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Abstract: We consider the Ising systems dndimensions with nearest-neighbor fer-
romagnetic interactions and long-range repulsive (antiferromagnetic) interactions that
decay with powes of the distance. The physical context of such models is discussed,;
primarily this isd = 2 ands = 3 where, at long distances, genuine magnetic interac-
tions between genuine magnetic dipoles are of this form. We prove that when the power
of decay lies abovd and does not exceatl+ 1, then for all temperatures the sponta-
neous magnetization is zero. In contrast, we also show that for powers excdegihg

(with d > 2) magnetic order can occur.

1. Introduction

While most of our knowledge of statistical mechanics is derived from studies of model
problems with short-range forces, in nature interactions more often fall off only in pro-
portion to an inverse power of the distantky) ~ 1/rS. This includes systems inter-
acting via Coulomb forcess(= 1), dipolar interactionsg(= 3) as well as interactions
caused by collective effects such as strain induced interactions in solids or the effective
entropic interactions (analogous to Casimir forces) in lipid films. When the interac-
tions are sufficiently long-range, i.e., when< d whered is the spatial dimension,
the very definition of the thermodynamic limit is different than for short-ranged mod-
els. However, even when> d there can be qualitatively new, or at least unexpected,
phenomena, cf, e.g., [2—4, 29].

In the present JJaper we study a class of systems with long-range forces; namely, the
Ising models orZ%, d > 1, which are defined by the (formal) Hamiltonians

1
H:—%Jai01+§;Ki,jaiJj. (1.1)
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Hereo; € {+1, —1},i andj index sites irz4 and(i, j) denotes a nearest neighbor pair.

The above notation expresses the relevant signs of all the coupling® is the short-
rangeferromagnetidnteraction whileK; ; > 0 represents thantiferromagnetidong

range interaction which we assume decays with p@weéthe distance betweérand].

We investigate the question of presence, and absence, of spontaneous magnetization in
such models.

The motivation for this work was provided by a paper of Spivak and one of us [27]
where it was conjectured that, in the presence (or absence) of an external field, discon-
tinuous transitions permitting coexisting states of different magnetization are forbidden
for antiferromagnetic power law interactions with rarje< s < d + 1. A heuristic
proof by contradiction was presented based on the explicit construction of a “micro-
emulsion” phase which has a lower free energy than the state of macroscopic two-phase
coexistence. Simply put, the anticipated surface tension between the two pure phases
would be negative—and divergent. The proof is heuristic in the sense that it makes the
physically plausible assumption that correlations in the putative coexisting phases have
reasonable decay and that there is a well defined interface.

As it turns out, versions of the above conjecture are actually more than 20 years
old. For example, on the physics side, modulated phases in 2D dipolar ferromagnets
were analyzed in [1, 11, 18]. On the mathematics side, in [8], models with extreme
anisotropic repulsive interactions which haxeryslow decay, but only among a sparse
set of spins, were considered and absence of spontaneous magnetism was proved. The
isotropic caselJ (r) ~ 1/r, was also mentioned in [8] and the significance of the
intervald < s < d + 1 for the absence of magnetization was highlighted (with no
mention ofs = d + 1). Related problems were described in [17] for systems with
longer range, e.g., Coulomb, interactions and in [8, 9] for the current setupO«ith
spins. Furthermore, general theorems demonstrating instability of phase coexistence
under the addition of generic long-range interactions have been proved in [7,16,26]. In
the present paper we provide a full proof of the absence of ferromagnetism in the model
(1.1) withd < s < d + 1 thereby vindicating completely the arguments of [27]—at
least forh = 0.

The mathematical result presented in this note has the following consequence for
2D physics: Two-dimensional magnetic systems often have strong “crystal field” ef-
fects which orient the electron spins (largely or entirely) in théirection, perpen-
dicular to the plane in which they reside. This gives the problem of magnetic order-
ing an Ising character. Interactions between nearby spins—quantum mechanical and
somewhat complicated—are, often enough, of the ferromagnetic type and considerably
stronger than the direct magnetic dipolar interactions (which are a relativistic effect).
Thus, it seems reasonable to study Ising ferromagnets in 2D contexts and conclude
that there is a definitive possibility for ferromagnetism. However, while possibly weak,
there isalwaysthe long-range r 3 repulsive interaction. The conclusion of this note is
that, no matter how small its relative strength may be, this interaction will preclude the
possibility of ferromagnetism among taecomponents.

We remark that the absence of magnetization certainly does not disallow other types
of ordering. Indeed, a large body of physics literature [1, 5, 6, 10, 11, 14, 18, 19, 21—
23, 27], points in the direction of modulated (striped and/or bubble) states in this and
related systems. (For an extremely insightful review of the phases produced by models
of this sort and many experimentally clear realizations of the corresponding physics,
see [24].) From the perspective of mathematics, recent rigorous estimates on ground-
state energies [13], which are asymptotiain> 2 and exact ird = 1, also indicate
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striped order in the ground state. In fact, for certain special cases of the 1D ground-state
problem, this has been established completely.

The organization of the rest of this paper is as follows: In the next section we define
all necessary background and state the main results. In Sect. 3 we derive some estimates
on the strength of the long-range interaction between a box and its complement. These
are assembled into the proof of the main result in Sect. 4. Sect. 5 contains some open
problems and further discussion.

2. Statement of main results

As mentioned, for the problem of central interest we hidye ~ |i — jiI=%ind = 2,
where|i — j| is the Euclidean distance, but we may as well treat all powers for which
the interaction is absolutely summable. To be definitive we will simply takes ford,

1
Kij=—+——= 2.1
R @D
with the provisoK;; = 0. We remark that more generality than (2.1) is manifestly
possible as is also the case with the ferromagnetic portion of the interaction in (1.1).
However, these generalities would tend to obscure the mechanics of the proofs and so
we omit them.
In order to define the corresponding Gibbs measures, ketZ¢ be a finite set and,
given a configuration € {+1, —1}Zd, letHy = Ha (oA, 0 Ac) denote the Hamiltonian
in A which is obtained from (1.1) by pitching out all terms withth i andj outsideA.
Sinces > d, the corresponding object is bounded uniformlyinThen the DLR for-

malism tells us that a probability measure {afl, —1}Zd—equipped with the product

c-algebra—is a Gibbs measure if the regular conditional distributiarno& (;)ica
given a configuration sc = (oj)jeac in the complemeni® = 74 \ A is of the form

Zp(ope) tePHrlnn0), (2.2)
where
Zp(oae) = D e/ Halonone) (2.3)
OA

is the partition function. We will use the notatigr) to denote expectations with re-
spect to Gibbs measures (which may often stay implicit).

We wish to establish that all Gibbs measures corresponding to the above Hamil-
tonian have zero average magnetization ance (d, d + 1]. We will employ some
thermodynamic arguments based, ultimately, on the notion of the free energy. To define
this quantity, letZ n(o Ac) denote the partition function in with the Hamiltonian

HA(O'A,UAC)—hZGi, (2.4)
ieA

i.e., for the model in homogeneous external field.et

AL = [-L, L]9nzZd. (2.5)
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Then there exists; = o(]A|)—with little-o uniform in h—such that for all, 6 €
d
{_15 1}Z ’

ZA, h(oac
‘| Zanloap)) o (2.6)
ZAL,h(UACL)
In particular, the limit
1
f(B,h) = —E L“m m'OQZAL,h(O'ACL) (2.7)

exists and is independent of the boundary condition. Furthermore, the fufliction
f (B, h) is concave for alh.

The independence of the free energy on the boundary condition is standard and fol-
lows from the uniform bound on energy per site; cf [25, Theorem 11.3.1]. In Sect. 3 we
will show that, perhaps not surprisingly, is orderLmaX2d—s.d—1} \yith 3 logarithmic
correctionas = d + 1.

The concavity of the free energy now permits us to definesgfmataneous magneti-
zation m. = m, () via the right-derivative oh — f (g, h) ath =0

of
=—— . 2.
Mme=—=1 (2.8)
Itis clear that, by the plus-minus symmetry built into the model, the corresponding left
derivative equals-m,.

The statement of our main result is as follows:

Theorem 2.1.Consider the interaction described by the Hamiltonian in (1.1-2.1). Then
foralls € (d,d + 1] and all p € (0, c0), the spontaneous magnetization,, fi$ zero.

The regimed < s < d + 1 of exponents for the vanishing of the spontaneous mag-
netization was surmised already in [8]; the present work covers this and, in addition, the
somewhat subtle borderline case= d + 1. The above is about as strong a statement
as possible concerning the absence of magnetic order from a thermodynamic perspec-
tive; the implications for statistical mechanics are similar in their finality. Indeed, the
following standard conclusions are implied for the properties of equilibrium states:

Corollary 2.2. Let se (d,d + 1] and letu be any infinite-volume Gibbs measure for
the Hamiltonian in (1.1-2.1) at inverse temperatyres (0, c0). Let AL be as in(2.5).
For eache > 0 there exist$y > 0 such that for all L sufficiently large and-almost
every boundary conditiomAi,

ﬂ(‘z O'i‘ > €|AL|

ieAL

aAf) < oAl (2.9)

In particular, u-almost all configurations- have zero block-average magnetization,
=0. 2.10
Jm, |A|_| 2 0= (2.10)
ieAL

Finally, in any translation-invariant (infinite volume) Gibbs state, the expectation of the
spin at the origin is zero.
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The last statement should not be interpreted as a claim that the state is disordered. In
fact, as already mentioned, one expects the occurrence of “striped states” at sufficiently
low temperatures; see our discussion in Sect. 1 and also Sect. 5. Note that no restrictions
are put the nearest-neighbor couplibgthe theorem works for all € R.

To complement our “no-go” Theorem 2.1, we note that for expongnisd + 1,
spontaneous magnetizatiaill occur under the “usual” conditions:

Theorem 2.3.Let d > 2, pick s> d + 1 and consider the interaction as described in
(1.1-2.1). Then there exigtE Jo(s, d) € (0, c0) and G = Cp(d) € (0, oo) such that
forall f(J — Jp) > Co,

m, > 0. (2.11)

In particular, under such conditions, there exist two distinct, translation-invariant ex-
tremal Gibbs states—)* and (—)~ such that

ooyt = —(0g)” > 0. (2.12)

Strictly speaking, this result could be proved by directly plugging in a theorem
from [12, Section 3], which is based on an enhanced Peierls estimate. Instead, we pro-
vide an independent way to estimate the contour-flip energy which is technically no
more demanding and permits the use of sharp contour-counting arguments [20] to de-
rive good estimates ody and the critical value of at which the transition occurs. As
a result, the corresponding constants can be bounded as follows:

logd

T4 and Co< c—. (2.13)

J<C—rou-uou-—
0= d+1-s

whererq is the “surface” measure of the unit spher&f andC is a constant of order
unity.

3. Estimates on interaction strength

In this section we will perform some elementary but in places tedious calculations that
are needed for the proof of our main results. We begin by an estimate on the energy cost
of turning large magnetized blocks to opposite magnetization:

Proposition 3.1.Let AL be as above and, for the couplings, Kdescribed in(2.1),
consider the discrete sum
T = > Kij. (3.1)

ieAL
jeAy
Then, as L tends to infinity:
() Ford <s<d+1,
TL ~ L&-sQ (3.2)
where@ e (0, oo) is the integral

dx dy
Q=/xesl e (3.3)

yeS

with § = {x e RY: |x|1 < 1}.
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(i) For s = d + 1, there exists a constant A A(d) € (0, co) such that
TL ~ AL% YlogL. (3.4)

In both (i) and (ii) the symbot- is interpreted to mean that the ratio of the two sides
tends to unity in the stated limit.

To prove this claim, we will instead consider the quanfity, which is defined in
the same fashion af_ except that the “inside sum” now ranges over_, instead
of A, providing us with a cutoff scala. Of course we must allo@ — oo and, for
s € (d, d+ 1), not much more is actually required but, to save work, we shall insist that
a/L9t1=s 5 0. (Indeed, we remark that while most of the up and coming ismiattly
necessary for these cases, it will allow for a unified treatment later.) For the the marginal
case os = d + 1 we need to implement the stronger requirementahiédgL — 0.

Our claim is that the augmented quantities have the asymptotics that was stated
for their unadorned counterparts. This is sufficient since, keeping in mind the above
requirements,

Tia< T <Tia+2d8L (3.5)

where
Es= > Koj <00 (3.6)
i
denotes the maximum antiferromagnetic energy associated with a single spin flip.
For the purposes of explicit calculations, it will be convenient to repkacg with

the quantitiesii’j obtained by “smearing” the interaction about the unit cells surround-
ing the sites andj:

. dx dy
K|,J _[X ||oo 1/2 |X yIS (37)
Iy=iloo<¥2
It is noted that since all distances exceed (the large quatjtije approximation is
not severe:
KI j KI j

T oas = K < T0ga 1 (3:8)

whered is a number of order unity. Thus, to prove the asymptotics foflthg, we may
insert theK; ; and then perform blatant continuum integration.

As a technical step, for the proof we will need to calculate the total (long-range)
interaction between the line segmértL, —a) on thex-axis and the half-space &Y
containing all points with positive-coordinate:

Lemma 3.2.Consider the integral

L 00 1
I1(L,a) = d d d . 3.9
ut-2) / X/o Y Joar T+ y)2 + 22572 (3.9)

In the limit when gL — O (with L > 1) when s< d + 1 and|logal/logL — 0O
whens=d + 1,

CqLOd+1-s, ifd <s<d+1,

3.10
CiloglL, ifs=d+1, ( )

I1(L,a) ~ {

where G = C1(d, s) € (0, 00).
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Proof. Scalingz by x + y yields

L %)
l1(L,a) =Cy / dx/ dy (x + y)9-1-s (3.11)
a 0
where q
- z
Cl = /]Rd_l W (3.12)

From here the result follows by direct integratior
Now we are ready to prove tlee< d + 1 part of Proposition 3.1:

Proof of Proposition 3.1(i)Forr < 1 let Q, denote the integral (3.3) witk restricted
to a cubes instead ofS;. Let 'I:L,a denote the quantity, , with K; j replaced by<~i,j .
A simple scaling yields

TLa=L%"50; a . (3.13)

Hence, all we need to show is th@t remains finite as 1 1. This in turn boils down
to the absolute convergence of the integral defirihg
To show thaiQ < oo we note that the quantiit. —a)9=111(L —a, a) in Lemma 3.2
may be interpreted as the integral |&f — y|~5 overx € A|_, and overy ranging
through the half-space marked by the hyperplane passing through a given side of the
cubeA_. This implies
TLa<2dL97Yy(L —a,a) (3.14)

and, more importantly,
Q < 2d11(1,0). (3.15)

By Lemma 3.2 and the Monotone Convergence Theoigiid, 0) < oo when s <
d+1. O

The proof of the critical cases = d + 1, is more subtle. The following lemma
encapsulates the calculations that are needed on top of those in Lemma 3.2:

Lemma 3.3.Let se (d, d 4+ 1] and consider the integral

L L 00 00 1
lp(L,ay= [ dx [ dy [ dx [ dy [ dz _ _ .
. /a /a y/o /0  Jao [(X+X)2+(y+y)2+|2|2](53/>21

There exists = C»(d, s) < oo such thatfor L>>» a > 1,

6)

I2(L,a) < CoL9+27s, (3.17)

Similarly to the quantity1 (L, a) in Lemma 3.2, the integrdb(L, @) may be inter-
preted as the total interaction between the squate, —a) x (—L, —a) in the(x, y)-
plane and the quarter-spacelRd containing all points with positive andy coordi-
nates.

Proof of Lemma 3.3Applying the bound
X+ 2024+ (Y+ 92+ 12? > X2+ %2+ y> + 92 + [2)? (3.18)
and scaling by the root ofx? + %2 + y? + y2 we get

d—2-s

L L [e9) o) _
I2(L,a)§O(1)/ dx/ dy/ d)“(/ dy [x*+ %+ y?+9?] 2 (3.19)
a a 0 0
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Writing
r2=x?>+y?> and p?=%x2+V? (3.20)

we pass to the polar coordinates in both pairs of variables—with(0, co) and, as an
upper boundr e (35, 2L)—yielding the result

d—

2L 0 s 2L
Io(L,a) < 0(1)/ drr/ dp p[r?+ p? 2 =0(1)/ drrd+1-s. (3.21)
a/2 0 a/2

Here we scale@ by r and integrateg out to get the last integral. Singe< d + 1, the
integral overr is orderL9t2-S, o

Proof of Proposition 3.1(ii)In this case we cannot simply seet= 0 and apply scaling.
Notwithstanding, we still have the bound

TLa<2dL97ty(L —a, a). (3.22)
By Lemma 3.2, we have
TLa < 2dCiL%ogL[1 + o(D)], L - . (3.23)

We claim that this bound is asymptotically sharp. Indeed, (3.23) overcounts by in-
cluding (the integral ovey in) the intersection of two halfspaces—marked by two
neighboring sides ofA\| —multiple times. In light of the aforementioned interpretation
of 12(L, @), the contribution from each such intersection is boundetd B2 I (L, a).

By Lemma 3.3, this is at most ordef 1. Hence we have (3.4) withA = 2dC;. O

Theorem 2.3 will require us to show that, fer> d + 1, the total strength of the
long-range interaction through the boundary of a finite set is of order boundary:

Proposition 3.4.Let s> d + 1. Then there is a constantsG= C3(d, S) < oo such that
if A c 79 is finite and connected, then

> D Kij < CaloAl (3.24)

ieA jeAC
where|dA| denotes the number of bonds with one endpoint #nd the other inA°.

Proof.Let V c RY denote the union of unit cubes centered at the site's. dfet

W = {y e V¢ dist(y,V) > 1}. (3.25)
In light of (3.8), it suffices to show that, for sonte < co,
1
d /dx <CZX(oV), 3.26
[ oy [ axo——s <cx@v) (3.26)

whereX denotes the surface measuresdh (Indeed, we hav& (6V) = [0A].) To this
end we note that the function — (d — s)|x|~S is the divergence of the vector field
X = X/|X|S. The Gauss-Green formula thus tells us that foyadl (V¢)°,

/d t _ 1 /T(X)'(X_y)z(dx), (3.27)
\Y oA

X
X—y|® d-s X —y[®
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wherez(x) is the unit outer normal to the surface at panfwhich is well defined
¥-a.e. becausgV is piecewise smooth). Buit (X) - (X — y)| < |x — y| and so

1 1 1
dx < / ¥ (dx 3.28
/v IXx—yIsS = s—d Jop Ix—yst (@) (3:28)

Buts > d + 1 ensures that — |x — y|~ 6~ is integrable ovety € RY: |y — x| > 1}
and so integrating ovey, applying Fubini’'s theorem, extending theintegral from
y e Wto{y: |y — x| > 1}, and setting

C=(- d)_l/Rd |Z|l_sl{|z|21} dz, (3.29)

we get (3.26). O

4. Proofs of main results

Here we will prove the results from Sect. 2; we begin with Theorem 2.1. In our efforts to
rule out thatm, > O, it is useful to have a definite state that exhibits the magnetization.
Our choice will be the limit of states at positive external field that are constructed on
the torus.

Definition 4.1. Let h > 0 and let(—)T.;, denote an infinite volume state for the in-
teraction described in (1.1-2.1) at inverse temperatdrand external field h that is
constructed as a limit of finite volume states with toroidal boundary conditions. We de-
fine (—) to be any h| 0weak limit of the states-)r.,,. When the occasion arises, we
will denote the measure associated with this stataby

Lemma 4.2.The measureT is a Gibbs measure for the interaction described in (1.1-
2.1) atinverse temperatuge Moreoverwr is translation invariant, it satisfiegr o) =
m, and if m_ denotes the block magnetizations,

1
mg = A_ aj, (41)
[ALl e
then for anyu with0 < ¢ < m,,
lim wr(mg > w)y =1 (4.2)
L—oo

Proof. These are standard results from the general theory of Gibbs states. Indeed, trans-
lation invariance follows by construction while the fact that is Gibbs is a result of the
absolute summability of interactions; cf. [25, Corollary 111.2.3]. To compute the expec-
tation (o) we recall that concavity of the free energy ensures that foharyh < h”

and any translation-invariant Gibbs state), at external fielch,

of of
— S, (4.3)

The definition ofm,—and the construction of—)r—then implies(ao)T = m,. Fi-
nally, we claim thatm_ — m, in wp-probability, implying (4.2). Indeed, if the random
variablem_ were not asymptotically concentrated, then

(B, h") < (oo)h < —

cL:=wr(MmL > M, +¢€) (4.4)
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would be uniformly positive (at least along a subsequence) for some0. But then
the DLR conditions and (2.6-2.7) would imply that, for amy 0,

e INLImtd o (iniimy <%> _ e IAITEN-TBO+0m] (45
ALOIT
Hence we would conclude
f(8.h)— £(8,0) < (M. + e)h, (4.6)
in contradiction with (2.8).

We now define the random analogue of the quardtitglenoted by . In each con-
figuration this quantity measures the antiferromagnetic interaction between the inside
and outside of a box of scale

T = Z Ki,joioj. (4.7)
ieAL
jeAy
The central estimate—from which Theorem 2.1 will be readily proved—is as follows:

Proposition 4.3.Consider the interaction described by (1.1-2.1) witke S(d, d + 1]
and g € (0, ) and let m. denote the spontaneous magnetization corresponding to
these parameters. For eache (0, 1) there is Ly < oo such that for L> L,

(T > AM2TL. (4.8)

To facilitate the proof we will state and prove a small lemma concerning the averag-
ing behavior of the j’s:

Lemma 4.4.Let¢ and a be such that & ¢ and let \{ and \b be two translates of\,
such thatdist(V1, Vo) > a. Then for any € {+1, —1}Zd andany p € Vp and jp € Vo,

4 2
Z Ki,joioj — Kio,Jo(_z 0i)<z oj) < CaKio,j(J'A[' . (4.9)
ieVqp ieVqp jEVz
jeVa
Here C is a constant independent oftag, ig or jo.
Proof. This is a simple consequence of the bound
{
[Ki.j = Kiojo| < C=Kig.jo (4.10)

which follows by (discrete) differentiation of the formula (2.1) and using the fact that
the distance betweewy, andV; is at least, while the difference between the minimum
and maximum separation & andV, is a number of ordef and¢ < a. O

Proof of Proposition 4.3Fora = a(L) tending to infinity in the fashion described in the
proof of Lemma 3.1, it is sufficient to establish the inequality in (4.8) Witlreplaced
by Ti 2 andT_ replaced by its random analogue, a, defined by the corresponding
modification of (4.7). We will need to introduce one more length scale, nathely
¢(L) which will also tend to infinity but in such a way th& — 0. We will assume
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thatL, a and/ are such that bothh| _5 and A{ may be tiled by disjoint copies of,.
(Technically this only proves the result for a subsequence but the extension is trivial.)

Let V1 and V> denote translates of, with V1 c AL _3 andV> C ACL and let us
pickip € V1 andjp € Vo. Let

qc = wr(mg > p). (4.11)

The following is now easily derived using Lemma 4.4: On the event that the average
magnetization in botV; andV, exceeds: (which has probability at least2 — 1) the
contribution ofi € Vq andj € V> to the random variabl&_ 5 is at least

[14 Oa)]Kig, ol Aclp?. (4.12)

On the other hand, on the complementary event (which has probabiitygd the
contribution can be as small as

—[1+ O] Kig, jol Acl?. (4.13)
This means that the blockg andV> contribute to{T | 5)T at least
[14 O“a)]Kig.jol Al (1?20, — 1) — (1 —qp)]. (4.14)
Finally, Lemma 4.4 also gives
Kig.jolAcl? = [14+ 0(%a)] D_ D Kij. (4.15)
ieVy jeVs

Noting that the erro©(%/5) holds uniformly in the position o¥/; andV,, we may now
sum over all (disjoint) translates & andV in AL _5 andA¢, respectively, to get

(TLa)T = [1+ O(%a)] (120 — 1) — (1 — 6¢)) TL a (4.16)

Since we assumeg, — 0 andg, — 1 asL — oo, the right-hand side exceedi;azTL
onceL > 1. O

Proof of Theorem 2.1By the inherent spin-reversal symmetry, an enhancement of the
standard Peierls contour (de)erasement procedure yields, far any,

wp(TL > kT < e 2AKTL-2d3L (4.17)

Indeed, considering the probability conditioned on the configuration outsideve

may split the energy into two parts: the energy insiig(c) and the energ¥Epdry(o)
across the boundary @t . The important difference between these objects isHyat

is invariant under the (joint) reversal of all spinsAn , while Epgry changes sign. Using

the fact that the conditional measure has the Gibbs-Boltzmann form, and restricting the
partition function in the denominator to configurations obeying< —« T, we get

Zo_: T kT, e—ﬁ[Ein(U)'f‘Ebdry(U)]
wr(TL > kT |oAc) < 11 <y, € PIER(@)+Eoary(@)]” (4.18)
LTI
Now let us reverse all spins it in the lower sum; this yields
. e—ﬁ[Ein(”)'f‘Ebdry(ﬂ)]
wr(TL > kTL|oac) < LTzl (4.19)

o TLsKTL e—ﬁ[Ein(U)—Ebdry(U)] ’
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But
Ebdry(0) > kT —2dJ L1 (4.20)

for everyo in these sums and so (4.17) holds pointwise@(T_ > x T |o Ac). Inte-
grating over the boundary condition, we get (4.17).
To finish the proof, we now note

(Tu)r < TLwr(TL = «TL) +xTLwrp(TL < &Ty). (4.21)

We learned in Proposition 4.3 that for ahy 1 the left hand side is bounded below by
/lmeL for all L large enough. Thus we hawé € (0, 1) andvi € (0, 1)

2

/1 —_
M =X wp(TL > «TL) (4.22)
1-x)

oncel > 1. But Proposition 3.1 tells s, > L9 and so, in light of (4.17), the
L — oo limit forcesim? < «. Takingx | 0 yieldsm, = 0 as claimed. 0O

Proof of Corollary 2.2Let x be an arbitrary Gibbs state. A variant of the inequality in
(4.5) tells us that, for ank > 0,

hiALle ZALh(aAg)

ML > €lopc) < € 4.23
p(me > elope) < Znco@ns) (4.23)
Sincem, = 0, the ratio of the partition functions behaves like
ZA h(oAc)
S————= = exp{lAL[o(h) + o(1)]) (4.24)

ZaL,0(04¢)

and so, choosing & h « 1, the right-hand side decays exponentiallyj A |. An
analogous derivation (involvin < 0) shows a bound op(m_ < —¢). The second
part of the claim now follows by the Borel-Cantelli lemmaa

We will also finish the proof of the existence of magnetic ordersford + 1:

Proof of Theorem 2.3The proof is a simple modification of the standard Peierls ar-
gument. Consider the bax,; and Iet;ﬂLL denote the Gibbs measure &y with plus
boundary condition im{ . We claim that;u“,_L(ao = —1) « 1 onceJ andp are suffi-
ciently large (ind > 2). Indeed, given a connected getc AL whose component is
connected and which contains the origin, &t denote the event thaty = —1 and
thatoA is the outer boundary of the connected component B containing the ori-
gin. (In other wordsA° is the unigue infinite connected component in the complement
of the connected component-efl’s containing 0.)

Giveno € Ay, leto’ be the result of flippingll spins inA (including the+1's).
We have

Ha (6) — Ha (") > 2J|0A| — 22 Z Ki.j. (4.25)
ieA jeAC

By Proposition 3.4 the second term in the exponent is bound€xa |. Letting Jo =
Cs and applying the argument in (4.18-4.19), we thus get

1 (Ap) < e72PU=IAL (4.26)
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But x4, (c0 = —1) can be written as the sum pf (A,) over all connected C AL

(with connected complement) containing the origin. The standard Peierls argument
shows that this sum is dominated by the= {0} term once &2#(J—J) exceeds the con-
nectivity constant for the so-called Peierls contours. It follows ﬂi%(tao =-«l1

for J > Jo andp sufficiently large, uniformly irL. Taking the weak limit. — oo pro-
duces a magnetized infinite volume Gibbs meagtfr@and, by symmetry, a counterpart
negatively-magnetized state. 0O

5. Open problems

We finish by some comments and a few open problems. First, the present paper shows
the absence of magnetizationhe= 0. A natural question is now as follows:

Problem 1.Let se (d, d + 1]. Characterize the values # 0 at which the free energy
is continuously differentiable in homogeneous external field h.

An answer to this question depends strongly on the precise structure of low-tempe-
rature states. In particular, if there is a rigid stripe order (see Problem 3) it is possible
that, for some particular values bf there will be phase coexistence between different
arrangements of stripes. Whether that has an effect on the continuity of the magnetiza-
tion is not clear.

To move to our next problem, let us recall the main reason why the expenent
d + 1 is critical for the disappearance of magnetic order: $er d + 1, the gain to
be obtained from the antiferromagnetic interaction “through” the boundary of a volume
of scaleL is orderL24—S which—including the lod_ correction whers = d + 1—
overpowers the short-range surface cost of otd&r!. However the short-range cal-
culation only applies under the conditions where one envisions a surface tension, e.g.,
discrete spins. If we replace the Ising spins by, say, plane rotors, the cost due to local in-
teractions for turning over a block now scaled.&s2. Various exponents will readjust
accordingly. Thus we pose:

Problem 2. For the Ising spins replaced by @)-spins, and the spin-spin interactions
given by the dot product, find the range of exponents s for which the spontaneous mag-
netization vanishes.

The problem is interesting due to competing effects in the vicinity of the (purported)
interfaces. It has been stipulated in [8] that, in these cases, magnetism will not occur
ford <s < d+ 2. See [9] for some relevant calculations.

As for our next problem we note that, as already mentioned, absence of magnetism
is far from ruling out other types of order, with striped states being a prime candidate.
Thus we ask:

Problem 3. Prove the existence of striped states at low temperatures for interactions of
the type discussed in this note.

Some mathematical progress [13] and a great deal of physical progress [1, 5, 6, 10,
11,14,18,19,21-23,27] in this direction has been made for the ground state problem.
But, at present, the positive-temperature case is far from resolved.

Finally, we recall that much of our proof was based on thermodynamic arguments
which, to begin with, require the existence of thermodynamics. Notwithstanding, anal-
ogous results should hold even for interactions that decay so slowly that the standard
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techniques ensuring the existence of the free energy fail. An instance of some genuine
interest arises from Ref. [17]: Consider the model with the Hamiltonian as in (1.1) but
with the long-range interaction term modified into

> Kij(@i = p)aj = p). (5.1)
i

The quantityp plays the role of “background charge” density; the spin configurations
are restricted to have averaggotherwise their energy diverges).

Problem 4. Suppose K; ~ |i — j|~tind = 2,3 (and, in general, iKj ~ |i — j|~S
with gy < s < d and d> 2). Prove that the free energy is differentiablegpat p = 0.

Onthe basis of [28] one can infer that the lower bouggdon the region of exponents
in the previous open problem satisfigs< d — 1. However, it is noted that, f& =
d — 2, there is a (complicated) counterexample to differentiability [15] so, presumably,
S >d—2.
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