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Abstract: Chessboard estimates are one of the standard tools for proving phase coexistence in
spin systems of physical interest. In this note we show that the method not only produces a point
in the phase diagram where more than one Gibbs states coexist, but that it can also be used to
rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For
models depending on a parameter (say, the temperature), this shows that the values of the conjugate
thermodynamic quantity (the energy) inside the “transitional gap” are forbidden in all shift-ergodic
Gibbs states. We point out several models where our result provides useful additional information
concerning the set of possible thermodynamic equilibria.

1. INTRODUCTION

One of the basic tasks of mathematical statistical mechanics is to find a rigorous approach to
various first-order phase transitions in lattice spin systems. Here two methods of proof are
generally available: Pirogov-Sinai theory and chessboard estimates. The former, developed in
[30, 31], possesses an indisputable advantage of robustness with respect to (general) perturba-
tions, but its drawbacks are the restrictions—not entirely without hope of being eventually elimi-
nated [22, 23, 15, 35, 7]—to (effectively) finite sets of possible spin values and to situations with
rapidly decaying correlations. The latter method, which goes back to [20, 18, 19], is limited, for
the most part, to systems with nearest-neighbor interactions but it poses almost no limitations on
the individual spin space and/or the rate of correlation decay; see e.g. [29].

While both technigues ultimately produce a proof of phase coexistence, Pirogov-Sinai theory
offers significantly better control of the number of possible Gibbs states. Indeed, one can prove
the so calleccompleteness of phase diagr§d4, 8] which asserts that the states constructed by
the theory exhaust the set of all shift-ergodic Gibbs states. (In technical terms, there is a one-
to-one correspondence between the shift-ergodic Gibbs states and the “stable phases” defined in
terms of minimal “metastable free energy”.) Unfortunately, no conclusion of this kind is currently
available in the approaches based solely on chessboard estimates. This makes many of the con-
clusions of this technique—see [12, 33, 3, 5, 17] for a modest sample of recent references—seem
to be somewhat “incomplete.”
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To make the distinction more explicit, let us consider the example of temperature-driven first-
order phase transition in thgestate Potts model witg > 1. In dimensiongl > 2, there exists
a transition temperaturd;, at which there arg ordered states that are low on both entropy and
energy, and one disordered state which is abundant in both quantities. The transition is accompa-
nied by a massive jump in the energy density (as a function of temperature). Here the “standard”
proof based on chessboard estimates [25, 26] produces “only” the existence of a temperature
where the aforementionagl + 1 states coexist, but it does not rule out the existence of other
states; particularly, those with energies “inside” the jump. On the other hand, Pirogov-Sinai ap-
proaches [24, 27] permit us to conclude thatotherthan the above + 1 shift-ergodic Gibbs
states can exist & and, in particular, there isfarbidden gapof energy densities where no shift
ergodic Gibbs states are allowed to enter.

The purpose of this note is to show that, after all, chessboard estimates can also be supple-
mented with a corresponding “forbidden-gap” argument. Explicitly, we will show that the calcu-
lations (and the assumptions) used, e.g., in [25, 12, 33, 3, 5, 17] to prosrishencef particular
Gibbs states at the corresponding transition temperature, or other driving parameter, imply also
theabsencef Gibbs states that differ significantly from those proved to exist. We emphasize that
no statement about theumberof possible extremal, translation-invariant Gibbs states is being
made here, i.e., the completeness of phase diagram in its full extent remains unproved. Notwith-
standing, our results go some way towards a proof of completeness by ruling out, on general
grounds, all but a “small neighborhood” of the few desired states (which may themselves be a
non-trivial convex combination of extremal states).

The assumptions we make are quite modest; indeed, apart from the necessary condition of re-
flection positivity we require only translation invariance and absolute summability of interactions.
And, of course, the validity—uniformly in the parameter driving the transition—of a bound that
is generally used to suppress the contours while proving the existence of coexisting phases. We
also remark that the conclusion about the “forbidden gap” should not be interpreted too literally.
Indeed, there are systems (e.g., the Potts model in an external field) where more than one gap may
“open up” at the transition. Obviously, in such situations one may have to consider a larger set of
observables and/or richer parametrization of the model. We refer the reader to our theorems for
the precise interpretation of the phrase “forbidden gap” in a general context.

The main idea of the proof is that all Gibbs states (at the same temperature) have the same
large-deviation properties on the scale that is exponential in volume. This permits us to compare
any translation-invariant Gibbs state with a corresponding measure on the torus, where chess-
board estimates can be used to rule out most of the undesirable scenarios. The comparison with
torus boundary conditions requires a estimate on the interaction “across” the boundary; as usual
this is implied by the absolute summability of interactions. This is the setting we assume for the
bulk of this paper (cf Theorem 2.5). For systems with unbounded interactions, a similar con-
clusion can be made under the assumption that the interactions are integrable with respect to the
measures of interest (see Theorem 4.4).

The rest of this paper is organized as follows: In Sect. 2.1 and 2.2 we define the class of mod-
els to which our techniques apply and review various elementary facts about reflection positivity
and chessboard estimates. The statements of our main theorems (Theorem 2.5 and Corollary 2.6)
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come in Sect 2.3. The proofs constitute the bulk of Sect. 3; applications to recent results estab-
lished by means of chessboard estimates are discussed in Sect. 4. The Appendix (Sect. 5) contains
the proof of Theorem 4.4 which provides an explicit estimate on the energy gap from Theorem 3
of [17]. This result is needed for one of our applications in Sect. 4.

2. MAIN RESULT

In order to formulate our principal claims we will first recall the standard setup for proofs of
first-order phase transitions by chessboard estimates and introduce the necessary notations. The
actual theorems are stated in Sect. 2.3.

2.1 Models of interest.

We will work with the standard class of spin systemsZShand so we will keep our discussion
of general concepts at the minimum possible. We refer the reader to Georgii’'s monograph [21]
for a more comprehensive treatment and relevant references.

Our spinssy, will take values in a compact separable metric sgageNe equipy with theo-
algebra%, of its Borel subsets and considerapriori probability measurey on (Qo, -#p). Spin
configurations orZ¢ are the collection$s,)y.z¢. We will useQ = Q%d to denote the set of all
spin configurations ofZ¢ and.# to denote ther-algebra of Borel subsets 61 defined using
the product topology. IA c Z9, we define.Z, to be the subr-algebra of events depending
only on (s\)xea. For eachx e Z9, the mapzy,: Q — Q is the “translation byx” defined
by (1xS)y = Sx+y- Itis easy to check thay, is a continuous and hence measurable fox all Z°.
We will write A € Z9 to indicate thatA is a finite subset of°.

To define Gibbs measures, we will consider a family of Hamilton{@hsg) , cz«. These will be
defined in terms of interaction potentidi® ) acz¢. Namely, for eacA € Z9, let dp: Q — R
be a function with the following properties:

(1) The function® A is .Za-measurable for each e Zd.

(2) The interaction®,) is translation invariant, i.e®Pa.x = ®a o 7 for all x € Z¢ and
all A ez

(3) The interactio® ) is absolutely summable in the sense that

@l = > IPalle < oo. 2.1)

A€zd
OcA

The Hamiltonian on a set € Z% is a functionH, : Q — R defined by

Hy= D @a (2.2)
Aezd
ANA#D

For eachp > 0, let &, be the set of Gibbs measures for the Hamiltonian (2.2). Specifically,
u € &g if and only if the conditional probability: (- |.#xc)—which exists since& is a Polish
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space—satisfies, for al € Z9 and -almost alls, the (conditional) DLR equation
@ AHA(S)

p(dsy| Fac)(s) = [ vodso. (2.3)

XeA

HereZ, = ZA(f, sac) is a normalization constant which is independerg 0 (S¢)xea-

Remark2.1 The results of the present paper can be generalized even to the situations with un-
bounded spins and interactions; see Theorem 4.5. However, the general theory of Gibbs measures
with unbounded spins features some unpleasant technicalities that would obscure the presenta-
tion. We prefer to avoid them and to formulate the bulk of the paper for systems with compact
spins. Our restriction to translation-invariant interactions in (2) above is mostly for convenience
of exposition. Actually, the proofs in Sect. 3 can readily be modified to include periodic interac-
tions as well.

2.2 Chessboard estimates.

As alluded to before, chessboard estimates are among the principal tools for proving phase co-
existence. In order to make this tool available, we have to place our spin system on a torus.
Let T, be the torus ol x --- x L sites and leH, : QE)TL — R be the function defined as fol-

lows. Given a configuratios = (Sx)xeT,, We extends periodically to a configuratios on all

of Z4. Using Hr, to denote the Hamiltonian associated with the embeddirig_ahto 794, we
defineH (s) = Hr, (5). Thetorus measuré, » then simply is

e AHL()
]P)L)/j (dS) =

[T votdso. (2.4)

XETL

HereZ_ = Z, (p) is the torus partition function.

Chessboard estimates will be implied by the conditiorefiection positivity While this con-
dition can already be defined in terms of interactig®s, ), czq, it is often easier to check it
directly on the torus. Let us consider a tofis with evenL and let us split it into two sym-
metric halves T andT[, sharing a “plane of sites” on their boundary. We will refer to the
setP = T} N T as aplane of reflection Let %3 and.#; denote ther-algebras of events
depending only on configurations'y” andT|, respectively.

We assume that the naturally-defined (spatial) reflection T, <> T| gives rise to a map
0p: Q3" — Q" which obeys the following constraints:

(1) Hp is aninvolution, fp o fp = id.
(2) Op is areflectionin the sense that ift € .#2 depends only on configurations o c T},
thendp (A) € .#5 depends only on configurationsait (A).

In many cases of interestp is simply the mapping that is directly induced by the spatial reflec-
tion vp, i.e.,0p = 95, where(ﬁ,’;(s))X = Syp(x); OuUr definition permits us to combine the spatial
reflection with an involution of the single-spin space.

Reflection positivity is now defined as follows:
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Definition 2.2 LetP be a probability measure @EL and letE be the corresponding expecta-
tion. We say thaP is reflection positiveif for any plane of reflectior and any two bounded
Z & -measurable random variabl¥sandY,

E(X0p(Y)) = E(YOp(X)) (2.5)
and
E(X0p(X)) = 0. (2.6)
Here,fp (X) denotes the# -measurable random variab¥eo 6p.

Remark2.3 Here are some standard examples of summable two-body interactions that are re-
flection positive. Consider spin systems with vector-valued spiasid interaction potentials

Dixy) = Iy (S Sy), X #VY, (2.7)

where J, y are coupling constants arfd -) denotes a positive-semidefinite inner producttan
Then the corresponding torus Gibbs measure Witk 0 is reflection positive (for reflections
through sites) for the following choices df 's:

(1) “Cube” interactions Reflection-symmetrid, y's such that, y, = 0 unlessx andy are
vertices of a cube of X - - - x 2 sites inZ.
(2) Yukawa-type potentials
ey = e_#|x_y|l’ (2.8)

wherey > 0 and|x — y|; is the/!-distance betweex andy.
(3) Power-law decaying interactions

1

- - 2.9
IX — yI¥ 29)

‘]X,y

with s > 0.

The proofs of these are based on the general theory developed in [20, 18, 19]; relevant calculations
can also be found in [2, Sect. 4.2]. Of course, any linear combination of the above—as well as
other reflection-positive interactions—with positive coefficients is still reflection positive.

Now, we are finally getting to the setup underlying chessboard estimates. Suppolsdghat
an integer multiple of an (integer) numbBr (To rule out various technical complications with
the following theorem, we will actually always assume thatis a power of 2.) LetAg c T,
be the box of(B + 1) x --- x (B + 1) sites with the “lower-left” corner at the origin—we will
call such box éB-block We can tileT | by translates of\g by B-multiples of vectors from the
factor torus T = T, s. Note that the neighboring translates/of will have a side in common.
Let A be an event depending only on configurationgigt we will call such.A a B-block event
For eacht € T, we define the ever (A4) as follows:

(1) If t has all components even, théii.4) is simply the translation ofd by vectorBt, i.e.,
O (A) = 151 (A) = (s € Q' ai(S) € A}

(2) For the remaining e T, we first reflect4 through the “midplane” ofA g in all directions
whose component dfis odd, and then translate the resultBtyas before.
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Thus,8;(A) will always depend only on configurations in tBeblock Ag + Bt.
The desired consequence of reflection positivity is now stated as follows.

Theorem 2.4(Chessboard estimate) et be a measure oﬁgL which is reflection-positive with
respect t&p. Then for any B-block event4,, . .., A, and any distinct sitet, ..., tm € T,

P((m]etj (4)) =
j=1 ]

Proof. See [20, Theorem 2.2]. O

m

2(Naran) " (2.10)
LA

teT

The moral of this result—whose proof is nothing more than an enhanced version of the Cauchy-
Schwarz inequality applied to the inner prodoGtY — E(X6p(Y))—is that the probability of
any number of events factorizes, as a bound, into the product of probabilities. This is particularly
useful for contour estimates; of course, provided that the word contour refers to a collection of
boxes on each of which some “bad” event occurs. Indeed, by (2.10) the probability of a contour
will automatically be suppressed exponentially in the number of constituting “bad” boxes.

2.3 Main theorems.

For anyB-block eventA4, we introduce the quantity

Yy
Ps(A) = LI@OO(PL,,H( N etut))) , (2.11)
teT

with the limit taken over multiples oB. The limit exists by standard subadditivity arguments.
While the definition would suggest thag(A) is a large-deviation rate, chessboard estimates
(2.10) show thap;(A) can also be thought of as the “probability dfregardless of the status
of all other B-blocks.” This interpretation is supported by the fact tHat> ps(.A) is an outer
measure o, With p;(Q) = 1, cf. Lemma 6.3 of [5].

Furthermore, recalling that y_; is the block ofN x - - - x N sites with the “lower-left” corner
at the lattice origin, let

1
Ryv(A) = lg01 2.12
NA) = ; A0 Tex (2.12)
be the fraction oB-blocks (inAng-1) in which A occurs. Whenever € &, is a Gibbs state for
the Hamiltonian (2.2) at inverse temperatgrthat is invariant with respect to the shiftss«) ke 74,
the limit

pu(A) = lim Ry (A) (2.13)

existsu-almost surely. In the following, we will use, (A) mostly for measures that are actually
ergodic with respect to the shifts by multiples Bf In such cases the limit is self-averaging,
pu(A) = u(A) almost surely. Notwithstanding, we will stick to the notatjgn(A) to indicate

that claims are being made about almost-sure properties of configurations and not just expecta-
tions. To keep our statements concise, we will refer to measures which are invariant and ergodic
with respect to the translatiorisgy)x.z¢ asB-shift ergodic
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Our principal result can be formulated as follows:

Theorem 2.5 Letd > 2 and consider a spin system as described above for which that the torus
measure is reflection positive for gtl > 0 and all even L> 2. LetGy, ..., G be a finite number
of B-block events and |é8 = (G, U - - - U G;)®. Suppose that the good block events are mutually
exclusive and non-compatible (different types of goodness cannot occur in neighboring blocks):
(1) GNnG; =9 foralli # j.
(2) Ifty, to € T are nearest neighbors, then

6,(G) N 6,(Gj) =0 foralli # j. (2.14)

Then for every > 0, there exist® > 0—which may depend on d but not on the details of the
model nor on B or n—such that for agy> 0 with pz(B) < 6 we have

pu(B) € [0.¢] (2.15)

and
p.(G) €[0,e]U[1 —¢€,1], i=1...,r, (2.16)

for every B-shift ergodic Gibbs statee &;. In particular, ife < 1, then for every such there
exists a unique i such that,(Gi) > 1 —e andp,(Gj) < eforall j #1i.

We remark that the conclusion of Theorem 2.5 holds even when the requirement of compact
single-spin space and norm-bounded interactions are relaxed to the conditiote@fverage en-
ergy. We state the corresponding generalization in Theorem 4.5. Theorem 2.5 directly implies the
standard conclusion of chesshoard estimates (cf. [14, Propositions 3.1-3.3] or [25, Theorem 4]):

Corollary 2.6 Letd > 2, let 51 < f» be two inverse temperatures anddgtand G, be two mu-
tually exclusive, non-compatible good B-block events (cf conditions (1) and (2) in Theorem 2.5).
Then, for every > 0 there exists a constaiat > 0—which may depend on d but not B or the
details of the model—such that the conditions

(1) pp(B) <oforall p e[p1, p2] and

(2) Pp(G2) <0 andpﬂz(gl) <9

imply an existence of an inverse temperatfite= (f1, f2) and of two distinct B-shift ergodic
Gibbs measureg 1, u, € &4 such that

The above assumptions (1) and (2) appear in some form in all existing proofs based on chess-
board estimates; see Sect. 4 for some explicit examples. The conclusions about the set of coex-
istence points can be significantly strengthened when, on the basis of thermodynamic arguments
and/or stochastic domination, the expected amount of goodhéssreases (and; decreases)
with increasings. Fore « 1 the phase diagram then features a unique (massive) jump ajkome
from states dominated k% to those dominated b§,. Theorem 2.5 implies that the bulk of the
values inside the jump are not found in any ergodic Gibbs state. Both Theorem 2.5 and Corol-
lary 2.6 are proved in Sect. 3.2.
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Remark2.7 Both results above single out inverse temperature as the principal parameter of inter-
est. However, this is only a matter of convenience; all results hold equally well for any parameter
of the model. An inspection of the proof shows that we can takec(d)e?® in Theorem 2.5,
wherec(d) is a constant that grows with dimension. However, the dependeneesbauld be
significantly better; we made no attempts to reach the optimum. In any case, the faod tlest

not depend on the details of the model is definitely sufficient to prove phase coexistence.

3. PROOFS OF MAIN RESULTS

We will assume that there is an ergodic Gibbs meagure &, that violates one of the condi-
tions (2.15-2.16), and derive a contradiction. Various steps of the proof will be encapsulated in
technical lemmas in Sect. 3.1; the actual proofs come in Sect. 3.2.

3.1 Technical lemmas.

Our first step is to convert the information about infinite-volume densities into a finite volume
event. Using the sites fromy _; to translate th&-block Ag by multiples ofB in each coordinate
direction, we get J,.,,_,(As + BX) = Ans. Similarly, considering translates dfyg by
vectorsN Bxwherex € Ay—_1, we getUXGAMfl(ANB + NBX) = Amne - The important point
is that, while the neighboring translatés g + N BxandAyng + N Byare not disjoint, they have
only one of their(d — 1)-dimensional sides in common.

Let By and&jn, j =1,...,r1, be events defined by

Bn = {Rn(B) > €} (3.1)
and
Ein={Rn(G)) > €}, i=1...,r. (3.2)
Introducing the event
En =By U U EnNNEN) (3-3)

I<i<j<r

and the fractiorRy n (En) of BN-blocks (inApng) in which &y occurs,

Ru,n(En) =

Z ley o TnBx, (3.4)

XeEAM-1

[Am-1l

we have:

Lemma3.1 Lete < 1, and consider a B-shift ergodic Gibbs measure &, that violates one
of the conditions (2.15-2.16). Then there exists gn<\oo and, for each N> Ny, there exists
an My = Mg(N) such that for all N> Np and all M > Mg(N), one has

1
,Lt( RM,N(gN) > 1/2) > W (35)
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Proof. The proof is based on a two-fold application of the Pointwise Ergodic Theorem. Indeed,
by ergodicity ofu and Fatou’s lemma we know that

liminf x(Bn) = 1(pu(B) > €) (3.6)
and
”,\VITLigofﬂ(gi,N NEN) = u({pu(G) > e} N{pu(G)) > €}). (3.7)

But x violates one of the conditions (2.15-2.16) and so eifhgi3) > € or p,(Gi) > €
and p,(Gj) > € for somei # j. All of these inequalities are valig-almost surely and so it
follows that
uEn) — L (3.8)
N— oo

Now, let us fixN so thatu(En) > 34 Then ergodicity with respect to translates by multiples
of B implies that

1 1
ﬂ( U {Ru.N(EN) o TRy > l/2}) > ﬂ(m Z Ru,n(EN) o By > 5)
yeAN-1 yeAN-1 (3.9
= u(Run(€n) > 1) e 1.
It follows that the left-hand side exceetisonceM is sufficiently large, which in conjunction
with subadditivity andcgy-invariance ofu directly implies (3.5). O

Our next task will be to express solely in terms of conditions on baB-blocks inAng =
Uxeay_,(As + BX). Given two distinct sitex, y € An-1, let {x « y} denote the event that

there is no nearest-neighbor path= (X4, ..., Xx) on Ay_1 such that
(1) = connectx toy, i.e.,x; = X andxx = .
(2) all B-blocks “along”z are good, i.e.sgx; (B°) occurs forallj = 1,..., k.

Note that{x <+ y} automatically holds when one of the blockg + Bx or Ag + By is bad.
Further, letYy be the (75, ;-measurable) random variable

YN =#{(X,Y) € Anc1 X Anc1i X # Y& X Y} (3.10)

and letCy be the event
Cn = {Yn > (eN9?}. (3.11)
Conditions (1) and (2) from Theorem 2.5 now directly imply:

Lemma 3.2 Forall N, we havefy  Cy.

Proof. Clearly, we haveBy ¢ Cy, and so we only have to show that
gi,N ﬂgj,N (- CN, 1< i < J <r. (3.12)

Let us fixi # j and recall that or; y N &, at least are-fraction of all B-blocks inAng

will be i-good and at least ae-fraction of them will bej-good. By conditions (1) and (2)
from Theorem 2.5, no twd®-blocks of different type of goodness can be connected by a path of
good B-blocks, and so there are at legsNY)? pairs of distinctB-blocks in Ayg that are not
connected to each other by a path of good blocks. This is exactly what defines thégveil
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The event€y andCy have the natural interpretation BsB-block events o', whenevell is
divisible by N B. If A is such arN B-block event, lep;(.A) denote the analogue of the quantity
from (2.11) where thé’s now involve translations by multiples dfi B. Our next technical
lemma provides an estimate pp(Cn) in terms ofp 4 (B):

Lemma 3.3 Let d be the dimension of the underlying lattice and suppose that & For
eache > 0O—underlying the definitions dfy, &y and Cy—and eachy > 0, there exists a
numbers = J(e, 5, d) > 0 such thatifps(B) < J, thenps(Cn) < 7.

Proof. Let us usdl, 4(Cn) to abbreviate the quantity

M) =Pug( N acn), (3.13)
teT

whereT = T, /gy IS the factor torus in the present context. Observing fhats preserved
by reflections through the “midplanes” ofy g, @ multivariate version of Chebyshev’s inequality
then yields

YNOTBNt) (3.14)

I 4(Cn) < EL,ﬁ(H T(eNdy?Z
teT

HereE, ; is the expectation with respectlfp 4.

To estimate the right-hand side of (3.14), we will rewrttg as a sum. Lek,y € An_; be
distinct. A connected subs&t c Ay_; is said toseparate x from ¥in Ay_;) if each nearest-
neighbor pathr from x to y on An—_; intersectd”. We useS(x, y) to denote the set of all such
setsI" C An_1. Notice that{x}, {y} € &(x, y). We claim that, whenevek, y) is a pair of points
contributing toYy, there existd" € &(x, y) separatingk from y such that every blockg + Bz
with z € T is bad. Indeed, ifAg + Bx is a bad block we tak& = {x}. If Ag + Bxis a
good block, then we defin®, to be the maximal connected subsetAg§_, containingx such
that Ag + Bzis a good block for alk € 4%, and letI" be its external boundary. Usirly- to
denote the indicator of the event that every bldgk+ Bzwith z € T is bad, we get

Wws > D In (3.15)

X,YEAN-1TeS(X,y)

Let K = (ﬁ)d be the volume of the factor torus and tef. .., tx be an ordering of all sites
of T. Then we have

HL ﬂ(CN) = ( Nd)ZK Z Z EL,B(H]-FJ o TBNt]) (316)

(XJ Y) I,y
where the first sum runs over collections of paxs y;), j = 1, ..., K, of distinct sites imAn_1
and the second sum is over all collections of separating surfacesS(x;, y;), j =1,..., K.

To estimate the right-hand side of (3.16) we defipg; (B) to be the quantity on the right-hand
side of (2.11), before taking the limit — oo, with A = B. Since each indicatdlr; o rgny
enforces bad blockdg + B(z + Nt;) for z € I'j, and the set of blockéd g + B(z + Nt;),
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Z € An-1, IS, fort; # tj, disjoint from the setAg + B(z + Ntj), z € An-1, We can use
chesshoard estimates (Theorem 2.4) to get

K
EL,[)’(H 1, o TBNtJ) < [PL,ﬁ(B)]lrlHu'HrKl- (3.17)
j=1
A standard contour-counting argument now shows that, for any distince Ay_1,
Z [pL,/;(B)]Irl < ClpL,/g(B)d (3.18)
reG(x,y)
with some constart; = ¢;(d), provided thap_ 4(B) is sufficiently small. The sum over collec-
tions of pairs(x;, yj), j = 1, ..., K, contains at mostN2%)X terms, allowing us to bound
c B\ K
M p(Cn) < (—m:ﬁz( ) ) : (3.19)

Since T 4(Cn)"* — Pg(Cn) @sL — oo, it follows thatpg(Cn) < caps(B)e~2, which
for pz(B) small enough, can be made smaller than sanyitially prescribed. O

Our final technical ingredient is an estimate on the Radon-Nikodym derivative of a Gibbs
measureu € &4 and the torus measure at the same temperature:

Lemma 3.4 LetA, c Z% be an L-block and IeT,, be a torus of sid@L. Let us viewA, as
embedded int@,_ and letP;_ 4 be the torus Gibbs measure @h.. Then for any a> 0 there
exists lg such that

e PPy 4(A) < u(A) < 2Py 4(A). (3.20)

forallL > Lo, anyu € &;, and any.#,, -measurable evend.

Proof. For finite-range interactions, this lemma is completely standard. However, since our
setting includes also interactions with infinite range, we provide a complete proof. We will prove
only the right-hand side of the above inequality; the other side is completely analogous.

First, from the DLR equation we know that there exists a configuratien(s,)y.zd, such that

1A Fre) () = p(A) (3.21)
with the left-hand side of the form (2.3). Letbe a configuration off;.. We will show that

w(- [ Fag)(s) and Py 4(-|Fac)(s) are absolutely continuous with respect to each other—as

measures o, —and the Radon-Nikodym derivative is bounded aboveﬁtﬁ‘y'rderegardless of
the “boundary conditions$ ands'.

Suppose thas, = s, for all x € AL and let§' be its A_-periodic extension to all o¥d.
Then the Radon-Nikodym derivative & 4(-|-#¢)(s) with respect to the product measure
[Tyen, vo(dsy) is e#Ha®)z, (S\e) while that of u (- |7 )(S) is e /MO /7, (sae). Itthus
suffices to show, uniformly itisy)xea, , that

IHa () — Ha (®)] < ng (3.22)
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oncelL is sufficiently large. To this end, we first note that

HA 9 = HA B)[ 22 D [1®allee (3.23)
A: ANAL#£8
ANAT £0
To estimate the right-hand side, we will decompadseinto “shells,” A, \ An_1, and use the fact
that if A intersects\p \ Ap—1 as well asA{, then the diameter oA must be at leadt — n. Using
the translation invariance of the interactions, we thus get

L
D Al £ D 1A Al DL [ Palloo (3.24)
A: ANAL#D n=1 . A:0eA
ANAY £0 diam(A)>L—n
But||®|| < co implies that the second sum tends to zerhasn — oo and sincgAn\ An_1| =
o(L% while >;_ .-, [An\ An_1]| = LY, the result is thus(L9). In particular, forL sufficiently
large, the right-hand side of (3.23) will be less t@lrf‘. O

3.2 Proofs of Theorem 2.5 and Corollary 2.6.

Now we are ready to prove our main theorem:

Proof of Theorem 2.5Fix € < 1> and letu € &, be aB-shift ergodic Gibbs measure for which
one of the conditions (2.15-2.16) fails. Applying Lemma 3.1 and the inclusion in Lemma 3.2 we
find that

:u(RM,N(CN) > 1/2) > oNd (3.25)

onceN > NgandM > Mp(N). Now, consider the toru¥, of sideL = 2MNB and em-
bedAyng = UXEAM_l(ANB + N BX) into T in the “usual” way. By Lemma 3.4 we know that
for anyfixed N > Ng, there exists a sequenag of positive numbers witlay, | 0 asM — oo,

such that we have
1
P g (Run(Cn) > 1) > Ne—NNB)"aMM", M — oo. (3.26)
Our goal is to show that, ondd is chosen sufficiently large, the left-hand side is exponentially
small inM¢, thus arriving at a contradiction.
By conditioning on which of thev /2 translates ofA gy haveCy satisfied, and applying the
chessboard estimates in blocks of shii&, we get

PLg(Run(Cn) > V) < oM° ﬁZL,ﬂ(CN)Md/za (3.27)

wherep, s(Cn) is the finite-torus version df;(Cn). Next we choose; < %4 and lets > 0
andN > Ny be such that the bounds in Lemma 3.3 apply. Then for all sufficiently lsfrdand
hence all large.) we havep, 5(Cn) < 1 and so

Py s(Run(Cn) > 2) < (4m™M72. (3.28)

But this is true for allM > 1 and so the bound (3.26) must be false. Hence, no gueh®,
could exist to begin with; i.e., (2.15-2.16) must hold forBdbhift ergodicu € &. O
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To finish our proofs, we will also need to establish our claims concerning phase coexistence:

Proof of Corollary 2.6.Suppose that ando are such that Theorem 2.5 applies. By condition (1),
the conclusions (2.15-2.16) of this theorem are thus available fgrall 1, £2]. This implies

pu(Gj) €[0,e]U[1 —¢€,1], =12, (3.29)

for every B-shift ergodicu € &, at everyp € [f1, f2]. We claim thatp, (G-) is small in every
ergodic statg: € 8y,. Indeed, by Lemma 6.3 of [5] and condition (2) of the corollary, we have

Pp(BUG2) < pp (B) + pp,(G)) < 20. (3.30)

Hence, if thed in Corollary 2.6 was so small that Theorem 2.5 applies for seme 1, even
when ¢ is replaced by & we can regard3 U G, as a bad event g8 = p; and conclude
thatp,(G2) < Y-, and hence,(G,) < €, by (3.29), in every ergodiz € &p,. A similar ar-
gument proves that, (G1) < e in every ergodiqu € &;,. Usual weak-limit arguments then yield
the existence of at least one pojhte (51, f2) where both types of goodness coexist. d

4. APPLICATIONS

The formulation of our main result is somewhat abstract. In the present section, we will pick
several models in which phase coexistence has been proved using chessboard estimates and use
them to demonstrate the consequences of our main theorem. Although we will try to stay rather
brief, we will show that, generally, the hypothesis of our main result—i.e., the assumption on
smallness of the parametgy(B)—is directly implied by the calculations already carried out in

the corresponding papers. The reader should consult the original articles for more motivation and
further details concerning the particular models.

4.1 Potts model.

The g-state Potts model serves as a paradigm of order-disorder transitions. The existence of the
transition has been proved by chessboard estimates in [25]. While the completeness of the phase
diagram has, in the meantime, been established with the help of Pirogov-Sinai theory [28], we
find it useful to illustrate our general claims on this rather straightforward example. Later on we
will pass to more complex systems where no form of completeness—and, more relevantly, no
“forbidden gap”—has been proved.

The spinssy of the g-state Potts model take values in the get . ., g} with a priori equal
probabilities. The formal Hamiltonian is

H(o) == dooys (4.1)
(x,y)

where(x, y) runs over all (unordered) nearest-neighbor pai&inThe states of minimal energy

have all neighboring spins equal, and so we expect that low temperature states are dominated
by nearly constant spin-configurations. On the other hand, at high temperatures the spins should
be nearly independent and, in particular, neighboring spins will typically be different from each
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other. This leads us to consider the following good events on 1-blgck

G¥={o: o #ayforallx,y e Ay, [x—y| =1}, 42)

GoM = l5: oy = mforall x € A}, m=1,...,q. '
Using similar events, it was proved [25] that, fbr> 2 andq sufficiently large, there exists an
inverse temperaturg andq + 1 ergodic Gibbs states™ e &4 andu®@™ e &5, m=1,...,q,
such that the corresponding 1-block densities satisfy

puas(G) > 1— ¢ (4.3)
and
Poam(GOE™) > 1 — ¢, m=1,...,q, (4.4)

wheree = €(q) tends to zero ag — oo. In addition, monotonicity of the energy density as a
function of  can be invoked to show that, (G%) is large in all translation-invariant € &;
wheng < f, while it is small in all such states wheh> p,.

The full completeness [28] asserts that the above-mentigried states exhaust the set of all
shift-ergodic Gibbs states iti;. A weaker claim follows as a straightforward application of our
Theorem 2.5:For each shift-ergodic Gibbs state € &, there is eitherp, (G¥) > 1 — ¢ or
pu(GOM) > 1 — ¢ forsomem=1,...,q.

The main hypothesis of our theorem amounts to the smallness of the queitity, where

B = (gdisu LqJ gord,m)c, (4.5)
m=1

which in turn boils down to an estimate on the probability of the disseminated Byemthe right-

hand side of (2.11). The needed estimate coincides with the bound provided in [25] by evaluating
directly (i.e., “by hand”) the energy and the number of contributing configurations. The result—
which in [25] appears right before the last formula on p. 506 is used to produce-{dedds

—2—(@-1 _ 1
qd 2 ~

(=208 (4.6)

ps(B) < [

This implies the needed bound onges> 1.

Remark4.1 Analogous calculations establish the corresponding forbidden gap in more compli-
cated variants of the Potts model; see e.g. [4].

4.2 Intermediate phases in dilute spin systems.

The first instance where our results provide some new insight are dilute annealed ferromagnets
exhibiting staggered order phases at intermediate temperatures. These systems have been studied
in the context of both discrete [10] and continuous spins [11]. The characteristic examples of
these classes are thige-diluted Potts modetith the Hamiltonian

H(n, o) = = > My(Gooy — D — A D Ny — 1 D 0yny (4.7)
(X,y) X (x,y)
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and thesite-diluted XY -modetith the Hamiltonian

H(n, ¢) = = D nny[codgy — gy) — 1] = 2D ne—x D" nyn,. (4.8)
(x.y) x (x.y)
Here, as beforesy € {1, ..., q} are the Potts spingy € [—x, ) are variables representing the

“angle” of the correspondin@ (2)-spins, andy € {0, 1} indicates the presence or absence of a
particle (that carries the Potts spip or the angle variabley) at sitex.

On the basis of “usual” arguments, the high temperature region is characterized by disordered
configurations while the low temperatures features configurations with a strong (local) order, at
least at small-to-intermediate dilutions. The phenomenon discovered in [10, 11] is the existence
of a region of intermediate temperatures and chemical potentials, sandwiched between the low
temperature/high density ordered region and the high temperature/low density disordered region,
where typical configurations exhibit preferential occupation of one of the even/odd sublattices.
The appearance of such states is due teféactive entropic repulsiorindeed, at low tempera-
tures the spins on particles at neighboring sites are forced to be (nearly) aligned while if a particle
is completely isolated, its spin is permitted to enjoy the full freedom of the available spin space.
Hence, at intermediate temperatures and moderate dilutions, there is an entropic advantage for
the particles to occupy only one of the sublattices.

Let us concentrate on the portion of the phase boundary between the staggered region and the
low temperature region. The claim can be stated uniformly for both systems in (4.7—4.8) provided
we introduce the relevant good events in terms of occupation vamaiNamely, we let:

géense— {(s,n): nc = Lforall x € A1},
Goven = {(O', N): Nx = Lixeven forallx e Al}’ (4.9)
godd — {(O', n): Ny = 1{X odd} forall x e Al}

Again, using slightly modified versions of these events, it was shown in [10, 11] that there exist
positive numberg, xg <« 1 and, for everyk € (0, xg), an intervall (x) c R such that the
following is true: For anyl € | there exist inverse temperaturggx, A) and f»(x, 1), and a
transition temperaturg(x, 1) € [f1, B2] such that

(1) foranyp e [B, B2] there exists an “densely occupied” stat&"see &4, for which
P uensd GIE™5g > 1 — e, (4.10)
(2) foranyp e [1, Bi] there exist two stateg®®", 1°% e &, satisfying
pueen(G) > 1—€ and  p,oa(G% > 1—e. (4.11)

The errore is of orderﬁ‘l/8 (cf. the bound (2.15) in [11]) in the case of tie¥-model ind = 2,
and it tends zero ag — oo in the case of the diluted Potts model.

A somewhat stronger conclusion can be made for the diluted Potts model. Namk&hy, A,
there are actuallg + 2 distinct states, two staggered stat€¥" and x°% andq ordered states
waensem with the latter characterized by the condition

pﬂdensem(gdensem) > 1- €, (412)
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where
Géensem — (g, n): ny = 1ando, = mforall x e A} (4.13)

It is plausible that an analogous conclusion applies to the XY-mod#I3n3 because there the
low-temperature phase should exhibit magnetic order. Howevdr=mr2 such long-range order
is not permitted by the Mermin-Wagner theorem and so there one expects to have only 3 distinct
ergodic Gibbs states #t.

A weaker form of the expected conclusion is an easy consequence of our Theorem 2.5: For
each extremal 2-periodic Gibbs states &, there exists e {G&®", G°44, Gdens§ (in the case of
diluted Potts modely e {Geven Godd gdensem 'm — 1. ..., q}) such that

pu(G) > 1—e. (4.14)

In particular, no ergodic Gibbs statee &g, has particle density ine[ 1o — €] U[V2 + €, 1 — €.

The proof of these observations goes by noting that the smallngss(B§ for the bad event

B = (GUYensey geveny goddy¢ is a direct consequence of the corresponding bounds from [10, 11]
of the “contour events.” In the case of the XY-model in dimendgdog: 2, this amounts to the
bounds (2.9) and (2.15) from [11].

Remark4.2 A more general class of models, with spin taking values in a Riemannian manifold,
is also considered in [11]. A related phase transition in an annealed dilugexd Heisenberg
ferromagnet has been proved in [12].

4.3 Order-by-disorder transitions.

Another class of systems where our results provide new information ar® tPenearest and
next-nearest neighbor antiferromagnet [3], the 120-degree model [5], and the orbital-compass
model [6]. All of these are continuum-spin systems whose common feature is that the infinite
degeneracy of the ground states is broken, at positive temperatures, by long-wavelength (spin-
wave) excitation. We will restrict our attention to the first of these modelsQi®)-nearest and
next-nearest neighbor antiferromagnet. The other two models are somewhat more complicated—
particularly, due to the presence of non-translation invariant ground states—but the conclusions
are fairly analogous.

Consider a spin system @f whose spinsS,, take values on the unit circle IR? with a priori
uniform distribution. The Hamiltonian is

H(S) = D (Sc- Scrtree, + Sc- Scrermer) +7 D (Sc- Sceey +Sc Sevy). (4.15)
X X

whereé&; andé&, are the unit vectors in the coordinate lattice directions and the dot denotes the
usual scalar product. Note that both nearest and next-nearest neighbors are coupled antiferro-
magnetically but with a different strength. The following are the ground state configurations
for y € (=2, 2): Both even and odd sublattices enjoy aéN@ntiferromagnetic) order, but the
relative orientation of these sublattice states is arbitrary.

It is clear that, at low temperatures, the configurations will be locally near one of the afore-
mentioned ground states. Due to the continuous nature of the spins, the fluctuation spectrum
is dominated by “harmonic perturbations,” a.kspin waves A heuristic spin-wave calculation
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(cf. [5, Sect. 2.2] for an example in the context of the 120-degree model) suggests that among
all 2z possible relative orientations of the sublattices, the parallel and the antiparallel orienta-
tions are those entropically most favorable. And, indeed, as was proved in [3], there exist two
2-periodic Gibbs stateg; andu, with the corresponding type of long-range order. However, the
existence of Gibbs states with other relative orientations has not been ruled out.

We will now state a stronger version of [3, Theorem 2.1]. Belbe a large even integer and
consider twoB-block eventsj; andg, defined as follows: fixing a positive « 1, let

Gi= (] (S-S 21-xk1n () {Sc-Sue < -1+l (4.16)
( X’y)E{\B o X,X+&eAp
y—X)-&=

i.e.,G1 enforces horizontal stripes all ovArg. The event, in turn enforces vertical stripes; the
definition is as above with the roles &f and&, interchanged. Then we have:

Theorem 4.3 Lety € (0, 2) and letk <« 1. For eache > 0 there exist$8y € (0, oo) such that
for eachp > po:

(1) There exist two ergodic Gibbs states, u» € &, such that
p,,j(g,-) >1—e¢, j=12 (4.17)

(2) There exists an integer B 1 such that for any: € &, that is ergodic with respect to shifts
by multiples of B we have

either p,(G1) > 1—€ or p,(Go) > 1—e. (4.18)

The first conclusion—the existence of Gibbs states with parallel and antiparallel relative orien-
tation of the sublattices—was the main content of Theorem 2.1 of [3]. What we have added here is
that the corresponding configurations domingteergodic Gibbs states. THe(2) ground-state
symmetry of the relative orientation of the sublattices is thus truly broken at positive tempera-
tures, which bolsters significantly the main point of [3]. Note that no restrictions are posed on
the overall orientation of the spins. Indeed, by the Mermin-Wagner theorem gven®; is
invariant under simultaneous rotations of all spins.

Proof of Theorem 4.3As expected, the proof boils down to showing that, for a proper choice

of scaleB we haveps(B) « 1 for B = (G1 U G»). In [3] this is done by decomposing into

more elementary events—depending on whether the “badness” comes from excessive energy or
insufficient entropy—and estimating each of them separately. The relevant bounds are proved in
[3, Lemmas 4.4 and 4.5] and combined together in [3, Eq. (4.20)]. Applying Theorem 2.5 of the
present paper, we thus know that ev@sshift ergodicu € &4 is dominated either by blocks

of type G1 or by blocks of typeg,. Sincep,(B) < e in all states, the existence pf, u, € &y
satisfying (4.17) follows by symmetry with respect to rotation (of the lattice) by 90-degréés.

4.4 Nonlinear vector models.

A class of models with continuous symmetry that are conceptually close to the Potts model has
been studied recently by van Enter and Shlosman [17]. As for our previous examples with con-
tinuous spins, Pirogov-Sinai theory is not readily available and one has to rely on chessboard
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estimates. We will focus our attention on one example in this classnénear ferromagnet
although our conclusions apply with appropriate, and somewhat delicate, modifications also to
liquid crystal models and lattice gauge models discussed in [17].

Let us consider a®(2)-spin system orZ? with spins parametrized by the angular variables
¢x € (—r, r]. The Hamiltonian is given by

H(¢)=_Z(1+cos(¢x—¢y))p’ (4.19)

2
x.y)

wherep is a nonlinearity parameter. Tlaepriori distribution of thepy's is the Lebesgue measure
on (-, z]; the differencep, — ¢y is always taken moduloz2

In order to define the good block events, we first split all bonds into three classes. Namely,
given a configurationigy )72, we say that the bon, y) is

(1) strongly orderedf |y — ¢y| < ﬁ
(2) weakly orderedf ﬁ < s — Pyl < % and

(3) disorderedf |¢y — ¢y| > %

HereC is a large number to be determined later. If a bond is either strongly or weakly ordered,
we will call it simply ordered

On the basis of (4.19), it is clear that strongly ordered bonds are favored energetically while
the disordered bonds are favored entropically. The main observation of [17]—going back to [14,
25, 1]—is that, at least in torus measures, ordered and disordered bonds are unlikely to occur
in the same configuration. This immediately implies coexistence of at least two distinct states
at some intermediate temperature. Moreover, since it is also unlikely to have many bonds in
the “borderline” region¢y — ¢y| ~ % the transition is accompanied by a jump in the energy
density. But, to prove that the energy gap stays uniformly positive as oo, it appears that
one needs to establish the existence of a free-energy barrier betwestnotingdy ordered and
disordered phases.

Let A; be a 1-block (i.e., a plaquette) and let us consider the following good events:on
The event that all bonds afa; are strongly ordered,

Geo = I — ] < Ciﬁ: vxy e Ar Ix -yl =1). (4.20)
and the event that all bonds @ are disordered,
Gas = {ldx — ) = =1 ¥x.y € Av, -yl =1]. (a.21)
JP

Then we have:

Theorem 4.4 For eache > 0 and each sufficiently large G 1, there exists ¢ > 0 such
that for all P> Po, there exists a numbes; € (0, co) and two distinct, shift-ergodic Gibbs
statesuS°, u% e &4, such that

puso(Gso) 21 —€ and p,as(Gais) > 1 — €. (4.22)
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In addition, for all shift-ergodic Gibbs statgs € &4, we have

either p,(Gais) > 1—€ or p,(Gso) > 1 —¢, (4.23)
while
pu(Gso) > 1 — € for all shift-ergodic u € &5 with g > f; (4.24)
and
pu(Gdis) > 1 — € for all shift-ergodic u € &4 with g < f;. (4.25)

Finally, for every p> po and C large, every ergodic Gibbs state will have energy near zero
wheng > f; and at leastl — O(C~?) wheng < f.

We remark that the existence of a first-order transition in energy density has been a matter of
some controversy in the physics literature; see [16, 17] for more discussion and relevant refer-
ences. The proof of Theorem 4.4 is fairly technical and it is therefore deferred to Sect. 5.

4.5 Magnetostriction transition.

Our final example is the magnetostriction transition studied recently by Shlosman and Zagreb-
nov [33]. The specific system considered in [33] has the Hamiltonian

H(o.1) = =D J(xy)owoy +5 D (hxy = RZ+ 1 D (fy =2y (4.26)
(x.Y) (x.y) xy).(2y)
Ix—z|=v2
Here the sites e Z9 label the atoms in a crystal; the atoms have magnetic moments represented
by the Ising sping. The crystal is not rigid; the variablegy € R, ryy > 0, play the role of
spatial distance between neighboring crystal sites.

The word magnetostrictiorrefers to the phenomenon where a solid undergoes a magnetic
transition accompanied by a drastic change in the crystalline structure. In [33] such a transition
was proven for interaction potentials= J(ry y) that are strong at short distances and weak at
large distances. The relevant states are characterized by disjoinacted

GO =A{(r,0): 1y <, VX, y € Ag, X —y| = 1}, (4.27)
andexpanded
GZPE ={(r,o)irxy = n+e VX, ye A, Ix—yl =1} N{ox = £1, Vx € A1}, (4.28)

block events. The parametefaande can be chosen so that there exigts= (0, co) for which
the following holds:

(1) Forallp < p; there exists aexpandedsibbs statg.®? € &, such thap,ex(GP) > 34,

(2) For all p > g there exist two distinctontractedGibbs stateq.®"* e &; such that

P yconte+ (gcontr,i) > 3/4.
In particular at = p; there exist three distinct Gibbs states; one expanded and two contracted
with opposite values of the magnetization. The authors conjecture that these are the only shift-
ergodic Gibbs states gt= p.
Unfortunately, the above system has unbounded interactions and so it is not strictly of the form

for which Theorem 2.5 applies. Instead we will use the following generalization:
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Theorem 4.5 Let d > 2 and consider a spin system with translation-invariant finite-range
interaction potential§®a) acz¢ such that the torus measure is reflection positive for all even L.
Letd, ..., G be acollection of good B-block events satisfying the requirements in Theorem 2.5
and letB be the corresponding bad event. Then foralt 0 there exist$ > 0—depending
possibly only on d but not on details of the model nor on n or B—such that fgr all O for
whichpg(B) < ¢ the following is true: Ifu € &4 is a B-shift ergodic Gibbs state with

> Eu(I®al) < oo, (4.29)
A: A€Zd
OeA
then we have
pu(B) €0, €] (4.30)
and there exists € {1, ..., r} such that
pu(G) > 1—e. (4.31)

Proof. The proof is virtually identical to that of Theorem 2.5 with one exception: Since the
interactions are not bounded, we cannot use Lemma 3.4 directly. Suppose we have a Gibbs
stateu that obeys (4.29) but violates one of the conditions (4.30—4.31) Ret(Cn) be as in
(3.4). Lemma 3.1 still applies and so we have (3.5) for sdine

Let L = MNB and letDy be the event that the boundary energy in the Boxs less
thancMd9-1 i.e.,

Dy = [ § |Da| < ch—l]. (4.32)
A ANAL#£D
ANAL #0

wherec is a positive constant. In light of the condition (4.29), the fact that the interaction has a
finite range, and the Chebyshev bound, it is clear that we can ckausthat. (D) < (4AN)~1
for all M. Hence, we have

(D N {Ru,n(CN) > Y2}) > (4.33)

NG
Next lets ands’ be as in the proof of Lemma 3.4 and suppose that bathds’ belong toDy,.
Then, by definition,
|Ha (8) — Ha (8| < 2cM? (4.34)

and, applying the rest of the proof of Lemma 3.4, we thus have

#(Dw N{RuN(Cn) > Y2}) < GZ’BCMd_lP’zL,/f(DM N{Ru,n(Cn) > Y2}). (4.35)
NeglectingD, on the right-hand side and invoking (3.28), we again derive the desired contradic-
tion onceM is sufficiently large. a

With Theorem 4.5 in the hand, we can extract the desired conclusion for the magnetostriction
transition. First, the energy condition is clearly satisfied in any state generated by tempered
boundary conditions. We then know that, in every such ergodic gtatsly a small number
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blocks will feature bonds that are neither contracted (and magnetized) nor expanded (and non-
magnetized):
pu(G%®), pu(G™**) € [0, e]U[L —€,1] and p,(B) <e. (4.36)

The existence of a phase transition follows by noting that the contracted states have less energy
than the expanded ones; there is thus a jump in the energy density as the temperature varies.

5. APPENDIX

The goal of this section is to prove Theorem 4.4 which concerns the non-linear vector model with
interaction (4.19). The technical part of the proof is encapsulated into the following claim:

Proposition 5.1 There exists a constantgC> 0 such that for allo > 0and all C > Cj the
following holds: There existsgp> 0 such that for all p> py we have

SuPpﬁ((gsoU gdis)c) <9 (5.1)
=0
and
ﬁ”_[noo pp(Gais) =0 and %Tg) pp(Gso) < 0. (5.2)

To prove this proposition, we will need to carry out a sequence of energy and entropy bounds.
To make our energy estimates easier, and uniforg ine first notice that there are constants 0
a < bsuch that

o2 < 1+ CZOS(X) < e_aXZ’

The argument commences by splitting the bad e¥ent (Gso U Ggis)© into two events: The
eventB,, that A; contains a weakly-ordered bond, aigiy = B \ Bwo Which, as a moment’s
thought reveals, is the event that contains two adjacent bonds one of which is strongly ordered
and the other disordered. The principal chessboard estimate yields the following lemma:

Lemma5.2 Suppose that G ,/p. Then

—1<x<1 (5.3)

1,
. _ —bk2/C2_—a/c? _a/c?
5 (Bwo) < 4(m|n{%2e 2ple=>/C e e %ezﬁe e }) (5.4)
and
1/2
P4 (Brmix) < 4(min{e-2ﬂ[§E‘b/°2-l-e‘a°21, ezﬂ(ﬁ)%}) (5.5)
forall # > 0and allx € (0, 1). Moreover, we have
_b
Ps(Gais) < mC./P exp{—2p[e ez — &3]} (5.6)
and
1 e
< - 5.7
pﬁ(gso) =T Cﬁ ( )
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Proof. Let Z, be the partition function obtained by integratintf&- over all allowed configura-
tions. Consider the following reduced partition functions:

(1) z9s, obtained by integrating@H subject to the restriction that every bondlip is disor-
dered.

(2) Z7°, obtained similarly while stipulating that every bondlin is strongly ordered.

(3) Z*°, in which every bond irT_is asked to be weakly ordered.

(4) z™*, enforcing that every other horizontal line contains only strongly-ordered bonds, and
the remaining lines contain only disordered bonds. A similar periodic pattern is imposed on
vertical lines as well.

To prove the lemma, we will need upper and lower bounds on the partition functions in (1-2), and
upper bounds on the partition functions in (3-4).

We begin by upper and lower bounds @d*®. First, using the fact that the Hamiltonian is
always non-positive, we have &'t > 1. On the other hand, the inequalities (5.3) and a natural
monotonicity of the interaction imply that

<1+ cos(;ﬁx —~ ¢y>)p B <w)p < e3¢ (5.8)

whenever(x, y) is a disordered bond. In particularsH_ is less than ﬁe‘ac2|TL| for every
configuration contributing t&@%s. Using these observations we now easily derive that

(@)™ < 28 < (2) T e, (5.9)

Similarly, for the partition functiorZ° we get

(ezﬁe*b"z/czz_’c)m' <7< znezﬁlTLl(i)lTLl_l, (5.10)
Cyp CVp
Indeed, for the upper bound we first note thatH_ < 28|T,|. Then we fix a tree spanning all
vertices ofT_, disregard the constraints everywhere except on the edges in the tree and, starting
from the “leaves,” we sequentially integrate all site variables. (Thus, each site is effectively forced
into an interval of IengthCZTb, except for the “root” which retains all of itsz2possibilities.) For
the lower bound we fix a number e (0, 1) and restrict the integrals to configurations such that
6x — byl < &5 for all bonds(x, y) in T,. The bound-AH, > 28e~*/*|T | then permits us
to estimate away the Boltzmann factor for all configurations; the entropy factor reflects the fact
that each site can vary throughout an interval of length at I§§§t

Next we will derive good upper bounds on the remaining two partition functions. First, similar
estimates as those leading to the upper bound in (5.10) give us

—a/c2 2C \ ITLI

Z% < 27 (ezﬁe /CZ—C) o (5.11)
VP

For the partition functiorz™ we note that/, of all sites are adjacent only to disordered bonds,

while the remaining/, are connected to one another via a grid of strongly-ordered bonds. Esti-

mating—pH, < g1+ e—aCZ)|TL| for all relevant configurations, similar calculations as those
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leading to (5.10) again give us

mix (l+e‘ac2)|']1'|_| 1Tl (L %lTLl_l
7% < 27 e (27)+ Cﬁ) . (5.12)

It now remains to combine these estimates into the bounds on the quantities on the left-hand side
of (5.4-5.5) and (5.6-5.7).

We begin with the bound (5.6). Clearly; (Gais) is theL — oo limit of (Z%S/Z,)Y/1TL!, which
using the lower bound_ > Z° with x = 1 easily implies (5.6). The bound (5.7) is obtained
similarly, except that now we use that > Z%. The remaining two bounds will conveniently
use the fact that for two-dimensional nearest-neighbor models, and square tori, the torus mea-
sureP 4 is reflection positive even with respect to the diagonal plané inindeed, focusing
on (5.4) for a moment, we first note thiy},, is covered by the union of four (non-disjoint) events
characterized by the position of the weakly-ordered bond\gn If B is the event that the
lower horizontal bond is the culprit, the subadditivity propertypgf—see Lemma 6.3 of [5]—
gives uspz(Buo) < 4p5(B§V13). Disseminating3{ using reflections in coordinate directions, we
obtain an event enforcing weakly-ordered bonds on every other horizontal line. Next we apply a
reflection in a diagonal line of even parity to make this into an even parity grid. From the per-
spective of reflections in odd-parity diagonal lines—i.e., those not passing through the vertices of
the grid—nhalf of the “cells” enforces all four bonds therein to be weakly ordered, while the other
half does nothing. Applying chesshoard estimates for these diagonal reflections, we get rid of the
latter cells. The result of all these operations is the bound

i)w
VAl ’
EstimatingZ,_ from below by the left-hand sides of (5.9-5.10) now directly implies (5.4).

The eventBix is handled similarly: First we fix a position of the ordered-disordered pair
of bonds and use subadditivity pf to enforce thesamechoice at every lattice plaquette; this
leaves us with four overall choices. Next we use diagonal reflections to produce the event under-
lying Z{"*. EstimatingZ, from below byY,-th power of the lower bound in (5.9) adg-th power
of the lower bound in (5.10) witk = 1, we get the first term in the minimum in (5.5). To get the
second term, we use that > Z8s, apply (5.12) and invoke the boundile2% < 2. O

Ps (Bwo) < L”—r>noo 4( (5.13)

Proof of Proposition 5.1. The desired properties are simple consequences of the bounds in
Lemma 5.2. Indeed, i€ is so large that €/C”* > e=2%" then (5.6) implies thap;(Ggis) — O
asf — oo. On the other hand, (5.7) shows that the> 0 limit of p,(Gso) is ordery 5, which
can be made as small as desired by choogisgfficiently large.

To prove also (5.1), we first invoke Lemma 6.3 of [5] one last time to seepthd) <
P (Buwo) + 95 (Bmix). We thus have to show that batlh(Bwo) andp s (Bmix) can be made arbitrary
small by increasing appropriately. We begin withs(Bmix). LetC be so large that

3,—b/C2 —ac?
e —1-e“ >0 (5.14)

Then for g such that & > pl/4 the first term in the minimum in (5.6) decays like a negative
power of p, while for the complementary values gf the second term i@(p‘l/s). As to the



24 M. BISKUP AND R. KOTECKY
remaining termp(Bwo), here we choose € (0, 1) such that
e D?/C* _gma/C? o (5.15)

and apply the first part of the minimum in (5.4) féwith ¢/ > /P, and the second part for the
complementarys, to show thap;(Buo) is also bounded by constants time a negative powe, of
independently off. Choosingp large, (5.1) follows. O

Now we can finally prove Theorem 4.4:

Proof of Theorem 4.4We will plug the claims of Proposition 5.1 in our main theorem. First,
it is easy to check that the good block eve@ts and Gyis satisfy the conditions (1) and (2) of
Theorem 2.5. Then (5.1) and (2.15-2.16) imply that

either p, (Gais) > 1 —€ or p,(Gsg) > 1—€ (5.16)

for all shift-ergodic Gibbs states € &4 and allg € (0, co). The limits (5.2) and Corollary 2.6
then imply the existence of the transition temperatéyr@nd of the corresponding coexisting
states. Since the energy density with negative sign undergoes a jyinfsan valuesg e~b/C?

to valuessg e~aC’_which differ by almost one oncg > 1—all ergodic states fof > S; must
have small energy density while the statesfok p; will have quite a lot of energy. Applying
(5.16), all ergodiqu € &4 for § > p must be dominated by strongly-ordered bonds, while those
for f < p; must be dominated by disordered bonds. O
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