the present paper is two-fold. First, we will con-
siderably extend the scope of systems to which the ideas of Ref. [11] apply;
i.e., we will prove discontinuous phase transitions in systems which heretofore
have been beyond the reach of rigorous methods. Second, we will in a general
way expound on themean-field philosophy. In particular, we will demonstrate
that mean-field theory provides an asymptotic description of a certain class of
systems regardless of the nature of their transitions.

Our approach is somewhat akin to the bulk of work on the so-calledKac
limit of lattice [14–17] as well as continuum [30, 36, 37] systems. Here one
considers finite-range interactions of unit total strength which are smeared out
over a region of scale1/γ. As γ tends to zero, each individual site interacts with
larger and larger number of other sites and so, forγ � 1, one is in the position
to prove that the characteristics of an actual system (e.g., the magnetization)
are close to those of the corresponding mean-field theory. In particular, all
“approximations” (i.e., upper and lower bounds) become exact asγ ↓ 0.

Notwithstanding, the similarity between the Kac limit and our approach
ends with the above statements: Our technique involves tight bounds on the
fluctuations of the effective field while the analyses of Refs. [14–17] are based
on coarse-graining arguments. As a consequence, we have no difficulty treating
models with complicated single-spin spaces—even those exhibiting continuous
internal symmetries or leading to power-law decay of correlations—or nearest-
neighbor systems in large dimensions. Of course, there is a price to pay: Our
technique requires the infrared bound on two-point correlation function which
is presently available only for models obeying the condition of reflection posi-
tivity. Moreover, unless we assume power-law decaying interactions, the use of
infrared bounds does not permit any statements ind = 2, while the Kac-limit
approach works equally well in alld ≥ 2.

1.2. Models of interest

For the duration of the paper, as in Ref. [11], we will focus on spin models with
two body interactions as described by the formal Hamiltonian

βH = −β
∑
〈x,y〉

Jx,y (Sx,Sy)−

∑
x

(h,Sx). (1.1)
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The various objects on the right-hand side are as follows:β is the inverse tem-
perature,〈x, y〉 denotes an unordered pair of distinct sites,Jx,y (= Jy,x) is the
coupling constant associated with this pair, the spinsSx take values in a com-
pact set� ⊂ Rn, the (reduced) external fieldh is a vector fromRn and(·, ·)
denotes some inner product inRn. Implicit in the notation is an underlyinga
priori measure on� which represents the behavior of the spins in the absence
of interactions. (In principle, the term which describes the coupling to the ex-
ternal field, namely the(h,Sx)’s, could be absorbed into the definition of thea
priori measure. However, for æsthetic reasons, here we will often retain these
terms as part of the interaction.)

Mean-field behavior is typically anticipated in situations where fluctua-
tions are insignificant and, on general grounds, one expects this to be the case
in high dimensions. These were precisely the operating conditions of Ref. [11]
(as well as of Refs. [13, 34]) where, in a mathematically precise sense, the
stipulation concerning the fluctuations was vindicated. However, an alternative
route for ramping down fluctuations is to consider “spread out” interactions,
i.e., Jx,y’s which do not go to zero too quickly. As alluded to earlier, this alter-
native is, in fact, the common starting point for modern mathematical studies
of phase transitions based on mean-field theory, e.g., Refs. [14–17, 36] and
Refs. [26–29,43].

Unfortunately, we do not have complete flexibility as to how we can
spread out our interactions. Indeed, our principal error estimate requires that
the (Jx,y) satisfy the condition ofreflection positivity(RP). Notwithstanding,
the following three classes of interactions are available to our methods:

(1) Nearest along with next-nearest neighbor couplings, i.e., potentials
such thatJx,y = λ if x and y are nearest neighbors,Jx,y = κ
with λ ≥ 2(d−1)|κ| if x andy are next-nearest neighbors andJx,y = 0
in the remaining cases.

(2) Yukawa-type potentialsof the form

Jx,y = e−µ|x−y|1, (1.2)

whereµ > 0 and|x − y|1 is the`1-distance betweenx andy.

(3) Power-law decaying interactionsof the specific form

Jx,y =
1

|x − y|
s
1
, (1.3)

with s> 0.

Aside from these “pure” interactions, reflection positivity holds for
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(4) any combination of the above with positive coefficients.

The derivation of the reflection-positivity property for these interactions goes
back to the classic references on the subject [22–24]; for reader’s convenience
we will provide additional details in Sect. 3.1 and Sect. 4 (Remark 4.5).

We note that for all positive values ofs the interactions listed in item (3)
are indeed, in the technical sense, reflection positive. However, some values
of s are not viable and others are not particularly useful. Specifically, ifs ≤ d,
then the interaction is attractive and non-summable so there is no thermody-
namics. Thus we may as well assume thats > d. Furthermore, ifd = 1 and
s ≥ 2 or d = 2 ands ≥ 4 then our methods break down. With some reason:
In the one dimensional cases withs > 2, the results of Refs. [3, 19, 20, 39, 47]
indicate (and in specific cases prove) that no magnetic ordering is possible.
Similarly, in the above mentioned two-dimensional cases, magnetic ordering is
precluded in many systems.

To summarize, we will impose the following limitations on our power-law
interactions in Eq. (1.3):

(a) s< 2 in d = 1,

(b) s< 4 in d = 2,

(c) s> d in all d ≥ 1.

Although case (1) does not give us any real options for spreading the inter-
action beyond the previous recourse of takingd � 1, cases (2) and (3) offer
us the possibility to do so on afixed lattice. This is essentially obvious in
case (2)—just take the parameterµ small. As for case (3) it is seen, after a lit-
tle thought, that takings close tod presents an additional and powerful method
for smearing interactions.

1.3. Outline of results

Given the ability to smear interactions on a fixed lattice, much of the technol-
ogy developed in Ref. [11] can be appliedwithout the stipulation of “d suffi-
ciently large.” Thus it will prove possible to make statements about specific
models on reasonable lattices with (more or less) reasonable interactions.

One such “specific” model will be theq-state Potts model (see Sect. 2.2).
Here, for example, we will establish a discontinuous transition between the or-
dered and disordered states of a 3-state Potts model onZ3 with interactions de-
caying to zero exponentially. (And similarly for any otherq-state Potts model
on Zd with q ≥ 3 andd ≥ 3.) Analogous first-order phase transitions are also
proved in dimensions one and two provided we have power-law decay of the
couplings as discussed above. For example, ind = 1, for any power-law decay
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exponents ∈ (1,2), we produce couplings such that the 3-state Potts model
has a first-order transition as the overall strength of the coupling varies.

As another illustration, we consider the low temperature behavior of the
Blume-Capel model. The system will be described precisely in Sect. 3.4, for
now it suffices to say that the spins take values in{−1,0,+1} with a priori
equal weights. The zero temperature phase diagram of this model has a triple
point where the three states of constant spin are degenerate in energy, however,
as demonstrated in Ref. [46], this degeneracy is broken at finite temperatures
in favor of the state dominated by the zeros. The previous analyses of this
phenomenon required rather detailed contour estimates; here we will establish
similar results by relatively painless methods.

The techniques at our disposal will allow us to put to rest some small
controversies which, in recent years, have been topics of some discussion. For
instance, a conjecture has been made [32,33] which boils down to the statement
that in any one-dimensional finite-state spin system with arbitrary translation-
invariant, summable interaction, the set of phase-coexistence points at positive
temperatures is asubsetof the corresponding set at zero temperature. We will
rule this out by our analysis of the Potts models in an external field.

In addition to predicting first-order transitions, our mean-field framework
provides an explicit description of general lattice spin systems in the limit when
the interactions become highly diffuse. In particular we show that, whenever
the mean-field theory is in a unique “state,” the magnetization and the energy
density of the actual system converge to their mean-field counterparts. More-
over,everytranslation invariant Gibbs state converges to a product (i.i.d.) mea-
sure with individual-spin distribution self-consistently adjusted to produce the
correct value of the magnetization. (This vindicates the assumptions typically
used to “justify” mean-field theory; see Sect. 2.1.) Results in this direction
have appeared before; cf Refs. [13,34], but the main difference is that here we
arenot forcing d → ∞ and hence it is possible to envision a limiting system
towards which we are heading.

1.4. Organization

The organization of the remainder of this paper is as follows: In Sect. 2.1
we describe, in succinct terms, some general aspects of mean-field theory. In
Sect. 2.2 we discuss the mean-field theory for the Potts model in an external
field—which is the primary model studied in this work. Precise results con-
cerning these situations are the subject of Sect. 2.3.

Sect. 3 is devoted to the statements of our main result. Specifically, in
Sect. 3.1 we formulate a general theorem (Theorem 3.2) that allows us to prove
first-order phase transitions in actual lattice models with interaction (1.1)—and
RP couplings—by comparison to the associated mean-field theory. Sect. 3.2
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provides conditions under which the mean-field theory is obtained as a limit of
lattice systems when the interaction becomes infinitely spread out. Sects. 3.3
and 3.4 contain precise statements of our theorems concerning the behavior
of the specific systems we study: The zero-fieldq-state Potts models with
q ≥ 3, the same model (withq ≥ 4) in an external field which enhances
or supresses—depending on the sign—one of the states, and the Blume-Capel
model near its zero-temperature triple point. Sect. 3.5 mentions some recent
conjectures that can be addressed using our results.

The principal subject of Sect. 4 is to give the proof of our general results
(Theorems 3.2 and 3.3). As part of the proof, we will discuss certain interest-
ing convexity bounds (Sect. 4.1), reflection positivity (Sect. 4.2) and infrared
bounds (Sect. 4.3). In Sect. 4.5 we show how the specific interactions listed
in Sect. 1.2 fit into our general scheme. Sect. 5 is devoted to the mathematical
details of the mean-field theories for all the above mentioned models; in par-
ticular the proofs of all claims made in Sect. 2.3. Sect. 6 then assembles all
ingredients into the proofs for actual lattice systems.

2. MEAN-FIELD THEORY AND THE POTTS MODEL

Here we shall recall to mind a formalism underlying (our version of) mean-
field theory and provide heuristic discussion of the basic facts. The specifics
will be demonstrated on an example of theq-state Potts model in an external
field; first somewhat informally in Sect. 2.2 and then precisely in Sect. 2.3.

2.1. Mean-field heuristic

We will focus on the situations described by the Hamiltonian in Eq. (1.1). Of
course the real models must be carefully defined onZd as limits of finite vol-
ume measures corresponding to this Hamiltonian at inverse temperatureβ and
some sort of boundary conditions. We shall assume the reader is familiar with
this basic theory (enough of the relevant formalism can be found in Sect. 3.1)
and skip right to the consideration of an infinite-volume translation-invariant
Gibbs stateµβ,h corresponding to the Hamiltonian in Eq. (1.1) and inverse
temperatureβ. For convience we will assume here, as in the rest of this paper,

Jx,x = 0,
∑
x∈Zd

|J0,x| < ∞ and
∑
x∈Zd

Jx,y = 1. (2.1)

We will let Eβ,h denote the expectation with respectµβ,h andE0 expectation
with respect to thea priori (product) measureµ0. (We will of course assume
in the following thatµ0 is supported on more than one point.)

The principal idea is to study the distribution of one spin variable, e.g., the
one at the origin of coordinates. Letm denote the expected value of this spin,
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m = Eβ,h(S0). Then, conditioning on the configuration in the complement of
the origin, we get the identity

m = Eβ,h
(

E0(Se(S,βm0+h))

E0(eβ(S,βm0+h))

)
, (2.2)

wherem0 is therandomvariable given by the weighted average

m0 =

∑
x∈Zd

J0,x Sx. (2.3)

We emphasize that the expectationEβ,h “acts” only on m0 while E0 “acts”
only on the auxiliary spin variableS.

When all is said and done, the underlyingassumptionbehind the standard
mean-field theories boils down to the statement that the quantitym0 is non-
random, and therefore equal tom. Postponing, momentarily, any discussion
that concerns the validity of such an assumption, the immediate relevance is
that in Eq. (2.2) we can replacem0 by m which in turn makes the outer expec-
tation on the right-hand side redundant. We thus arrive at the self-consistency
constraint

m =
E0(Se(S,βm+h))

E0(eβ(S,βm+h))
(2.4)

which is themean-field equationfor the magnetization. Clearly, if it can be
established that the fluctuations ofm0 are negligible, then the actual magneti-
zation must be near a solution of Eq. (2.4).

In this light, our results are not that hard to understand: In most instances
where the mean-field theory predicts a discontinuous transition this prediction
is showcased by the fact that Eq. (2.4) simply does not admit continuous solu-
tions. Thus if the error caused in the approximationm0 ≈ m is much smaller
than the discontinuities predicted in the mean-field approximation, jumps of
the physical magnetization cannot be avoided.

As all of the above is predicated on the near constancy of the random
variablem0, let us turn to a discussion of the fluctuations of this quantity. An
easy calculation shows that

Var(m0) =

∑
x,y

J0,x J0,yEβ,h
(
(Sx,Sy)− |m|

2) (2.5)

where |m|
2

= (m,m). The quantityEβ,h((Sx,Sy) − |m|
2) is the thermal

two-point correlation function which, on general grounds, may be presumed to
tend to zero at large separations. It would thus seem that the stipulation of a
“spread out interaction” along withanysort of decay estimate on the two-point
correlations would allow us to conclude that the variance ofm0 is indeed small.
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However, while explanations of this sort are satisfactory at a heuristic level,
a second glance at Eq. (2.5) indicates that the task is not necessarily trivial.
Indeed, of actual interest is the decay of correlations within the effective range
of the interaction, which is guaranteed to be delicate. At the core of this paper
is the use ofreflection positivityto provide these sorts of estimates.

In many cases, Eq. (2.4) on its own is insufficient for understanding the
behavior of a system—even at the level of mean-field theory. Specifically, in
the case of a discontinuous transition, Eq. (2.4) will typically have multiple so-
lutions the overall structure of which does not allow for a continuous solution.
While this may have the advantage of signaling the existence of discontinu-
ities, it does not provide any insight as to where the discontinuities actually oc-
cur. Thus, whenever there are multiple solutions to Eq. (2.4), a supplementary
“rule” is needed to determine which of these solutions ought to be selected.

The supplement—or starting point of the whole theory depending on
one’s perspective—is the introduction of themean-field free-energy func-
tion8β,h(m) defined as follows: LetS(m) be theentropy functionassociated
with the a priori measure on the spins. Formally, this quantity is defined by
means of the Legendre transform

S(m) = inf
b∈Rn

{
G(b)− (b,m)

}
(2.6)

of the cumulant generating function

G(b) = logE0
(
e(b,S)

)
. (2.7)

The mean-field free-energy function is then defined as the difference of the
energy function,E(m) = −

β
2 |m|

2
− (h,m), and the entropyS(m):

8β,h(m) = −
β

2
|m|

2
− (h,m)− S(m). (2.8)

Then, as is not hard to see, the mean-field equation is implied by the condition
that8β,h be minimized. Indeed, writing∇8β,h(m) = 0 some straightforward
manipulations give us

m = ∇G(βm + h), (2.9)

which is exactly Eq. (2.4).
Eq. (2.8) along with the stipulation to minimize adds a whole new dimen-

sion to the theory that was defined by Eq. (2.4). Foremost, in the case of multi-
ple solutions, we now have a “rule” for the selection of the relevant solutions.
Beyond this, we have a framework resembling a full thermodynamical theory:
A free energy—defined by evaluating8β,h at the minimizingm—along with
an entropy and energy which are the corresponding functions evaluated at this
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magnetization. In fact, a secondary goal of this work is to demonstrate that this
“more complete” mean-field theory provides an asymptotic description of the
actual theories with spread out interactions.

Remark 2.1. We conclude this subsection with the remark that the
mean-field theory for any particular Hamiltonian of the form (1.1) can be
produced in an actual spin-system by considering the model on thecomplete
graph. Explicitly, for a system withN sites, we takeJx,y =

1
N , compute all

quantities according to the standard rules of statistical mechanics and then take
N → ∞. The result of this procedure is the mean-field theory described in
this subsection for the thermodynamics and a limiting distribution for the spins
which is i.i.d. The connection between mean-field theory and complete graph
models is well known and has been proved in numerous special cases (see,
e.g., Ref. [18] for a recent study of ensemble equivalence for the Potts model
on the complete graph). A complete proof for the general form ofH given in
Eq. (1.1) appears e.g. in Sect. 5 of Ref. [11].

2.2. Potts models in external field

The best example of a system which exhibits a rich spectrum of behaviors
while remaining tractable is the Potts model in an external field. The Potts
model is typically defined using discrete spin variablesσx ∈ {1, . . . ,q} with
no apparent internal geometry. The energy of a configuration is given by the
(formal) Hamiltonian

βH = β
∑
x,y

Jx,yδσx,σ y −

∑
x

hδ1,σ y. (2.10)

Hereβ is the inverse temperature, theJx,y’s are the coupling constants for
the system, andδσx,σ y is the Kronecker delta. The reduced external fieldh is

related to the physical external fieldh̃ via h̃ = h/β. We have chosen only the
state “1” as the state affected by the external field even though more general
versions are also possible [7,9,10,12].

This system is cast in the form of Eq. (1.1) by using thetetrahedral rep-
resentation: We take spin variablesSx ∈ {v̂1, . . . v̂q}, where thev̂k’s are the
vertices of a unit tetrahedron inRq−1. Inner products (defined the usual way
for vectors inRq−1) between thêvk’s satisfy

(v̂k, v̂l ) =

{
1, if k = l ,
−1

q−1, otherwise,
(2.11)

and so

δσx,σ y −
1

q
=

q − 1

q
(Sx,Sy). (2.12)
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After similar consideration of the magnetic field terms, it is seen that the Hamil-
tonian in Eq. (2.10) is manifestly of the form in Eq. (1.1). To stay in accord
with the classic references on the subject, e.g., Ref. [48], we will keep theq-
dependent prefactor suggested by Eq. (2.12). So, our official Hamiltonian for
the Potts model will read

βH = −
q − 1

q
β

∑
(x,y)

Jx,y (Sx,Sy)−
q − 1

q
h

∑
x

(v̂1,Sx) (2.13)

with the J’s obeying Eq. (2.1) andh ∈ R.
The mean-field theory is best expressed in terms of the vector magnetiza-

tion given by
m = x1v̂1 + · · · + xqv̂q, (2.14)

and the mean-field free-energy function is [11,48]

8
(q)
β,h(m) =

q∑
k=1

(
−
β

2
x2

k + xk logxk

)
− hx1. (2.15)

Here the “barycentric” coordinatesxk are components of a probability vectors,
i.e., we havexk ≥ 0 andx1 + · · · + xq = 1. In the context of the Potts model
on a complete graph,xk represents the fraction of sites in thek-th spin state.

Let us start with a recapitulation of the zero-field case where the resulting
theory is quite well known. For eachq there is a numberβ(q)MF such that if

β < β
(q)
MF, the unique global minimizer is the “most symmetric state,”m = 0,

while for β > β
(q)
MF, there are exactlyq (asymmetric) global minima which

are permutations of one probability vector of the formx1 > x2 = · · · = xq.
Thus we may express all quantities in terms of ascalar magnetization, e.g.,
x1 =

1
q + m andxk =

1
q −

m
q−1, k = 2, . . . ,q. Then, whenβ > β

(q)
MF, the

mean-field magnetization is given bymMF(β) =
q−1

q θ , whereθ is the maximal
positive solution to the equation

θ =
eβθ − 1

eβθ + q − 1
. (2.16)

The crucial point—which can be gleaned form a perturbative analysis of
Eq. (2.16)—is the divisionat q = 2 of two types of behavior. In particu-
lar, mMF(β) tends to a strictly positive value asβ ↓ β

(q)
MF for q > 2, while

for q = 2 the limit value is zero. (Indeed, forq = 2, thereare nonontrivial
solutions to Eq. (2.16) atβ = β

(2)
MF = 2.)
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Remark 2.2. Interestingly, the values ofβ(q)MF and the limit value

mMF(β
(q)
MF) are explicitly computable:

β
(q)
MF = 2

q − 1

q − 2
log(q − 1), mMF(β

(q)
MF) =

q − 2

q
. (2.17)

This observation goes back to at least Ref. [48].

Let us now anticipate, without going to details, what happens forh 6= 0.
(The full-blown statements and proofs will appear in Sect. 2.3 and Sect. 5, re-
spectively.) We will capitalize on the principle that local minimizers are stable
to small changes in parameters. Considerq ≥ 3 andh 6= 0 such that|h| � 1.
The overall situation cannot differ too drastically from the zero-field case; the
only distinction is that forh > 0 only one of the “h = 0 asymmetric mini-
mizers” is allowed while forh < 0 the same minimizer is suppressed in favor
of the remainingq − 1 ones. On the other hand, forh positive and large, it is
clear that the minimizer of8(q)β,h(m) will be unique no matter whatβ is. Thus,
for h > 0 we should have a line of mean-field first-order phase transitions
which terminates at a finite value ofh. On general grounds, the terminal point
is expected to be a critical point.

Next, let us considerh < 0 with |h| � 1. The situation ath = −∞ is
clear; this is just the (q − 1)-state Potts model. Thus for finite but large|h|, we
can see a clear distinction betweenq = 3 andq > 3. In the former cases, the
mean-field transition should be Ising like and hence continuous. In the latter
case, the transition should be discontinuous. Thus, theq = 3 line should break
at atricritical point followed by a line of continuous transitions while forq > 3
there will be an unbroken line of discontinuous mean-field phase transitions.

Aside from general interest, the key motivation for obtaining such detailed
knowledge aboutmMF is as follows: Under specific conditions on (1.1), virtu-
ally all that has just been discussed pertaining to discontinuous transitions in
these systems can be established with rigor in the spread out “real” systems.
(On the downside is the fact that virtually nothing pertaining to the continuous
transition can be proved by these methods.) To illustrate let us consider the
transition ath > 0 whenq is large. The mean-field picture is as follows: A
non-convexity of8(q)β,h(m) develops whenβ is of order unity, but it does not
“touch down” untilβ is appreciable (of order logq). However, the existence
of a non-convexity suggests that a strong-enough magnetic field can tilt the
balance in favor of a magnetized state, even forβ ’s of order unity. This is
indeed the case for the MFT as our detailed calculations later show. As a con-
sequence of the general techniques presented here, this result from the MFT
will be processed into a theorem for actual systems.
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2.3. Precise statements for mean-field Potts model

Our precise results for the mean-field theory of the Potts model in an external
field are summarized into two theorems; one for positive fields and the other
for negative fields.

Theorem 2.3. (Positive fields) Let q ≥ 3, let m and the probabil-
ity vector(x1, . . . , xq) be related as in Eq.(2.14)and let8(q)β,h(m) denote the
function from Eq.(2.15). Let hc denote the quantity

hc = logq −
2(q − 2)

q
. (2.18)

Then there is a continuous functionβ(q)+ : (0, hc) → (0,∞) such that

(1) For all (β, h) such that either h≥ hc or β 6= β
(q)
+ (h), there is a unique

global minimizer of8(q)β,h(m) with x2 = · · · = xq. The quantity x1
corresponding to this minimizer is strictly larger than the mutual value
of the xk’s for k = 2, . . . ,q.

(2) For all h < hc, there are two distinct global minimizers of8(q)β,h(m) at

(β
(q)
+ (h), h).

(3) For (β, h) such that h≥ hc or β 6= β
(q)
+ (h), let x1 = x1(β, h) denote

the first coordinate of the global minimizer of8(q)β,h(m). Then(β, h) 7→

x1(β, h) is continuous with well-defined but distinct (one-sided) limits
at (β, h) = (β

(q)
+ (h), h). Furthermore, writing x1 =

1
q +m, the quantity

θ =
q

q−1m obeys the equation

θ =
eβθ+h

− 1

eβθ+h + q − 1
. (2.19)

in the region of uniqueness. At the points(β(q)+ (h), h), both limiting
values obey this equation.

(4) The function h7→ β
(q)
+ (h) is strictly decreasing on(0, hc) with limit

valuesβ(q)+ (h) ↑ β
(q)
MF = 2q−1

q−2 log(q − 1) as h↓ 0 andβ(q)+ (h) ↓
4(q−1)

q
as h↑ hc.

In order to preserve uniformity of exposition, we will restrict the statement
of negative-field results toq ≥ 4.

Theorem 2.4. (Negative fields) Let q ≥ 4, let m and the probabil-
ity vector(x1, . . . , xq) be related as in Eq.(2.14)and let8(q)β,h(m) denote the
function from Eq.(2.15). Then we have:
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(1) All global minima are permutations in the last q−1 variables of vectors
with the representation

x1 < x2 = · · · = xq−1 ≤ xq. (2.20)

Moreover, there exists a functionβ(q)− : (−∞,0) → (0,∞) such that the fol-
lowing hold:

(2) (Symmetric Minimum) For allβ < β
(q)
− (h), there is a unique global

minimum and it has x2 = · · · = xq. Moreover, if m is such that x1 =
1
q − m and xk =

1
q +

m
q−1, for all k = 2, . . . ,q, thenθ =

q
q−1m

corresponds to a global minimum when

θ =
eβθ−h

− 1

(q − 1)eβθ−h + 1
. (2.21)

There is only oneθ ∈ [0, 1
q−1] for which Eq.(2.21)holds.

(3) (Asymmetric Minima) For allβ > β
(q)
− (h), we have q−1 global minima.

These are permutations in the last q− 1 variables of a single minimum
whose coordinate representation takes the form

x1 < x2 = · · · = xq−1 < xq. (2.22)

(4) At β = β
(q)
− (h) there are q global minima. One of these is of the type

described in (2)—namely, the symmetric minimum—while the other q−1
are of the type described in (3).

(5) The function h7→ β
(q)
− (h) is strictly increasing and continuous. More-

over, we have the limits

lim
h→−∞

β
(q)
− (h) = β

(q−1)
MF and lim

h↑0
β
(q)
− (h) = β

(q)
MF (2.23)

Theorem 2.3 is proved in Sect. 5.3 and Theorem 2.4 is proved in Sect. 5.4.
The corresponding statement for the actual lattice systems is the subject of
Theorem 3.5.

3. MAIN RESULTS

Here we give the statements of the principal theorems which apply to any
model whose interaction is of the type (1.1). Then we apply these to the Potts
and Blume-Capel models.
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3.1. General theory

We begin by a precise definition of the class of models we consider. Let� be a
compact subset ofRn, with the inner product denoted by(·, ·), and let Conv(�)
denote the convex hull of�. Letµ0 be a Borel probability measure on(�,B)
that describes thea priori distribution of the individual spins. We will consider
spin configurations(Sx) from�Zd

and, abusing the notation slightly, useµ0 to
denote also the correspondinga priori product measure.

To define the interacting spin system, let us pick a finite set3 ⊂ Zd, a
spin configurationS3 ∈ �3 in 3 and the “boundary condition”S3c ∈ �3

c
.

For eachh ∈ Rn and eachβ > 0, we then define the finite-volume Hamiltonian
H3(S3,S3c) by

βH3(S3,S3c) = −β
∑
〈x,y〉

x∈3,y∈Zd

Jx,y (Sx,Sy)−

∑
x∈3

(h,Sx). (3.1)

The first sum goes over all unordered pairs of distinct sites〈x, y〉 at least one
of which is contained in3.

The above Hamiltonian can now be used to define the finite-volume Gibbs
measureν(S3c)

3 on spin configuration from�3 by

ν
(S3c)
3 (dS3) =

e−βH3(S3,S3c)

Z(S3c)
3 (β,h)

µ0(dS3), (3.2)

where the normalizing constantZ(S3c)
3 (β,h) is the partition function. Of par-

ticular interest are the (weak subsequential) limits of these measures as3 ex-
pands to fill out the entireZd. These measures obey the DLR-conditions [25]
and are generally referred to as (infinite-volume) Gibbs measures. In this for-
malism,phase coexistenceis said to occur for parametersβ andh if there is
more than one limiting Gibbs measure. Under these conditions the system is
said to exhibit afirst-order phase transition.

We proceed by formulating the precise conditions under which our results
will be proved. To facilitate our next definition, for each lattice direction` ∈

{1, . . . ,d}, let H` denote the half-space

H` = {x = (x1, . . . , xd) ∈ Zd, x` > 0}. (3.3)

We will useϑ (`) to denote the reflectionϑ (`) : H` → Zd
\H` defined explicitly

by the formulaϑ (`)(x1, . . . , xd) = (x1, . . . , x`−1,1 − x`, x`+1, . . . , xd).

Definition 3.1. (RP “through bonds”) Consider a collection of
coupling constants(Jx,y)x,y∈Zd . We say that these are RP if the following
conditions hold:
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(1) (translation invariance) for anyx, y ∈ Zd we haveJx,y = J0,y−x.

Moreover, for any lattice directioǹ∈ {1, . . . ,d},

(2) (reflection invariance) for anyx, y ∈ H` we have

Jx,y = Jϑ (`)x,ϑ (`)y. (3.4)

(3) (reflection positivity) if f : H` → R is absolutely summable with∑
x∈H`

f (x) = 0, (3.5)

then ∑
x∈H`

y∈ZdrH`

Jx,y f (x) f (ϑ (`)y) ≥ 0. (3.6)

Given a translation-invariant Gibbs measure, we use the wordmagneti-
zation to denote the expectation of the spin at the origin. The statement of
our general result can then be viewed as a restriction on the possible values
of the magnetization. However, not all magnetizations that can be physically
produced are (provably) accessible to our methods. The reason is that the un-
derlying Gibbs states for which our techniques work will have to satisfy the
conditions of reflection positivity—in particular, they have to be obtained as
weak limits of torus states. Our next item of business will be to define pre-
cisely the set of “allowed values” of the magnetization.

We will proceed as in Ref. [11]. LetZ3(β,h) be the partition function in
volume3—the boundary condition is irrelevant—and letF(β,h) denote the
(physical) free energy defined as the limit of−

1
|3|

log Z3 as3 increases to fill

the entireZd (in the sense of van Hove [25]). The functionF(β,h) is jointly
concave, so we may letK?(β,h) denote the set of all pairs [e?,m?] such that

F(β + 4β,h + 4h)− F(β,h) ≤ e?4β + (m?,4h) (3.7)

for any 4β ∈ R and any4h ∈ Rn. Now K?(β,h) is a convex set so we
let M?(β,h) to denote the set of valuesm? for which there exists ane? such
that [e?,m?] is an extreme value ofK?(β,h). Our main theorem then reads:

Theorem 3.2. Consider the spin system onZd with the Hamiltonian
(1.1)such that the couplings(Jx,y) are RP, the inverse temperatureβ > 0 and
external fieldh ∈ Rn. For each k∈ [−π, π ]d, let Ĵ(k) =

∑
x∈Zd J0,xeik·x and

recall that Ĵ(0) = 1 by Eq.(2.1). Then for anym? ∈ M?(β,h),

8β,h(m?) ≤ inf
m∈Conv(�)

8β,h(m)+ βn
κ

2
I , (3.8)
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where n is the (underlying) dimension of the spin-space,κ = maxS∈� |S|
2 and

I =

∫
[−π,π ]d

dk

(2π)d
| Ĵ(k)|2

1 − Ĵ(k)
. (3.9)

The useful aspect of Theorem 3.2 is that the error termE = βnκ2I can be
made small by appropriate adjustment of parameters. A general statement of
this sort appears in Proposition 4.10 but, typically, these conditions have to be
verified on a case by case basis. Let us tend to the details of these adjustments
later and, for the time being, simply assume thatE is small. Then, along with
the obvious supplement of Eq. (3.8),8β,h(m?) ≥ infm∈Conv(�)8β,h(m), we
have learned that the allowed values of the magnetization in thephysicalsys-
tem nearly minimize themean-fieldfree energy. In this sense, the mean-field
theory already provides a quantitatively accurate description of the physical
system onceE � 1. In Sects. 3.3-3.4 we will use this fact to prove a first-order
phase transitions in a few models of interest.

To demonstrate the use of Theorem 3.2, let us consider the “evolution” of
a typical MFT phase transition, in which two local minima of8β,h exchange
roles of the global minimizer asβ varies. Specifically, letmS(β) andmA(β)
be local minima of8β,h—one of which is always global—forβ near someβt,
and suppose that8β,h(mA) > 8β,h(mS) for β > βt andvice versafor β < βt.
Then Theorem 3.2 can be applied under the condition that, outside some small
neighborhoods ofmS(β) andmA(β) for β ≈ βt, no magnetizations have a
free energy withinE of the absolute minimum. Forβ ' βt, this stipulation
applies even to the neighborhood ofmS(β) and, forβ / βt, to the neighbor-
hood ofmA(β). Then, Theorem 3.2 tells us that in the regionβ / βt, the
actual magnetization is nearmS(β), for β ≈ βt it could be nearmS or mA, and
for β ' βt it is only nearmA(β). On general grounds, as long as the differ-
encemA −mS is bounded uniformly away from zero, somewhere nearβt there
has to be a point of phase coexistence.

3.2. Mean-field philosophy

In this section we will state some general facts about spin systems and their
mean-field analogues. The stipulations that govern this section are rather mild;
first we will assume that the Hamiltonian is of the form (1.1) with theJx,y’s
satisfying the conditions of reflection positivity. Second, we will assume that
the associated mean-field free-energy function defined in Eq. (2.8) has a unique
minimizer. Finally, we will investigate the small-I behavior of these models.
The preferred viewpoint is a fixed dimensiond with parametersµ—as defined
in Eq. (1.2)—tending to zero ors—as defined in Eq. (1.3)—tending tod.

We note that special cases (usually restricted to concrete models) have
been addressed elsewhere; see, in particular, Ref. [34] and references therein,
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but there the only mechanism to forceI → 0 was thed → ∞ limit which
we find æsthetically somewhat unsatisfactory. Another possibility is to con-
sider the aforementioned Kac limit which more or less boils down to infinite
smearing out of the interaction. A contour-based analysis of this limit has been
carried out, but the technical aspects have so far been overcome only for very
specific models [14–17, 36]. Here we provide a general result in this direction
under the sole condition of reflection positivity.

Theorem 3.3. (Mean-field philosophy) Consider the spin system
as described above and let8β,h be as in Eq.(2.8). Suppose that the pa-
rametersβ > 0 and h ∈ Rn are such that8β,h has a unique minimizerm
on Conv(�) in Eq. (2.8). Let (J(n)x,y) be a sequence of coupling constants that

are RP and obey Eq.(2.1), and let〈−〉
(n)
β,h be a sequence of translation and

rotation-invariant Gibbs states corresponding to these couplings. If the se-
quence of integralsIn, obtained from(J(n)x,y) via Eq.(3.9), satisfies

In → 0 as n→ ∞, (3.10)

then we have the following facts:

(1) The actual magnetization tends tom, i.e.,

〈S0〉
(n)
β,h −→

n→∞
m. (3.11)

(2) The energy density tends to its mean-field value, i.e.,〈
(S0,

β
2m0 + h)

〉(n)
β,h −→

n→∞
E(m), (3.12)

wherem0 is as in Eq.(2.3)and E(m) is as in Sect. 2.1.

In particular, in the limit n → ∞, the spin variables at distinct sites become
independent with distribution given by the product of the titled measures

e(S,βm+h)−G(βm+h)µ0(dS). (3.13)

Hereµ0 is thea priorimeasure.

The preceding—as is the case in much of the principal results of this
paper—reduces (theI → 0 limit of) the full problem to a detailed study of
the associated mean-field theory. Two specific models will be analyzed in great
detail shortly (see Sects. 3.3 and 3.4); let us mention two other well known (or
well studied) examples.

First are theO(n) spin systems at zero external field. Here eachSx takes
values on the unit sphere inRn with a priori uniform measure. In the mean-
field theory of these models, the scalar magnetizationm(β) vanishes forβ less
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than someβc while for β ≥ βc it is the maximal positive solution of a certain
transcendental equation (see, e.g., Ref. [34]). In particular, this solution rises
continuously from zero according to

|m(β)| = (β − βc)
1/2

[
C(n)+ o(1)

]
, β ↓ βc. (3.14)

By Theorem 3.3, the actual magnetization converges to this function but, un-
fortunately, our control is not strong enough to rule out the possibility of small
discontinuities (which vanish asI → 0).

A less well known but very interesting example is thecubic modelwhere
the spins point to the center of a face on anr -dimensional unit hypercube,
i.e., Sx ∈ � = {±ê1, . . . ,±êr }. For r > 3 the transition in this model is
first order (and was analyzed in Ref. [11]). The caser = 2 reduces to an
Ising system but the borderline case,r = 3, while still continuous, features
a somewhat anomalous (namely, tricritical) behavior. Indeed, for this system,
the mean-field magnetization obeys

|m(β)| = (β − βc)
1/4

[
C + o(1)

]
, β ↓ βc, (3.15)

whereβc = 3. Once again, the actual magnetization converges to such a func-
tion but the control is not sufficient to rule out small discontinuities.

While these sorts of results do not establishanycritical behavior in par-
ticular systems, they could represent a first step in proving that a variety of
(mean-field) critical behaviors are possible.

3.3. Results for the Potts model

Our first result concerns the zero-fieldq-state Potts model withq ≥ 3.
Let F(β, h) denote the free energy of the Potts model with the Hamiltonian
in Eq. (2.10) and letm?(β) be the quantity

m?(β) =
∂

∂h+
F(β, h)

∣∣∣
h=0

−
1

q
. (3.16)

(An alternative definition ofm?(β) would be the limiting probability that the
spin at the origin is “1” in the state generated by the boundary spins all set
to “1.”) Let mMF = mMF(β) be related to the maximal positive solutionθ of
Eq. (2.16) bymMF =

q−1
q θ . Then we have:

Theorem 3.4. Let q ≥ 3 be fixed. For eachε > 0 there existsδ > 0
with the following property: For any d≥ 1 and any collection of coupling
constants(Jx,y) on Zd that are RP, obey(2.1)and for which the integralI in
Eq. (3.9)satisfiesI ≤ δ, there exists a numberβt ∈ (0,∞) such that

|βt − β
(q)
MF| ≤ ε (3.17)
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holds and such that the physical magnetization m? = m?(β) of the correspond-
ing q-state Potts model obeys the bounds

m?(β) ≤ ε for β < βt (3.18)

and
|m?(β)− mMF(β)| ≤ ε for β > βt. (3.19)

In particular, whenever the integralI is sufficiently small,β 7→ m?(β) under-
goes a jump near the valueβ(q)MF. A similar jump occurs (at the same point) in
the energy density.

This statement extends Theorem 2.1 of Ref. [11] to a class of spread-out
RP interactions. (A minor technical innovation is that the bound in Eq. (3.19)
holds uniformly.) As a consequence, we are finally able to provide examples of
interactions for which theq = 3 state Potts models in dimensiond = 3 can be
proved to have a first-order transition. Similar conclusion holds for allq ≥ 3
but, unfortunately, our requirements on the “smallness” of the corresponding
parameters are not uniform inq.

In d = 1, we show that the long-range Potts models with power-law de-
caying interactions go first order once the exponent of the power-decay is be-
tween one and two. Models in this category have been studied in Ref. [40] in
the context of percolation; the domination techniques of, e.g., Ref. [3] then im-
ply the existence of a low temperature phase. However, the percolation-based
approach alone is unable to tell whether the transition is discontinuous or not.
Some additional discussion is provided in Sect. 3.5.

Our next item of interest will be the same system in an external field, as
described by the full Hamiltonian (2.10). For reasons alluded to in Sect. 2.2,
we will restrict our attention to theq ≥ 4 cases.

Theorem 3.5. Let q ≥ 4 be fixed and let us consider the q-state Potts
model with coupling constants Jx,y that are RP and obey Eq.(2.1). Then there
existsδ0 > 0 and a function h0 : (0, δ0]→ [0, hc), where hc is as in Eq.(2.18),
such that if (3.9) obeysI ≤ δ with someδ ≤ δ0, then there exists a func-
tion βt : (−∞, h0) → (0,∞) with the following properties:

(1) A first-order transition (accompanied by a discontinuity in the energy
density and the magnetization) occurs at the parameters(h, βt(h)), for
any external field h∈ (−∞, h0).

(2) Let m?(β, h) be the “spin-1 density” defined by the right partial deriva-
tive ∂

∂h+ F(β, h). Then there exists an h1 = h1(δ) < 0 such that

h 7→ m?(β, h) has a discontinuity at field strength̃h such thatβ = βt(h̃)
provided thath̃ ∈ (h1, h0).
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The function h0 is decresing while h1 is increasing. Moreover,limδ↓0 h0(δ) =

hc and limδ↓0 h1(δ) = −∞.

The second part of the theorem asserts that, even if state “1” is suppressed
by the field, the order-disorder transition will be felt by the “spin-1 density”
m?(β, h). There is no doubt in our mind that the restriction toh ≥ h1 in this
claim is only of technical nature. Our lack of control forh very large negative
stems from the fact that the jump in the mean-field counterpart ofm?(β, h)
decreases exponentially with|h| as h → −∞. Theorems 3.4 and 3.5 are
proved in Sect. 6.

3.4. Results for the Blume-Capel model

The Blume-Capel model is a system whose spinsσx take values in the set
� = {−1,0,1} with a priori equal weights. The Hamiltonian is given most
naturally in the form

βH (σ) = β
∑
〈x,y〉

Jx,y(σx − σ y)
2
− λ

∑
x

(σx)
2
− h

∑
x

σx. (3.20)

As is easy to see, a temporary inclusion of the terms proportional to(σx)
2 into

the single-spin measure shows that this Hamiltonian is indeed of the general
form in Eq. (1.1).

If we consider the situation at zero temperature (β = ∞) with λ andh
finite we see that in the(λ, h)-plane there are three regions of constant spin
which minimizeβH (σ). The regions all meet at the pointh = 0, λ = 0;
tentatively we will call the origin a triple point (and the lines phase boundaries).
Ostensibly one would wish to establish that this entire picture persists at finite
temperature. However, we will confine attention to the lineh = 0 which is of
the greatest interest. We will show, both in the context of mean-field theory
and, subsequently, realistic systems that there is indeed a finite temperature
first order transition at someλt(β). Of significance is the fact that this occurs
at aλt which is strictly positive; i.e., for 1� β < ∞, the pointλ = 0 lies
inside the phase which is dominated by zeros.

We remark that results of this sort are far from new; indeed the proof
of this and similar results represented one of the early triumphs of low tem-
perature techniques Ref. [46]. The physical reason behind the shifting of the
phase boundary is the enhanced ability of the “zero” phase over the plus and
minus phases to harbor elementary excitations. Interestingly, in spite of the
fact that our method relies onsuppressionof fluctuations, the corresponding
entropic stabilization is nevertheless manifest in our derivation. In addition,
while the contour-based approaches require a non-trivial amount of “low tem-
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perature labor” to ensure that the interactions between excitations are limited,
our methods effortlessly incorporate whatever interactions may be present.

To simplify our discussion, from now on we will focus on the situation
at zero external field, i.e.,h = 0, and suppressh from the notation. First let
us take a look at the mean-field theory. Here we find it useful to express the
relevant quantities in terms of mole fractionsx1, x0, x−1 of the three spin states
in �. To within an irrelevant constant, the mean-field free-energy function is

8β,λ = 4βx1x−1 + βx0(1 − x0)+ λx0 +

∑
σ=±1,0

xσ logxσ . (3.21)

Here we have used the fact thatx1+ x0+ x−1 = 1. Our main result concerning
the mean-field theory of the Blume-Capel model is now as follows:

Theorem 3.6. For all β ≥ 0 and all λ ∈ R, all local minima of8β,λ
obey the equations

x1e4βx−1 = x−1e4βx1 = x0eβ(1−2x0)+λ. (3.22)

Moreover, there exists aβ0 < ∞ such that for allβ ≥ β0, any such (local)
minimum is of the form that two components of(x1, x0, x−1) are very near zero
and the remaining one is near one. Explicitly, there exists a constant C< ∞

such that

(1) If x0 is the dominant index, then x1 = x−1 =
1
2(1 − x0) and we have

that (1 − x0) ≤ Ce−β+λ.

(2) If x1 is the dominant index, then x−1 ≤ Ce−4β while x0 ≤ Ce−β−λ. A
corresponding statement is true for the situation when x−1 is dominant.

Furthermore, consider two local minima at(β, λ), one dominated by x0 and
the other dominated by x1. Letφ0(β, λ) be the mean-field free energy corre-
sponding to the former minimum and letφ1(β, λ) be that corresponding to the
latter minimum. Then

φ0(β, λ)− φ1(β, λ) = λ− e−β+λ
+ O(βe−2β) (3.23)

where O(βe−2β) denotes a quantity bounded by a constant timesβe−2β for
all λ in a neighborhood of the origin. In particular, for allβ sufficiently large
there existsλMF(β) = e−β

+ O(βe−2β) such that the global minimizes of8β,λ
have x±1 � 1 for λ < λMF(β) and x0 � 1 for λ > λMF(β).

Theorem 3.6 is proved in Sect. 5.1. Next we will draw our basic conclu-
sions about the actual system:
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Theorem 3.7. Consider the Blume-Capel model in Eq.(3.20), with
zero field (h= 0), inverse temperatureβ and the coupling constants(Jx,y)
that are RP and obey Eq.(2.1). LetI be the integral in Eq.(3.9). There exist
constantsβ0 ∈ (0,∞) and C< ∞ such that ifβ ≥ β0 andβI � e−β , then
there is a functionλt : [β1, β2]→ R satisfying|λt(β) − e−β

| < βI such that
any translation-invariant Gibbs state〈−〉β,λ obeys

(1) 〈σ2
x〉β,λ ≤ Ce−β if λ < λt(β),

(2) 〈σ2
x〉β,λ ≥ 1 − Ce−β if λ > λt(β).

Moreover, atλ = λt(β), there exist three distinct, translation-invariant Gibbs
states〈−〉

σ
β,λ, with σ ∈ {+1,0,−1}, the typical configuration of which con-

tains fraction at least1 − Ce−β of the corresponding spin state.

We remark that the phase transition happens at a value ofλ which (at least
for β � 1) is strictly positive. This demonstrates the phenomenon of entropic
suppression (of±1 ground states atλ = 0) established previously in Ref. [46]
by the contour-expansion techniques. The entropic nature of the above transi-
tion is also manifested by the fact that the free-energy “gap” separating the
distinct statesdecreasesas β → ∞. This is the reason why, to maintain
uniform level of control, we needI to be smaller for smaller temperatures.
Theorem 3.7 is proved in Sect. 6.

3.5. Discussion

We close this section with a discussion of some conjectures that can be ad-
dressed via the above theorems.

Starting with the intriguing results in Ref. [31] and culminating in
Refs. [32,33], A. Kerimov formulated the following conjecture (we quote ver-
batim from the latter pair of references): “Any one-dimensional model with
discrete (at most countable) spin space and with a unique ground state has a
unique Gibbs state if the spin space of this model is finite or the potential of this
model is translationally invariant.” The conclusions of Theorem 3.4 manifestly
demonstrate that this conjecture fails for the 1D Potts model in external field.
Indeed, forq ≥ 3, h > 0 and interactions decaying like 1/r s with s ∈ (1,2)
which are RP and satisfy the condition that the integral in Eq. (3.9) is suffi-
ciently small, the Potts model has phase coexistence at some positive tempera-
ture. However, it is clear that this system enjoys a unique ground state.

In a recent paper [4], N. Berger considered random-cluster models with
parameterq and interactions between sitesx and y decaying as|x − y|

−s,
whered < s < 2d. He proved, among other results, that at the percola-
tion threshold there is no infinite cluster in the measure generated by the free
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boundary conditions. For ordinary percolation (i.e.,q = 1), this implies con-
tinuity of the infinite cluster density. As to the wired boundary conditions,
for q = 2—i.e., the Ising model—the classic results of Refs. [1, 2] show that
the magnetization vanishes continuously once the model is in the “mean-field
regime”s ∈ (1, 3/2). However, for general random-cluster models withq > 1
and wired boundary conditions, the situation remained open.

While we cannot quite resolve the situationat the percolation threshold,
our results prove that, for sufficiently spread out random-cluster models with
RP couplings, there is a point where the free and wired densities are indeed
different. To resolve the full conjecture from Ref. [4], one would need to es-
tablish that the only place such a discontinuity can occur is at the percolation
threshold.

Our third application concerns the problem of partition function zeros of
the Potts model in acomplexexternal field with Reh < 0. Here there have
been numerical results [35] claiming that no such zeros occur for the nearest-
neighbor 2D Potts model withq ≤ 7. On the basis of the classic Lee-Yang
theory [38, 49], absence of such zeros would imply analyticity of the spin-1
density. The results of Refs. [5, 6, 8–10] rule this out forq very large and
Theorem 3.5(2) also makes this impossible for reasonable values ofq and suf-
ficiently spread-out interactions (of course, ford = 1,2 this requires a power-
law interaction).

4. PROOFS: GENERAL THEORY

The goal of this section is to prove Theorems 3.2 and 3.3. In Sect. 4.1 we
present some general convexity results that provide the framework for the
derivation of our results. However, the driving force of our proofs are the clas-
sic tools of reflection positivity and infrared bounds which are reviewed (and
further developed) in Sects. 4.2 and 4.3. The principal results of this section
are Theorem 4.1 and Lemmas 4.2, 4.8 and 4.9.

4.1. Convexity bounds

We begin with an intermediate step to Theorem 3.2 which gives an estimate on
how far above the mean-field free energy evaluated at aphysicalmagnetization
is from the absolute minimum.

Theorem 4.1. Suppose(Jx,y) are translation and rotation invariant
couplings onZd such that Eq.(2.1) holds. Letνβ,h be a translation and
rotation-invariant, infinite volume Gibbs measure corresponding toβ ≥ 0
and h ∈ Rn. Let 〈−〉β,h denote the expectation with respect toνβ,h and let
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m? = 〈S0〉β,h. Then

8β,h(m?) ≤ inf
m∈Conv(�)

8β,h(m)+
β

2

{〈
(S0,m0)

〉
β,h − |m?|

2}, (4.1)

wherem0 =
∑

x∈Zd J0,xSx.

Proof. The proof is very similar to that of Theorem 1.1 of Ref. [11].
Let3 be a box ofL ×· · ·× L sites inZd and letM3 be the total spin in3, i.e.,
M3 =

∑
x∈3 Sx. Let us also recall the meaning of the mean-field quantities

from (2.6–2.8). The starting point of our derivations is the formula

e|3|G(b)
=

〈
e(b,M3)+βH3(S3|S3c)Z3(S3c)

〉
β,h, b ∈ Rn, (4.2)

which is obtained by invoking the DLR conditions for the Gibbs stateνβ,h.
HereH3(S3|S3c) is as in Eq. (3.1) andZ3(S3c) is a shorthand for the parti-
tion function in3 givenS3c.

The goal is to derive a lower bound on the right-hand side of Eq. (4.2).
First we provide a lower bound onZ3(S3c) which is independent of bound-
ary conditions. To this end, let〈−〉0,b denote expectation with respect to the
product measure

e(b,M3)−|3|G(b)
∏
x∈3

µ0(dSx) (4.3)

and letmb denote the expectation of any spin in3with respect to this measure.
Jensen’s inequality then gives us

Z3(S3c) = e|3|G(b)〈e−(b,M3)−βH3(S3|S3c)
〉
0,b

≥ e|3|[G(b)−(b,mb)] e−〈βH3(S3|S3c)〉0,b .
(4.4)

Now, (2.6–2.7) imply thatG(b) − (b,mb) = S(mb), while the absolute
summability of x 7→ J0,x implies that for allε > 0 there is aC1 < ∞,
depending onε, the Jx,y’s and the diameter of�, so that

−
〈
βH3(S3|S3c)

〉
0,b ≥ |3|E(mb)− βε|3| − βC1|∂3|, (4.5)

with E(mb) denoting the mean-field energy function from Sect. 2.1. (Note
that we used also the normalization condition (2.1).) Invoking Eq. (2.8) and
optimizing over allb ∈ Rn, we thus get

Z3(S3c) ≥ e−|3|FMF(β,h)−βε|3|−βC1|∂3|, (4.6)

whereFMF(β,h) is the absolute minimum of8β,h(m) over allm ∈ Conv(�).
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Having established the desired lower bound on the partition function, we
now plug the result into Eq. (4.2) to get

e|3|G(b)
≥

〈
e(b,M3)+βH3(S3|S3c)

〉
β,h e−|3|FMF(β,h)−βε|3|−βC1|∂3|. (4.7)

The expectation can again be moved to the exponent using Jensen’s inequality,
now taken with respect to measureνβ,h. Invoking the translation and rotation
invariance of this Gibbs state, bounds similar to Eq. (4.5) imply〈
βH3(S3|S3c)

〉
β,h

≥ −|3|

( ∑
x∈Zd

β

2
J0,x

〈
(Sx,S0)

〉
β,h + (h,m?)− ε

)
− C2|∂3|. (4.8)

Plugging this back into Eq. (4.7), taking logarithms, dividing by|3| and letting
|3| → ∞ (with |∂3|/|3| → 0) followed byε ↓ 0, we arrive at the bound

G(b)− (b,m?) ≥ −
β

2

∑
x∈Zd

J0,x
〈
(Sx,S0)

〉
β,h − (h,m?)− FMF(β,h). (4.9)

Optimizing overb gives

S(m?)− (h,m?) ≤
β

2

∑
x∈Zd

J0,x
〈
(Sx,S0)

〉
β,h + FMF(β,h) (4.10)

from which Eq. (4.1) follows by subtractingβ2 |m?|
2 on both sides.

Similar convexity estimates allow us to establish also the following
bounds between the energy density and fluctuations of the weighted magne-
tizationm0:

Lemma 4.2. Let κ = supS∈�(S,S) and let (Jx,y) be a collection of
couplings satisfying Eq.(2.1). For eachβ > 0 and h ∈ Rn there exists a
numberκ = κ(β,h) such that for any translation and rotation invariant Gibbs
state〈−〉β,h we have

βκ
〈
|m0 − m?|

2〉
β,h ≤

〈
(S0,m0)

〉
β,h − |m?|

2
≤ βκ

〈
|m0 − m?|

2〉
β,h, (4.11)

wherem0 =
∑

x∈Zd J0,x andm? = 〈S0〉β,h.

Proof. We begin with a rewrite of the correlation function in the middle
of Eq. (4.11). First, using the DLR equations to condition on the spins in the
complement of the origin, we have〈

(m0,S0)
〉
β,h =

〈
(m0,∇G(βm0 + h)

〉
β,h. (4.12)
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Next, our hypotheses imply thatm? = 〈m0〉β,h = 〈∇G(βm0 + h)〉β,h, and so〈
(m0,∇G(βm0 + h)

〉
β,h − |m?|

2

=
〈
(m0 − m?,∇G(βm0 + h)− ∇G(βm? + h))

〉
β,h. (4.13)

For the rest of this proof, letΞ abbreviate the inner product in the expectation
on the right-hand side.

We will expressΞ using the mean value theorem

Ξ =
(
m0 − m?, [∇∇G(b)](m0 − m?)

)
, (4.14)

whereb is a point somewhere on the line betweenβm0 + h andβm? + h.
The double gradient∇∇G(b) is a matrix with components(∇∇G(b))i, j =

〈S(i )0 S( j )
0 〉0,b − 〈S(i )0 〉0,b〈S

( j )
0 〉0,b. As was shown in Ref. [11], thè2-operator

norm of∇∇G(b) is bounded byκ = supS∈�(S,S) and so we have

Ξ ≤ βκ |m0 − m?|
2. (4.15)

Taking expectations on both sides, and invoking Eqs. (4.12–4.13), this proves
the upper bound in Eq. (4.11).

To get the lower bound we note that,µ0 almost surely, the double gra-
dient∇∇G(b) is positive definite on the linear subspace generated by vectors
from�. (We are using that� is the support of thea priori measureµ0.) Since
βm0 + h takes values in a compact subset of this subspace, we have

Ξ ≥ βκ |m0 − m?|
2 (4.16)

for some (existential) constantκ > 0. Taking expectations, the left inequality
in (4.11) follows.

We emphasize that in its present form, the bounds (4.1) and (4.11) are es-
sentially of complete generality. Underlying most of the derivations in this pa-
per is the observation that the variance term on the right-hand side of Eq. (4.11)
is sufficiently small. Via Eq. (4.1), the physical magnetizationm? is then forced
to be near one of the near minima of the mean-field free energy. This reduces
the problem of proving discontinuous phase transitions to:

(1) controlling the variance term in Eq. (4.11),

(2) a detailed analysis of the minimizers of8β,h.

For (1), we will use the method of reflection positivity/infrared bounds dis-
cussed in the following subsections. As mentioned before, this does impose
some restrictions on our interactions and our Gibbs states. Part (2) is model
specific and, for the Potts and Blume-Capel models, is the subject of Sect. 5.
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4.2. Reflection positivity

Our use of reflection positivity (RP) will require that we temporarily restrict our
model to the torusTL of L × · · · × L sites. In order to define the interaction
potential on this torus, we recall that theJx,y’s are translation invariant and
define their “periodized” version by

J(L)x,y =

∑
z∈Zd

Jx,y+Lz, (4.17)

whereLz is the site whose coordinates areL-multiples of those ofz. The torus
version of the Hamiltonian (1.1) is then defined by

βHL(S) = −

∑
〈x,y〉

x,y∈TL

β J(L)x,y (Sx,Sy)−

∑
x∈TL

(Sx,h). (4.18)

(Here, as in Eq. (1.1), the first sum is over all unordered pairs of sites.)
Let PL denote the Gibbs measure on�TL whose Radon-Nikodym derivative
with respect to thea priori spin distributionµ0(dS) is the properly normal-
ized e−βHL (S).

Let us suppose thatL is even and let us temporarily regardTL as a pe-
riodized box{1, . . . , L}

d. Let T+

L be those sites whosei -th coordinate ranges
between 1 andL/2 and letT−

L be the remaining sites. The two parts of the
torus are related to each other by a reflection in the “hyperplane”P that sepa-
rates the two halves from each other. (The geometrical image of the plane has
two components.) Given such a planeP, we letF+

P denote theσ-algebra of
events that depend on the configuration inT+

L , and similarly forF−

P andT−

L .
Let ϑP denote the reflection takingT+

L onto T−

L andvice versa(cf. the
definition ofϑ (k) in Sect. 3.1). In the natural way,ϑP induces an operatorϑ?P
on the set of real-valued functions on(�TL ). Then we have:

Definition 4.3. (RP on torus) We say thatPL is reflection positive
if for every planeP as described above and any two bounded,F+

P -measurable
random variablesX andY,

EL
(
Xϑ?P(Y)

)
= EL

(
Yϑ?P(X)

)
(4.19)

and
EL

(
Xϑ?P(X)

)
≥ 0. (4.20)

HereEL is the expectation with respect toPL .

Condition (4.20) in the above definition is often too complicated to be
verified directly. Instead we verify a convenient sufficient condition which we
will state next:
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Lemma 4.4. Consider a collection of coupling constants(Jx,y)x,y∈Zd

satisfying the properties of Definition 3.1 in Sect. 3.1. Then the measurePL ,
defined onTL using the periodized coupling constants from Eq.(4.17), is re-
flection positive in the sense of Definition 4.3.

Proof. This is a multidimensional version of Proposition 3.4 of [22].

Remark 4.5. We note that the three classes of interactions listed in
Sect. 1.2 are reflection positive. For the most part, interactions of this sort
were discussed in Ref. [22]; however, for reader’s convenience, we provide the
relevant calculations below.

(1) Nearest-neighbor/next-nearest neighbor couplings: Consider a func-
tion f : H1 → C which is nonzero only on the sites ofH1 that are adjacent
to Zd

\ H1. (By inspection of Eq. (3.6), for nearest and next-nearest neigh-
bor interactions, this is the most general function that need to be considered.)
Pickη ∈ R and consider the function

g j (x) = f (x)+ η f (x + êj ), j = 2, . . . ,d, (4.21)

and define a collection of coupling constants(Jx,y) by the formula∑
x∈H1

y∈ZdrH1

Jx,y f (x) f (ϑ (1)y) =

∑
j =2,...,d

∑
x∈H1

g j (x)g j (x) (4.22)

Now the right-hand side is clearly positive and so theJx,y’s satisfy the condi-
tion in Eq. (3.6).

It remains to identify the explicit form of these coupling constants.
Let x ∈ H1 be a boundary site and letx′

= ϑ (1)x be its nearest neighbor
in Zd

\ H1. First we note that, for eachx and j , there is an interaction of
“strength” η betweenx and its next-nearest neighborx′

+ êj and a similar
interaction betweenx and the sitex′

− êj . So, the next-nearest neighbors
have coupling strengthη. As to the nearest-neighbor terms, for a fixedx and
fixed j , there is the direct interaction withx′ of strength 1 and there is a term
of strengthη2. Thus, upon summing, the nearest-neighbor interaction has total
strength(d − 1)(1 + η2).

Since the overall strength of the interaction is irrelevant, the ratio of the
strength of the next-nearest neighbor to the nearest-neighbor couplings has to
be a number of the form1

d−1
η

1+η2 which, in particular, permits any ratio whose

absolute value is bounded by1
2(d−1) .

(2) Yukawa potentials: Reflection positivity for the Yukawa potentials can be
shown by applying the criterion from Lemma 4.4: Fixµ > 0 and letJx,y =
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e−µ‖x−y‖1. Then for any observablef : H1 → R,∑
x∈H1

y∈ZdrH1

Jx,y f (x) f (ϑ (1)y)

=

∑
x2,...,xd∈Z
y2,...,yd∈Z

K (x, y)

( ∑
x1>0

e−µx1 f (x)

)( ∑
y1>0

e−µy1 f (y)

)
, (4.23)

where the operator kernelK : Zd−1
→ Zd−1 is defined byK (x, y) =

exp{−µ
∑d

j =2 |x j − y j |}. This operator is symmetric and diagonal in the
Fourier basis; a direct calculation shows thatK has only positive eigenval-
ues. This means that the right-hand side is non-negative, proving condition (3)
of Definition 3.1. (The other conditions are readily checked as well.)

(3) Power-laws: We begin by noting that all conditions onJx,y in Defini-
tion 3.1 are linear inJx,y. Therefore, any linear combination of reflection
positiveJx,y’s with non-negative coefficients is also reflection positive. In par-
ticular, if we integrate a one parameter family of interactions against a positive
measure, the result must also be RP. Now if we let

Jx,y =

∫
∞

0
µs−1e−µ|x−y|1dµ for s> 0, (4.24)

thenJx,y = C(s)|x − y|
−s
1 and so the power laws are RP as well.

We observe that in the classics, particularly, Refs. [22,23], the above types
of interactions are treated and the RP properties established with all distances
expressed iǹ2-norms. The derivations therein all rely, to some extent, on lat-
ticization of the field-theoretic counterparts to reflection positivity which were,
perhaps, better known in their heyday. Our`1 derivations, while being a more
pedestrian method of extension fromd = 1, have the advantage that they are
self-contained.

4.3. Infrared bounds

Our principal reason for introducing reflection positivity is to establish an upper
bound on the two point correlation term in Theorem 4.1. This will be achieved
by invoking the connection between reflection positivity and infrared bounds.
For spin systems this connection goes back to Ref. [24] where infrared bounds
were used to provide proofs of phase coexistence in certain continuous-spin
models at low temperature. Here we will follow the strategy of Ref. [11], and
so we will keep our discussion brief.

In order to apply infrared bounds to the problem at hand we must first
restrict consideration to those Gibbs states with the following two properties:
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Property 1. (Torus state) An infinite volume Gibbs measureνβ,h is
called atorus stateif it can be obtained as a weak limit of finite-volume states
with periodic boundary conditions. (The torus states need not correspond ex-
actly to the valuesβ andh.)

Property 2. (Block averages) An infinite volume Gibbs mea-
sureνβ,h is said to haveblock average magnetizationm? if

lim
3↑Zd

1

|3|

∑
x∈3

Sx = m?, νβ,h-almost surely. (4.25)

Similarly, the measure is said to haveblock average energy densitye? if

lim
3↑Zd

1

|3|

∑
〈x,y〉

x,y∈3

Jx,y (Sx,Sy) = e?, νβ,h-almost surely. (4.26)

Here in Eqs. (4.25–4.26) the limits are along increasing sequences of square
boxes centered at the origin.

It is conceivable that not every (extremal) Gibbs state will obey these re-
strictions, so the reader might wonder how we are going to detect the desired
phase transitions. We will use an approximation argument which goes back to
Ref. [11]. Recall the definition of the setM?(β,h) of “extremal magnetiza-
tions” from the paragraph before Theorem 3.2. Then we have:

Lemma 4.6. For all β > 0, h ∈ Rn and all m? ∈ M?(β,h), there ex-
ists an infinite volume Gibbs stateνβ,h for interaction(1.1)which obeys Prop-
erties 1 and 2.

Proof. This is, more or less, Corollary 3.4 from Ref. [11] enhanced to
include the block average energy density.

Our next goal is to show that the right-hand side of Eq. (4.1) can be
controlled for any Gibbs state satisfying Properties 1 and 2. To this end let
D−1(x, y) denote the inverse of the (weighted) Dirichlet lattice Laplacian de-
fined using theJx,y’s. Explicitly, we have

D−1(x, y) =

∫
[−π,π ]d

dk

(2π)d
eik·(x−y)

1 − Ĵ(k)
, (4.27)

whereĴ(k) =
∑

x∈Zd J0,xeik·x. We will always work under the conditions for
which the integral is convergent. Our principal estimate is now as follows:
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Lemma 4.7. (Infrared bound) Assume that k7→ (1 − Ĵ(k))−1 is
Riemann integrable. Fixβ > 0, h ∈ Rn and letνβ,h be an infinite-volume
Gibbs measure for interaction(1.1)that satisfies Properties 1 and 2. Let〈−〉β,h
denote the expectation with respect toνβ,h and let n be the dimension of the
underlying spin space. Then the bound∑

x,y∈Zd

vxv̄y
〈
(Sx − m?,Sy − m?)

〉
β,h ≤

n

β

∑
x,y∈Zd

vxv̄yD−1(x, y) (4.28)

holds for allv : Zd
7→ C such that

∑
x∈Zd |vx| < ∞.

Proof. As this lemma and its proof are similar to Lemma 3.2 of Ref. [11]
we will stay very brief. LetJ(L)x,y denote the periodized interactions correspond-
ing to the torusTL and let

T?L =

{(2π

L
n1, . . . ,

2π

L
nd

)
: 1 ≤ ni ≤ L

}
(4.29)

be the reciprocal torus. It is easy to see that thek-th Fourier component̂J(L)(k)
of the J(L)x,y ’s satisfiesĴ(L)(k) = Ĵ(k) for all k ∈ T?L . This means that the in-
verse Dirichlet Laplacian onTL can be written in terms of the original coupling
constants, i.e.,

D−1
L (x, y) =

1

|T?L |

∑
k∈T?Lr{0}

eik·(x−y)

1 − Ĵ(k)
. (4.30)

The infrared bound of Ref. [22] then says that, for any Gibbs state〈−〉
(L)
β,h onTL

we have∑
x,y∈Zd

〈
(wx,Sx)(w̄y,Sy)

〉(L)
β,h ≤

1

β

∑
x,y∈Zd

(wx, w̄y)D
−1
L (x, y) (4.31)

for any absolutely summable collection of complex vectors(wx)x∈TL

with Rewx, Im wx ∈ Rn and
∑

x∈TL wx = 0.
Now let us consider a torus stateνβ,h with almost-surely constant block

magnetization. We will first prove thatνβ,h satisfies theL → ∞ version of
Eq. (4.31). By the assumption on the Riemann integrability of1

1− Ĵ(k)
,

D−1
L (x, y) −→

L−→∞

D−1(x, y), (4.32)

independently ofx, y. Letting allwx be parallel, i.e.,wx = wxê, wherêe is a
unit vector inRn, and passing to the limitL → ∞, we thus get∑

x,y∈Zd

wxw̄y
〈
(Sx,Sy)

〉
β,h ≤

n

β

∑
x,y∈Zd

wxw̄yD−1(x, y) (4.33)
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wheneverw : Zd
→ C is absolutely summable and

∑
x∈Zd wx = 0.

In order to make them?’s appear explicitly on the left-hand side, we need
to relax the condition on the total sum of thewx’s. Under the condition in
Property 2, this is done exactly as in Lemma 3.2 of Ref. [11].

4.4. Actual proofs

A key consequence of the infrared bound is the following estimate on the vari-
ance of the quantitym0 =

∑
x∈Zd J0,xSx:

Lemma 4.8. (Variance bound) Consider a collection(Jx,y) of
coupling constants that are RP and obey Eq.(2.1), and letI be the inte-
gral in Eq.(3.9). Let〈−〉β,h be a translation and rotation invariant Gibbs state
satisfying Properties 1 and 2 and letm? = 〈S0〉β,h. Then

β
〈
|m0 − m?|

2〉
β,h ≤ nI . (4.34)

Proof. We have to show how the bound (4.28) is used to estimate the
variance ofm0. Let (vx) be defined byvx = J0,x. Using Lemma 4.7 and
Lemma 4.6, for any〈−〉β,h as above, this choice of thevx’s leads to the variance
of m0 on the left-hand side of Eq. (4.28), while on the right-hand side the sum
turns into the integralI .

The proof of Theorem 3.2 is now reduced to two lines:

Proof of Theorem 3.2. Combining Lemmas 4.6 and 4.8 with
Eqs. (4.11) and (4.1), we obtain Eqs. (3.8–3.9).

Armed with the conclusions of Theorem 3.2, we can now finish also the
proof of Theorem 3.3:

Proof of Theorem 3.3. In light of the previous derivations, the claims
in Theorem 3.3 are hardly surprising. The difficulty to be overcome is the
fact that the limits in Eqs. (3.11–3.12) are claimed for sequences ofanystates,
regardless of whether they obey Properties 1 and 2 above.

We begin with the proof of part (1); namely, Eq. (3.11). Sincem is the
unique minimizer of8β,h, for eachε > 0 there existsδ > 0 such that{

m′
∈ Conv(�) : 8β,h(m′) < FMF(β,h)+ δ

}
(4.35)

is contained in a ballUε(m) of radius ε centered atm. By Eq. (3.8),
onceβnκ2I ≤ δ, all of M?(β,h)must be contained in this ball. But,M?(β,h)
is the set of extremal magnetizations, and any magnetizationm′ that can be
achieved in a translation-invariant state is thus in the convex hull ofM?(β,h).
It follows thatm′

∈ Uε(m), proving Eq. (3.11).
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To prove Eq. (3.12), let [e?,m?] be an extremal pair inK?(β,h). (See the
discussion prior to Theorem 3.2 for the definition of these objects.) Let〈−〉β,h
be a translation and rotation invariant state for which

e? =
〈
(S0,

β
2m0 + h)

〉
β,h and m? = 〈S0〉β,h (4.36)

and suppose the state satisfies Properties 1 and 2. (The existence of such a state
is guaranteed by Lemma 4.6.) Combining Eqs. (4.11) and (4.34), we get

0 ≤
〈
(S0,m0)

〉
β,h − |m?|

2
≤ κnI , (4.37)

and so, invoking the result of part (1) of this theorem,e? is close toE(m?)
onceI is sufficiently small. But this is true for all extremal pairs inK?(β,h)
and so it must be true forall pairs inK?(β,h). Hence,K?(β,h) shrinks to a
single point asI ↓ 0, which is what is claimed in part (2) of the theorem.

To conclude the proof of the theorem, we need to show that the spin
configuration converges in distribution to a product measure. Applying the
DLR conditions, the conditional distribution ofS0 given a spin configuration
in Zd

\ {0} is
e(S0,βm0+h)−G(βm0+h)µ0(dS0), (4.38)

i.e., the distribution ofS0 depends on the rest of the spin configuration only
via m0 =

∑
x∈Zd J0,xSx. Hence, it clearly suffices to show thatm0 converges

to m—the unique minimizer of8β,h—in probability. But this is a direct con-
sequence of the convexity bound on the left-hand side of Eq. (4.11) which tells
us that, once the magnetization and energy density converge to their mean-field
values, the variance ofm0 tends to zero.

While we cannot generally prove that, in systems with interaction (1.1)
the magnetization increases withβ, the estimates in the previous proof provide
a bound on how bad the non-monotonicity can be:

Lemma 4.9. (Near monotonicity of magnetization) Let (Jx,y)
be coupling constants that are RP and obey Eq.(2.1), and letI be the in-
tegral in Eq.(3.9). Letβ < β ′ and letm? ∈ M?(β,h) andm′

? ∈ M?(β
′,h).

Then we have:
|m?|

2
≤ |m′

?|
2
+ κnI . (4.39)

Proof. Let 〈−〉β,h and 〈−〉β ′,h be (translation and rotation invariant)
states satisfying Properties 1 and 2 in which the above magnetizations are
achieved. (Such states exist by Lemma 4.6.) By Eq. (4.11) we have〈

(S0,m0)
〉
β,h ≥ |m?|

2, (4.40)
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and Eqs. (4.11) and (4.37) yield〈
(S0,m0)

〉
β ′,h ≤ |m′

?|
2
+ κnI . (4.41)

But the quantities on the left are, more or less, derivatives of the physical free
energy with respect toβ (in the parametrization introduce in Eq. (1.1)). Hence,
standard convexity arguments give us〈

(S0,m0)
〉
β ′,h ≥

〈
(S0,m0)

〉
β,h. (4.42)

Combining these inequalities the claim follows.

4.5. Bounds for specific interactions

Having presented the main theorem, we now argue that by appropriately ad-
justing the parametersµ ands in the Yukawa and power law terms of an in-
teraction, one can make the integralI as small as desired. We begin with a
general criterion along these lines:

Proposition 4.10. Let(J(λ)x,y) be a family of translation and reflection-

invariant couplings depending on a parameterλ. Assume that the J(λ)x,y obey

Eq.(2.1)and letĴλ(k) =
∑

x∈Zd J(λ)0,x eik·x be the Fourier components. Suppose
that the following two conditions are true:

(1) There exists aδ > 0 and a constant C> 0 such that for all sufficiently
smallλ, we have

1 − Ĵλ(k)

|k|d−δ
≥ C, k ∈ [−π, π ]d

\{0}. (4.43)

(2) The`2-norm of(J(λ)0,x ) tends to zero asλ → 0, i.e.,

lim
λ→0

∑
x∈Zd

[
J(λ)0,x

]2
= 0. (4.44)

Then we have:

lim
λ→0

∫
[−π,π ]d

dk

(2π)d
| Ĵλ(k)|2

1 − Ĵλ(k)
= 0. (4.45)

Proof. Note that, by Eq. (2.1) and condition (1) above we haveĴλ(0) = 1
and Ĵλ(k) < 1 for all k 6= 0. (The reflection invariance guarantees thatĴλ is
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an even and real function ofk.) First we will bound the part of the integral
corresponding tok ≈ 0. To that end we pickr > 0 and estimate∫

|k|<r

dk

(2π)d
| Ĵλ(k)|2

1 − Ĵλ(k)
≤

∫
|k|<r

dk

(2π)d
1

C|k|d−δ
= C1r

δ, (4.46)

whereC1 = C1(δ,d,C) < ∞. Next we will attend to the rest of the integral.
Let M(r ) be the supremum of(1− Ĵλ(k))−1 over allk ∈ [−π, π ]d with |k| ≥ r .
By condition (1) above, we have thatM(r ) ≤

1
C r δ−d. Therefore,∫

k∈[−π,π ]d
|k|≥r

dk

(2π)d
| Ĵλ(k)|2

1 − Ĵλ(k)
≤ M(r )

∑
x∈Zd

[
J(λ)0,x

]2
, (4.47)

where we also used Parseval’s identity. By condition (2) above, this vanishes
asλ → 0, while the integral in (4.46) can be made as small as desired by
letting r ↓ 0. From here the claim follows.

Now we apply the above lemma to our specific interactions. We begin
with the Yukawa potentials:

Lemma 4.11. Let (J(µ)x,y ) be the Yukawa interactions with parame-
ter µ—as described in Sect. 1.2—and suppose these are adjusted so that
Eq. (2.1) holds. Then(J(µ)x,y ) obey conditions (1) and (2) of Proposition 4.10
asµ ↓ 0 with δ = d − 2. Consequently, in dimensions d≥ 3, the correspond-
ing integral in Eq.(3.9) tends to zero asµ ↓ 0.

Proof. Let (J(µ)x,y ) be as above and let̂Jµ denote the Fourier transform. In
order to handle the overall normalization effectively, we introduce the quantity
Cµ by Cµµd ∑

x 6=0 e−µ|x|1 = 1 and note thatCµ converges to a finite and

positive limit asµ ↓ 0. From here we check that thè2-norm in Eq. (4.44)
scales asµd and so condition (2) of Proposition 4.10 follows.

It remains to prove that 1− Ĵµ(k) is bounded from below by a positive
constant times|k|

2, where|k| denotes thè2-norm ofk. First we claim that for
all η > 0 there exists a constantA < ∞ such that for allk ∈ [−π, π ]d,

Ĵµ(k) ≤ 1 − η, |k| ≥ Aµ. (4.48)

Indeed, an explicit calculation gives us

Ĵµ(k) = µdCµ
∑
x 6=0

e−µ|x|1+ik·x
≤ µdCµ

d∏
j =1

{
Re

1

1 − e−µ+ik j

}
, (4.49)

where we first neglected the conditionx 6= 0, then wrote the result as the
product over lattice directions and, finally, threw away some negative constants
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from each term in the product (the real parts are positive). Introducing the
abbreviationsa = e−µ, ε = 1 − a and1 j = 1 − cos(k j ), theε-multiple of
the j -th term in the product is now

ε Re
1

1 − e−µ+ik j
=
ε2

+ a1 j ε

ε2 + 2a1 j
. (4.50)

Now if ε2
≥ 1 j the right-hand side is less than 1+ aε, while if ε2

≤ 1 j , then

it is less thanε+ 1
2a

ε2

1 j
, which is� 1 onceε2

� 1 j . Going back to Eq. (4.49),
if at least one component ofk exceeds large constant timesµ (which is itself of
orderε), then the right-hand side of Eq. (4.49) is small. This proves Eq. (4.48)
for µ small; for all otherµ this holds existentially.

The condition (4.48) implies Eq. (4.44) for|k| ≥ Aµ. As for the comple-
mentary values ofk, here we pick a small numberθ and write

1 − Ĵµ(k) ≥ Cµµ
d

∑
x 6=0

|x|1≤θ/µ

e−µ|x|1[1 − cos(k · x)]. (4.51)

By the fact that|k| ≤ Aµ, the condition|x|1 ≤ θ/µ (with θ sufficiently small)
implies that 1− cos(k · x) ≥ c(k · x)2 for somec > 0. Plugging this into
Eq. (4.51) and using that the domain of the sum is invariant under reflection
of any component ofx, the result will be proportional to|k|

2. The constant of
proportionality is of orderµ−2 and so condition (1) is finally proved.

Next we attend to the power laws:

Lemma 4.12. Let (J(s)x,y) be the power-law interactions with expo-
nent s> d—see Sect. 1.2—and suppose these are adjusted so that Eq.(2.1)
holds. Then(J(s)x,y) obey conditions (1) and (2) of Proposition 4.10 as s↓ d
with anyδ < d. Consequently, the corresponding integral in Eq.(3.9) tends to
zero as s↓ d in all d ≥ 1.

Proof. Our first item of business will again be the overall normalization.
Let Cs be the constant defined by

Cs(s − d)
∑
x 6=0

|x|
−s
1 = 1. (4.52)

As is not hard to check,Cs tends to a positive and finite limit ass ↓ d.
Since

∑
x 6=0 |x|

−2s
1 is uniformly bounded for alls > d, the `2-norm in

Eq. (4.44) is proportional to(s − d). This proves condition (2) of Proposi-
tion 4.10.
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In order to prove condition (1), we first write

1 − Ĵs(k) = Cs(s − d)
∑
x 6=0

|x|
−s
1

(
1 − cos(k · x)

)
, (4.53)

where Ĵs is the Fourier transform of the(J(s)x,y). Consider the setRk = {x ∈

Zd : cos(k · x) ≤ 0}, which we note is the union of strips of width—and
separation—of the orderO(1/|k|) which are perpendicular to vectork. A sim-
ple bound gives us∑

x 6=0

|x|
−s
1

(
1 − cos(k · x)

)
≥

∑
x∈Rk

|x|
−s
1 . (4.54)

Next we letR′

k = {x ∈ Zd : |x · k| > π}. The fact that|x|
−s
1 decreases with

distance allows us to bound the second sum in Eq. (4.54) by a similar sum
with x ∈ R′

k. Using the usual ways to bound sums by integrals, we thus get

1 − Ĵs(k) ≥ C(s − d)
∫

|k·x|≥π

dx

|x|s
, (4.55)

whereC is a positive constant (independent ofs) and|x| is the`2-norm of x.
Extracting a factor of|k|

s−d, the resulting integraltimes(s − d) is uniformly
positive for alls> d. Hence we proved that for somec′ > 0,

1 − Ĵs(k) ≥ c′
|k|

s−d (4.56)

for all s > d and allk ∈ [−π, π ]d, and so condition (1) of Proposition 4.10
holds as stated.

5. PROOFS: MEAN-FIELD THEORIES

5.1. Blume-Capel model

We begin by giving the proof of Theorem 3.6 which deals with the mean-field
theory of the Blume-Capel model. The core of this proof, and other proofs
in this paper, are certain facts about the mean-field theory of the Ising model
in an external field. In the formalism of Sect. 2.2, this model corresponds to
the q = 2 Potts model. The magnetizations are parameterized by a pair of
quantities(z1, z−1), wherez1 + z−1 = 1, which represent the mole-fractions
of plus and minus spins. The mean-field free energy is given by

8J,h = Jz1z−1 − hz1 + z1 logz1 + z−1 logz−1. (5.1)

The following properties are the results of straightforward calculations:
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(I1) If h = 0 andJ ≤ 2, then the only local—and global—minimum occurs
at z1 = z−1.

(I2) If h = 0 andJ > 2, then there is only one local minimum withz1 ≥ z−1

and it satisfiesJz1 > 1 > Jz−1. A corresponding local minimum with
with z1 ≥ z−1 exists and obeysJz−1 > 1> Jz1.

(I3) Let now h be arbitrary. If(z1, z−1) is a local minimimum of8J,h,
thenm = z1 − z−1 satisfiesJ(1 − m2) ≤ 1.

These properties are standard; for some justification see, e.g., the proof of
Lemma 4.4 in Ref. [11].

Proof of Theorem 3.6. Let (x1, x0, x−1) be a triplet of positive vari-
ables which corresponds to a local minimum of the Blume-Capel free-energy
function8β,λ from Eq. (3.21). A simple calculations shows that the deriva-
tive of the entropy part of8β,λ is singular in the limit when any component
of (x1, x0, x−1) tends to zero, while nothing spectacular happens to the energy.
Therefore, the minimum must lie strictly inside the simplex of allowed values.
Accounting for the constraintx1+x0+x−1 = 1, the condition that the gradient
of 8β,λ vanish at(x1, x0, x−1) translates into the equations (3.22).

Due to the symmetry betweenx1 and x−1, we may (and will) assume
for simplicity that x1 ≥ x−1. First we claim that, under this condition, we
have 4βx−1 ≤ 1. Indeed, for a fixedx0, the Blume-Capel mean-field free
energy8β,λ expressed in terms of(z1, z−1), wherez±1 = x±1/(1 − x0), is
proportional to the Ising free energy (5.1) withJ = 4β(1 − x0). Since the
Ising pair(z1, z−1) is at its local minimum, we haveJz−1 = 4βx−1 ≤ 1 by
property (I2) above.

Once we know thatx−1 is small, the question is whetherx0 andx1 divide
the amount 1− x−1 democratically or autocratically. Here we observe that,
once again, for a fixedx−1, the (x1, x0)-portion of the Blume-Capel mean-
field free energy8β,λ is proportional to its Ising counterpart in Eq. (5.1) with
J = β(1 − x−1) andh = 3βx−1 − λ. In light of property (I3) above, the
magnetization variablem = (x1−x0)/(1−x−1) thus satisfies the boundJ(1−

m2) ≤ 1. Using the inequality
√

1 − a ≥ 1 − a valid for all a ≤ 1, we have

|x1 − x0|

1 − x−1
≥ 1 −

1

β(1 − x−1)
(5.2)

onceβ is sufficiently large. Some simple algebra now shows that this implies

2βmin{x1, x0} ≤ 1. (5.3)

Using these findings in Eq. (3.22) and extracting appropriate inequalities we
derive the bounds listed in (1) and (2) withC being a numerical constant.
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To derive the asymptotics (3.23) on the free-energy gap forλ ≈ 0, let us
first evaluate the free energy at a generic local minimum. Suppose(x1, x0, x−1)
obey Eq. (3.22) and letΘ denote the logarithm of the quantity in Eq. (3.22). A
direct calculation shows that then

8β,h = −4βx1x−1 + βx2
0 +Θ. (5.4)

Now let us consider a minimum withx0 dominant. Then the inequalityβ(1 −

x0) = β(x1 + x−1) ≤ 3/4 < 1 shows that the(x1, x−1) Ising pair is subcritical.
By (I1) above we must havex1 = x−1 =

1
2(1 − x0) and, as is seen by a direct

calculation,x0 can be determined from the equation

1 − x0

x0
= 2e−β+λ. (5.5)

In particular, forλ bounded we have 1− x0 = 2e−β+λ
+ O(e−2β). Similarly,

if the minimum corresponds to a triple dominated byx1, our bounds show
thatx0 = 1 − x1 + O(e−4β) and so we have

x1 =
(
1 − x1 + O(e−4β)

)
eβ+λ+O(βe−β). (5.6)

From here we have 1− x1 = e−β−λ
+ O(βe−2β).

Now we are ready to derive Eq. (3.23). First, using thatΘ = logx0 +

β(1 − 2x0)+ λ we have

φ0(β, λ) = −4βx1x−1 + β(1 − x0)
2
+ λ+ logx0

= λ− 2e−β+λ
+ O(e−2β). (5.7)

Next, in light ofΘ = logx1 + 4βx−1 and the bounds proved onx−1 in (2)
above we have

φ1(β, λ) = −4βx1x−1 + βx2
0 + logx1 + 4βx−1

= −e−β−λ
+ O(βe−2β). (5.8)

Combining Eqs. (5.7–5.8), the desired relation (3.23) is proved.

We finish this section with a computational lemma that will be useful in
the proof of Theorem 3.7:

Lemma 5.1. There existsα > 0 and, for each C� 1, there exists
β0 < ∞ such that the following is true for allβ ≥ β0 and all λ with |λ| ≤

Ce−β : If (x1, x0, x−1) is a triplet with

max{x1, x0, x−1} = 1 − Ce−β, (5.9)

then
8β,λ(x1, x0, x−1)− inf8β,λ ≥ α(C logC)e−β . (5.10)

Here8β,λ is the function in Eq.(3.21)and inf8β,λ is its absolute minimum.
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Proof. An inspection of Eqs. (5.7–5.8) shows that, once|λ| ≤ Ce−β , we
have that| inf8β,λ| is proportional toCe−β and so we just have to prove that,
onceC is sufficiently large,8β,λ(x1, x0, x−1) is proportional to(C logC)e−β .
We will focus on the situation when the maximum in Eq. (5.10) is achieved
by x1; the other cases are handled similarly.

By our assumption we have thatx0 andx−1 are quantities less thanCe−β .
Inspecting the various terms in Eq. (3.21), we thus have

βx0(1 − x0) = βx0 + O(βC2e−2β),

βx1x−1 = 4βx−1 + O(βC2e−2β),

x1 logx1 = −Ce−β
+ O(C2e−2β),

(5.11)

Plugging these back into the definition of8β,λ we get

8β,λ(x1, x0, x−1) = x0[β + logx0]+x−1[4β + logx−1]

+ λx0 − Ce−β
+ O(βC2e−2β). (5.12)

Now |λx0| ≤ |λ| ≤ Ce−β , and ifβ0 is such thatβCe−β
� 1, the last three

terms on the right-hand side are all of orderCe−β . It thus suffices to to prove
that the first two terms exceed a constant times(C logC)e−β .

We first replace 4β by β in Eq. (5.12) and then substitutex0 = y0e−β

andx−1 = y−1e−β . The relevant two terms on the right-hand side then equal
e−β [y0 log y0 + y−1 log y−1]. Under the condition (5.9)—which implies that
at least one of they’s is larger thanC/2—this is a number of order e−βC logC
(for C � 1). The right-hand side of Eq. (5.12) is thus of order e−βC logC
wheneverβ ≥ β0, which proves the desired claim.

5.2. Potts model: Preliminaries

Next we turn our attention to the mean-field theory of the Potts model. In
the present section we will first establish some basic properties of the (local)
minimizers of the Potts mean-field free energy. The proof of Theorem 2.3
dealing with positive fields is then the subject of Sect. 5.3. The negative-field
portion of our results (Theorem 2.4) is somewhat more involved and we defer
its discussion to Sect. 5.4.

We invite the reader to recall the representation of magnetizations in
terms of barycentric coordinates in Eq. (2.14), the mean-field free-energy func-
tion8β,h from Eq. (2.15) and the transitional couplingβ(q)MF for theq-state Potts
model from Eq. (2.17). We begin with some general monotonicity properties
of the minimizers:

Lemma 5.2. (Monotonicity in h) For anyβ ≥ 0 we have:
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(1) Let h< h′, let x1 be the first barycentric coordinate of a global mini-
mum of8(q)β,h and let x′1 be the first barycentric coordinate of a global

minimum of8(q)β,h′. Then x1 ≤ x′

1.

(2) Let (x1, . . . , xq) be the probability vector corresponding to a global

minimizer of8(q)β,h. If h > 0 then x1 > max{x2, . . . , xq}. Similarly,
if h < 0 then x1 < min{x2, . . . , xq}.

(3) If h 7→ m(β, h) is a differentiable trajectory of local extrema, then

d

dh
8
(q)
β,h(m(β, h)) = −x1(β, h), (5.13)

where x1(β, h) is the first component ofm(β, h) in the decomposition
into (v̂1, . . . , v̂q).

Proof. (1) Letm ∈ Conv�. Then we have

8
(q)
β,h(m)−8

(q)
β,h′(m) = (h′

− h)x1, (5.14)

wherex1 is the first component ofm. Let x1 and x′

1 be as above and letm
andm′ be the corresponding minimizers. Then Eq. (5.14) implies

x1 ≤
8
(q)
β,h(m)−8

(q)
β,h′(m′)

h′ − h
(5.15)

Similar reasoning gives

x′

1 ≥
8
(q)
β,h(m)−8

(q)
β,h′(m′)

h′ − h
. (5.16)

Combining Eqs. (5.15) and (5.16) gives the result.
(2) Let h > 0 and let(x1, . . . , xq) be a probability vector withx1 <

x2. Interchangingx1 andx2 shows that, due to the interaction with the field,
the q-tuple (x2, x1, . . . , xq) has strictly lower free energy than(x1, . . . , xq),
i.e., (x1, . . . , xq) could not have been a global minimizer. Hencex1 ≥ x2. To
rule outx1 = x2 we note thatx1, x2 > 0 and so the gradient of the free energy,
subject to the constraintx1 + x2 = const, must vanish. Hencex1e−βx1−h

=

x2e−βx2 which forcesx1 6= x2. The casesh < 0 are handled similarly.
(3) This is a consequence of the fact that the gradient∇8

(q)
β,h vanishes at

any local extremum in the interior of Conv(�).
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Lemma 5.3. (Monotonicity in β) Fix h ∈ R. If β 7→ m(β, h) is a
differentiable trajectory of local extrema, then

d

dβ
8
(q)
β,h(m(β, h)) = −

1

2
|m(β, h)|2. (5.17)

Proof. The proof is analogous to that of Lemma 5.2(3).

The next lemma significantly narrows the list of possible candidates for
global minimizers:

Lemma 5.4. (Symmetries of global minimizers) Let 8
(q)
β,h(m)

be the mean-field free-energy function. Letm ∈ Conv� be a global minimum
of 8(q)β,h and let (x1, . . . , xq) be the corresponding probability vector of
barycentric coordinates.

(1) If h > 0, then
x1 > x2 = · · · = xq. (5.18)

(2) If h < 0, then(x1, . . . , xq) is a permutation in indices x2, . . . , xq of a
vector with

x1 < x2 = · · · = xq−1 ≤ xq. (5.19)

Proof. The main idea of the proof is that the variablesx2, . . . , xq, prop-
erly scaled, behave like a(q − 1)-state, zero-field Potts model. Abusing the
notation slighly, let us write8(q)β,h(x1, . . . , xq) instead of8(q)β,h(m) wheneverm
corresponds to the probability vector(x1, . . . , xq). In looking for global min-
ima, we may assume that allxk’s satisfyxk ∈ (0,1). Letting

zk =
xk

1 − x1
, k = 2, . . . ,q, (5.20)

this allows us to write

8
(q)
β,h(x1, . . . , xq) = (1 − x1)8

(q−1)
β(1−x1),0

(z2, . . . , zq)+ R(x1), (5.21)

whereR(x1) is a function ofx1 (andβ andh). The rest of the proof is based
on some basic properties of the zero-field Potts free energy for which we refer
the reader back to Sect. 2.2.

Let (x1, . . . , xq) correspond to a global minimum. A principal conclu-
sion coming from Eq. (5.21) is that the components of the vector(x2, . . . , xq),
ordered increasingly, satisfyx2 = · · · = xq−1 ≤ xq. Using part (2) of
Lemma 5.2, this immediately implies Eq. (5.19). To prove Eq. (5.18), let
h > 0 and let(x̃1, . . . , x̃q) be a global minimizer at zero field with maximal
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value of x̃1. By general facts about the zero-field problem, this forcesβ(1 −

x̃1) < β
(q−1)
MF and, since part (2) of Lemma 5.2 implies thatx1 > x̃1, also

β(1− x1) < β
(q−1)
MF . Hence, the variables(z2, . . . , zq) correspond to a subcrit-

ical Potts model and thusz2 = · · · = zq. Invoking again Lemma 5.2(2), we
have Eq. (5.18).

5.3. Potts model: Positive fields

Next we will focus on the cases withh > 0. Our first step is to characterize the
local and global minima ofm 7→ 8

(q)
β,h(m) for m restricted to satisfy Eq. (5.18).

While we could appeal to the “on-axis” formalism from Ref. [11], we will keep
the requisite calculations more or less self-contained.

For any probability vector satisfying Eq. (5.18), let us consider the
parametrizationθ =

q
q−1m, wherem denotes the scalar magnetization defined

via x1 =
1
q + m andxk =

1
q −

m
q−1, k = 2, . . . ,q. (The physical values ofθ

areθ ∈ [0,1].) Letφβ,h(θ) denote the value of8(q)β,h(m) wherem corresponds
to the above(x1, . . . , xq). Then we have:

Lemma 5.5. (“On-axis” minima) The local minima of θ 7→

φβ,h(θ) are solutions to the equationθ = f (θ), where

f (θ) =
eβθ+h

− 1

eβθ+h + q − 1
. (5.22)

Moreover, letβ0 = 4q−1
q . Then

(1) For all β ≤ β0 and all h ∈ R, the equationθ = f (θ) has only one
solution.

(2) For β > β0 there exists an interval(h−, h+) such thatθ = f (θ) has
three distinct solutions once h∈ (h−, h+) and only one solution for h6∈
[h−, h+]. At h = h±, there are two distinct solutions. Once h6= h±,
only the extreme solutions (the largest and the smallest) correspond to
local minima ofθ 7→ φβ,h(θ).

Finally, for eachβ > β0, there exists a number h1 = h1(β) ∈ (h−, h+) such
that the global minimizer ofθ 7→ φβ,h(θ) is unique as long as h6= h1. On
the other hand, for h= h1 there are two distinct global minimizers (the two
extreme solutions ofθ = f (θ)).

Remark 5.6. Although the above holds as stated in complete gener-
ality, it is only useful (in the present context) forβ < β

(q)
MF. In particular,

for β ≥ β
(q)
MF, while h1(β) continues on taking negative values, it does not

correspond to any equilibrium commodity.
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Proof of Lemma 5.5. Since the derivative ofθ 7→ φβ,h(θ) diverges asθ
tends to either zero or one, all local minima will lie in(0,1). Differentiating
with respect toθ we find that these must satisfyf (θ) = θ with f as given
above.

In order to characterize the solutions toθ = f (θ), let us calculate the first
two derivatives of this function:

f ′(θ) = β
eβθ+h

eβθ+h + q − 1

(
1 − f (θ)

)
(5.23)

and

f ′′(θ) = β2 eβθ+h

eβθ+h + q − 1

(
1 − f (θ)

) (
1 − 2

eβθ+h

eβθ+h + q − 1

)
. (5.24)

Since we also havef (θ) < 1, we find that f is strictly increasing, strictly
convex forθ < θI and strictly concave forθ > θI, whereθI is the inflection
point of f , which is given by

eβθ+h

eβθ+h + q − 1
=

1

2
, (5.25)

i.e., eβθ+h
= q − 1. In particular, the derivativef ′(θ) is maximal atθ = θI,

where it equalsf ′(θI) =
β
4

q
q−1.

Let us suppose thatf ′(θI) ≤ 1, which is equivalent toβ ≤ β0. Then
there is only one solution toθ = f (θ), proving (1) above. Let us now assume
that f ′(θI) > 1. The fact that increasingh amounts to “shifting the graph
of f to the left” implies that there exists anh0 such thatθI solvesθ = f (θ)
for h = h0. Similar arguments show that there exists a unique valueh+ > h0

such that the diagonal line (at 45◦) is tangent to the graph off at someθ < θI,
and a similar valueh− < h0 such that the diagonal line is tangent to theθ ≥ θI

portion of the graph off . For h ∈ [h−, h+], there are altogether three solu-
tions, labeledθL < θM < θU, where f ′(θ) ≤ 1 atθ = θL, θU while f ′(θM) ≥ 1
(with the inequalities strict whenh 6= h±).

The “dynamics” of these solutions ash changes is easy to glean from
the above picture. FirstθL is defined for allh ≤ h+ while θU is defined for all
h ≥ h−. Now, ash decreases throughh−, the middleθM and upperθU solutions
merge and disappear; and similarly forθM andθL ash increases throughh+.
Only the remaining solution continues to exist in the complementary part of
theh-axis. Clearly, bothθL andθU are continuous and strictly increasing on the
domain of their definition withθL → 0 ash → −∞ andθU → 1 ash → ∞.
Sinceφβ,h(θ) has local maxima atθ = 0 and 1, we must have thatθL andθU

are local minima andθM is a local maximum ofφβ,h. (These are strict except
perhaps ath 6= h±.) This finishes the proof of (2).
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It remains to prove the existence of the transitional field-strengthh1. By
Lemma 5.4, every global minimizerm 7→ 8

(q)
β,h(m) corresponds to eitherθL

or θU. Observe that, sinceθU andθL never enter the portion of the graph off
where f ′ exceeds one, we haveθU ≥ θU(h+) > θL(h−) ≥ θL and so the
differenceθU − θL is uniformly positive. Consequently, the values8(q)β,h at
the corresponding magnetizations change at a strictly different rate withh (see
Lemma 5.2). In particular, there exists a unique pointh1(β) ∈ (h−, h+), where
the status of the global minimizer changes fromθL to θU. By continuity, ath =

h1, both one-sided limits are minimizers of8β,h.

Now we are ready to finish the prove of Theorem 2.3.

Proof of Theorem 2.3. Most of the claims of the theorem have already
been proved. Indeed, leth1 be as in Lemma 5.5 and letβ ≥ β

(q)
MF. By the

properties of the zero-field Potts model, the maximal solution toθ = f (θ) is
a global minimizer ofθ 7→ φβ,0(θ). It follows thath1(β) ≤ 0 for β ≥ β

(q)
MF.

Invoking also Lemma 5.4(1), we thus conclude that forβ ≤ β0 or β ≥ β
(q)
MF

andh > 0, the global minimizer ofm 7→ 8
(q)
β,h(m) is unique, while forβ ∈

(β0, β
(q)
MF) this is only true whenh 6= h1(β). This establishes parts (2) and

(3) of the theorem. It thus remains to prove the strict inequality betweenx1

andx2 = · · · = x1 in part (1)—the rest follows by Lemma 5.4(1)—and the
properties ofβ 7→ h1(β) in part (4).

First, it is easy to see thath1 is continuous. Indeed, letβ ′
∈ (β0, β

(q)
MF]

and suppose thatβ 7→ h1(β) has two limit points asβ → β ′. By a simple
compactness argument, there are two distinct minimizers ofφ

(q)
β ′,h for h at these

limit points, which contradicts the uniqueness ofh1(β
′). Applying this toβ ′

=

β
(q)
MF, we thus have thath1(β) → 0 asβ → β

(q)
MF.

Second, we claim thatβ 7→ h1(β) is actually strictly decreasing. To this
end, letm+(β) and m−(β) denote the values of the two global minimizers
of m 7→ 8

(q)
β,h(m) at h = h1(β) and letx+

1 (β) andx−

1 (β) denote the corre-
sponding first components. From Lemmas 5.2 and 5.3 we can now extract

d

dβ
h1(β) = −

1

2

|m+(β)|
2
− |m−(β)|

2

x+

1 (β)− x−

1 (β)
, (5.26)

which the reader will note is the Clausius-Clapeyron relation. Since bothx1

and |m| are increasing with the scalar magnetization, the right hand side is
negative and soβ 7→ h1(β) is strictly decreasing.

Third, we turn our attention to the inequalityx1 > x2 = · · · = xq

onceh > 0. In light of Eq. (5.18), it suffices to show that, forh > 0, the state
with equal barycentric coordinates is not a local minimum onceh > 0. This is
directly checked by differentiating Eq. (2.15) subject to appropriate constraints.
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Finally, we will compute the value ofh at the end of the lineh 7→ β+(h).
Let θ+(h) andθ−(h) denote the two distinct (extremal) solutions off (θ) = θ ,
with f as in Eq. (5.22), forβ = β+(h). As h increases,β+ decreases
to β0 andθ± converge to a single valueθ0—theuniquesolution of f (θ) = θ
atβ = β0. But the inflection point,θI, is always squeezed betweenθ+ andθ−,
and so we must haveθ0 = θI. Now the inflection point is characterized
by eβθI+h

= q − 1 and the equationθ = f (θ) gives us thatβ+(h) = β0

at h = hc.

5.4. Potts model: Negative fields

The goal of this section is to give the proof of Theorem 2.4. The difficulty here
is that, on the basis of Eq. (5.19), the full-blown optimization problem is in-
trinsically two-dimensional. We begin with some lemmas that encapsulate the
computational parts of the proof. First we will address the symmetric minima
by describing the solutions to the “on-axis” equation:

Lemma 5.7. Let β ≥ 0 and h < 0 and let g: [0, 1
q−1]→ R be the

function

g(θ) =
eβθ−h

− 1

(q − 1)eβθ−h + 1
. (5.27)

Then g is increasing, concave and satisfies g(0) > 0 and g(θ) < 1. In partic-
ular, the equation g(θ) = θ has a unique solution on[0, 1

q−1].

Proof. This is a result of straightforward computations which are not
entirely dissimilar from those in Eqs. (5.23–5.24).

The two-parameter nature of solutions of the form (5.19) will be handled
by fixing the first barycentric coordinate and optimizing over the remaining
ones. Here the following property of the resulting “partial minimum” will turn
out to be very useful:

Lemma 5.8. Let β > β
(q−1)
MF and let ã be the minimum of1/q and

the quantity a satisfyingβ(1 − a) = β
(q−1)
MF . For each x ∈ [0, ã],

let z2(x), . . . , zq(x) denote the vector corresponding to the asymmetric min-

imizer of(z2, . . . , zq) 7→ 8
(q−1)
β(1−x),0(z2, . . . , zq) with z2 = · · · = zq−1 < zq.

Letψ(x) denote the quantity8(q)β,h(m) evaluated atm = m(x) where

m(x) = xv̂1 + (1 − x)z2(x)v̂2 + · · · + (1 − x)zq(x)v̂q. (5.28)

Then
ψ ′′′(x) < 0 for all x ∈ [0, ã]. (5.29)
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Proof. Let ψ(x) be as stated above. Lett = t (x) = β(1 − x) and let
z(x) = (z2(x), . . . , zq(x)) denote the asymmetric global minimum of8(q−1)

t (x),0.
This allows us to rewriteψ(x) as

ψ(x) = −
β

2
x2

+ x log(x)+ (1 − x) log(1 − x)− hx

+ (1 − x)8(q−1)
t (x),0(z(x)). (5.30)

We will write z2 = · · · = zq−1 =
1

q−1 −
m(t)
q−2 andzq =

1
q−1 + m(t), where

m(t) is the maximal positive solution to

q − 1

q − 2
m(t) =

exp
{
t q−1

q−2m(t)
}

− 1

exp
{
t q−1

q−2m(t)
}

+ q − 2
. (5.31)

The various steps of the proof involve two specific functionsu(t) andα(t)
defined by

u(t) = t
q − 1

q − 2
m(t) (5.32)

and

α(t) =
eu(t)

eu(t) + q − 2

(
1 −

eu(t)
− 1

eu(t) + q − 2

)
. (5.33)

We state these definitions here to facilitate later reference.
A simple argument gives thatt 7→ m(t) is smooth whent ≥ β

(q−1)
MF , so

ψ(x) is differentiable. The actual proof then commences by the calculation of
the third derivative ofψ(x):

ψ ′′′(x) = −
1

x2
+

1

(1 − x)2

+ 2
q − 2

q − 1

( u(t)

1 − x

)2
(

3
m′(t)

m(t)
+ t

m′′(t)

m(t)
+ t

(m′(t)

m(t)

)2
)
, (5.34)

wherem′ and m′′ denote the first and second derivative oft 7→ m(t) and
where we have used Lemma 5.3 to differentiate8(q−1)

t,0 . Since we want to
showψ ′′′(x) < 0 and we know thatx ≤ ã < 1/2, it suffices to prove the
inequality

3
m′(t)

m(t)
+ t

m′′(t)

m(t)
+ t

(m′(t)

m(t)

)2
< 0. (5.35)

Differentiating both sides of Eq. (5.31) and solving form′(t) yields

m′(t)

m(t)
=

α(t)

1 − tα(t)
. (5.36)
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Taking another derivative with respect tot allows us to expressm′′(t)/m(t)
in terms ofα(t) andα′(t). In conjunction with Eq. (5.36), this shows that
Eq. (5.35) is equivalent to

3 + t
α′(t)

α(t)
< 0. (5.37)

Differentiating Eq. (5.33) and applying Eqs. (5.32) and (5.36), we have

α′(t) = α(t)
u(t)

t [1 − tα(t)]

(
1 − 2

eu(t)

eu(t) + q − 2

)
. (5.38)

Writing Eq. (5.37) back in terms ofu(t), we see that Eq. (5.35) is equivalent to
the inequality

3

(
1 −

t (q − 1)eu(t)

(eu(t) + q − 2)2

)
< u(t)

eu(t)
− q + 2

eu(t) + q − 2
. (5.39)

The rest of the proof is spent on proving Eq. (5.39).
We first use thatx ≤ ã implies t ≥ β

(q−1)
MF = 2q−2

q−3 log(q − 2) and so the

left-hand side of Eq. (5.39) increases if we replacet byβ(q−1)
MF . After this, there

is no explicit dependence ont and so we may regard the result as an inequality
for the quantityu. Clearing denominators, substitutings = eu, and recalling
thatu(t) ≥ 2 log(q − 2) for x ≤ ã, it suffices to show that

γ(s) = Aqs + s2 logs − λ2 logs − 3s2
− 3λ2 (5.40)

is strictly positive for alls ≥ λ2 and allq ≥ 4, whereλ = q − 2 and

Aq = 3(q − 1)β(q−1)
MF − 6(q − 2). (5.41)

Sinceβ(q−1)
MF ≥ 2.5 for q ≥ 4, we easily check thatAq ≥ 10 onceq ≥ 4.

First we will observe thatγ is actually increasing for alls ≥ λ2. Indeed, a
simple calculation shows that, for suchs, we haveγ′(s) ≥ ω(s), where

ω(s) = Aq − 1 + 2s logs − 5s. (5.42)

Next we find that mins≥0ω(s) = Aq − 1 − 2e
3/2. Since e

3/2 ≈ 4.48 and
Aq ≥ 10, we have thatω—and henceγ′—are strictly positive fors ≥ λ2.
Henceγ is increasing for alls of interest.

Once we know thatγ is increasing, it suffices to show thatγ(λ2) is posi-
tive. Here we note that

γ(λ2) =
q − 1

q − 3
(q −2)2

{
(q2

−3q +6)2 log(q −2)−3(q −1)(q −3)
}

(5.43)
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and soγ(λ2) is positive once

2 log(q − 2) > 3
(q − 1)(q − 3)

q2 − 3q + 6
. (5.44)

Noting that the right-hand side is less than 3, and using that 2 log 5> 3, this
holds trivially for q ≥ 7. In the remaining casesq = 4,5,6, the inequality is
verified by direct calculation.

Using Lemma 5.8 we arrive at the following conclusion:

Corollary 5.9. Let q ≥ 4, β ≥ 0 and h< 0. Then8(q)β,h has at most
one (symmetric) global minimizer with x1 < x2 = · · · = xq and at most one
(asymmetric) global minimizer with x1 < x2 = · · · = xq−1 < xq.

Proof. Let (x1, . . . , xq) correspond to a minimizer of8(q)β,h. Sinceh < 0,
Lemma 5.4 allows us to assume thatx1 < x2 = · · · = xq−1 ≤ xq. If x2 =

· · · = xq, then a simple calculation shows that the quantityθ , which is related
to x1 via x1 =

1
q −

q−1
q θ , obeys the equationg(θ) = θ , whereg is as in

Eq. (5.27). By Lemma 5.7, such a solution is unique and so there is at most
one symmetric minimizer.

Next let us assume thatxq exceeds the remaining components. Note that

we must have thatβ(1−x1) ≥ β
(q−1)
MF because otherwise Eq. (5.21) implies that

(x2, . . . , xq), properly scaled, would correspond to the(q−1)-state Potts model
in the high-temperature regime. Since in additionx1 < 1/q, we are permitted
to use Lemma 5.8 and conclude thatx1 is a minimizer of the functionψ from
Eq. (5.30). As is seen from its definition and Eq. (5.29),ψ starts off convex
(and decreasing) atx = 0 and, asx increases, may eventually turn concave.
In particular, there could be at most two points in [0, ã] whereψ achieves its
absolute minimum—one in(0, ã) and the other at̃a.

We claim that ifψ ′(ã) < 0 thenã cannot be the first coordinate of an
asymmetric global minimizer. Indeed, ifψ is strictly decreasing at̃a, then
the free energy could be lowered by increasing the first component beyondã.
Therefore, ifψ ′(ã) < 0, thenψ has at most onerelevantminimum in [0, ã].
On the other hand, the above concavity-convexity picture implies that, once
ψ ′(ã) ≥ 0, there isonly onepoint in [0, ã] whereψ is minimized. Hence, in
all cases, there is at most one asymmetric minimizer.

The proof of Theorem 3.5 will require some comparisons between the two
minimizers allowed by Corollary 5.9. These are stated in the following lemma.

Lemma 5.10. Let q ≥ 4, β ≥ 0 and h∈ (−∞,0). Suppose that8(q)β,h
has two minimizers, one symmetric with x(S)

1 < x(S)2 = · · · = x(S)q and the
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other asymmetric with x(A)1 < x(A)2 = · · · = x(A)q−1 < x(A)q . Then

x(A)1 < x(S)1 and x(S)q < x(A)q . (5.45)

Moreover, let eA = [x(A)1 ]2
+ · · ·+[x(A)q ]2 and eS = [x(S)1 ]2

+ · · ·+[x(S)q ]2. Then
there exists a constant cq > 0 such that for any h∈ [−∞,0) and anyβ ≥ 0

where both minimizes of8(q)β,h “coexist,” we have

eA − eS ≥ cq. (5.46)

Both parts of this lemma are based on the following fact. Let(x1, . . . , xq)

be a minimizer of8(q)β,h ordered such thatx1 < x2 = · · · = xq−1 ≤ xq. The
stationarity condition yields

x1e−βx1−h
= x2e−βx2 = · · · = xqe−βxq, (5.47)

and so let2 denote the common value of this equality. Then we have:

Lemma 5.11. Let h < 0 andβ ≥ 0. If 2 and2′ correspond to two
minimizers of8(q)β,h, and2 = 2′, then the minimizers are the same (up to
permutations in the last q− 1 indices).

Proof. Suppose that both minimizers are ordered increasingly. Byh < 0
and Lemma 5.2,x1 ≤ x2 = · · · = xq−1. The fact that( x2

1−x1
, . . . ,

xq
1−x1

)

is the minimizer of8(q−1)
β(1−x1),h

—see Eq. (5.21)—then impliesβxk ≤ 1 for

all k = 1, . . . ,q − 1. Since the functionr (x) = xe−βx is invertible for x
with βx ≤ 1, equality of the2’s implies equality of the firstq −1 coordinates.
The constraint on the total sum implies equality of thexq’s as well.

Proof of Lemma 5.10. We will first attend to the proof of Eq. (5.45).
In light of Eq. (5.21), the(q − 1)-state Potts system on(x2, . . . , xq) is at

the effective temperatureβ(S)eff = (1 − x(S)1 )β for the symmetric minimizer

andβ(A)eff = (1− x(A)1 )β for the asymmetric minimizer. But for both symmetric

and asymmetric minimizers to “coexist” we must haveβ(S)eff ≤ β
(q−1)
MF ≤ β

(A)
eff

and sox(A)1 ≤ x(S)1 . To rule out the equality sign, we note that ifx(A)1 = x(S)1 ,
then the corresponding2’s are the same and Lemma 5.11 thus forces equality
of all components. Onceβ(S)eff ≤ β

(A)
eff is known,x(S)q < x(A)q follows.

In order to prove Eq. (5.46), letφ be the common value of8(q)β,h for the
two minimizers and let2A and2S be the corresponding2’s. Let us take the
logarithm of every term in (5.47), multiply the result for thej -th term byx j

and add these all up to get

φ −
β

2
eS = log2S and φ −

β

2
eA = log2A . (5.48)



52 Biskup, Chayes and Crawford

As x(A)1 < x(S)1 ≤ 1/β, we have2A < 2S for all h ∈ (−∞,0); for h = 0,−∞

this holds by a direct argument for the zero-field Potts model. HenceeS < eA

whenever the two minimizers are “coexist.”
To see that the positivity ofeA − eS holds uniformly in (h, β) ∈

[−∞,0]×[0,∞], we use a compactness argument. First, we only need to
worry about theβ ’s in a finite, closed intervalIq. Indeed, the effective temper-
ature of the Potts model,βeff = β(1−x1), is a number betweenβ andβ(1−1/q)

and so if eitherβ < β
(q−1)
MF orβ(1−1/q) > β

(q−1)
MF , then no coexistence of min-

imizers is possible.
Next let us consider a sequence of(h, β) in [−∞,0]×Iq with a topology

that makes this set compact. IfeA − eS tends to zero along this sequence,
the above arguments imply that the asymmetric and symmetric minimizers
must coalesce as the parameters tend to a limiting point. But this is impos-
sible because by the second half of Eq. (2.17), the scalar magnetization of the
corresponding(q − 1)-state Potts model, which is proportional to the ratio of
x(A)q − x(A)2 and 1− x(A)1 , is always at leastq−3

q−1.

Remark 5.12. The previous proof kept the distinctness ofeS andeA in
the realm of the existential. A calculation actually shows that, for anyh < 0,
there are constantse1 < e2 depending only onq such thateS < e1 andeA > e2

whenever the two minimizers “coexist.”

Proof of Theorem 2.4. Fix β ≥ 0 andh < 0. Corollary 5.9 implies
that, up to a permutation in all-but-the-first component,8

(q)
β,h has at most two

global minimizers: one symmetricmS and one asymetricmA. This proves
part (1) of the theorem.

Among the global minima, the first barycentric coordinatex1 = x1(β, h)
is (strictly) increasing inh (see Lemma 5.2) and so the effective coupling
βeff(h) = β(1 − x1(β, h)), which governs the(q − 1)-state Potts model
on (x2, . . . , xq), is decreasing. Now ifβeff(h) > β

(q−1)
MF then only the asym-

metric minimum is relevant, while ifβ(h) < β
(q−1)
MF then only the symmetric

minimum applies. Hence, forβ ∈ (β
(q−1)
MF , β

(q)
MF), there is a uniqueh2 = h2(β)

such that the role of minimizers changes ash increases throughh2. (For β
outside(β(q−1)

MF , β
(q)
MF), the minimizers are in qualitative agreement with those

of h = −∞ or h = 0−.) In particular, the minimizer is unique forh 6= h2(β)
and both minimizers “coexist” forh = h2(β).

Modulo the definition of functionβ(q)− , parts (2-4) of the theorem are
proved. It remains to show thatβ 7→ h2(β) is strictly increasing (and thus
invertible), continuous and with limits−∞ and 0 at the left and right end-
points of(β(q−1)

MF , β
(q)
MF), respectively. By Lemma 5.10, the quantitieseS andeA
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are separated by a “gap.” A simple limiting argument (not dissimilar to that
used in the proof of Theorem 2.3) now shows thath2 is continuous. Moreover,
by Lemma 5.3, the norm-squared of all minimizers increases withβ, and soh2

is strictly monotone and the limits ofh2 at the endpoints of(β(q−1)
MF , β

(q)
MF)must

be as stated. These facts allow us to defineβ
(q)
− as the inverse ofh2 and verify

all its properties in part (5) of the theorem.

6. PROOFS: ACTUAL SYSTEMS

Here we will provide the proofs of our results for actual spin systems. The
main portion of the arguments has already been given in Sects. 4 and 5. We
will draw freely on the notation from these sections. The proofs are fairly
straightforward (and mostly existential) and so we will stay rather brief.

First we will attend to the zero-field Potts model:

Proof of Theorem 3.4. The proof is more or less identical to that of
Theorem 2.1 of Ref. [11]; the only substantial difference is that now we are
not permitted to assume that the magnetization is monotone (indeed, some of
the Jx,y’s may be negative). We will base our arguments on the mean-field
properties of the zero-field Potts model, as outlined in Sect. 2.2.

Recall the mean-field free-energy function8(q)β,0 from Eq. (2.15). By

the fact that the global minimizer of8(q)β,0 changes from symmetric to asym-

metric asβ increases throughβ(q)MF, we can make the following conclusions:

Givenβ ≈ β
(q)
MF, letUε be anε-neighborhood ofm = 0 and letVε be the union

of ε-neighborhoods of the asymmetric minimizers. Then for eachε > 0, there
existsδ > 0 such that for allβ with |β − β

(q)
MF| ≤ ε the set

Oδ =
{
m ∈ Conv(�) : 8(q)β,0(m)− FMF(β,0) < δ

}
(6.1)

is contained inUε ∪ Vε. Moreover, ifβ = β
(q)
MF − ε, thenOδ ⊂ Uε while

atβ = β
(q)
MF + ε, we haveOδ ⊂ Vε.

Let M?(β,0) be the set of “extremal magnetizations.” By Theorem 3.2, if
the integralI in Eq. (3.9) is so small thatβ κ2nI = β q−1

2 I ≤ δ for all β with

β ≤ β
(q)
MF + ε, thenM? ⊂ Oδ. Now the asymmetric minimizers have norm at

least1/2, and the near-monotonicity of the magnetization from Lemma 4.9 thus
implies that, at someβt with |βt −β

(q)
MF| ≤ ε, the physical magnetization jumps

from some value insideUε to some value insideVε. The jump (of this size) is
unique by Lemma 4.9. From here the claims (3.17–3.19) follow.

Next we dismiss the cases with non-zero field:
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Proof of Theorem 3.5. Let hc be the quantity from Theorem 2.3
andβ(q)MF(h) be the concatenation of functionsβ+ andβ− from Theorems 2.3
and 2.4. An argument similar to the one used in the previous proof shows that,
for eachε > 0 there existsδ > 0, such that ifβ(q)MF

κ
2nI ≤ δ andh ≤ hc − ε, a

strong first-order transition occurs at someβt(h) which is withinε of β(q)MF(h).
This transition is manifested by a jump in both magnetization and energy den-
sity. This proves part (1) of the theorem.

As to part (2), by Lemma 5.10 we know that the first components of the
two minimizers are uniformly separated wheneverh is confined to a compact
subset of(−∞, hc). Since our general bounds in Theorem 3.2 imply that the
physical magnetizations at(h, βt(h)) are very near their mean-field values pro-
vided I is sufficiently small, also the first components thereof must be dif-
ferent. Using the monotonicity of the first component of physical minimizers
in h, the existence of a jump inm?(β, h) on the transition line follows.

Proof of Theorem 3.7. The proof is based on Theorem 3.6 and
Lemma 5.1. Indeed, Theorem 3.6 implies that all minima are characterized
by the fact that one of(x1, x0, x−1) is larger than 1− Ce−β . These minima
are nearly degenerate forλ of order e−β with free energy difference given
by λ− e−β

+ O(βe−β). The goal is to show that the free energy is uniformly
large (on the scale of e−β in the complement of theCe−β-neighborhood of
these minima.

Let C � 1 be the number exceeding the corresponding constant from
Theorem 3.6 and suppose that|λ| ≤ Ce−β . Consider the setOβ of all
triplets (x1, x0, x−1) with x1 + x0 + x−1 = 1, such that max{x1, x0, x−1} >
1 − Ce−β . We claim that forβ ≥ β0 (with β0 depending onC),

inf
(x1,x0,x−1)∈Oc

β

8β,λ(x1, x0, x−1) ≥ α(C logC)e−β, (6.2)

whereα is a positive number independent ofC. Indeed, Theorem 3.6 implies
that all local minima of8β,λ lie in Oβ , and so the absolute minimum of8β,λ
must occur on the boundary ofOc

β . But the “outer” boundary ofOc
β is not a

possibility, and so the mimimum occurs at a point with max{x1, x0, x−1} =

1 − Ce−β . The bound (6.2) is then a consequence of Lemma 5.1.
Let now the integralI in Eq. (3.9) be such thatβI � (C logC)e−β .

Then Theorem 3.2 ensures that all physical magnetizations (fromM?) are con-
tained insideOβ . However, by Eq. (3.23), forβ such thatλ−e−β

≥ O(βe−β)
the setOβ contains no triplets with dominantx±1 while for λ − e−β

≤

O(βe−β), there are nox0-dominant states. The standard thermodynamic ar-
guments imply that the amount of zero-ness decreases asλ increases. Hence,
there must be a jump at someλt = e−β

+ O(βe−β) from states dominated
by 0’s to those where 0’s are very sparse. This finishes the proof.
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