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Phase coexistence of gradient Gibbs states

Abstract. We consider the (scalar) gradient fiels= (yp)—with b denoting the nearest-
neighbor edges iZ2—that are distributed according to the Gibbs measure proportional
to e AHy(dy). HereH = 3, V(p) is the HamiltonianyV is a symmetric potential,

B > Ois the inverse temperature, ant the Lebesgue measure on the linear space defined
by imposing the loop conditiony, + 7b, = 1, + 71, for each plaquettéby, by, bz, by)

in Z2. For convexV, Funaki and Spohn have shown that ergodic infinite-volume Gibbs
measures are characterized by their tilt. We describe a mechanism by which the gradient
Gibbs measures with non-convexundergo a structural, order-disorder phase transition at
some intermediate value of inverse temperagirat the transition point, there are at least

two distinct gradient measures with zero tilt, i.Eqp = 0.

1. Introduction
1.1. Gradient fields

One of the mathematical challenges encountered in the study of systems exhibit-
ing phase coexistence is an efficient description of microscopic phase boundaries.
Here various levels of detail are in general possible: The finest level is typically as-
sociated with a statistical-mechanical model (e.g., a lattice gas) in which both the
interface and the surrounding phases are represented microscopically; at the coars-
est level the interface is viewed as a macroscopic (geometrical) surface between
two structureless bulk phases. An intermediate approach is based on effective
(and, often, solid-on-solid) models, in which the interface is still microscopic—
represented by a stochastic field—while the structural details of the bulk phases
are neglected.

A simple example of such an effective model igradient field To define this
system, we consider a finite subgeof the d-dimensional hypercubic lattica
and, at each site ok and its external boundaigA, we consider the real-valued
variablegy representing the height of the interfacexafThe Hamiltonian is then
given by

Ha@) = D Vigy— ), (1.1)

(x,y)
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where the sum is over unordered nearest-neighbor paisg . A standard example

is the quadratic potential () = %xnz with « > 0; in generalV is assumed to

be a smooth, even function with a sufficient (say, quadratic) growth at infinity. The
Gibbs measure takes the usual form

Pa(dg) = Z e PHa@dgp, (1.2)

where d is the |A|-dimensional Lebesgue measure (the boundary values of
remain fixed and implicit in the notationy, > 0 is the inverse temperature a@d
is a normalization constant.

A natural question to ask is what are the possible limits of the Gibbs measures
Pa(dp) asA 1 Z9. Unfortunately, in dimensions = 1, 2, the fieldS(¢x)xea are
very “rough” no matter how tempered the boundary conditions are assumed to be.
As a consequence, the family of measuis) , -z« is not tight and no meaning-
ful object is obtained by taking the limit 1 Z9—i.e., the interface idelocalized
On the other hand, in dimensiods> 3 the fields are sufficiently smooth to permit
a non-trivial thermodynamic limit—the interfacelscalized These facts are es-
tablished by combinations of Brascamp-Lieb inequality techniques and/or random
walk representation (see, e.g., [16]) which, unfortunately, apply only for convex
potentials with uniformly positive curvature. Thus, somewhat surprisingly, even
for V() = »* the problem of localization in high-dimension is still open [24,
Open Problem 1].

As it turns out, the thermodynamic limit of the measuRsis significantly
less singular once we restrict attention to the gradient variaples(s,). These
are defined by, = ¢y — ¢x whereb is the nearest-neighbor edge, y) oriented
in one of the positive lattice directions. Indeed, thenarginal of P, (d¢) always
has at least one (weak) limit “point” a& — Z9. The limit measures satisfy a
natural DLR condition and are therefore caltddient Gibbs measure@Precise
definitions will be stated below or can be found in [16, 23].) One non-standard
aspect of the gradient variables is that they have to obey a host of constraints.
Namely,

Moy + by = Hbg + by (1.3

holds for each lattice plaquettb:, by, bz, bs), where the edgds; are listed coun-
terclockwise and are assumed to be positively oriented. These constraints will be
implemented at the level & priori measure, see Sect. 2.

It would be natural to expect that the character (and number) of gradient Gibbs
measures depends sensitively on the potektidiowever, this is not the case for
the class of uniformly strictly-convex potentials (i.e., & such thatv” () >
c_ > Ofor all ). Indeed, Funaki and Spohn [17] showed that, in these cases, the
translation-invariant, ergodic, gradient Gibbs measures are completely character-
ized by thetilt of the underlying interface. Here the tilt is a vectore RY such
that

Enm=u-b (1.4)

for every edgd—which we regard as a vector Bfl. Furthermore, the correspon-
dence is one-to-one, i.e., for each tilt there exists precisely one gradient Gibbs
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measure with this tilt. Alternative proofs permitting extensions to discrete gradient
models have appeared in Sheffield’s thesis [23].

It is natural to expect that a serious violation of the strict-convexity assump-
tion on V may invalidate the above results. Actually, an example of a gradient
model with multiple gradient Gibbs states of the same tilt has recently been pre-
sented [23]; unfortunately, the example is not of the type considered above be-
cause of the lack of translation invariance and its reliance on the discreteness of
the fields. The goal of this paper is to point out a general mechanism by which
the model (1.1) with a sufficiently non-convex potentiafails the conclusions of
Funaki-Spohn’s theorems.

1.2. Potentials of interest

The mechanism driving our example will be the occurrence of a structural sur-
face phase transition. To motivate the forthcoming considerations, let us recall
that phase transitions typically arise via one of two mechanisms: either due to the
breakdown of an internal symmetry, or via an abrupt turnover between energeti-
cally and entropically favored states. The standard examples of systems with these
kinds of phase transitions are the Ising model andgts¢ate Potts model with a
sufficiently largeq, respectively. In the former, at sufficiently low temperatures,
there is a spontaneous breaking of the symmetry between the plus and minus spin
states; in the latter, there is a first-order transition at intermediate temperatures be-
tweenq ordered, low-temperature states and a disordered, high-temperature state.

Our goal is to come up with a potentidl that would mimic one of the above
situations. In the present context an analogue of the Ising model appears to be a
double-well potentiabf the form, e.g.,

V() = x(n* — n)>. (1.5)

Unfortunately, due to the underlying plaquette constraints (1.3), the symmetry be-
tween the wells cannot be completely broken and, even at the level of ground
states, the system appears to be disorderedZ®this can be demonstrated ex-
plicitly by making a link to théce modelwhich is a special case of the six vertex
model [1]. A similar equivalence has been used [2] to study a roughening transition
in an SOS interface.

To see how the equivalence works exactly, note that the ground states of the
system (1.5) are such that alk equal+#,. Let us associate a unit flow with each
dualbond whose sign is determined by the valueypfor its direct counterpaitb.

The plaquette constraint (1.3) then translates intm#ource-no-sinkondition

for this flow. If we mark the flow by arrows, the dual bonds at each plaquette are
constrained to one of six zero-flux arrangements of the six vertex model; cf Fig. 1
and its caption. The weights of all zero-flux arrangements are equal; we thus have
the special case corresponding to the ice model. The ice model can be “exactly
solved” [1]: The ground states have a non-vanishing residual entropy [22] and are
disordered with infinite correlation length [1, Sect. 8.10.111]. However, it is not
clear how much of this picture survives to positive temperatures.
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Fig. 1. The six plaquette configurations of minimal energy for the potential (1.%)%and

their equivalent ice model configurations at the corresponding vertex on the dual grid. The
sign marks represent the signsygfalong the side of the plaquettby, by, b, bg)—with
horizontal bond®1, b3 oriented to the right and vertical bonlds b4 oriented upwards. The

unit flow represented by the arrows runs upwards (downwards) through horizontal bonds
with positive (negative) sign, and to the left (right) through vertical bonds with positive
(negative) sign. The loop condition (1.3) makes the flow conserved (i.e., no sources or
sinks).

The previous discussion shows that it will be probably quite hard to realize
a symmetry-breaking transition in the context of the gradient model (1.1). It is
the order-disorder mechanism for phase transitions that seems considerably more
promising. There are two canonical examples of interest: a potentiatwdtlcen-
tered wellsand atriple-well potential see Fig. 2. Both of these lead to a gradient
model which features a phase transition, at some intermediate temperature, from
states with they’s lying (mostly) within the thinner well to states whosts fluc-
tuate on the scale of the thicker well(s).

Our techniques apply equally to these—as well as other similar—cases pro-
vided the widths of the wells are sufficiently distinct. Notwithstanding, the analysis
becomes significantly cleaner if we abandon temperature as our principal parame-
ter (e.g., we sef = 1) and consider potential that are simplydefinedby

eV = peor’2 ¢ (1 p)e /2 (1.6)

Herexo andxp are positive numbers anglis a parameter taking values in, [0.
For appropriate values of the constaiMsiefined this way will have a graph as in
Fig. 2(a). To get the graph in part (b), we would need to considenf the form

1

eV — peror’/2 | 1;2p e (-102/2 %p el+12/2, (1.7)
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Fig. 2. Two canonical examples of potentials that will lead to a structural surface phase
transition. The picture labeled (a) is obtained by superimposing—in the sense of (1.6)—
two symmetric wells of (significantly) different widths. Part (b) of the figure represents the
triple-well potential as defined in (1.7). For the application of our technique of proof, it only
matters that the widths of the wells are sufficiently different.

where+y, are the (approximate) locations of the off-center wells.

The idea underlying the expressions (1.6) and (1.7) is similar to that of the
Fortuin-Kasteleyn representation of the Potts model [12]. In the context of conti-
nuous-spin models similar to ours, such representation has fruitfully been used by
Zahradfik [25]. Focusing on (1.6), we can interpret the terms on the right-hand side
of (1.6) as two distinct states of each bond. (We will soon exploit this interpretation
in detail.) The indexing of the coupling constants suggests the names: “O” for
orderedand “D” for disordered

It is clear that the extreme values pf(near zero or near one) will be dom-
inated by one type of bonds; what we intend to show is thatxfoandxp suf-
ficiently distinct from each other, the transition between the “ordered” and “dis-
ordered” phases is (strongly) first order. Similar conclusions and proofs—albeit
more complicated—apply also to the potential (1.7). However, for clarity of expo-
sition, we will focus on the potential (1.6) for the rest of the paper (see, however,
Sect. 2.5). In addition, we will also restrict ourselves to two dimensions, even
though the majority of our results are valid for dli> 2.

2. Main results
2.1. Gradient Gibbs measures

We commence with a precise definition of our model. Most of the work in this
paper will be confined to the lattice torl of L x L sites inZ?, so we will start
with this particular geometry. Choosing the natural positive direction for each lat-
tice axis, letB. denote the corresponding set of positively oriented edgé& in
Given a configuratiori¢x)xeT, , We introduce the gradient fielg = V¢ by as-
signing the variableg, = ¢y — ¢x to eachb = (x, y) € B|. The product Lebesgue
measurel_[xqeo dgx induces ag-finite) measure on the spac&®L via

w= [ ( 11 d¢x)5(d¢o)1{v¢e,4}, 2.1)

xeT, {0}
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whered denotes the Dirac point-mass at zero.

We interpret the measung as ana priori measure orgradient configura-
tionsy € RBL. Since they’s arise as the gradients of tlgés it is easy to check
thatv, is entirely supported on the linear subspage c REL of configurations
determined by the condition that the sum of sigmés—with a positive or neg-
ative sign depending on whether the edge is traversed in the positive or negative
direction, respectively—vanishes around each closed circdit orfNote that, in
addition to (1.3), the condition includes also loops that wrap around the torus.) We
will refer to such configurations asurl-free

Next we will define gradient Gibbs measuresn For later convenience we
will proceed in some more generality than presently needed(Vghep, be a
collection of measurable functiong,: R — [0, co) and consider the partition
function

ZL (W) =/R|BL| eXp[— Z Vb(nb)}VL(dn)- (2.2)

beB_

Clearly, Z, (v, > O and, under the condition that — e~ is integrable
with respect to the Lebesgue measureRinalso Z_ v,y < oo. We may then
definePy (v, to be the probability measure @&ift! given by

PL,(w) (dy) =

" exp{— 3 Vo) v (). (2:3)
ZL,(W) beB,
This is thegradient Gibbs measuimen T corresponding to the potentialgy). In
the situations whel, = V for all b—which is the principal case of interest in this
paper—we will denote the corresponding gradient Gibbs measLife ty P v .

It is not surprising thaP_ (v, obeys appropriate DLR equations with respect

to all connected\ c T containing no topologically non-trivial circuit. Explicitly,
if #ac in A is a curl-free boundary condition, then the conditional law;gf
givennc is

PL,(vp) (dnalnac) = EXP{ Z Vb(’?b)} VA (dnalnac). (2.4)

Za(nace) (7]A°) =
Here P (v, (dna|77ac) is the conditional probability with respect to the (taih)
algebraZ, generated by the fields ok®, Zx (74¢) is the partition function imy,

andv (dya |nac) is thea priori measure induced by on#, given the boundary
conditionac.

As usual, this property remains valid even in the thermodynamic limit. We
thus say that a measure @nis aninfinite-volume gradient Gibbs measufat
satisfies the DLR equations with respect to the specification (2.4) in any finite
setA C Z2. (As is easy to check—e.g., by reinterpreting # back in terms
of the ¢’s—v (dna|nac) is independent of the values gfic outside any circuit
winding aroundA, and so it is immaterial that it originated from a measure on
torus.)
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An important aspect of our derivations will be the fact that our poteifial
takes the specific form (1.6), which can be concisely written as

oV _ / o(di) e 37, (2.5)

whereg is the probability measure = pdy, + (1 — p)dy,. It follows that the
Gibbs measurd_ v can be regarded as the projection of the¢ended gradient
Gibbs measure

1 1
Qu(dn, de) = 5= exp{~3 3 wonf|vi@nor(@r),  (26)
’ beB|

to thes-algebra generated by thgs. Herep is the product of measures one
for each bond inB_. As is easy to check, conditioning dmp, kp)beac Yields
the corresponding extensidD, (diyadra |7ac) Of the finite-volume specification
(2.4)—the result is independent of tkés outside A because, oncgac is fixed,
these have no effect on the configurationgin

The main point of introducing the extended measure is that, if conditioned on
thex’s, the variablegy, are distributed as gradients of a Gaussian field—albeit with
a non-translation invariant covariance matrix. As we will see, the phase transition
proved in this paper is manifested by a jump-discontinuity in the density of bonds
with x, = xo Which at the level of-marginal results in a jump in the characteristic
scale of the fluctuations.

Remark 2.1Notably, the extended measu@_ plays the same role fdP_ v as

the so called Edwards-Sokal coupling measure [10] does for the Potts model.
Similarly as for the Edwards-Sokal measures [3, 18], there is a one-to-one cor-
respondence between the infinite-volume measuregsoand the corresponding
infinite-volume extended gradient Gibbs measureg:gr)’s. Explicitly, if u is

an infinite-volume gradient Gibbs measure for potentialhen, defined by (ex-
tending the consistent family of measures of the form)

(0ol € 4% B) = [ 2ado Eﬂ(lA 11 e—%wﬁwww), @)
beA

is a Gibbs measure with respect to the extended specifical@nigz,c). For the
situations with only a few distinct values ef, it may be of independent interest

to study the properties of themarginal of the extended measure, e.g., using the
techniques of percolation theory. However, apart from some remarks in Sect. 2.3,
we will not pursue these matters in the present paper.

2.2. Phase coexistence of gradient measures

Now we are ready to state our main results. Throughout we will consider the po-
tentialsV of the form (1.6) withxg > xp. As a moment’s thought reveals, the
model is invariant under the transformation

Ko — KOHZ, Kp — KDHZ, o = 1p/0 (2.8)
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for any fixedd # 0. In particular, without loss of generality, one could assume
from the beginning thatoxp = 1 and regardo/,, as the sole parameter of the
model. However, we prefer to treat the two terms in (1.6) on an equal footing, and
so we will keep the coupling strengths independent.

Given a shift-ergodic gradient Gibbs measure, recall that its tilt is the vactor
such that (1.4) holds for each bond. The principal result of the present paper is the
following theorem:

Theorem 2.2.For eache > 0 there exists a constant c(¢) > 0and, if
Ko = Ckp, (2.9)

a number p € (0, 1) such that, for interaction V with p= py, there are two
distinct, infinite-volume, shift-ergodic gradient Gibbs measurgg and ugis of
zero tilt for which

A 1
,Uord<|71b| > \/_K_o) <e+ 2 VA > 0, (2.10)
and /{
. Y,
ﬂdls(|’7b| < —%) < €e—+C1h’4, VA > 0. (2.12)

Here g is a constant of order unity.

Remark 2.3An inspection of the proof actually reveals that the above bounds are
valid for anye satisfyinge > cz(KD/KO)l/ 8 wherec; is a constant of order unity.

As already alluded to, this result is a consequence of the fact that the density
of ordered bonds, i.e., those wiklj = o, undergoes a jump a = p;. On the
torus, we can make the following asymptotic statements:

Theorem 2.4.Let I{rd denote the fraction of ordered bonds q, i.e.,

1
RO — By 2 Lowrol (2.12)
beB,

For eache > Othere exists &= c(¢) > 0 such that the following holds: Under the
condition(2.9), and for g as in Theorem 2.2,

lim QLR <¢) =1, p < Pt (2.13)
L—>oo

and
lim QLIRM>1—¢) =1, P> pr (2.14)
— 00

The present setting actually permits us to determine the valye \df a du-
ality argument. This is the only result in this paper which is intrinsically two-
dimensional (and intrinsically tied to the form (1.6) @). All other conclusions
can be extended > 2 and to more general potentials.
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Theorem 2.5.Letd = 2. If %o/, >> 1, then pis given by

% _ (Z_Z)l/ _ (2.15)

Theorem 2.4 is proved in Sect. 4.2, Theorem 2.2 is proved in Sect. 4.3 and
Theorem 2.5 is proved in Sect. 5.3.

2.3. Discussion

The phase transition described in the above theorems can be interpreted in several
ways. First, in terms of the extended gradient Gibbs measures on torus, it clearly
corresponds to a transition between a state with nearly all bonds oragredd,)

to a state with nearly all bonds disorderaeg & «xp). Second, looking back at the
inequalities (2.10-2.11), most of thgs will be of order at most 1,/xo in the
ordered state while most of them will be of order at leasy/Z in the disor-

dered state. Hence, the corresponding (effective) interface is significantly rougher
atp < pithanitis atp > p; (both phases are rough according to the standard
definition of this term) and we may thus interpret the above as a kificsbbrder
rougheningransition that the interface undergoegatFinally, since the gradient
fields in the two states fluctuate on different characteristic scales, the entropy (and
hence the energy) associated with these states is different; we can thus view this
as a standard energy-entropy transition. (By the energy we mean the expectation
of V (y1p); notably, the expectation @Br]g is the same in both measures; cf (4.35).)
Energy-entropy transitions for spin models have been studied in [9, 20, 21] and,
quite recently, in [11].

Next let us turn our attention to the conclusions of Theorem 2.4. We actually
believe that the dichotomy (2.13-2.14) applies (in the sense of almost-sure limit
of Rfrd asL — o0) to all translation-invariant extended gradient Gibbs states
with zero tilt. The reason is that, conditional on this, the gradient fields are
Gaussian with uniformly positive stiffness. We rest assured that the techniques
of [17] and [23] can be used to prove that the gradient Gibbs measure with zero
tilt is unique for almost every configuration of tké&s; so the only reason for mul-
tiplicity of gradient Gibbs measures with zero tilt is a phase transition incthe
marginal. However, a detailed write-up of this argument would require developing
the precise—and somewhat subtle—correspondence between the gradient Gibbs
measures of a given tilt and the minimizers of the Gibbs variational principle
(which we have, in full detail, only for convex periodic potentials [23]). Thus,
to keep the paper at manageable length, we limit ourselves to a weaker result.

The fact that the transition occurs tsatisfying (2.15) is a consequence of a
duality between the:-marginals afp and 1— p. More generally, the duality links
the marginal law of the configuratiqry) with the law of(1/xp); see Theorem 5.3
and Remark 5.4. [At the level of gradient fields, the duality provides only a vague
link between the flow of the weighted gradien{gxy#,) along a given curve and
its flux through this curve. Unfortunately, this link does not seem to be particularly
useful.] The pointp = py is self-dual which makes it the most natural candidate
for a transition point. It is interesting to ponder about what happens wiign
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decreases to one. Presumably, the first-order transition (for states at zero tilt) dis-
appears before/,, reaches one and is replaced by some sort of critical behavior.
Here the first problem to tackle is to establish #fbsencef first-order phase tran-
sition for small</,, — 1. Via a standard duality argument (see [8]) this would yield
a power-law lower bound for bond connectivitiespat

Another interesting problem is to determine what happens with measures of
non-zero tilt. We expect that, at least for moderate values of tha,tthe first-
order transition persists but shifts to lower valuegofThus, one could envision
a whole phase diagram in theu plane. Unfortunately, we are unable to make
any statements of this kind because the standard ways to induce a tilt on the torus
(cf[17]) lead to measures that are not reflection positive.

2.4. Outline of the proof

We proceed by an outline of the principal steps of the proof to which the remainder
of this paper is devoted. The arguments are close in spirit to those in [9, 20, 21];
the differences arise from the subtleties in the setup due to the gradient nature of
the fields.

The main line of reasoning is basically thermodynamical: Considerthe
marginal of the extended torus stafg which we will regard as a measure on
configurations of ordered and disordered bonds. L@t) denote (thek — oo
limit of) the expected fraction of ordered bonds in the torus state at parameter
Clearly y (p) increases from zero to one @ssweeps through [A]. The princi-
pal observation is that, under the assumptigp, > 1, the quantityy (1 — y) is
small, uniformly inp. Hence,p — y (p) must undergo a jump from values near
zero to values near one at sompee (0, 1). By usual weak-limiting arguments
we construct two distinct gradient Gibbs measureg;abne with high density of
ordered bonds and the other with high density of disordered bonds.

The crux of the matter is thus to justify the uniform smallnesg @— y). This
will be a consequence of the fact that the simultaneous occurrence of ordered and
disordered bonds at any two given locations is (uniformly) unlikely. For instance,
let us estimate the probability that a particular plaguette has two ordered bonds
emanating out of one corner and two disordered bonds emanating out of the other.
Here the technique of chessboard estimates [13-15] allows us to disseminate this
pattern all over the torus via successive reflections (cf Theorem 4.2 in Sect. 4.1).
This bounds the quantity of interest by thgL®-power of the probability that
every other horizontal (and vertical) line is entirely ordered and the remaining
lines are disordered. The resulting “spin-wave calculation”—i.e., diagonalization
of a period-2 covariance matrix in the Fourier basis and taking its determinant—is
performed (for all needed patterns) in Sect. 3.

Once the occurrence of a “bad pattern” is estimated by means of various spin-
wave free energies, we need to prove that these “bad-pattern” spin-wave free ener-
gies are always worse off than those of the homogeneous patterns (i.e., all ordered
or all disordered)—this is the content of Theorem 3.3. Then we run a standard
Peierls’ contour estimate whereby the smallnesg @f— y) follows. Extracting
two distinct, infinite-volume, ergodic gradient Gibbs statgg andugisatp = p,
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it remains to show that these are both of zero tilt. Here we use the fact that, condi-
tional on thex's, the torus measure is symmetric Gaussian with uniformly positive
stiffness. Hence, we can use standard Gaussian inequalities to show exponential
tightness of the tilt, uniformly in the’s; cf Lemma 4.8. Duality calculations (see
Sect. 5) then yielgp = pt.

2.5. Generalizations

Our proof of phase coexistence applies to any potential of the form shown in
Fig. 2—even if we return to parametrization |8y The difference with respect
to the present setup is that in the general case we would have to approximate the
potentials by a quadratic well at each local minimum and, before performing the
requisite Gaussian calculations, estimate the resulting errors.

Here is a sketch of the main ideas: We fix a scAl@and regardy, to be in
a well if it is within A of the corresponding local minimum. Then the requisite
quadratic approximation gf-times energy is good up to errors of orgiek3. The
rest of the potential “landscape” lies at energies of at least akdemd so it will
be only “rarely visited” by the;’s provided thai? A > 1. On the other hand, the
same condition ensures that the spin-wave integrals are essentially not influenced
by the restriction thaty, be within A of the local minimum. Thus, to make all
approximations work we need that

BAS K1« BA? (2.16)

which is achieved fop > 1 by, e.g..A = ﬁ_l%. This approach has recently been
used to prove phase transitions in classical [4, 5] as well as quantum [6] systems
with highly degenerate ground states. We refer the reader to these references for
further details.

A somewhat more delicate issue is the proof that both coexisting states are of
zero tilt. Here the existing techniques require that we have some sort of uniform
convexity. This more or less forces us to usettie of the form

V() = —Iog(Ze‘VJ(”)), (2.17)
i

where theVj's are uniformly convex functions. Clearly, our choice (1.6) is the
simplest potential of this type; the question is how general the potentials obtained
this way can be. We hope to return to this question in a future publication.

3. Spin-wave calculations

As was just mentioned, the core of our proofs are estimates of the spin-wave free
energy for various regular patterns of ordered and disordered bonds on the torus.
These estimates are rather technical and so we prefer to clear them out of the way
before we get to the main line of the proof. The readers wishing to follow the
proof in linear order may consider skipping this section and returning to it only
while reading the arguments in Sect. 4.2. Throughout this and the forthcoming
sections we assume thiatis an even integer.
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ub MP MA

Fig. 3. Six possible arrangements of “ordered” and “disordered” bonds around a lattice
plaquette. Here the “ordered” bonds are represented by solid lines and the “disordered”
bonds by wavy lines. Each inhomogeneous pattern admits other rotations which are not
depicted. The acronyms stand for: (top row) Ordered, Disordered and U-shape Ordered and
(bottom row) U-shape Disordered, Mixed Periodic and Mixed Aperiodic, respectively.

3.1. Constrained partition functions

We will consider six partition functionZ o, Z. p, ZL,uo: ZL,up, ZL . mp and
Z ma on T that correspond to six regular configurations each of which is ob-
tained by reflecting one of six possible arrangements of “ordered” and “disor-
dered” bonds around a lattice plaquette to the entire torus. These quantities will be
the “building blocks” of our analysis in Sect. 4. The six plaquette configurations
are depicted in Fig. 3.

We begin by considering the homogeneous configurations. Befg is the
partition functionZ_ (v, for all edges of the “ordered” type:

1
Vb(n) = —log p + ékonz, beB.. (3.1)

Similarly, Z|_ p is the quantityZ,_ () for

1
V() = —log(1 — p) + Emz, beBy, 3.2)

i.e., with all edges “disordered.”

Next we will define the partition function&, yo and Z yp which are ob-
tained by reflecting a plaquette with three bonds of one type and the remaining
bond of the other type. Let us spi_into the everBf'®"and oddB? horizontal
and vertical edges—with the even edges on the lines of sites iR tlieection
with eveny coordinates and lines of sites yndirection with everx coordinates.
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Similarly, we will also consider the decomposition®f into the set of horizontal
edges]]i%*ﬂor and vertical edgeB)®". Letting

—log p + 2xon?, if b e BN U BEven,

b() = gp+3 O’Yl , L L (3.3)

—log(1 — p) + 3xp7%, otherwise

the partition functiorZ_ yo then corresponds to the quanty v,). The partition
functionZ|_ yp is obtained similarly; with the roles of “ordered” and “disordered”
interchanged. Note that, since we are working on a square torus, the orientation of
the pattern we choose does not matter.
It remains to define the partition functioZs mp andZ_ ma corresponding to
the patterns with two “ordered” and two “disordered” bonds. For the former, we
simply takeZ v, with the potential
1 2 ; hor
Voo = |~ 9P R, e (3.4)
—log(1 - p) + 3xp7%, if b e B

Note that the two types of bonds are arranged in a “mixed periodic” pattern; hence
the index MP. As to the quanti®_ma , here we will consider a “mixed aperiodic”
pattern. Explicitly, we define

—log p + 3xor?, if b e BEe",

35
—log(1 — p) + 3xon?, if b e B (3:5)

V(1) = [

The “mixed aperiodic” partition functiorZ_ ma is the quantityZ_ () for this
choice of(Vp). Again, on a square torus it is immaterial for the valueZofup
andZ_ ma which orientation of the initial plaquette we start with.

As usual, associated with these partition functions are the corresponding free
energies. In finite volume, these quantities can be defined in all cases by the for-
mula

ZL,a

T 1,2 00 a = O, D, UO,UD, MP, MA, (36)
(2r)z2-"7Y

1
FLa(p) = 1z log

where the factor2z)2(-*>~D has been added for later convenience and where
the p-dependence arises via the corresponding formulasifon each particular
case.

3.2. Limiting free energies

The goal of this section is to compute the thermodynamic limit of Fipe,’s.

For homogeneous and isotropic configurations, an important role will be played
by the momentum representation of the lattice Lapla®dk) = |1 — e’k1|2 +

|1 — e'k2|2 defined for allk = (ki, ko) in the corresponding Brillouin zonke e

[—7, ] x[—=, x]. Using this quantity, the “ordered” free energy will be simply

1 dk _
Fo(p) = —2logp + 5 /[_M]Z @0 log{xoD(k)}, (3.7)
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while the disordered free energy boils down to

1 dk
Fo(p) = —2log(1— p) + 2/_ . @2 Iog{KDD(k)} (3.8)

It is easy to check that, despite the logarithmic singularity at 0, both integrals
converge. The bond pattern underlying the quarditymp lacks rotation invari-
ance and so a different propagator appears inside the momentum integral:

Fup(p) = —log[p(1— p)]
+ }/ dk log{roll — €% 2 + ko1 — €%2[2}. (3.9)
2 Jigap )2 SU° ? S
Again, the integral converges as long as (at least) oneyadind «p is strictly
positive.

The remaining partition functions come from configurations that lack transla-
tion invariance and are “only” periodic with period two. Consequently, the Fourier
transform of the corresponding propagator is only block diagonal, with two or four
differentk’s “mixed” inside each block. In the UO cases we will get the function

dk

2 @2 09detuo(0)}, - (3.10)

1 1
Fuo(p) = =5 log[p*(1 - p)] + = /

wherellyo(k) is the 2x 2-matrix
rola_|?+ J(ko + xp)Ib_|?  F(xo — xp)lb_|?
Myo(k) = 1 ) - 5 (3.11)
5 (Ko — xp)|b-| Kolay | + 5 (ko + xp)|b—|
with a; andb.. defined by
ar =1+ ekl and by =1+ g'ke, (3.12)

The extra factot/>—on top of the usual,—in front of the integral arises because
detIlyo(k) combines the contributions of two Fourier models; nankendk +
7 &1. A calculation shows

detTluo(k) > xo?la|?lat|? + kowplb_|*, (3.13)

implying that the integral in (3.10) converges. The free endgy is obtained by
interchanging the roles af, andxp and ofp and(1 — p).

In the MA-cases we will assume thag # xp—otherwise there is no dis-
tinction between any of the six patterns. The corresponding free energy is then
given by

Fma (p) = —log[p(1 — p)]

1 dk Ko — Ko\ 4
+§/[_,,,,,]z (zn)zlog[( 2 )detHMA(k)]. (3.14)
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Herellya (K) is the 4x 4-matrix

r(ja_|?+b-?  |b_|? la_|? 0

b_2  r(asl®+ b_|?) 0 ENE

1_IMA (k) = 2 2 2 2

la| 0  r(la_l?+Ibsl?)  |by]

0 la |2 Ibyl?  r(acl®+ |bsl?)
(3.15)
with the abbreviation
r= Kotk (3.16)
Ko — Kp

Note thatr > 1 in the cases of our interest.

Observe that ddiiya (k) is a quadratic polynomial in?, i.e., defllya =
Ar4 4+ Br? 4 C. Moreover,ITya (k) annihilates(1, —1, —1, 1) whenr = 1, and
sor? = 1is aroot ofAr* + Br2 + C. Hence deflya (k) = (r? — 1)(Ar2 — C),
ie.,

detllya () = (1% = D{—(as Pla[? = Iby b ?)?

+ (lar? + by P (1a- 2 + by 2 (a4 2 + 1b-B(Ja[? + lb-[?)r2}.
(3.17)

Settingr = 1 inside the large braces yields
detTva (k) = 402 — Dla_[?la[?|b-||b |2, (3.18)
implying that the integral in (3.14) is well defined and finite.

Remark 3.1The fact thatllya (k) has zero eigenvalue at= 1 is not surpris-

ing. Indeedy = 1 corresponds tap = 0 in which case a quarter of all sites in
the MA-pattern get decoupled from the rest. This indicates that the partition func-
tion blows up (at least) as — 1)~1TtI/4 asr | 1 implying that there should be a
zero eigenvalue at = 1 per each 4 4-blockIIya (k).

A formal connection between the quantities in (3.6) and those in (3.7-3.14) is
guaranteed by the following result:

Theorem 3.2.For all & = O, D, UO, UD, MP, MA and uniformly in pe (0, 1),

i FLu(p) = Fu(p). (3.19)

Proof. This is a result of standard calculations of Gaussian integrals in momentum
representation. We begin by noting that the Lebesgue medguisy can be
regarded as the product of,, acting only on the gradients gf and db, for some
fixedz € T . Neglecting temporarily tha priori bond weightgp and(1 — p), the
partition functionZ_ ,, a = O, D, UO, UD, MP, MA, is thus the integral of the
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Gaussian weight2z | Ty |)~Y2e~2@-C'%) against the measurf], d¢x, where
the covariance matri, is defined by the quadratic form

@.C:9) = X i (Vo) +—(Z #) (3.20)

beB_ T

Here (zcé“)) are the bond weights of pattetn Indeed, the integral overgd with
the gradient variables fixed yield8z |T |)*/2 which cancels the term in front of
the Gaussian weight. The purpose of the above rewrite was to reinsert the “zero
mode” ¢o = |TL|~Y23, ¢« into the partition functionzpy was not subject to
integration due to the restriction to gradient variables.

To compute the Gaussian integral, we need to diagon@ljz&or that we will
pass to the Fourier componedis = TL|~Y2 3, .1, #x€'* with the result

@.Cllp= > ¢7k$;f(5k,oakgo+ > Aﬁ‘fi/(l—e‘ikﬂ(l—e‘k’a)), (3.21)

k,k’eT, 0=12

whereT| = {ZT”(nl, nz2): 0 < ng,nz2 < L} is the reciprocal torusgp q is the
Kronecker delta and

(@) 1 (@)

i (K —k)-x
=TT 2o Fooxten) © : (3.22)
L XETL

Now if the horizontal part o(;c(“)) is translation invariant in the-th direction,

then Aﬁ(, = 0 whenevek, # kf/, while if it is “only” 2-periodic, thenAlil)k, =0
unlessk, = k’y ork, = k; + 7 mod 2r. Similar statements apply to the ver-

tical part of (xé“)) and Aﬁ(/. Since all of our partition functions come from 2-

periodic configurations, the covariance matrix can be cast into a block-diagonal
form, with 4 x 4 blocks®,, (k) collecting all matrix elements that involve the mo-
menta(k,k + 7&1,k + 7&, k + 7& + 7 &). Due to the reinsertion of the “zero
mode”"—cf (3.20)—all of these blocks are non-singular (see also the explicit cal-
culations below).

Hence we get that, for afl = O, D, UO, UD, MP, MA,

1

Zia 1 o o 1 8

2oy PP om0~ @
keT

whereNo andNp denote the numbers of ordered and disordered bonds in the un-
derlying bond configuration and where the exporigniakes care of the fact that

in the product, eack gets involved irfour distinct terms. Taking logarithms and
dividing by |T|, the sum over the reciprocal torus converges to a Riemann inte-
gral over the Brillouin zone{r, z]1x[—=, 7] (the integrand has only logarithmic
singularities in all cases, which are harmless for this limit).

It remains to justify the explicit form of the free energies in all cases under

considerations. Here the situatioms= O, D, MP are fairly standard, so we will
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focus one = UO anda = MA for which some non-trivial calculations are needed.
In the former case we get that

(5 (2 _ kotkp @ Ko — Kp
Ak = koo Al = 5 kk+réy — ~ o

(3.24)
with Affl)(, = 0 for all values that are not of this type. Plugging into (3.21) we find
that the(k, k + 7 &;)-subblock of®yo(k) reduces essentially to thex22-matrix
in (3.11). Explicitly,
. . Iyo(k) 0
®U0(k) = dlag(()k,0> ak,néla 5k,7régn 5k,7ré1+7ré2) + ( 0 HUO(k + ”éZ) .
(3.25)
Sincek! = k, wheneverAI((”l)(/ # 0, the block matrix®yo(k) will only be a
function of moduli-squared af, andb_. Using (3.25) in (3.23) we get (3.10).
As to the MA-case the only non-zero elements#é‘fk/ are

Ko + Kp

@ @ Ko — Kp
and Akire = Ackire =~ 3

1 2
AL = AL = (3.26)

So, againk, = K, WheneverAl((”l)(/ # 0 and so®ya (k) depends only ora. |2

and|b.|2. An explicit calculation shows that

Ko —
2

wherellya (k) is as in (3.15). Plugging into (3.23), we get (3.140

. K|
Owma (k) = diag(dk,0, o z&;» Ok, 8ys Ok rer+78) + ( D) Iua k), (3.27)

3.3. Optimal patterns

Next we establish the crucial fact that the spin-wave free energies corresponding
to inhomogeneous patterns UOD, MP, MA exceed the smaller ofg and Fp
by a quantity that is large, independentmfoncexg > «p.

Theorem 3.3.There exists e R such that ifcp < & ko with & € (0, 1), then for
allpe (1),

. . 1 Ko 1
F, - F; > —log— + - log(1 — . (3.2
a=UO,{JnD”:‘MP,MA (P) aTg,]D (P = 8 9 Kp + 4 og( O+ (3.28)

Proof. Let us usd andJ to denote the integrals

1 dk dk
'Zi/mz(zn)zk’g{[’(k)} and JZ/ e @ oAl G29)

We will prove (3.28) withc; = J — I.
First, we have

Fo(p) = —2logp + = Iog;co + 1 (3.30)
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and 1
Fo(p) = —2log(1— p) + > logxp + I, (3.31)

while an inspection of (3.14) yields
Fua (p) = —log[p(1 - p)]

1 dk , ,
+ 3 /[_ﬂ,,r]z @) |Og{KoKD(Ko — Kkp) |a+a_b+b_| }

3 1 1
> —log[p(1 - p)] + glogxo +3 logxp + 2 logl—¢)+J. (3.32)

Using that
min{Fo, Fp} < %(Fo + Fp), (3.33)
we thus get
Fuma (p) — min{Fo(p), Fo(p)} > %IOQZ—Z + % logl—&)+J -1, (3.34)

which agrees with (3.28) for our choice of.
Coming to the free energlyyo, using (3.13) we evaluate

Ko\
detlluo(k) = ko?la-Plar? = (22) “ro™o!?aPlar?  (3.35)
D
yielding
1 1 3 1
Fuo(p) > —= Iog[p3(1 - p)] + = IogK—O + —logxo + =logxp + J. (3.36)
2 8 kxp 8 8
Bounding
min{Fo, Fp} < %Fo + %FD (3.37)
we thus get
) 1 ko
Fuo(p) — min{Fo(p), Fo(p)} = glog—+J -1, (3.38)
D

in agreement with (3.28). The computation fayp is completely analogous, in-
terchanging only the roles af, andxp as well asp and(1 — p). From the lower
bound

Ko 1/2
detlyo(k) > xoxp|b—|* = (K—O) Ko™ kp¥?|b_|* (3.39)
D

and the inequality
. 1 3
mln{Fo, FD} < ZFO + ZFD, (3.40)

we get again

. 1
Fun(p) — min{Fo(p). Fo(p)} = 5 log Z—‘; +I-1, (3.41)
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which is identical to (3.38).
Finally, for the free energ¥#wp, we first note that

1
Fvp(p) > —log[p(1— p)] + 510gxo+ 9, (3.42)

which yields
1-—

1
Fup(p) — Fo(p) > log =" + Slog 13-, (3.43)
D

Under the condition that Ioé__—p > —g log z—‘D’ we again get (3.28). For the com-
plementary values g, we Wlﬁ compareFyp with Fo:

p
1-p

Fmp(p) — Fo(p) > log +J-—1, (3.44)

Since we now have Ioé;—p < —g log z—g this yields (3.28) with the above choice
of c1.

4. Proof of phase coexistence

In this section we will apply the calculations from the previous section to the proof
of Theorems 2.2 and 2.4. Throughout this section we assumedhat xp and
thatL is even. We begin with a review of the technique of chessboard estimates
which, for later convenience, we formulate directly in terms of extended configu-
rations(xp, #p)-

4.1. Review of RP/CE technology

Our principal tool will be chessboard estimates, based on reflection positivity. To
define these concepts, let us consider the tusand let us splifl, into two
symmetric halves’]l‘JLr andT|, sharing a “plane of sites” on their boundary. We

will refer to the sefl’;” N T, asplane of reflectiorand denote it byP. The half-

tori Tf inherit the nearest-neighbor structure frdim; we will useIB%f_E to denote

the corresponding sets of edges. On the extended configuration space, there is
a canonical mapp : REL x {xo, kp}Bt — REL x {ko, kp}Pt—induced by the
reflection of T} into T through P—which is defined as follows: Ib, b’ € B

are related vid' = 0p (b), then we put

— ifbLl P,
0 = 4.1
@p )y {qb,, ifb| P, @
and
@pr)p = Ky . (4.2)

Hereb | P denotes thab is orthogonal top while b | P indicates thab is
parallel toP. The minus sign in the case whbnlL P is fairly natural if we recall
thaty, represents the difference ¢f between the endpoints &f. This difference
changes sign under reflection throughf b L. P and does notib || P.
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Let.# § be thes-algebras of events that depend only on the portidmgfxy)-
configuration orB"; explicitly #5 = o (1, kb; b € BY). Reflection positivity is,
in its essence, a bound on the correlation between events (and random variables)
from ,%;r and.# . The precise definition is as follows:

Definition 4.1. LetP be a probability measure on configuratiofi, xp)pep, and
let E be the corresponding expectation. We say thé reflection positivef for
any plane of reflection P and any two boun@g‘ -measurable random variables
X and Y the following inequalities hold:

E(X0p(Y)) = E(Y0p (X)) 4.3)

and
E(X8p(X)) = 0. (4.4)

Here,fp (X) denotes the random variable &Gp.

Next we will discuss how reflection positivity underlines our principal tech-
nical tool: chessboard estimates. Consider an exettiat depends only on the
(7w, kp)-configurations on the plaquette with the lower-left corner at the torus ori-
gin. We will call such and aplaquette eventor eachx € T\ , we definedy(A) to
be the event depending only on the configuration on the plaguette with the lower-
left corner atx which is obtained from4 as follows: If both components of are
even, thenix (A) is simply the translate ofl by x. In the remaining cases we first
reflect.4 along the side(s) of the plaguette in the direction(s) where the component
of x is odd, and then translate the resulting event appropriately. (Thus, there are
four possible “versions” ofl (A), depending on the parity of)

Here is the desired consequence of reflection positivity:

Theorem 4.2 (Chessboard estimate)l.et P be a reflection-positive measure on

configurations(#p, xkp)pep, - Then for any plaguette events, ..., Am and any
distinct sites x, ..., Xm € T,
m 1
11»( M ¥, (,4,-)) <T] IP( N 19)((./4]‘)) Ml (4.5)
=1 j=1 xeTL

Proof. See [15, Theorem 2.2].

The moral of this result—whose proof boils down to the Cauchy-Schwarz in-
equality for the inner producX, Y — E(X0p(Y))—is that the probability of any
number of plagquette events factorizes, as a bound, into the product of probabilities.
This is particularly useful for contour estimates (of course, provided that the word
contour refers to a collection of plaquettes on each of which some “bad” event
occurs). Indeed, by (4.5) the probability of a contour will be suppressed exponen-
tially in the number of constituting plaquettes.

In light of (4.5), our estimates will require good bounds on probabilities of the
so calleddisseminated evenfs, ., Jx(A). Unfortunately, the eventl is often
a conglomerate of several, more elementary events which makes a direct estimate
of Nyer, Ux(A) complicated. Here the following subadditivity property will turn
out to be useful.
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Lemma 4.3 (Subadditivity). Suppose thaP is a reflection-positive measure and
let A1, Ao, ... and A be plaquette events such thatc UJ— Aj. Then

(N 15‘X(A))ﬁ <> P( [ x(4))

XETL XETL

1
[T

(4.6)

Proof. This is Lemma 6.3 of [5].

Apart from the above reflections, which we will calirect, one estimate—
namely (4.39)—in the proof of Theorem 2.2 requires the use of so ddibggnal
reflections AssumingL is even, these are reflections in the plaResf sites of the
form

Pr={yeTL: & - (y—X)F&- (y—x) €{0,2}}. (4.7)

Herex is a site that the plane passes through @nandé&, are the unit vectors in
thex andy-coordinate directions. As before, the plane has two components—one
corresponding t@; - (y — X) = £& - (Y — X) and the other corresponding to
&1-(y—X) = £& - (y—X) +L/—and it dividesT| into two equal parts. This puts

us into the setting assumed in Definition 4.1. Some care is needed in the definition
of reflected configurations: i is the bond obtained by reflectirgthroughP,

then

Mo’ » if P= P+,
0 = 4.8
(©pn), ‘—qb,, if P=P_. (48)
This is different compared to (4.1) because the reflectio®,irpreserves orienta-
tions of the edges, while that iR reverses them.

Remark 4.4While we will only apply these reflections th= 2, we note that the
generalization to higher dimensions is straightforward; just consider all planes as
above with(&,, &) replaced by various paif§ , &) of distinct coordinate vectors.
These reflections will of course preserve the orientations of all edges in directions
distinct fromg andg;.

4.2. Phase transitions on tori

Here we will provide the proof of phase transition in the form stated in Theo-
rem 2.4. We follow pretty much the standard approach to proofs of order-disorder
transitions which dates all the way back to [9, 20, 21]. A somewhat different ap-
proach (motivated by another perspective) to this proof can be found in [7].

In order to use the techniques decribed in the previous section, we have to
determine when the extended gradient Gibbs meaQuren T obeys the condi-
tions of reflection positivity.

Proposition 4.5.Let V be of the forn{2.5) with any probability measure for
which Z_ v < oo. Then Q is reflection positive for both direct and diagonal
reflections.
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Proof. The proof is the same for both types of reflections so we we proceed fairly
generally. Pick a plane of reflectidn. Let z be a site onP and let us reexpress
thenp's back in terms of the'’s with the convention thap, = 0. Then

vL(dnp) = 6(dez) [ | debx. (4.9)
X#2Z

Next, let us introduce the quantity

1 1
W(nk) =3 D romg+7 > woib. (4.10)
beB] <P beP

(We note in passing that the removal Bffrom the first sum is non-trivial even
for diagonal reflections oncg > 3.) Clearly,W is ﬁ;—measurable and the full
(n, x)-interaction is simplyW (#, ) + (@pW)(n, ). The Gibbs measur®, can
then be written

Qu(d, de) = ie—W<‘7¢”‘>—((’PW)(V¢=">5(d¢z>(qusx) I1 » (o)
ZL’V X#2Z beB|
(4.11)
Now pick a boundedﬁ‘;—measurable functiolX = X(, x) and integrate the
function X 6p X with respect to the torus measug . If ¥p is thes-algebra gen-
erated by random variablgg andxp, with x andb “on” P, we have

2
Eq. (X0p X|%p) ( / X(Vg,)e” V0 TT dex [] Q(dxb>) >0,
Xe']l'Jl_r\P beIBt\P
(4.12)
where the values ofxp, ¢x) on P are implicit in the integral. This proves the
property in (4.4); the identity (4.3) follows by the reflection symmetrnQof.

Let us consider two good plaquette eveldisg andGyis, that all edges on the
plaquette are ordered and disordered, respectivelyBLet(Gorg U Ggis)© denote
the corresponding bad event. Given a plaquette exelt

1
[T 1

3Lp(A) = |:QL( N MA))} (4.13)

XETL

abbreviate the quantity on the right-hand side of (4.5) and define

3(A) = limsup sup 3. p(A). (4.14)

L—oo O<p<1
The calculations from Sect. 3 then permit us to draw the following conclusion:
Lemma 4.6.For eachd > 0 there exists ¢~ 0 such that ifco > cxp, then

3(B) <. (4.15)
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Moreover, there existg p1 € (0, 1) such that

IimsupﬁL,p(gOI’d) < 55 p < po: (416)
L—>oo
and
limsup3L, p(Gais) < 9, p> p1. (4.17)
L—>oo

Proof. The event5 can be decomposed into a disjoint union of evdsiteach of

which admits exactly one arrangement of ordered and disordered bonds around
the plaquette; see Fig. 3 for the relevant patterng; Ifs an event of typex e

{O, D, UO, UD, MP, MA}, then

|i[n supzL,p(B) < exp{—[FL.«(p) — min’ Fa(p)]}. (4.18)

By Theorem 3.3, the right-hand side is bounded®d)(<o/,,)~*8, uniformly

in p. Applying Lemma 4.3, we conclude that ,(5) is small uniformly inp €

[0, 1] onceL » 1. (The valuesp = 0, 1 are handled by a limiting argument.)
The bounds (4.16—4.17) follow by the fact that

Fo(p) — Fo(p) = —2log +log Z—O (4.19)
D

1-p
which is (large) negative fop near one and (large) positive fprnear zero. O

From3(B) « 1 we immediately infer that the bad events occur with very low
frequency. Moreover, a standard argument shows that the two good events do not
like to occur in the same configuration. An explicit form of this statement is as
follows:

Lemma 4.7.Let I{’d be the random variable froif2.12) There exists a constant
C < oo such that for all (even) L> 1and all p e [0, 1],

Equ (RY(1 - RY) < C31 p(B). (4.20)
Proof. The claim follows from the fact that, for some const@ht< oo,

QL (9x(Gord) N Vy(Gais)) < C'3L,p(B), (4.21)

uniformly in X, y € T_. Indeed, the expectation in (4.20) is the average of the

probabilities QL (kp = xo, k = xp) over allb,b € B. If x andy denotes
the plaquettes containing the bortandb, respectively, then this probability is
bounded byQ( (9x(Gord) N Vy(GS,g)- But G5,y = B U Gdis and so by (4.21) the
latter probability is bounded by »(B) + C’g,L,p(B)“ < (C'+ Dz, p(B), where
we usegy,p(B) < 1.

It remains to prove (4.21). Consider the evéutGord) Ny (Gais) Where, with-
out loss of generalitys = y. We claim that on this event, the good plaquettes at
andy are separated from each other by-eonnected circuit of bad plaquettes. To
see this, consider the largest connected component of good plaquettes containing
and note that no plaquette neighboring on this component can be good, because



24 M. Biskup and R. Koteck

(by definition) the event§orq andGgis cannot occur at neighboring plaquettes (we

are assuming that # xp). By chessboard estimates, the probabilit@n of any

such (given) circuit is bounded By ,(B) to its size; a standard Peierls’ argument

in toroidal geometry (cf the proof of [5, Lemma 3.2]) now shows that the proba-
bility in (4.21) is dominated by the probability of the shortest possible contour—
which isgL,p(B)“. (The contour argument requires that(5B) be smaller than

some constant, but this we may assume to be automatically satisfied because the
left-hand side of (4.20) is less than onem

Now we are in a position to prove our claims concerning the torus state:

Proof of Theorem 2.4.et R‘Erd be the fraction of ordered bonds @ (cf. (2.12))
and lety (p) be the expectation dinrd in the extended torus sta@ with pa-
rameterp. Since(1 — p)"BUZLN is log-convex in the variabla = log rpp,
and
— p)-IBLI

Byl (py = 200 P ZLY),
we can conclude that the functign— x| (p) is nhon-decreasing. Moreover, as
the thermodynamic limit of the torus free energy exists (cf Proposition 5.5 in
Sect. 5.3), the limity (p) = lim_ . xL(p) exists at all but perhaps a count-
able number ofp's—namely the seD c [0, 1] of points where the limiting free
energy is not differentiable.

Next we claim thatQ|_(|Rfrd — x(p)| > €p) tends to zero at — oo for
all eo > 0 and allp ¢ D. Indeed, if this probability stays uniformly positive
along some subsequencelds for someeg > 0, then the boundedness Bﬁ"’
ensures that for some> 0 and some > 0 we haveQL(R‘Erd > y(p)+e€) >¢
and Q_(R‘L’rd < yx(p) —€) > ¢ forall L in this subsequence. Vaguely speaking,
this impliesp € D because one is then able to extract two infinite-volume Gibbs
states with distinct densities of ordered bonds. A formal proof goes as follows:
Consider the cumulant generating functi#n (h) = B |~Xlog Eq, (€"BIR™)
and note that its thermodynamic limi(h) = lim__ . ¥ (h), is convex inh
and differentiable ah = 0 whenevemp ¢ D. But QL(Rﬁrd > x(p)+€) >¢in
conjunction with the exponential Chebyshev inequality implies

YL(h) —h(x(p)+e€) > %, (4.23)

which by takingL — oo andh | 0 yields a lower bound on the right derivative
at origin,%‘l’(h) > x(p) + €. By the same toke® (R < x(p) —€) > ¢
implies an upper bound on the left derivati\éﬁfll’(h) < y(p) — €. Hence, both
probabilities can be uniformly positive only f € D.

To prove the desired claim it remains to show thgumps from values near
zero to values near one at somee (0, 1). To this end we first observe that

lim Eo (RIYAL-RY)) =x(@[1-x(]. p¢gD.  (424)

(4.22)

This follows by the fact that on the evept(p) — ¢ < Rﬁ"’ < x(p) + ¢}J—whose
probability tends to one as — oco—the quantityR™Y(1 — R is bounded
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between f (p) + €](1 — y(p) +¢) and [y (p) — €] (1 — x(p) — €) providede <
min{y (p), 1 — y(p)}. Lemma 4.7 now implies

x(P[1-x(P] < C3(B), (4.25)

with 3(5) defined in (4.14). By Lemma 4.6, for eagh- O there is a constant> 0
such that

x(p) €[0,d]U[1 —4,1], pgD, (4.26)

oncero/,, > c. But the bounds (4.16-4.17) ensure thap) € [0,0] for p « 1
andy(p) € [1 — 0, 1] for 1 — p « 1. Hence, by the monotonicity gf — x (p),
there exists a unique valug € (0, 1) such thaty(p) < ¢ for p < p; while
x(p) > 1—ofor p > pi. In light of our previous reasoning, this proves the
bounds (2.13-2.14).0

4.3. Phase coexistence in infinite volume

In order to prove Theorem 2.2, we will need to derive a concentration bound on
the tilt of the torus states. This is the content of the following lemma:

Lemma4.8.Let A c T_ and letB, be the set of bonds with both endsAn
Given a configuratiorfyy)pep, » We use W = U, () to denote the vector

1 1
UA=(mb Z ﬂb,m Z 77b) (4.27)

A
eBINB A beB*"NB A

of empirical tilt of the configuratiomy, in A. Suppose thatmnin = infsuppp > 0.
Then

PL(IUA| > ) < 4™ sxmind”[Bal (4.28)

for eacho > 0, eachA c T and each L.

Proof. We will derive a bound on the exponential momentlf. Let us fix a
collection of numbergop)pep, € R/BLl and letQL,,) be the conditional law of
then’s given a configuration of the’s. Let Q_ min be the corresponding law when
all kn = xmin. In view of the fact thaQ («,) and QL min are Gaussian measures
andxp > xmin, We have

VarQL.%)( Z Ubnb) < VarQL!mm( Z vbm)). (4.29)

beB_ beB_

(Note that both measures enforce the same loop conditions.) The right-hand side
is best calculated in terms of the gradients. The result is

1
VarQL,(Kb)( > ubnb) < > vk (4.30)

P
beB, min peB,
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The fact thatEq, ., (7b) = 0 and the identityE (eX) = eEX+3VarX) yalid for
any Gaussian ranaom variable, now allow us to conclude

EQL(exp{ > vbnb}) < exp[2 1 > og}. (4.31)

emi
beB min beB,

Choosingop = 4 - b/|BA| onBA and zero otherwise, we get

1 |/1|2}
2Kmin |]BA| .

Eq, (Y1) < ex (4.32)
Noting that|U,| > ¢ implies that at least one of the componentdJgf is larger

(in absolute value) thafr, the desired bound follows by a standard exponetial-
Chebyshev estimate.

Remark 4.9We note that the symmetry of the law of this in Q) is crucial

for the above argument. In particular, it is not clear how to control the tightness of
the empirical tiltU 4 in the measure obtained by normalizing exp> ", V (b +

hp)}vL (dn), whereh, = h - bis a “built-in” tilt. In the strictly convex cases, these
measures were used by Funaki and Spohn [17] to construct an infinite-volume
gradient Gibbs state with a given value of the tilt.

Proof of Theorem 2.2With Theorem 2.4 at our disposal, the argument is fairly
straightforward. Consider a weak (subsequential) limit of the torus stages gb;
and then consider another weak limit of these statgs @sp;. Denote the result
by jiorg. Next let us perform a similar limit a8 1 p; and let us denote the resulting
measure byigis. As is easy to check, both measures are extended gradient Gibbs
measures at parametgy.
Next we will show that the two measures are distinct measures of zero tilt.

To this end we recall that, by (2.14) and the invarianceQgf under rotations,
lIminfl 500 QL(kp = ko) > 1 — € whenp > p; while (2.13) implies that
limsup _, . QL(xy = ko) < € whenp < pr. But {xp = xo} is a local event
and so

Hord(kp = ko) > 1—¢€ (4.33)

while
Ldis(kn = ko) < €, (4.34)

for all b; i.e., fiorg # fidiss Moreover, the bound (4.28)—being uniform m
andL—survives the above limits unscathed and so the tilt is exponentially tight in
volume for bothjiorg and figis. It follows thatU, — 0 asA 1 72 almost surely
with respect to bothigrg and fgis; i.€., both measures are supported entirely on
configurations with zero tilt.

It remains to prove the inequalities (2.10-2.11) and thereby ensure that the
marginals uorg and udis of fiorg @and jigis, respectively, are distinct as claimed in
the statement of the theorem. The first bound is a consequence of the identity

1
i 2y 4
LIH“ EQL (Kbnb) = -, ( .35)
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which extends via the aforementioned limitgigq (as well asigis). Indeed, using
Chebyshev's inequality and the fact thafq(xp = xp) < € we get

ﬁord(’foﬂg > 12) —€< ﬁord(’coﬂg > 12, Kb = Ko)

- E; ., (kon?) 1 (4.36)
2 2 Hord b)
< ford(kpny = A7) < WT =
To prove (4.35), the translation and rotation invarianc&gfgives us
1
=lel} (Kbﬂg) =Eqg, (EQL,(Kb)<m Z xbnﬁ)). (4.37)
bE]BL

Let Z (., denote the integral of e*p% >b xbng} with respect to| . Since we
havev, (Bdy) = pTtI=1v (dy), simple scaling of all fields yieldZ| (g, =

/3‘%(|TL|‘1)Z|_,(KD). Intepreting the inner expectation above as the (negafive)
derivative of{B. |~ log ZL,(pip) LS =1, we get

1 2\ T -1
EQL ) ( BLl b% Kbﬂb) = 2B (4.38)
L

From here (4.35) follows by takiny — oo on the right-hand side.

As to the inequality (2.11) for the disordered state, here we first use that the
diagonal reflection allows us to disseminate the e\{emyg < A2} around any
plaquette containing. Explicitly, if (by, b, bz, bs) is a plaquette, then

1/4
Quinyrfy, <= Qu( ) tkond <22) (4.39)
b=by,....bs
(We are using that the event in question is even Bnd so the changes of sign
of np are immaterial.) Direct reflections now permit us to disseminate the resulting
plaguette event all over the torus:
1

Quikrp = 43 = Qu( (1) tgn? = 221) ™. (4.40)
beB
Bounding the indicator of the giant intersection by
B-D221BLl gy L g 2
e exp{ S(B-1D) bZB: Kbnb}, (4.41)
€D

for g > 1, and invoking the scaling of the partition functidn (4., we deduce
(B—DA2(BLI 7
e [T
Qu (kb < 4%) < [—] (4.42)
Igz(lTLl—l)

Choosings = 272, lettingL — oo andp T pt, we thus conclude
fais(enn < 22) < c12™. (4.43)

Noting thatigis(konz < 42) > fidis(kon? < 4?) — €, the bound (2.11) is also
proved. O
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5. Duality arguments

The goal of this section is to prove Theorem 2.5. For that we will establish an
interesting duality that relates the model with parametty the same model with
parameter - p.

5.1. Preliminary considerations

The duality relation that our model (1.6) satisfies boils down, more or less, to
an algebraic fact that the plaquette condition (1.3), represented by the delta func-
tion d(#p, + 71b, — bz — #b,), €an formally be written as

do* .« o
0(Moy + Moy, — Moz — Nby) = / %ew (oy +11by = 1b3 = 11by) (5.1)

We interpret the variablg* as thedual fieldthat is associated with the plaquette
(Mby» Moy Mg, Moy)- AS it turns out (see Theorem 5.3), by integrating ifgewith
the¢*’s fixed a gradient measure is produced whose interaction is the same as for
they's, except that they's get replaced by /,’s. This means that if we assume
that

Kokp = 1, (5.2)

which is permissible in light of the remarks at the beginning of Section 2.2, then the
duality simply exchangegy, andxp! We will assume that (5.2) holds throughout
this entire section.

The aforementioned transformation works nicely for the plaquette conditions
which guarantee that thyggs canlocally be integrated back to thg's. However,
in two-dimensional torus geometry, two additional global constraints are also re-
quired to ensure thglobal correspondence between the gradientnd theg's.
These constraints, which are by definition built into ¢hpriori measurey|. from
Sect. 2, do not transform as nicely as the local plaquette conditions. To capture
these subtleties, we will now define anotlagpriori measure that differs fromy
in that it disregards these global constraints.

Consider the linear subspagg” o> A of RBL that is characterized by the
equationsnn, + 7o, — b, — b, = O for each plaquettgby, by, bs, bs). This
space inherits the Euclidean metric frdg¥.; we definev; as the correspond-
ing Lebesgue measure dtf scaled by a constat,. which will be determined
momentarily. In order to make the link with , we define

Hvert = Z Nx+e, and #hor = Z Hx+e,- (5.3)
xeTy xeTL
Clearly,
AL = {’7 € X[ nvert =0, fjhor = 0}. (5.4)

Consider also the projectiai : A" — AL which is defined, for any configura-
tiony € RBL, by

1 .
Mo — Tz vert, ifbe E\ﬁert,

11 = 5.5
(Lo {ﬂb - é’?hor, ifbe Btor. (5-5)
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Then we have:

Lemma 5.1.There exist constants Gsuch that, in the sense of distributions,

i@ =(12[ @ T o0m+m=m—m-0)) [T dn 60

(b1,b2,b3,bs) beT,
Moreover, we have

v (dy) = VE (d1)6(11hor) 0 (mvert) (5.7)
and

v (dy) = v o IIL(dy) Am, (dy). (5.8)

Here, Amr, (dy) is a multiple of the Lebesgue measure on the two-dimensional
spacel‘[[l(O) N &, which can be formally identified witlyhordzvert.

Proof. We begin with (5.6). Consider the orthogonal decomposifit | = X @
(XE)L. Clearly, dimx}" = L2 + 1. Choosing an orthonormal basis, . .., wn
in (X7)* (wheren = dim(Xx;)* = L2 — 1) the measure; can be written as

vt () =i (TTow;-m) [T dn. (59)
j=1

beB|

Let ¢, denote the vectors iRBL! such that ifr = (by, by, bs, bs) thent, - 4 =
by + by — Moz — 7, ThENE; € ()(lf)l with all but one of these vectors linearly
independent. This means that we can replace the linear functipralso; - 4 by
the plaquette conditions. Fixing a particular plaquettg we find that

vin = ([T o) T] an (5.10)

TH#TQ beT,
provided that
CL = |det(wj - £;)| = Vdell, - £;). (5.11)

The expression (5.10) is now easily checked to be equivalent to (5.6): Applying
the constraints from the plaquettes distinct frerwe find thatyy, + 7o, — 7b; —

N, = (1 — L2)0. The corresponding-function becomes(L29), and so we can
setd = 0 in the remaining-functions. Integration ove? yields an overall multi-
plier [ 6(L20)do = 1/L2.

In order to prove (5.7), pick a subtrée of T as follows:7 contains the
horizontal bonds infb; + ¢&:¢ = 0,...,L — 2} and the vertical bonds in
{bo + (& + m&: ¢,m = 0,...,L — 2}. As is easy to check? is a span-
ning tree. Denoting by, the measure on the right-hand side of (5.7) pick a
bounded, continuous functioh: R®.l — R with bounded support and consider
the integral [ f ()y, (dy). The complement of contains exactly-2 + 1 edges
and there are as mamyfunctions in (5.10) and (5.7), in which afi,, b ¢ 7,
appear with coefficientt1l. We may thus resolve these constraints and substi-
tute for all {yp: b ¢ 7} into f—call the result of this substitutiom~(;7). Then
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we can integrate all of these variables which reduces our attention to the inte-
gral [ (1) [Toer d70-

As is easy to check, the transformatign = ¢y — ¢x for b = (x, y) with
the conventionpo = 0 turns the measurf]p 7 dyp iNto J(deo) [0 dpx and

makesf (y) into f (V). We have thus deduced

/R\]BL\ f )y (dn) =/Rm f(n)ble_[Tdnb Z/Rm f (V) 6(dgo) [ | dep.

x#£0
(5.12)
From here we get (5.7) by noting that the latter integral can also be written as
J v dn).
To derivev = v o I dnhordnvert, let us write A" = X1 @ (H[l(O) N
A[). Sincevy is theC-multiple of the Lebesgue measure &1 and sinceynor
andnyert represent orthogonal coordinatesl’[r@l(O) N X}, we have

vi(dy) = CLAx, o I (dy) L=2dnnor L =%dnvert, (5.13)

wherel y, is the Lebesgue measure af. Plugging into (5.7) we find that, =
CLL=*x_ which in turn implies (5.8). O

Remark 5.2Itis of some interest to note that the meastjrés also reflection pos-
itive for direct reflections. One proof of this fact goes by replacingitfienctions

in (5.6) by Gaussian kernels and noting that the linear teréh(in the exponent)
exactly cancels. The status of reflection positivity for the diagonal reflections is
unclear.

5.2. Duality for inhomogeneous Gaussian measures

Now we can state the principal duality relation. For thatTigt denote the dual
torus which is simply a copy df | shifted by half lattice spacing in each direction.
Let B] denote the set of dual edges. We will adopt the convention thatsifa
direct edge, then its dual—i.e., the unique edg@ijirthat cuts through—uwill be
denoted byb*. Then we have:

Theorem 5.3.Given two collectiongxp)pep, and (xj)pep, Of positive weights
onB_, consider the partition functions

1
ZL,(kb) =/vL(dn) eXp{—E Z Kbné} (5.14)
beBL
and
20w —/vL(dn) eXp{—— > Kbnb} (5.15)
beB_

If (kb)ber, @and(xp)pem, are dualinthe sense that

1
Ky = p beB,., (5.16)
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then

Z} =21 LZ[ H Jx_b]ZL’(Kb). (5.17)

beB_

Proof. We will cast the partition functioZ| (D) into the form on the right-hand

side of (5.17). Let us regard this partition functlon as defined on the dualTgrus
The proof commences by rewriting the definition (5.6) with the help of (5.1) as

vin = (12 [ @ o T —exp{ > ¢x<nn*<x)—e>}) [T o

b*eB;
(5.18)
wheres,«(x) is the plaquette curl for the dual plaqueité&(x) with the center ax.
Rearranging terms and multiplying by the exponential (Gaussian) weight from
(5.15), we are thus supposed to integrate the function

LZ/ de/RTL le—[ d¢x p{__ Z (Kb*nb* — 2iny Vpo) —i6 z ¢x}

breB} xeTL
(5.19)
against the (unconstrained) Lebesgue meaplyg; drp. HereVogp = ¢y — ¢«
if b = (x,y) is dual to the bondb*. Completing the squares and integrating over
then's produces the function

L)l Lo Tower 2 2 5
b*eB*\/; R

xeT| beB

—i0 > ¢X]

XETL

(5.20)
Invoking (5.16), we can replace alf&, by xp. The integral ove# then yields 2
times thed-function of >, ¢x which—by the substitutiogy > ¢x + ﬁ(ﬁo that
has no effect on the rest of the integral—can be converted tig¢). Invoking
the definition (2.1) of, this leads to the partition function (5.14)0

Remark 5.4Let Q p be the extended gradient Gibbs measrefor o = pdy,+

(1 — p)dy, with parametep and letQy |, be the corresponding measure with the
a priori measurev. replaced by . Then the above duality shows that the law
of (xp) governed byQ_ p is the same as the law of its du@l;)—defined via
(5.16)—in measur@,*_’p*, oncep and p; are related by

[ R 1)

1-pl-ps B ’CO'
Indeed, the probability in measu@ s of seeing the configuratioﬁ'xg) with N§

(5.21)

ordered bonds anllj disordered bonds is proportional IDQ (1 p)NG zZr ()"

Considering the dual configuratigny) and lettingNp = N denote the number
of disordered bonds anilp = NJ the number of ordered bonds k), we thus
have

NG * .
p*o(l_ p*)NDZL,(KS) = ZﬂLz(p*\/%)ND ((1_ p*)\/K_D)NOZL,(Kb)~ (522)
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For p and p, related as in (5.21), the right-hand side is proportional to the prob-
ability of (xp) in measureQ p. We believe that the difference between the two
measures disappears in the lihit> oo and so thec-marginals of the state®orqg

and jigis at p; can be considered to be dual to each other. However, we will not
pursue this detail at any level of rigor.

5.3. Computing the transition point

In order to use effectively the duality relation from Theorem 5.3, we have to show
that the difference in tha priori measure can be neglected. We will do this by
showing that both partition functions lead to the same free energy. This is some-
what subtle due to the presence (and absence) of various constraints, so we will
carry out the proof in detail.

Proposition 5.5.Let o (dx) = [[,cp, [P, (drb) + (1 — P)dy, (dxp)] and recall
that 7, v denotes the integral of Z,) with respect top| . Similarly, let ﬁ,v
denote the integral of Z(Kb) with respect tw . Then (the following limits exist
as L— oo and)

1
im = logZv = lim ——logZ{ 5.23
e Ty o9ty = I |’]I‘|_| 9 (5-23)

forall p € [0, 1].

Before we commence with the proof, let us establish the following variance
bounds for homogeneous Gaussian measures relative togheri measurey
andv;:

Lemma 5.6.Let | be the (standard) Gaussian gradient measure

1
) o exp{=3 3 nf o) (5.24)
beB_
andy; be the measure obtained by replacingbyv;. Form=1,..., L, let
m-1
Y= D Ner+ey)- (5.25)
=0

There exists an absolute constant s 0 such that for all L> 1 and all m =
1,...,L,
Var,, (Ym) < Var#*L (Ym) < c3(1+ logm). (5.26)

Proof.In measure:_, we can reintroduce back the fieltsc) andYy, then equals
®me, - Discrete Fourier transform implies that

|1 eIXk|2
Var,, (¢x) = L2 > = 500 (5.27)

keT,
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whereT is the reciprocal torus and (k) = |1—e’%1|2 +|1—€e'k2|2is the discrete
(torus) Laplacian. Simple estimates show that the sum is bounded by a constant
times 1+ log|x|, uniformly in L. Hence, Vay, (Ym) < €3(1 + logm) for some
absolute constari.

As for the other measure, we recall the definitions (5.3) and use these to
write b = Vi + 5 nor if b is horizontal (@andp = Vg + 5 fvent if b is verti-
cal). The fact that the Gaussian field is homogeneous implies—via (5.8)—that the
fields (¢x) and the variablegyert and nnor are independent witkpy) distributed
according tou| andsvert andnor Gaussian with mean zero and variatée. In
this case¥m = ¢me, + %ﬂhor and so we get

2
m
Var,: (Ym) = Var, (Ym) + 52 (5.28)

Butm < L and so the correction is bounded forhll O

Proof of Proposition 5.5The proof follows the expected line: To compensate for
the lack of obvious subadditivity of the torus partition function, we will first relate
the periodic boundary condition to a “fixed” boundary condition. Then we will
establish subadditivity—and hence the existence of the free energy—for the latter
boundary condition.

Fix M > 0 and consider the partition functitfrf'\’/'\} defined as follows. LeA |
be a box ofL x L sites and consider the siEf of edges withbothends inA | .
Letvl(_M)(dn) be as in (2.1) subject to the restriction that| < M for all x on the
internalboundary ofA | . Let

20) = [ @ [ @nen|-; 3w 629

beB)

We will now provide upper and lower bounds between the partition funcong
(resp.Zy /) and Z(LM\}, for a well defined range of values bf.

Comparing explicit expressions f@j v and Z(LM\} and usingey < ko, We get

ZLy = ZM) exp{—3xo(2M)?(2L)}. (5.30)
To derive an opposite inequality, note thatfgr> xp we get that Vat, ) (fx) >
Var,, (¢x)/xp, wherey is as in (5.24). Invoking one more time the Gaussian
identity E(eX) = eEX+3Va(X) in conjunction with Lemma 5.6, yields

2
QU > M) < exp|—= M } (5.31)

2 kpC3(1+loglL)

Hence, ifM > log L we have that with probability at leakp in measureQ, all
variablespy are in the intervalf+ M, M]. Since the interaction that wraps_ into
the torus is of definite sign, it follows that

ZLy <2z (5.32)
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forall L and allM > logL.

Concerning the star-partition function, Lemma 5.6 makes the proof of (5.32)
exactly the same. As for the alternative of (5.30), we invoke (5.8) and restrict
all |¢x| on the internal boundary of | to values Iess thaW and|#nnhorl @and|#vert|
to values less thaiv L2. Since|np| = |Vpe + znverﬂ < 2M + M = 3M for
every vertical bond that wraps, into the torus (and similarly for the horizontal
bonds), we now get

Zt v = zM) @ML)2 exp{—3ro(3M)2(2L)}, (5.33)

where the factof2M L )2 comes from the integration oveger: andnor. We con-
clude that, forlod. « M = o(+/L), the partition functionZ v, Zf,v ande'\”'\}
lead to the same free energy, provided at least one of these exists.

It remains to establish that the partition functiﬁﬁ\”'\} is (approximately) sub-
multiplicative for some choice oM = M. Choose, e.gM, = (logL)? and
let p > 1 be an integer. If two neighbors have thgis between—M_ andM|,
the energy across the bond is at mdgs(4My)2. Splitting A into p? boxes of
sizeL, and restricting the’s to [-M_, M ] on the internal boundaries of these
boxes, we thus get

Z0Y > (M1 exp{—Lro(@ML)22(p — 1)L}, (5.34)

The exponent can be bounded below (pL)’2 — p LS/2 = —(p? — pP2L%

for L sufficiently large which implies thap — [Z(NI expi—(pL)¥2)]Y/(PL? s
increasing for allp > 1 and allL > 1. This proves the claim for limits along
multiples of any fixedL; to get the values “in-between” we just need to realize

that, as beforez, s > Z(M)eO*LMD) for any fixedk. O

Now we finally prove our claim concerning the value of the transitignal
Proof of Theorem 2.9.et Z(Lp{, denote the integral of| ., with respect to the

a priori measurep| (dx) with parametemp and IetZ* (p) denote the analogous
quantity forZy ) The arguments leading up to (5 22) then yield

zp 8 = Z{P, 2x L) (puv/io + (1 — p/io ) (5.35)

wheneverp, is dual top in the sense of (5.21). Thus, usikg p) to denote the
limit in (5.23) with the negative sign, we have

F(p.) = F(p) — 2log(psy/xo + (1 — p)VxDp ). (5.36)

Now, as a glance at the proof of Theorem 2.4 reveals, the \@lisadefined as the
unique point where the derivative &f(p), which at the continuity points gb —
x(p) issimplyF’(p) = 2y (p) — 1, jumps from values near1 to values nea#1.
Eqg. (5.36) then forces the jump to occur at the self-dual ppjne p. In light
of (5.21), this proves (2.15).0
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