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ABSTRACT. We consider the nearest-neighbor simple random walk on Zd, d ≥ 2, driven
by a field of bounded random conductances ωxy ∈ [0, 1]. The conductance law is i.i.d.
subject to the condition that the probability of ωxy > 0 exceeds the threshold for bond
percolation on Zd. For environments in which the origin is connected to infinity by
bonds with positive conductances, we study the decay of the 2n-step return probabil-
ity P2n

ω (0, 0). We prove that P2n
ω (0, 0) is bounded by a random constant times n−d/2 in

d = 2, 3, while it is o(n−2) in d ≥ 5 and O(n−2 log n) in d = 4. By producing examples
with anomalous heat-kernel decay approaching 1/n2 we prove that the o(n−2) bound
in d ≥ 5 is the best possible. We also construct natural n-dependent environments that
exhibit the extra log n factor in d = 4.

1. INTRODUCTION

Random walk in reversible random environments is one of the best studied subfields of
random motion in random media. In continuous time, such walks are usually defined
by their generators Lω which are of the form

(Lω f )(x) = ∑
y∈Zd

ωxy
[

f (y)− f (x)
]
, (1.1)

where (ωxy) is a family of random (non-negative) conductances subject to the symmetry
condition ωxy = ωyx. The sum πω(x) = ∑y ωxy defines an invariant, reversible measure
for the corresponding continuous-time Markov chain. The discrete-time walk shares the
same reversible measure and is driven by the transition matrix

Pω(x, y) =
ωxy

πω(x)
. (1.2)

In most situations ωxy are non-zero only for nearest neighbors on Zd and are sampled
from a shift-invariant, ergodic or even i.i.d. measure P (with expectation henceforth
denoted by E).

c© 2007 N. Berger, M. Biskup, C. Hoffman and G. Kozma. Reproduction, by any means, of the entire
article for non-commercial purposes is permitted without charge.

1



2 N. BERGER, M. BISKUP, C.E. HOFFMAN AND G. KOZMA

Two general classes of results are available for such random walks under the addi-
tional assumptions of uniform ellipticity,

∃α > 0 : P(α < ωb < 1/α) = 1, (1.3)

and the boundedness of the jump distribution,

∃R < ∞ : |x| ≥ R ⇒ Pω(0, x) = 0, P-a.s. (1.4)

First, as proved by Delmotte [7], one has the standard, local-CLT like decay of the heat
kernel (c1, c2 are absolute constants):

Pn
ω(x, y) ≤ c1

nd/2 exp
{
−c2
|x− y|2

n

}
. (1.5)

Second, an annealed invariance principle holds in the sense that the law of the paths un-
der the measure integrated over the environment scales to a non-degenerate Brownian
motion (Kipnis and Varadhan [16]). A quenched invariance principle can also be proved
by invoking techniques of homogenization theory (Sidoravicius and Sznitman [23]).

Once the assumption of uniform ellipticity is relaxed, matters get more complicated.
The most-intensely studied example is the simple random walk on the infinite cluster
of supercritical bond percolation on Zd, d ≥ 2. This corresponds to ωxy ∈ {0, 1} i.i.d.
with P(ωb = 1) > pc(d) where pc(d) is the percolation threshold. Here an annealed
invariance principle has been obtained by De Masi, Ferrari, Goldstein and Wick [8, 9]
in the late 1980s. More recently, Mathieu and Remy [20] proved the on-diagonal (i.e.,
x = y) version of the heat-kernel upper bound (1.5)—a slightly weaker version of which
was also obtained by Heicklen and Hoffman [15]—and, soon afterwards, Barlow [2]
proved the full upper and lower bounds on Pn

ω(x, y) of the form (1.5). (Both of these
results hold for n exceeding some random time defined relative to the environment in
the vicinity of x and y.) Heat-kernel upper bounds were then used in the proofs of
quenched invariance principles by Sidoravicius and Sznitman [23] for d ≥ 4, and for all
d ≥ 2 by Berger and Biskup [4] and Mathieu and Piatnitski [19].

Notwithstanding our precise definition (1.3), the case of supercritical percolation may
still be regarded as uniformly elliptic because the conductances on the percolation clus-
ter are still uniformly bounded away from zero and infinity. It is thus not clear what
phenomena we might encounter if we relax the uniform ellipticity assumption in an es-
sential way. A number of quantities are expected (or can be proved) to vary continuously
with the conductance distribution, e.g., the diffusive constant of the limiting Brownian
motion. However, this may not apply to asymptotic statements like the heat-kernel
bound (1.5).

In a recent paper, Fontes and Mathieu [10] studied continuous-time random walk
on Zd with conductances given by

ωxy = ω(x) ∧ω(y) (1.6)

for some i.i.d. random variables ω(x) > 0. For these cases it was found that the annealed
heat kernel, E[Pω,0(Xt = 0)], where Pω,0 is the law of the walk started at the origin
and E is the expectation with respect to the environment, exhibits an anomalous decay for
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environments with too heavy lower tails at zero. Explicitly, from [10, Theorem 4.3] we
have

E
[
Pω,0(Xt = 0)

]
= t−(γ∧ d

2 )+o(1), t→ ∞, (1.7)
where γ > 0 characterizes the lower tail of the ω-variables,

P
(
ω(x) ≤ s

)
∼ sγ, s ↓ 0. (1.8)

As for the quenched problem, for γ < d/2, [10, Theorem 5.1] provides a lower bound on
the diagonal heat-kernel decay exponent (a.k.a. spectral dimension):

P
[
Pω,0(Xt = 0) ≤ t−α

]
−→
t→∞

1 (1.9)

for every α < α0 where

α0 =
d
2

1 + γ

1 + d/2
. (1.10)

But, since α0 < d/2, this does not rule out the usual diffusive scaling. Nevertheless,
as α0 > γ for γ < d/2, the annealed and quenched heat-kernel decay at different rates.

The reason why the annealed heat kernel may decay slower than usual can be seen
rather directly from the following argument: The quenched probability that the walk
does not even leave the origin up to time t is e−tπω(0). By πω(0) ≤ 2dω(0), we have

E
[
Pω,0(Xt = 0)

]
≥ Ee−2dω(0)t. (1.11)

For ω(0) with the tail (1.8), this yields a lower bound of t−γ. (A deeper analysis shows
that this is actually a dominating strategy [10].) A similar phenomenon can clearly be
induced for ωxy that are i.i.d. with a sufficiently heavy tail at zero, even though then the
correspondence of the exponents in (1.7–1.8) will take a slightly different form.

The fact that the dominating strategy is so simple makes one wonder how much of
this phenomenon is simply an artifact of taking the annealed average. Of not much
help in this matter is the main result (Theorem 3.3) of Fontes and Mathieu [10] which
shows that the mixing time for the random walk on the largest connected component
of a torus will exhibit anomalous (quenched) decay once γ < d/2. Indeed, the mixing
time is by definition dominated by the worst-case local configurations that one can find
anywhere on the torus and thus the reasoning we used to explain the anomalous decay
of the annealed heat kernel applies here as well.

The main goal of this paper is to provide universal upper bounds on the quenched
heat kernel and support them by examples exhibiting the corresponding lower bounds.
Somewhat surprisingly, and unlike for the annealed heat kernel, the existence of anoma-
lous quenched heat-kernel decay turns out to be dimension dependent.

2. MAIN RESULTS

We will work with a collection of bounded, nearest-neighbor conductances (ωb) ∈ Ω =
[0, 1]B where b ranges over the set B of unordered pairs of nearest neighbors in Zd.
The law P of the ω’s will be i.i.d. subject to the condition that the bonds with positive
conductances percolate. Given ω, we use C∞ = C∞(ω) to denote the set of sites that
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have a path to infinity along bonds with positive conductances. It is well known that C∞
is connected with probability one.

The main result of this paper is as follows:

Theorem 2.1 Let d ≥ 2 and consider a collection ω = (ωb) of i.i.d. conductances in [0, 1]
with P(ωb > 0) > pc(d) where pc(d) is the threshold for bond percolation on Zd. For almost
every ω ∈ {0 ∈ C∞}, there is C = C(ω) < ∞ such that

Pn
ω(0, 0) ≤ C(ω)


n−d/2, d = 2, 3,
n−2 log n, d = 4,
n−2, d ≥ 5,

(2.1)

for all n ≥ 1. In fact, for d ≥ 5, almost surely

lim
n→∞

n2 Pn
ω(0, 0) = 0. (2.2)

Note that these estimates imply that the random walk is almost surely transient in all
dimensions d ≥ 3. This is of course a consequence of the fact—to be exploited in more
depth later—that under p > pc(d) one has an infinite cluster of bonds with conductances
bounded strictly from below. Then a.s. transience in d ≥ 3 follows by monotonicity in
conductances and the result of Grimmett, Kesten and Zhang [14]. (Recurrence in d = 1, 2
is inferred directly from the monotonicity of this notion in the conductances.)

To show that our general upper bound in d ≥ 5 represents a real phenomenon, we
state the existence of appropriate examples:

Theorem 2.2 (1) Let d ≥ 5 and κ > 1/d. There exists an i.i.d. law P on bounded, nearest-
neighbor conductances with P(ωb > 0) > pc(d) and a random variable C = C(ω) such that
for almost every ω ∈ {0 ∈ C∞},

P2n
ω (0, 0) ≥ C(ω)

e−(log n)κ

n2 , n ≥ 1. (2.3)

(2) Let d ≥ 5. For every increasing sequence {λn}∞
n=1, λn → ∞, there exists an i.i.d. law P on

bounded, nearest-neighbor conductances with P(ωb > 0) > pc(d) and an a.s. positive random
variable C = C(ω) such that for almost every ω ∈ {0 ∈ C∞},

Pn
ω(0, 0) ≥ C(ω)

λnn2 (2.4)

along a subsequence that does not depend on ω.

The upper bounds in Theorem 2.1 can be extended to more general shift-invariant,
ergodic environments under suitable assumptions on their percolation properties. In
particular, it follows that for the Fontes-Mathieu example (1.7–1.8) no anomaly occurs
for the quenched heat kernel in dimensions d = 2, 3. On the other hand, Theorem 2.2 can
be specialized to the case (1.6) with i.i.d. ω(x)’s and, in d ≥ 5, we can produce anomalous
decay as soon as the tails of ω at zero are sufficiently heavy. (The constructions in the
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proof of Theorem 2.2 actually work for all d ≥ 2 but the result is of course interesting
only for d ≥ 5.)

The distributions that we use in part (1) of Theorem 2.2 have a tail near zero of the
general form

P(ωxy < s) ≈ | log(s)|−θ (2.5)
with θ > 0. Presumably, one can come up with examples of distributions that exhibit
“anomalous” behavior and have the power law tail,

P(ωxy < s) ≈ sγ, (2.6)

for some γ > 0. However, the construction seems to require subtle control of heat-
kernel lower bounds which go beyond the estimates that can be easily pulled out from
the literature.

As we will see in the proofs, the underlying idea of all examples in Theorem 2.2 is the
same: The walk finds a trap which, by our specific choice, is a “strong” edge that can be
reached only by crossing an edge of strength of order 1/n. Such traps allow the walk to
get stuck for time of order n and thus improve its chances to make it back to the origin
at the required time. To enter and exit the trap, the walk has to make two steps over the
O(1/n)-edge; these are responsible for the overall n−2-decay. Of course, in d = 2, 3 this
cannot compete with the “usual” decay of the heat kernel and so we have to go to d ≥ 4
to make this strategy dominant.

The upper bound in (2.2) and the lower bound in (2.4) show that the 1/n2 decay
in d ≥ 5 is never achieved, but can be approached arbitrary closely. We believe the same
holds also for d = 4 for the decay rate n−2 log n. We demonstrate the reason for our
optimism by proving a lower bound for environments where the aforementioned traps
occur with a positive density:

Theorem 2.3 Let d ≥ 4 and let p > pc(d). Sample a percolation configuration ω̃ with
parameter p. For each n ≥ 1 consider the i.i.d. environment ω(n) defined from ω̃ by putting
ω

(n)
b = 1 on occupied bonds and ω

(n)
b = 1/n on vacant bonds. For a.e. ω̃ in which 0 has an

occupied path to infinity, there is C(ω̃) > 0 such that for all n ≥ 1,

P2n
ω(n)(0, 0) ≥ C(ω̃)

{
n−2, d ≥ 5,
n−2 log n, d = 4.

(2.7)

We conclude with a remark concerning the path properties of the above random walk.
As mentioned previously, heat-kernel estimates of the form (1.5) have been crucial for
the proof of the quenched invariance principle for simple random walk on supercritical
percolation clusters in d ≥ 3. (The d = 2 argument of Berger and Biskup [4] actually
avoids these bounds by appealing to the nearest-neighbor structure of the walk and to
an underlying maximum principle.) The absence of “usual” decay might suggest dif-
ficulty in following the same strategy. Notwithstanding, using truncation to a “strong
component,” a version of which is invoked also in the present paper, this problem can
be circumvented and the corresponding quenched invariance principle proved (Math-
ieu [18], Biskup and Prescott [5]).
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Thus there are i.i.d. environments for which one has a functional CLT without a lo-
cal CLT. This should not be too surprising as a CLT describes the typical behavior whereas
the heat-kernel decay, and a local-CLT, describe rare events. Naturally, a CLT is much
more robust than its local counterpart.

Theorem 2.1 is proved in Sect. 3 while Theorems 2.2-2.3 are proved in Sect. 4. The
Appendix (Sect. 5) contains a self-contained proof of the isoperimetric inequality on the
supercritical percolation cluster that we need in the proof of Theorem 2.1.

3. HEAT-KERNEL UPPER BOUNDS

Here we will prove the heat-kernel bounds from Theorem 2.1. The general strategy of
our proof is as follows: For every α > 0, we use C∞,α = C∞,α(ω) to denote the set of all
sites in Zd that have a path to infinity along edges with conductances at least α. Clearly,
C∞,α is a subgraph of C∞; we will sometimes refer to C∞,α as the strong component. We
first prove the “standard” heat-kernel decay for the Markov chain obtained by recording
the position of the random walk when it is on the strong component C∞,α for an appro-
priately chosen α. Then we control the difference between the time scales for the two
walks using rather straightforward estimates.

3.1 Coarse-grained walk.

The i.i.d. nature of the measure P ensures there is an a.s.-unique infinite connected com-
ponent C∞ of bonds with positive conductances. Given z ∈ C∞, we define the random
walk X = (Xn) as a Markov chain on C∞ with transition probabilities

Pω,z(Xn+1 = y|Xn = x) = Pω(x, y) =
ωxy

πω(x)
(3.1)

and initial condition
Pω,z(X0 = z) = 1. (3.2)

We use Eω,z to denote expectation with respect to Pω,z. (Note the typographical distinc-
tion between the path distribution Pω,z, the heat kernel Pω, and the law of the environ-
ment P.)

Next we will disregard bonds whose conductance is less than some small positive
number α which is chosen so that the remaining bonds still form an infinite component—
to be denoted by C∞,α. We quote Proposition 2.2 from Biskup and Prescott [5]:

Lemma 3.1 Let d ≥ 2 and p = P(ωb > 0) > pc(d). Then there exists c(p, d) > 0 such that
if α satisfies

P(ωb ≥ α) > pc(d) (3.3)
and

P(0 < ωb < α) < c(p, d) (3.4)
then C∞,α is nonempty and C∞ \ C∞,α has only finite components a.s. In fact, if Fx is the set of
sites (possibly empty) in the finite component of C∞ \ C∞,α containing x, then

P
(
x ∈ C∞ & diamFx ≥ n

)
≤ Ce−ηn, n ≥ 1, (3.5)
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for some C < ∞ and η > 0. Here “diam” is the diameter in the `∞-distance on Zd.

Given z ∈ C∞,α we consider the coarse grained random walk X̂ = (X̂`)—started at z—
which records the successive visits of X = (Xn) to C∞,α. Explicitly, let T1, T2, . . . denote
the times X takes between the successive steps of X̂, i.e., T`+1 = inf{n > 0 : XT`+n ∈
C∞,α} with T0 = 0. Note that, as all components of C∞ \ C∞,α are finite, T` < ∞ a.s. for
all `. Then

X̂` = XT1+···+T`
, ` ≥ 1. (3.6)

Let P̂ω(x, y) denote the transition probability of the random walk X̂,

P̂ω(x, y) = Pω,x(XT1 = y), x, y ∈ C∞,α. (3.7)

As is easy to check, the restriction of the measure πω to C∞,α is invariant and reversible
for the Markov chain on C∞,α induced by P̂ω.

Consider the quantities

ω̂xy = πω(x)P̂ω(x, y), x, y ∈ C∞,α. (3.8)

We may think of X̂ as the walk on C∞,α with the weak components “re-wired” by putting
a bond with conductance ω̂xy between any pair of sites (x, y) on their (strong) boundary.
By Lemma 3.1, all weak components are finite and everything is well defined.

Our first item of business is to show that X̂ obeys the standard heat-kernel bound:

Lemma 3.2 For almost every ω ∈ {0 ∈ C∞,α} and every x ∈ C∞,α(ω) there exists random
variable C(ω, x) < ∞ such that

P̂n
ω(x, y) ≤ C(ω, x)

nd/2 , n ≥ 1. (3.9)

We remark that the reversibility of the random walk, and the fact that πω ≥ α on C∞,α,
imply that P̂n

ω(x, y) may also be bounded in terms of C(ω, y). Note that, unlike for P,
the powers for which P̂n(x, y) is non-zero are not necessarily tied to the parity of y− x.

Lemma 3.2 will be implied by the fact that the Markov chain X̂ obeys the “usual”
d-dimensional isoperimetric inequality. The connection between isoperimetric inequal-
ities and heat-kernel decay can be traced back to the work on elliptic PDEs done by
Nash, Moser and others. In its geometric form it was first proved using Sobolev in-
equalities (Varopoulos [24]). Alternative approaches use Nash inequalities (Carlen, Ku-
soka and Stroock [6]), Faber-Krahn inequalities (Grigor’yan [12], Goel, Montenegro and
Tetali [11]) and evolving sets (Morris and Peres [17]). The paper [17] will serve us as a
convenient reference.

Consider a Markov chain on a countable state-space V with transition probability
denoted by P(x, y) and invariant measure denoted by π. Define Q(x, y) = π(x)P(x, y)
and for each S1, S2 ⊂ V, let

Q(S1, S2) = ∑
x∈S1

∑
y∈S2

Q(x, y). (3.10)
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For each S ⊂ V with π(S) ∈ (0, ∞) we define

ΦS =
Q(S, Sc)

π(S)
(3.11)

and use it to define the isoperimetric profile

Φ(r) = inf
{

ΦS : π(S) ≤ r
}

. (3.12)

(Here π(S) is the measure of S.) It is easy to check that we may restrict the infimum to
sets S that are connected in the graph structure induced on V by P.

The following summarizes Theorem 2 of [17]: Suppose that P(x, x) ≥ γ for some γ ∈
(0, 1/2] and all x ∈ V. Let ε > 0 and x, y ∈ V. Then

Pn(x, y) ≤ επ(y) (3.13)

for all n such that

n ≥ 1 +
(1− γ)2

γ2

∫ 4/ε

4[π(x)∧π(y)]

4
uΦ(u)2 du. (3.14)

Note that, to prove the “usual” decay Pn(x, y) ≤ cn−d/2, it suffices to show that the
bound Φ(r) ≤ cr−1/d holds for r sufficiently large.

We will adapt this machinery to the following setting

V = C∞,α(ω), P = P̂2
ω and π = πω, (3.15)

with the objects in (3.10–3.12) denoted by Q̂ω, Φ̂(ω)
S and Φ̂ω(r). However, to estimate

Φ̂ω(r) we will replace P̂ω by the Markov chain with transition probabilities

P̃ω(x, y) =
ωxy 1{ωxy≥α}

π̃ω(x)
, |x− y| = 1, (3.16)

i.e., the random walk on V = C∞,α that can only use edges physically present in the
infinite cluster. The quantity

π̃ω(x) = ∑
y

ωxy 1{ωxy≥α} (3.17)

denotes the corresponding stationary measure. We will use Q̃ω, Φ̃(ω)
S and Φ̃ω(r) to de-

note the objects in (3.10–3.12) for this Markov chain.

Lemma 3.3 There exists a constant c > 0 depending only on d and α such that for any finite
set Λ ⊂ C∞,α,

Φ̂(ω)
Λ ≥ cΦ̃(ω)

Λ . (3.18)

Proof. The stationary measures πω and π̃ω compare via

πω(x) ≥ π̃ω(x) ≥ α

2d
πω(x) (3.19)
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Restricting P̂2
ω(x, y) to transitions with T2 = 2 shows

P̂2
ω(x, y) ≥∑

z

ωxz 1{ωxz≥α}
πω(x)

ωzy 1{ωzy≥α}

πω(z)
≥ (α/2d)2P̃2

ω(x, y). (3.20)

It follows that (3.18) holds with c = (α/2d)3. �

Our next step involves extraction of appropriate bounds on surface and volume terms.
As the infimum in (3.12) can always be restricted to connected subsets of the Markov
graph, and since the Markov graph underlying the quantity Φ̃ω(r) is just the infinite
cluster C∞,α, we can restrict our attention to subsets of C∞,α that are connected in the
usual sense.

Lemma 3.4 Let θ > 0, d ≥ 2 and let α be as above. Then there exists a constant c > 0 and
random variable R1 = R1(ω) with P(R1 < ∞) = 1 such that for a.e. ω ∈ {0 ∈ C∞,α} and
all R ≥ R1(ω) the following holds: For any connected Λ ⊂ C∞,α ∩ [−R, R]d with

π̃ω(Λ) ≥ Rθ (3.21)

we have
Q̃ω(Λ, C∞,α \Λ) ≥ cπω(Λ)

d−1
d . (3.22)

Proof. Since C∞,α has the law of the infinite bond-percolation cluster, we will infer this
from isoperimetry for the percolation cluster; cf. Theorem 5.1. Let ∂ ω,αΛ denote the set
of edges in C∞,α with one endpoint in Λ and the other in C∞,α \Λ. We claim that

Q̃ω(Λ, C∞,α \Λ) ≥ α2

2d
|∂ ω,αΛ| (3.23)

and
π̃ω(Λ) ≤ 2d|Λ|. (3.24)

Since Λ obeys the conditions of Theorem 5.1, once R � 1, we have |∂ ω,αΛ| ≥ c2|Λ|
d−1

d ,
cf. equation (5.2) in Sect. 5. Then (3.22) will follow from (3.23–3.24).

It remains to prove (3.23–3.24). The bound (3.24) is implied by π̃ω(x) ≤ 2d. For (3.23),
since P̃2

ω represents two steps of a random walk, we get a lower bound on Q̃ω(Λ, C∞,α \
Λ) by picking a site x ∈ Λ which has a neighbor y ∈ Λ that has a neighbor z on the outer
boundary of Λ. The relevant contribution is bounded as

π̃ω(x)P̃2
ω(x, z) ≥ π̃ω(x)

ωxy

π̃ω(x)
ωyz

π̃ω(y)
≥ α2

2d
. (3.25)

Once Λ has at least two elements, we can do this for (y, z) ranging over all bonds
in ∂ ω,αΛ, so summing over (y, z) ∈ ∂ ω,αΛ we get (3.23). �

Now we are finally ready to estimate the decay of P̂n
ω(x, y):

Proof of Lemma 3.2. It clearly suffices to prove this for x = 0. Pick θ ∈ (0, 1/2) and let R
be the largest `∞-distance the walk X can go on C∞ by time T1 + · · ·+ T2n, i.e., by the
time X̂ makes 2n steps. Lemma 3.1 tells us that the largest jump X̂ can make in a box
of side length n2 is O(log n), and so R = O(n log n). As the walk will not leave the
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box [−R, R]d by time n, we may restrict the infimum defining Φ̂ω(r) to sets Λ entirely
contained in [−R, R]d. (This can be formally achieved also by modifying the Markov
chain “outside” [−R, R]d.) Moreover, invoking (3.18) we can instead estimate Φ̃ω(r)
which allows us to restrict to Λ ⊂ C∞,α ∩ [−R, R]d that are connected in the usual graph
structure on C∞,α.

We will now derive a bound on Φ̃(ω)
Λ for connected Λ ⊂ C∞,α(ω) ∩ [−R, R]d. Hence-

forth c denotes a generic constant. If πω(Λ) ≥ Rθ , then (3.19) and (3.22) imply

Φ̃(ω)
Λ ≥ cπω(Λ)−

1/d. (3.26)

On the other hand, for πω(Λ) < Rθ the bound (3.23) yields

Φ̃(ω)
Λ ≥ cπω(Λ)−1 ≥ cR−θ . (3.27)

From Lemma 3.3 we conclude that

Φ̂ω(r) ≥ cΦ̃ω(r) ≥ c(r−1/d ∧ R−θ) (3.28)

once R ≥ R1(ω). The crossover between the two regimes occurs when r = Rdθ which
(due to θ < 1/2) is much less than 4/ε once ε ≈ n−d/2. The relevant integral is thus
bounded by ∫ 4/ε

4[π(x)∧π(y)]

4
uΦ̂ω(u)2

du ≤ c1R2θ log R + c2ε−2/d ≤ c3ε−2/d (3.29)

for some constants c1, c2, c3 > 0. Setting ε proportional to n−d/2 and noting γ ≥ (α/2d)2,
the right-hand side is less than n and Pn(0, x) ≤ cn−d/2 for each x ∈ C∞ ∩ [−R, R]d. As
Pn(0, x) = 0 for x 6∈ [−R, R]d, the bound holds in general. This proves the claim for
even n; for odd n we just concatenate this with a single step of the random walk. �

3.2 Integral bound.

We now want to link the estimates on P̂ to a heat-kernel type bound for the walk X.
Specifically, we will prove the following estimate:

Proposition 3.5 For almost every ω ∈ {0 ∈ C∞,α}, there exists a constant C = C(ω) < ∞
such that for every ` ≥ 1 and every n ≥ 1,

Pω,0(X̂` = 0, T1 + · · ·+ T` ≥ n) ≤ C(ω)
`1−d/2

n
. (3.30)

and, in fact,
lim
n→∞

n Pω,0(X̂` = 0, T1 + · · ·+ T` ≥ n) = 0 a.s. (3.31)

In order to prove this claim, we will need to occasionally refer to the Markov chain
on environments “from the point of view of the particle.” Let τx be the shift by x on Ω
and let Ωα = {0 ∈ C∞,α}. We define a random shift τX̂1

: Ωα → ω by sampling X̂1 for
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the given ω and applying τx with x = X̂1. This random map induces a Markov chain on
ΩZ

α via the iterated action of τX̂1
. Define the measure

Qα(dω) = Zπω(0) P(dω|0 ∈ C∞,α) (3.32)

where Z−1 = E(πω(0)|0 ∈ C∞,α). Let EQα
denote expectation with respect to Qα. We

recall the following standard facts whose proof can be found in, e.g., [4, Section 3]:

Lemma 3.6 (Ergodicity of Markov chain on environments) The measure Qα is stationary
and ergodic with respect to the Markov shift τX̂1

on environments. In particular, if f ∈ L1(Ω, P)
then for Qα-a.e. ω and for Pω,0-a.e. trajectory X̂ = (X̂1, X̂2, . . . ),

lim
`→∞

1
`

`−1

∑
j=0

f (τX̂j
ω) = EQα

( f ). (3.33)

The convergence occurs also in L1 (i.e., under expectation E0,ω and, if desired, also EQα
).

Recall our notation Fy for the finite component of C∞ \ C∞,α containing y. For x ∈
C∞,α, let

G ′x =
⋃

y : ωxy>0

Fy (3.34)

and let Gx denote the union of G ′x with all of its neighbors on C∞,α. We will refer to this
set as the weak component incident to x. Note that Gx is the set of vertices that can be
visited by the walk X started at x by the time X steps again onto the strong component.

Lemma 3.7 Recall that EQα
denotes expectation with respect to Qα and let |Gx| be the number

of sites in Gx. Under the conditions of Lemma 3.1, we have EQα
|G0| < ∞.

Proof. This is an immediate consequence of (3.5). �

Next we will estimate the expected time the random walk hides in such a component:

Lemma 3.8 (Hiding time estimate) Let d ≥ 2 and set c = 4dα−1. Then for all x ∈ Zd and
all ω such that x ∈ C∞,α and Gx is finite, we have

Eω,x(T1) ≤ c|Gx|. (3.35)

Proof. Fix x ∈ C∞,α and let Gx be its incident weak component which we regard as a finite
graph. Add a site ∆ to this graph and connect it by an edge to every site of Gx that has
a strong bond to C∞,α \ Gx. (Here ∆ represents the rest of C∞,α; note that multiple edges
between ∆ and sites of Gx are possible.) Equip each such edge with the corresponding
conductance and call the resulting finite graph Hx. Clearly, the random walk on Hx
started at x and the corresponding random walk on C∞,α have the same law until they
first hit ∆ (i.e., leave Gx). In particular, T1 for the walk on C∞,α is stochastically dominated
by Sx, the first time the walk onHx returns back to its starting point.

Notice that x 7→ πω(x) is an invariant measure of the walk onHx provided we set

πω(∆) = ∑
x∈Gx

∑
y∈C∞,αrGx

ωxy. (3.36)
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Standard Markov chain theory tells us that z 7→ (ẼzSz)−1, where Ẽz is the expectation
with respect to the walk onHx started at z, is an invariant distribution and

ẼxSx =
πω(Hx)
πω(x)

. (3.37)

But x ∈ C∞,α implies that πω(x) ≥ α while the bound ωyz ≤ 1 yields

πω(∆) ≤ πω(Gx) ≤ 2d|Gx| (3.38)

and
πω(Hx) ≤ 4d|Gx|. (3.39)

It follows that Eω,xT1 ≤ ẼxSx ≤ (4d/α)|Gx|. �

Proof of Proposition 3.5. For simplicity of the notation, let us assume that ` is even; other-
wise, replace all occurrences of `/2 by d`/2e. By reversibility of X̂, if k < `,

Pω,0(X̂` = 0, T1 + · · ·+ Tk ≥ n/2) = Pω,0(X̂` = 0, T` + · · ·+ T`−k+1 ≥ n/2). (3.40)

This means that the probability of interest is bounded by twice the quantity on the left
with k = `/2. Chebyshev’s inequality then yields

Pω,0(X̂` = 0, T1 + · · ·+ T` ≥ n) ≤ 2Pω,0(X̂` = 0, T1 + · · ·+ T`/2 ≥ n/2)

≤ 4
n

Eω,0
(
1{X̂`=0}(T1 + · · ·+ T`/2)

)
.

(3.41)

Conditioning on the position of X̂ at the times before and after Tj we then get

Pω,0(X̂` = 0, T1 + · · ·+ T` ≥ n)

≤
`/2

∑
j=1

∑
x,y

4
n

Pω,0(X̂j−1 = x) Eω,x(T1 1{X̂1=y}) Pω,y(X̂`−j = 0). (3.42)

The calculation now proceeds by inserting uniform bounds for the last two terms on the
right-hand side, and resumming the result using a stationarity argument.

Since `− j ≥ `/2, reversibility and Lemma 3.2 tell us

Pω,y(X̂`−j = 0) =
πω(0)
πω(y)

Pω,0(X̂`−j = y) ≤ c
`d/2 (3.43)

uniformly in y ∈ C∞,α for some absolute constant c. Furthermore, Lemma 3.8 gives

∑
y

Eω,x(T1 1{X̂1=y}) = Eω,x(T1) ≤ c|Gx| (3.44)

where Gx is the weak component incident to x. Rewriting the sum over j as an ergodic
average, Lemma 3.6 with f (ω) = |G0| and Lemma 3.7 now show that, for all k ≥ 1,

k

∑
j=1

∑
x

Pω,0(X̂j−1 = x) |Gx| = Eω,0

( k−1

∑
j=0
|GX̂j
|
)
≤ C(ω)k (3.45)

for a random constant C(ω). Using (3.43–3.45) in (3.42), the desired bound (3.30) follows.
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In order to prove the convergence to zero in (3.31), we note that
∞

∑
n=1

Pω,0(X̂` = 0, T1 + · · ·+ T` ≥ n) = Eω,0
(
1{X̂`=0} (T1 + · · ·+ T`)

)
. (3.46)

The argument (3.42–3.45) shows that the expectation on the right is finite a.s. Since
n 7→ Pω,0(X̂` = 0, T1 + · · ·+ T` ≥ n) is non-increasing, the claim follows by noting that,
for any non-increasing non-negative sequence (an) with lim supn→∞ nan > 0, the sum
∑n≥1 an diverges. �

3.3 Proof of the upper bound.

To turn (3.30) into the proof of Theorem 2.1, we will also need the following standard
fact from Markov chain theory:

Lemma 3.9 The sequence n 7→ P2n
ω (0, 0) is decreasing.

Proof. Let 〈 f , g〉ω = ∑x∈Zd πω(x) f (x)g(x) denote a scalar product in L2(Zd, πω). Then

P2n
ω (0, 0) = 〈δ0, P2n

ω δ0〉ω. (3.47)

Since Pω is self-adjoint and ‖Pω‖2 ≤ 1, the sequence of operators P2n
ω is decreasing. �

Now we put everything together and prove the desired heat-kernel upper bounds:
Proof of Theorem 2.1(1). Introduce the random variable

Rn = sup{` ≥ 0 : T1 + · · ·+ T` ≤ n}. (3.48)

The fact that 0 ∈ C∞,α(ω) yields

∑
m≥n

Pω,0(Xm = 0, Rm = `) = Pω,0(X̂` = 0, T1 + · · ·+ T` ≥ n). (3.49)

Proposition 3.5 now implies

∑
n≤m<2n

Pω,0(Xm = 0, Rm = `) ≤ C(ω)
`1−d/2

n
. (3.50)

By summing over ` = 1, . . . , 2n and using that Rm ≤ 2n once m ≤ 2n we derive

∑
n≤m<2n

Pm
ω(0, 0) ≤ C̃(ω)


n1−d/2, d = 2, 3,
n−1 log n, d = 4,
n−1, d ≥ 5,

(3.51)

where C̃ is proportional to C. By Lemma 3.9, P2m
ω (0, 0) is decreasing in m and so the sum

on the left is bounded below by 1
2 nP2n

ω (0, 0). From here the claim follows. �

Proof of Theorem 2.1(2). By (3.31), for each fixed ` ≥ 1 the sum in (3.50) multiplied by n
tends to zero as n→ ∞. As `1−d/2 is summable in d ≥ 5, the uniform bound (3.50) shows
the same holds even under the sum over ` ≥ 1. �
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4. EXAMPLES WITH SLOW DECAY

Here we provide proofs of Theorems 2.2 and 2.3. The underlying ideas are very similar,
but the proof of Theorem 2.2 is technically easier.

4.1 Anomalous decay in d ≥ 5.

The proof of Theorem 2.2 will be based on the following strategy: Suppose that in a box
of side length `n there exists a configuration where a strong bond is separated from other
sites by bonds of strength 1/n, and (at least) one of these “weak” bonds is connected to
the origin by a “strong” path not leaving the box. Then the probability that the walk
is back to the origin at time n is bounded below by the probability that the walk goes
directly towards the above pattern (this costs eO(`n) of probability) then crosses the weak
bond (which costs 1/n), spends time n− 2`n on the strong bond (which costs only O(1)
of probability), then crosses a weak bond again (another factor of 1/n) and then heads
towards the origin to get there on time (another eO(`n) term). The cost of this strategy is
O(1)eO(`n)n−2 so if `n = o(log n) then we get leading order n−2.
Proof of Theorem 2.2(1). Our task is to construct environments for which (2.3) holds.
For κ > 1/d let ε > 0 be such that (1 + 4dε)/d < κ. Let B denote the set of edges
in Zd and let P be an i.i.d. conductance law on {2−N : N ≥ 0}B such that:

P(ωb = 1) > pc(d) (4.1)

and
P(ωb = 2−N) = cN−(1+ε), N ≥ 1, (4.2)

where c = c(ε) is adjusted so that the distribution is normalized. Let ê1 denote the unit
vector in the first coordinate direction. Define the scale

`N = N(1+4dε)/d (4.3)

and, given x ∈ Zd, let AN(x) be the event that the configuration near x, y = x + ê1
and z = x + 2ê1 is as follows (see the comments before this proof):

(1) ωyz = 1 and ωxy = 2−N , while every other bond emanating out of y or z has
ωb ≤ 2−N .

(2) x is connected to the boundary of the box of side length (log `N)2 centered at x
by bonds with conductance one.

Since bonds with ωb = 1 percolate and since P(ωb ≤ 2−N) ∼ N−ε, we have

P
(

AN(x)
)
≥ cN−[1+(4d−2)ε]. (4.4)

Now consider a grid GN of sites in [−`N , `N ]d∩Zd that are spaced by distance 2(log `N)2.
The events {AN(x) : x ∈ GN} are independent, so

P
( ⋂

x∈GN

AN(x)c
)
≤ exp

{
−c
( `N

(log `N)2

)d
N−[1+(4d−2)ε]

}
≤ e−cNε

(4.5)

and the intersection occurs only for finitely many N.
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By the stretched-exponential decay of truncated connectivities (Grimmett [13, Theo-
rem 8.65]), every connected component of side length (log `N)2 in [−`N , `N ]d ∩Zd will
eventually be connected to the largest connected component in [−2`N , 2`N ]d ∩Zd. We
conclude that there exists N0 = N0(ω) with P(N0 < ∞) = 1 such that once N ≥ N0, the
event AN(x) occurs for some even-parity site x = xN(ω) ∈ [−`N , `N ]d ∩Zd that is con-
nected to 0 by a path, PathN , in [−2`N , 2`N ]d, on which only the last N0 edges—namely,
those close to the origin—may have conductance smaller than one.

We are now ready to employ the above strategy. Suppose N ≥ N0 and let n be such
that 2N ≤ 2n < 2N+1. Let xN be the site in [−`N , `N ]d ∩Zd for which AN(x) occurs and
let rN be the length of PathN . Let α = α(ω) be the minimum of ωb for b within N0 steps
of the origin. The passage from 0 to xN in time rN has probability at least αN0(2d)−rN ,
while staying on the bond (y, z) for time 2n− 2rN − 2 costs an amount which is bounded
independently of ω. The transitions across (x, y) cost order 2−N each. Hence we have

P2n
ω (0, 0) ≥ cα2N0(2d)−2rN 2−2N . (4.6)

By the comparison of the graph-theoretic distance and the Euclidean distance (Antal and
Pisztora [1]), we have rN ≤ c`N once N is sufficiently large. Since n is of order 2N we are
done. �

The argument for the second part follows very much the same strategy:
Proof of Theorem 2.2(2). Let (λn) be a sequence in the statement and suppose, without
loss of generality, that λ1 � 1. Let

qn =
(

1
2

log λn

log(2d)

)1/4

(4.7)

and let {nk} be even numbers chosen as follows:

1− q−1
n1

> pc and qnk+1 > 2qnk . (4.8)

Define an i.i.d. law P on ({1} ∪ {nk : k ≥ 1})B as follows:

P(ωb = 1) = 1− q−1
n1

and P(ωb = 1/nk) = q−1
nk
− q−1

nk+1
. (4.9)

Let C∞ denote the (a.s. unique) infinite connected component of edges with conductance
one.

By following the argument in the proof of Theorem 2.2(1), for almost every ω and
every k large enough, we can find x ∈ C∞ such that:

(1) For y = x + ê1 and z = x + 2ê1, we have ωy,z = 1, and all other bonds emanating
from y and z are of conductance 1/nk.

(2) The chemical distance between x and the closest point in C∞ to the origin is less
than q4

nk
.

Explicitly, set `N = θq4
nk

for some constant θ and let An(x) be the event that (1) holds
and x is connected to the boundary of the box x + [−(log `N)2, (log `N)2]d by edges with
strength one. Then P(AN(x)) ≥ cq−4d+2

nk
= c`−d+δ

N for δ = (2d)−1. Plugging this in (4.5)
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results in a sequence that is summable on k (note that qk increase exponentially). Per-
colation arguments, and the choice of θ, then ensure that (most of) the x’s where AN(x)
occurs have a strong connection near the origin of length at most q4

nk
.

The argument leading to (4.6)—with rN replaced by q4
nk

—now gives

Pnk
ω (0, 0) ≥ cα2N0

(2d)−2q4
nk

n2
k

. (4.10)

By the choice of qn, we are done. �

4.2 Time-dependent environments.

Here we will prove Theorem 2.3. Let P be the Bernoulli measure on B with param-
eter p > pc(d). Let C∞ denote the infinite component of occupied bonds. We define
ωb = 1 on occupied bonds and ωb = 1/n on vacant bonds. The proof proceeds via three
lemmas:

Lemma 4.1 Let Y = (Y1, . . . , Yn) be the first n steps of the random walk on environment ω
conditioned to avoid bonds with ωb = 1/n. Let X̃ = (X̃1, . . . , X̃n) be the simple random walk on
the percolation cluster of ωb = 1. Then the the corresponding path measures are absolutely con-
tinuous with respect to each other and the Radon-Nikodym derivatives are (essentially) bounded
away from zero and infinity, uniformly in n and ω ∈ {0 ∈ C∞}.

Proof. Fix a sequence of sites x1, . . . , xn ∈ C∞ such that ωxi ,xi+1 = 1 for all i = 1, . . . , n− 1.
Then the probability that X̃ executes this sequence is ∏n

i=0 d(xi)−1, where d(x) is the
degree of the percolation cluster at x. For Y we get Cn ∏n−1

i=0 πω(xi)−1, where C−1
n is

the probability that the unconditioned random walk X has not used a weak bond in its
first n-th steps. Since

πω(x)− d(x) = O(1/n), (4.11)
the ratio of the products is bounded away from zero and infinity uniformly in n and the
points x1, . . . , xn. But both path distributions are normalized and so Cn is bounded as
well. �

Next we provide a lower bound on the probability that the walk X visits a given site
in n steps. Let Sx be the first visit of X to x,

Sx = inf{n ≥ 0 : Xn = x}. (4.12)

Then we have:

Lemma 4.2 For a.e. ω ∈ {0 ∈ C∞} there is C = C(ω) > 0 and a constant n0 < ∞ such that
for all n ≥ n0 and all x ∈ C∞ satisfying |x| ≤

√
n, we have

Pω,0(Sx ≤ n) ≥ C(ω)|x|−(d−2). (4.13)

Proof. The choice of the conductance values ensures that the probability that X stays
on C∞ for the first n steps is uniformly positive. Conditioning on this event, and ap-
plying Lemma 4.1, it thus suffices to prove (4.13) for the walk X̃. The proof makes use
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of Barlow’s heat-kernel bounds for the random walk on percolation cluster; cf [2, Theo-
rem 1].

Consider the continuous time version X̃′ of the walk X̃, i.e., X̃′ executes the same steps
but at times that are i.i.d. exponential. By integrating the heat-kernel bounds we get that
the expected amount of time X̃′ spends at x up to time n/2 is at least C(ω)|x|−(d−2). A
similar calculation shows that the expected time the walk X̃′ spends at x conditioned on it
hitting x is uniformly bounded. Therefore the probability of X̃′ hitting x before time n/2
is at least C(ω)|x|−(d−2). To get back to X̃, we need to subtract the probability that by
continuous time n/2 the walk X̃′ did more than n discrete steps, which is less than e−cn.
As |x| ≤

√
n, this cannot compete with |x|−(d−2) once n is sufficiently large. �

We now define the notion of a trap which is similar to that underlying the event AN(x)
in the proof of Theorem 2.2. Explicitly, a trap is the triple of sites x, y, z with y = x + ê1
and z = x + 2ê1 such that x ∈ C∞ and such that all bonds emanating out of y and z are
weak except the bond between them. Let T(x) be the event that a trap occurs at x.

Lemma 4.3 For a.e. ω ∈ {0 ∈ C∞} there is c < ∞ and n1(ω) < ∞ such that

∑
x : |x|≤

√
n

T(x) occurs

|x|−(2d−4) ≥
{

c, d ≥ 5,
c log n, d = 4,

(4.14)

for all n ≥ n1.

Proof. This is a consequence of the Spatial Ergodic Theorem. Indeed, let ΛL = [−L, L]d ∩
Zd and note that the fraction of ΛL occupied by {x ∈ ΛL : T(x) occurs} converges a.s.
to ρ = P(T(0)) > 0. But then also the corresponding fraction in the annuli Λ2k+1 \ Λ2k

converges a.s. to ρ. In particular, there is k0 = k0(ω) such that this fraction exceeds ρ/2
for all k ≥ k0. Now take n and find k so that 2k ≤

√
n ≤ 2k+1. Bounding |x| ≤ 2k+1 on

the k-th annulus, we get

∑
x : |x|≤

√
n

T(x) occurs

|x|−(2d−4) ≥
k

∑
`=k0

ρ

2
|Λ2`+1 \Λ2` |
(2`+1)2d−4 . (4.15)

As |Λ2`+1 \Λ2` | ≥ (2`)d, the result follows. �

We are now ready to prove the heat-kernel lower bounds (2.7):
Proof of Theorem 2.3. Pick ω ∈ {0 ∈ C∞} and let x be a trap (i.e., event T(x) occurs and y
and z are the endpoints of the “trapped” strong edge) with |x| < 1

4
√

n. Let U(x, k, `)
be the event that the random walk starts at the origin, hits x for the first time at time k,
crosses the edge (y, z), spends time 2n− k− `− 2 on this edge and then exits, and then
arrives back to the origin in ` units of time. Clearly,

Pω,0
(
U(x, k, `)

)
≥ Pω,0(Sx = k)

c
n

(
1− c̃

n

)n−k−`−2 c
n

Pω,x(S0 = `) (4.16)
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where c and c̃ are constants depending only on dimension. Reversibility tells us

Pω,x(S0 = `) = Pω,0(Sx = `)
πω(0)
πω(x)

≥ cPω,0(Sx = `) (4.17)

and so
Pω,0

(
U(x, k, `)

)
≥ cn−2 Pω,0(Sx = k)Pω,0(Sx = `). (4.18)

Denote
U(x) =

⋃
1≤k≤n/5
1≤`≤n/5

U(x, k, `). (4.19)

Using the disjointness of U(x, k, `) for different k and ` and invoking Lemma 4.2,

Pω,0
(
U(x)

)
≥ C(ω) n−2|x|−(2d−4). (4.20)

But, for n large enough, the events {U(x) : x is a trap} are disjoint because the restriction
k, ` < n/5 makes the walk spend more than half of its time at the strong bond constituting
the trap. (This bond determines the trap entrance/exit point x.) Hence,

P2n
ω (0, 0) ≥ Pω,0

( ⋃
x : |x|< 1

2
√

n

U(x)
)
≥ C(ω) n−2 ∑

x : |x|≤ 1
2
√

n
T(x) occurs

|x|−(2d−4). (4.21)

Applying Lemma 4.3, the desired claim is proved. �

5. APPENDIX: ISOPERIMETRY ON PERCOLATION CLUSTER

In this section we give a proof of isoperimetry of the percolation cluster which were
needed in the proof of Lemma 3.4. Consider bond percolation with parameter p and
let C∞ denote the a.s. unique infinite cluster. For Λ ⊂ Zd let ∂Λ denote the set of edges
between Λ and Zd \Λ and let ∂ ωΛ denote those edges in ∂Λ that are occupied. We call Λ
ω-connected if every two sites in Λ can be connected by a finite path that uses only the
sites in Λ and whose every bond is occupied in ω. Then we have:

Theorem 5.1 For all d ≥ 2 and p > pc(d), there are positive and finite constants c1 =
c1(d, p) and c2 = c2(d, p) and an a.s. finite random variable R0 = R0(ω) such that for each
R ≥ R0 and each ω-connected Λ satisfying

Λ ⊂ C∞ ∩ [−R, R]d and |Λ| ≥ (c1 log R)
d

d−1 (5.1)

we have
|∂ ωΛ| ≥ c2|Λ|

d−1
d . (5.2)

This claim was the basic technical point of Benjamini and Mossel [3] as well as of
many subsequent studies of random walk on percolation cluster. Unfortunately, the
proof of [3] for the case d ≥ 3 and p close to pc(d) contains a gap. A different proof
was recently given in Rau [22, Proposition 1.4] but the argument is quite long and it
builds (ideologically) upon a weaker version of (5.2) proved by Mathieu and Remy [20],
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whose proof is also rather long. Closely related estimates were derived in Barlow [2],
but additional arguments are needed to extract (5.2).

For the convenience of the reader, and future reference, we provide a self-contained
(and reasonably short) proof of Theorem 5.1 below. Our arguments are close to those of
Benjamini and Mossel [3] and they indicate that the seriousness of the gaps in [3] has
been somewhat exaggerated. An independent argument, based on exponential cluster
repulsion, has simultaneously been found by Pete [21].

Theorem 5.1 will be a consequence of the following, slightly more general estimate:

Proposition 5.2 For d ≥ 2 and p > pc(d), there are c2, c3, ζ ∈ (0, ∞) such that for all t > 0,

P
(
∃Λ 3 0, ω-connected, |Λ| ≥ t

d
d−1 , |∂ ωΛ| < c2|Λ|

d−1
d
)
≤ c3e−ζt. (5.3)

Proof of Theorem 5.1 from Proposition 5.2. Using translation invariance, the probability that
there exists a set Λ ⊂ Zd ∩ [−R, R]d with the properties listed in (5.3) is bounded by a
constant times Rde−ζt. This applies, in particular, to sets Λ ⊂ C∞ ∩ [−R, R]d. Setting t =
c1 log R for c1 such that c1ζ > d + 1, this probability is summable on R. By the Borel-
Cantelli lemma, the corresponding event occurs only for finitely many R. �

The advantage of the formulation (5.3) is that it links the tail bound on R0 to the cut-
off on the size of |Λ|. For instance, if we only care for |Λ| ≥ Rθ for some θ ∈ (0, d),
then P(R0 ≥ R) decays exponentially with Rθ(1−1/d).

As noted by Benjamini and Mossel [3] the proof is quite straightforward in d = 2 and
in any d once p is close to one. However, to have a proof that works in d ≥ 3 all the
way down to pc, we will have to invoke the “static” block-renormalization technique
(Grimmett [13, Section 7.4]). For each integer N ≥ 1, consider the cubes

BN(x) = x + Zd ∩ [0, N]d (5.4)

and
B̃3N(x) = x + Zd ∩ [−N, 2N]d (5.5)

Let GN(x) be the event such that:
(1) For each neighbor y of x, the side of the block BN(Ny) adjacent to BN(Nx) is

connected to the opposite side of BN(Ny) by an occupied path.
(2) Any two occupied paths connecting BN(Nx) to the boundary of B̃3N(Nx) are

connected by an occupied path using only edges with both endpoints in B̃3N(Nx).
From Theorem 8.97 and Lemma 7.89 in Grimmett [13] we know that, for each p > pc(d),

P
(
GN(0)

)
−→
N→∞

1. (5.6)

By [13, Theorem 7.65], for each p ∈ [0, 1] there exists ηN(p) ∈ [0, 1] with ηN(p) ↑ 1 as
p ↑ 1 such that the 0-1-valued process {1GN(x) : x ∈ Zd} is dominated from below by
independent Bernoulli’s with parameter ηN(p).

Given a finite set Λ ⊂ Zd, let Λ(N) = {x ∈ Zd : Λ ∩ BN(Nx) 6= ∅} and define Λ
N

to
be the complement of the unique infinite component of Zd \ Λ(N). We will also need a
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notation ∂ ∗∆ for the inner site-boundary of a set ∆,

∂ ∗∆ =
{

x ∈ ∆ : ∃y ∈ Zd \ ∆ with |x− y| = 1
}

, (5.7)

and diam Λ for the diameter of Λ in `∞-distance on Zd. The crucial observation—which
is where the setting of [3] runs into a problem—is now as follows:

Lemma 5.3 For ω ∈ Ω, let Λ ⊂ Zd be ω-connected with Λ
N = ∆ and diam Λ ≥ 3N. If

|∂ ωΛ| < 1
2 · 3d |∂

∗∆| (5.8)

then ∣∣{x ∈ ∂ ∗∆ : GN(x)c occurs}
∣∣ >

1
2
|∂ ∗∆|. (5.9)

Proof. Let ∆ = Λ
N

and note that x ∈ ∂ ∗∆ implies x ∈ Λ
N

, i.e., Λ ∩ BN(Nx) 6= ∅. We
claim that, for each x ∈ ∂ ∗∆,

GN(x) ⊂
{

B̃3N(Nx) contains an edge in ∂ ωΛ
}

. (5.10)

Indeed, if GN(x) occurs then, by diam Λ ≥ 3N, the box BN(Nx) is connected to a site
on the boundary of B̃3N(Nx) by an occupied path in Λ. As x ∈ ∂ ∗∆ there exists a
neighbor y ∈ ∆c. Part (1) of the definition of GN(x) ensures that there is another such
path “crossing” BN(Ny); as Λ∩ BN(Ny) = ∅, this path contains no sites in Λ. By part (2)
of the definition of GN(x), the two paths must be joined by an occupied path in B̃3N(Nx)
which then must contain an edge in ∂ ωΛ.

Since each edge in ∂ ωΛ belongs to at most 3d distinct cubes B̃3N(Nx) with x ∈ ∂ ∗∆,
the number of boundary sites x ∈ ∂ ∗∆ where GN(x) occurs is bounded by 3d|∂ ωΛ|, i.e.,

|∂ ∗∆| −
∣∣{x ∈ ∂ ∗∆ : GN(x)c occurs}

∣∣ ≤ 3d|∂ ωΛ|. (5.11)

Under the assumption (5.8), this implies (5.9). �

Proof of Proposition 5.2. Abbreviate c4 = (2 · 3d)−1 and fix ∆ ⊂ Zd finite, connected with
connected complement. Suppose Λ is ω-connected with Λ

N = ∆. Then |∆| ≥ N−d|Λ|
and, invoking the standard isoperimetry on Zd,

|∂ ∗∆| ≥ c5|∆|
d−1

d ≥ c5N1−d|Λ| d−1
d , (5.12)

where c5 = c5(d) > 0. Setting c2 = c4c5N1−d we then have{
|∂ ωΛ| < c2|Λ|

d−1
d
}
⊂
{
|∂ ωΛ| < c4|∂ ∗∆|

}
(5.13)

and also
|∂ ∗∆| ≥ c5N1−dt (5.14)

whenever |Λ| ≥ t
d

d−1 . We will suppose t
d

d−1 ≥ (3N)d to enable Lemma 5.3.
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Equation (5.13), Lemma 5.3 and the fact that {1GN(x) : x ∈ Zd} stochastically domi-
nates site percolation with parameter ηN(p) = 1− εN then yield

P
(
∃Λ 3 0, ω-connected, |Λ| ≥ t

d−1
d , Λ

N = ∆, |∂ ωΛ| < c2|Λ|
d−1

d
)

≤ P

(
∑

x∈∂ ∗∆
1GN(x) ≤

1
2
|∂ ∗∆|

)
≤ 2|∂

∗∆|(εN)
1
2 |∂ ∗∆|. (5.15)

Here 2|∂
∗∆| bounds the number of possible subsets {x ∈ ∂ ∗∆ : GN(x)c occurs} of ∂ ∗∆. To

finish the proof, we need to sum over all eligible ∆’s.
Let c6 = c6(d) be a number such that cn

6 bounds the total number of connected
sets ∆ ⊂ Zd with connected complement, containing the origin and having |∂ ∗∆| = n.
(The fact that this grows exponentially in n follows from the fact that ∂ ∗∆ is connected
in an appropriate notion of adjacency on Zd.) As εN → 0 by (5.6), we can find N so that
2c6
√

εN ≤ 1/2. Summing (5.15) over all connected ∆ with connected complement that
obey (5.14) now gives

P
(
∃Λ 3 0, ω-connected, |Λ| ≥ t

d
d−1 , |∂ ωΛ| < c2|Λ|

d−1
d
)

≤ ∑
n≥c5 N1−dt

2n(εN)
1
2 ncn

6 ≤ ∑
n≥c5 N1−dt

2−n ≤ 21−bc5 N1−dtc, (5.16)

where we also assumed that 2ε1/2
N ≤ 1 to get the first inequality. Choosing the constants

appropriately, this yields the desired claim. �
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