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Abstract: We study the asymptotic growth of the diameter of a graph obtained by adding
sparse “long” edges to a square box in Zd. We focus on the cases when an edge between x
and y is added with probability decaying with the Euclidean distance as |x − y|−s+o(1)

when |x − y| → ∞. For s ∈ (d, 2d) we show that the graph diameter for the graph
reduced to a box of side L scales like (log L)∆+o(1) where ∆−1 := log2(2d/s). In particular,
the diameter grows about as fast as the typical graph distance between two vertices at
distance L. We also show that a ball of radius r in the intrinsic metric on the (infinite)
graph will roughly coincide with a ball of radius exp{r1/∆+o(1)} in the Euclidean metric.

1. MAIN RESULT

Consider the d-dimensional hypercubic lattice Zd and add a random collection of edges
to Zd according to the following rule: An edge between distinct sites x and y occurs
with probability pxy, independently of all other edges, where pxy depends only on the
difference x − y and decays like |x − y|−s+o(1) as the Euclidean norm |x − y| tends to
infinity. Let D(x, y) denote the graph distance between x and y which is defined as the
length of the shortest path that connects x to y using only edges that are available in the
present (random) sample.

In [9] we studied the asymptotic of D(x, y) as |x− y| → ∞. In particular, it was shown
that for s ∈ (d, 2d) this distance behaves like

D(x, y) =
(
log |x− y|

)∆+o(1), |x− y| → ∞, (1.1)

where

∆ :=
log 2

log
( 2d

s

) . (1.2)

Technically, (1.1) is established with “o(1) tending to zero in probability” and thus repre-
sents the typical behavior for fixed x and y. The result allows for the possibility that even
the nearest-neighbor edges are randomized — x and y are then restricted to the unique
infinite connected component.

The main purpose of this note is to determine the corresponding asymptotic for the
maximal graph distance between any two sites in a large, finite set. Explicitly, let us
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consider the box ΛL := [−L, L]d ∩ Zd and let GL denote the restriction of the above
random graph to vertices, and edges with both endpoints, in ΛL. Let DL(x, y) denote
graph-theoretical (a.k.a. intrinsic or chemical) distance between x, y ∈ ΛL as measured
on GL. The diameter of GL is then given by

DL := max
x,y∈ΛL

DL(x, y). (1.3)

The following settles a question that was left open in [9]:

Theorem 1.1 Suppose that pxy can be written as pxy := 1− e−q(x−y), where q : Zd → [0, ∞]
is an even function for which the limit

s := − lim
|x|→∞

log q(x)
log |x| (1.4)

exists and satisfies s ∈ (d, 2d). Then for all ε > 0,

lim
L→∞

P
(
(log L)∆−ε ≤ DL ≤ (log L)∆+ε

)
= 1, (1.5)

where ∆ is as in (1.2).

It is clear that the asymptotic in (1.1) serves as a lower bound on DL. However, a
matching upper bound — the main contribution of this note — turns out to be much
less immediate. The point is that the bounds from [9] for P(D(x, y) ≥ (log |x− y|)∆+ε)
are much too weak to imply the same upper bound on DL. This is because the strategy
employed in [9] is based on the fact that one can find, with overwhelming probability,
long edges within up to (log L)o(1)-distance from any given site. Unfortunately, this does
not hold for every site of ΛL; in fact, ΛL will contain a translate of Λ` with ` ≈ (log L)1/d

whose vertices have no other edges than between nearest neighbors in Zd.
The restriction of the above result to hypercubic lattice is mostly a matter of conve-

nience; no part of the proof depends essentially on the details of the underlying graph.
(What we need is that the graph is embedded in Rd so that any square block of side L
contains order Ld sites.) Similarly, we could also work with more general sequences of
sets than cubic boxes. In fact, we could even accommodate non-translation invariant
distributions and/or diluted lattices, e.g., work (as was done in [9]) with long-range
percolation under the sole assumption that there is an infinite connected component.
Notwithstanding, such generalizations tend to obscure the main ideas of the proof and
so we settle to a translation-invariant and a priori connected setting.

The control of the diameter provided by Theorem 1.1 allows for some control of the
volume growth of the percolation graph. Consider a realization of the long-range per-
colation on Zd — still including the edges of Zd — and let

B(0, r) :=
{

x ∈ Zd : D(0, x) ≤ r
}

(1.6)
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denote the ball of radius r in the intrinsic metric. Trapman [17, Theorem 1.1(c)] has
recently shown that the volume of this ball grows subexponentially with the radius, i.e.,

s > d ⇒ lim
r→∞

∣∣B(0, r)|1/r = 1, P-a.s. (1.7)

Here we derive the leading order of the growth of |B(0, r)| with r:

Theorem 1.2 Under the conditions of Theorem 1.1, for each ε > 0,

lim
r→∞

P
(
Λ exp{r−ε+1/∆} ⊂ B(0, r) ⊂ Λ exp{r ε+1/∆}

)
= 1. (1.8)

In particular,
log log |B(0, r)|

log r
−→
r→∞

1
∆

(1.9)

in probability.

As ∆ ∈ (1, ∞) for s ∈ (d, 2d), the leading-order volume growth takes a stretched-
exponential form, i.e., ∣∣B(0, r)

∣∣ = exp
{

r
1
∆ +o(1)}, r → ∞. (1.10)

While the left inclusion in (1.8) is implied directly by Theorem 1.1, for that on the right
we will have to invoke — and, in fact, prove again in order to accommodate for a more
general setting — a result due to Trapman [17] (see Theorem 3.1).

The rest of this note is organized as follows: In Sect. 2 we discuss various motivations
for, and further results related to this work. In Sect. 3 we prove Theorem 1.2 concerning
volume growth estimates on the infinite graph. Sect. 4 gives the proof of Theorem 1.1 on
graph diameter subject to some technical claims; these are then established in Sect. 5.

2. RELATED WORK

Long-range percolation, of which our model is an example, originated in the mathema-
tical-physics literature as a model that exhibits a phase transition even in spatial dimen-
sion one (e.g., Newman and Schulman [15], Schulman [16], Aizenman and Newman [1],
Imbrie and Newman [13]). It soon became clear that s = d and s = 2d are two dis-
tinguished values; for s < d the model is essentially mean-field (or complete-graph)
alike, for s > 2d the behavior is more or less as for the nearest-neighbor percolation.
The regime d < s < 2d turned out to be quite interesting; indeed, it is the only gen-
eral class of percolation models with Euclidean (or amenable) geometry where one can
prove absence of percolation at the percolation threshold (Berger [7]). In all dimensions,
the model with s = 2d has a natural continuum scaling limit.

Recently, long-range percolation has been invoked as a fruitful source of graphs with
non-trivial growth properties. Our interest was stirred by the work of Benjamini and
Berger [3] who proposed (and studied) long-range percolation as a model of social net-
works. It is this context where the graph distance scaling, and volume growth, are partic-
ularly of much interest. Thanks to numerous contributions that followed [3], this scaling
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is now known for most values of s and d. Explicitly, for s < d, a corollary to the main
result of Benjamini, Kesten, Peres and Schramm [5] asserts that

DL −→
L→∞

⌈ d
d− s

⌉
, (2.1)

almost surely. As s ↑ d, the right-hand side tends to infinity and so, at s = d, we
expect DL → ∞. And, indeed, the precise growth rate in this case has been established
by Coppersmith, Gamarnik and Sviridenko [10],

DL �
log L

log log L
, L→ ∞, (2.2)

where “�” means that the ratio of the left and right-hand sides defines a sequence of
random variables that are tight in (0, ∞) — i.e., bounded away from zero and infinity
with probability arbitrarily close to one — as L→ ∞.

For s ∈ (d, 2d), the present paper states DL = (log L)∆+o(1). Here we note that ∆ ↓ 1
as s ↓ d which, formally, is in agreement with (2.2). For s ↑ 2d we in turn have ∆ → ∞
and so, at s = 2d, a polylogarithmic growth is no longer sustainable. Instead, for the
case of the decay pxy ∼ β|x− y|−2d one expects that

DL = Lθ(β)+o(1), L→ ∞, (2.3)

where θ(β) varies through (0, 1) as β sweeps through (0, ∞). This claim is supported by
upper and lower bounds in somewhat restricted one-dimensional cases (Benjamini and
Berger [3], Coppersmith, Gamarnik and Sviridenko [10]). However, even the existence
of a sharp exponent θ(β) has been elusive so far.

For s > 2d one expects [3] the same behavior as for the original graph. And indeed,
the linear asymptotic,

DL � L, (2.4)
has been established by Berger [8]. For the nearest-neighbor percolation case, this state-
ment goes back to the work of Antal and Pisztora [2].

Further motivation comes from the recent interest in diffusive properties of graphs
arising via long-range percolation. An early work in this respect was that of Berger [7]
who characterized regimes of recurrence and transience for the simple random walk on
such graphs. Benjamini, Berger and Yadin [4] later showed that the mixing time τL of
the random walk on GL in d = 1 scales like

τL ∼
{

Ls−1, if 1 < s < 2,
L2, if s = 2,

(2.5)

with an apparent jump in the exponent when s passes through 2. Misumi [14] found
estimates on the effective resistance in Λ2L \ΛL that exhibit a similar transition.

Very recently, precise bounds for the heat kernel and spectral gap of such random
walks have been derived by Crawford and Sly [11]. These lead to the proof that for
d < s < d + 1 the law of such random walks scales to that of an α-stable process with
α := s− d [12]. The situation for d + 1 ≤ s < min{d + 2, 2d} has not been clarified. On
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the increasing side of these regimes, the random walk is expected to scale to Brownian
motion but this has so far been proved only in d = 1 for s > 2 [12].

3. VOLUME GROWTH

The goal of this section is to prove Theorem 1.2. As already mentioned, while the left
inclusion in (1.8) is a direct consequence of Theorem 1.1, the proof of the right inclusion
will be based on ideas underlying the proof of Theorem 1.2 in Trapman [17]. Unfortu-
nately, Trapman’s setting is too stringent for our purposes and so we restate (and prove)
the relevant result in a more suitable form:

Theorem 3.1 Under the conditions of Theorem 1.1, for each s′ ∈ (d, s) there are constants
c1, c2 ∈ (0, ∞) such that, for ∆′ := 1/ log2(2d/s′),

P
(

D(0, x) ≤ n
)
≤ c1

(
e c2 n1/∆′

|x|

)s′

, n ≥ 1. (3.1)

Before we provide a proof of this result, let us see how it fits into our proof of the
volume growth estimate:
Proof of Theorem 1.2. Notice first that, by the structure of the expressions, it suffices to
prove the limits in (1.8–1.9) along a single sequence of r’s that tends to infinity at most
exponentially fast. In fact, we will do this for r being of the form (log L)θ with θ ≈ ∆
and L is running through positive integers.

We begin with the right inclusion in (1.8). Let ε > 0 and pick s′ ∈ (d, s) so that
∆′ := 1/ log2(2d/s′) satisfies ∆′ > ∆− ε. Abbreviating β := (∆− ε)/∆′, a union bound
and Theorem 3.1 then give

P
(
∃x ∈ Λ2k+1L \Λ2k L : D(0, x) ≤ (log L)∆−ε

)
≤ c3

(
exp{c2(log L)β}

2kL

)s′(
2k+1L

)d = Ld−s′+o(1)(2k)d−s′ , (3.2)

where we used that β < 1 by our assumptions and where o(1) → 0 in the limit as
L→ ∞. Since s′ > d, the right-hand side is summable on k and so we conclude

P
(
∃x 6∈ ΛL : D(0, x) ≤ (log L)∆−ε

)
≤ Ld−s′+o(1), (3.3)

which tends to zero as L→ ∞. A moment’s thought shows that{
∃x 6∈ ΛL : D(0, x) ≤ (log L)∆−ε

}
⊃
{

B(0, r) 6⊂ Λ exp{r ε′+1/∆}
}

(3.4)

for r := (log L)∆−ε and ε′ := (∆ − ε)−1 − ∆−1. The right inclusion in (1.8) thus holds
with probability tending to one for all ε > 0.

As to the left inclusion in (1.8) we notice that for r := (log L)∆+ε,{
DL ≤ (log L)∆+ε

}
⊂
{

Λ exp{r−ε′+1/∆} ⊂ B(0, r)
}

(3.5)
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where ε′ := ∆−1 − (∆ + ε)−1. By Theorem 1.1, the event on the left occurs with proba-
bility tending to one as L→ ∞. Therefore, so does the left inclusion in (1.8). �

In order to prove Theorem 3.1, we will follow Trapman’s remarkable simplification of
the proof from Biskup [9] for the lower bound on the graph distance in infinite-volume
setting. Fix s′ ∈ (d, s) and let R = R(s′) ≥ 1 be the number such that

pxy ≤ |x− y|−s′ , |x− y| ≥ R. (3.6)

This number exists by our assumption (1.4). The key steps of Trapman’s argument can
be encapsulated into two lemmas:

Lemma 3.2 Abbreviate Bk := B(0, k). If |x|/k ≥ R, then

P
(

D(0, x) ≤ k
)
≤
( |x|

k

)−s′ k

∑
j=0

E|Bj|E|Bk−j| (3.7)

Proof. If D(0, x) ≤ k, then there exists a (vertex) self-avoiding path from 0 to x such that at
least one edge has length at least |x|/k. If this edge occurs at the j-th step and it goes from
vertex y to vertex z, then we must have D(0, y) ≤ j and D(z, x) ≤ k − j. These events
should actually occur spatially-disjointly in the sense of van den Berg and Kesten [6].
By conditioning on j and (y, z), the van den Berg-Kesten inequality (or, alternatively, a
careful conditioning on the first part of the path) yields

P
(

D(0, x) ≤ k
)
≤

k

∑
j=1

∑
y,z∈Zd

|y−z|≥|x|/k

P
(

D(0, y) ≤ j
)

pyz P
(

D(z, x) ≤ k− j
)
. (3.8)

Under the assumption that |x|/k ≥ R we can bound pyz ≤ (|x|/k)−s′ . Dropping the
condition on |y− z|we can now sum over y and z to get the right-hand side of (3.7). �

Lemma 3.3 There is an a = a(d, s′) such that, given j ≥ 1, if for some K with K ≥ Rj the
bound P(D(0, x) ≤ j) ≤ [K/|x|]s′ holds for all x ∈ Zd with |x|/j ≥ R, then E|Bj| ≤ aKd.

Proof. Note that |x| > K implies |x|/j ≥ R. Thus

E|Bj| = ∑
x∈Zd

P
(

D(0, x) ≤ j
)
≤ ∑

x : |x|≤K
1 + ∑

x : |x|>K

(
K
|x|

)s′

. (3.9)

It is easy to check that the first term is bounded by a constant a1 = a1(d) times Kd, while
the sum over |x|−s′ over |x| > K is at most a constant a2 = a2(d, s′) times Kd−s′ . Putting
these contributions together, the desired claim follows. �

In addition to the above lemmas, the proof will require one unpleasant calculation
that we formalize as follows:
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Lemma 3.4 Let s′ ∈ (s, 2d) and ∆′ := 1/ log2(2d/s′). For each p > s′+1
2d−s′ and each c0 > 0

there is C = C(p, c0) ∈ (0, ∞) such that for each c ≥ c0 the quantity

K(n) :=
1
C

(n + 1)−pe c n1/∆′
, (3.10)

obeys
n

∑
j=0

K(j)dK(n− j)d ≤ n−s′K(n)s′ , n ≥ 1. (3.11)

Proof. Consider the function ϕ(x) := x1/∆′ + (1− x)1/∆′ and note that the exponentials
in K(j)dK(n − j)d combine into exp{cn1/∆′ϕ(j/n)d}. Note also that ϕ is maximized at
x := 1/2 at where it equals 21−1/∆′ = s′/d. Let

δ := s′ − d max
0≤x≤1/4

ϕ(x) (3.12)

and observe that δ > 0. Splitting the sum over j into the part when |j− n/2| ≤ n/4 or
not, and using the symmetry j↔ n− j we thus get

n

∑
j=0

K(j)dK(n− j)d ≤ 2 ∑
j≤n/4

K(j)dK(n− j)d + ∑
j : |n/2−j|≤n/4

K(j)dK(n− j)d

≤ 2 ∑
j≤n/4

C−2d e c n1/∆′ (s′−δ)

(j + 1)pd(n− j + 1)pd

+ ∑
j : |n/2−j|≤n/4

C−2d e c n1/∆′ s′

(j + 1)pd(n− j + 1)pd .

(3.13)

Using that j + 1 ≥ (n + 1)/8 and n − j + 1 ≥ (n + 1)/8 for all integers j such that
|j− n/2| ≤ n/4, we now get

LHS of (3.11) ≤ 2(n + 1)C−2de c n1/∆′ (s′−δ) + C−2d82pd(n + 1)1−2pde c n1/∆′ s′

≤ h(n) n−s′
[ 1

C
(n + 1)−pe c n1/∆′

]s′ (3.14)

where
h(n) := Cs′−2d(82pd(n + 1)1−2pd + 2(n + 1)e−cδ n1/∆′ )

(n + 1)s′+ps′ . (3.15)
It is easy to check that 1− 2pd + s′ + ps′ < 0 under the assumed condition on p and so
the term multiplying Cs′−2d is bounded uniformly in n for all c > 0. Given c0 > 0, we
can thus choose C so small that h(n) ≤ 1 holds for all n ≥ 1 and all c ≥ c0. This defines
C(p, c0) and proves the claim. �

Proof of Theorem 3.1. Let p > s′+1
2d−s′ , set q := 2

2d−s′ and let a = a(d, s′) be as in Lemma 3.3.
Pick c0 > 0 and let C(p, c0) be as in Lemma 3.4. Finally, pick c ≥ c0 so large that

K(n) :=
1

C(p, c0)
(n + 1)−pe c n1/∆′ ≥ aqRn, n ≥ 1. (3.16)
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We will show by induction that, for each n ≥ 1,

P
(

D(0, x) ≤ n
)
≤
(

a−qK(n)
|x|

)s′

. (3.17)

Notice that this is trivially true for |x| < a−qK(n) and so we may thus always suppose
that |x| ≥ a−qK(n) which by (3.16) implies |x| ≥ Rn; in particular, x 6= 0.

To start the induction we note that (3.17) holds for n = 1 as, for x away from the
origin, P(D(0, x) ≤ 1) = p0x which is less than the right-hand side by (3.6) and the
bound a−qK(1) ≥ R ≥ 1. So let us now suppose (3.17) holds for all n ≤ m ∈ {1, 2, . . . }
and let us prove it for n := m + 1. Notice that as we may assume |x| ≥ R(m + 1) ≥ Rj
for j = 0, . . . , m + 1, Lemma 3.3 can be used for E|Bj| with K := a−qK(j) for all j =
1, . . . , m + 1. By Lemma 3.2 and Lemma 3.3 we thus get

P
(

D(0, x) ≤ m + 1
)
≤
( |x|

m + 1

)−s′

a2−2dq
m+1

∑
j=0

K(j)dK(m + 1− j)d. (3.18)

Invoking Lemma 3.4, the sum can be further bounded with the result

P
(

D(0, x) ≤ m + 1
)
≤ a2−2dq

(
K(m + 1)
|x|

)s′

. (3.19)

Since 2 − 2dq = −s′q, we get (3.17) for n := m + 1. Thus (3.17) holds for all n ≥ 1;
choosing c1 := a−qs′C(p, c0)−s′ and c2 := c we then get also (3.1). �

Remark 3.5 Notice that summing (3.3) over L along powers of 2 yields

lim inf
|x|→∞

log D(0, x)
log log |x| ≥ ∆, P-a.s. (3.20)

i.e., a lower bound on the growth of the graph distance proved via a far more elegant
argument than the original proof in [9]. A similar observation applies to (3.3) which by
summing over L running along powers of 2 yields an almost-sure upper bound in (1.9).
We believe that the complementary bounds hold in almost-sure sense as well, although
we have not tried to extract the bounds that would prove this rigorously.

4. DIAMETER CONTROL

We now pass to the proof of Theorem 1.1. As remarked earlier, the lower bound in (1.5)
is an easy consequence of the asymptotic (1.1).
Proof of Theorem 1.1, lower bound. Recall that DL(x, y) is the graph distance between x
and y measured on GL and let D(x, y) be the distance measured on the full long-range
percolation graph on Zd. Then we have

DL ≥ DL(x, y) ≥ D(x, y), x, y ∈ GL. (4.1)
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Now by (3.20) (or [9, Theorem 1.1]), for every ε > 0, we have D(0, x) ≥ (log L)∆−ε

once L is sufficiently large and |x| ≈ L. The lower bound in (1.5) follows. �

The key is thus to prove the corresponding upper bound. A natural idea is to follow
the strategy of [9] which is based on the following observation: Let x and y be two
vertices and let L := |x− y|. Abbreviate

B`(x) := x + [−`, `]d ∩Zd. (4.2)

The probability that B`(x) and B`(y) are directly connected by an edge is then

1− exp{−`2dL−s+o(1)}. (4.3)

Thus, choosing ` := Lγ, the aforementioned edge with be present with very high prob-
ability as long as γ ' s/2d.

The approach of [9] was to iterate this edge-finding procedure many times and thus
construct a hierarchical “skeleton” of a path that still has less than the anticipated num-
ber of edges. The explicit construction starts by finding, for a given x and y at distance L,
a “primary” edge whose endpoints — call them z01, resp., z10 — are within distance of Lγ

of x, resp., y. Now find two “secondary” edges, the first of which bridges the “gap” be-
tween x and z01, and the second bridges the “gap” between z01 and y. The endpoints of
the first edge — call them z001 and z010 — are now within Lγ2

of x and z01, respectively,
and similarly for the second edge. Both of the edges have length order Lγ.

Proceeding analogously, we will then find four “tertiary” edges of length order Lγ2
,

eight “quaternary” edges of length Lγ3
and, in general, 2k−1 edges of length Lγk−1

at
level k of the process. At the k-th level, the edges obtained thus far can then be arranged
in a a sequence such that the endpoints of subsequent edges — the “gaps” — are no
farther apart than Lγk

. In [9] it was shown that the edge-identification procedure can be
iterated k-times until k ≈ (log log L)/ log(1/γ) at which point we are down to 2k “gaps”
of size at most Lγk = (log L)o(1). Using the underlying Zd-lattice structure, we readily
extract a path from x to y of length 2k(log L)o(1). Taking γ ↑ s/2d along with L → ∞, this
bounds D(x, y) by (log L)∆+o(1).

Unfortunately, as remarked earlier, this idea is not going to work for controlling the
length of paths between all pairs of vertices x, y ∈ ΛL. The reason is that, to construct
a path between two fixed points we only need to ensure the presence of (log L)∆+o(1)

edges but, to do this uniformly for all pairs of points in ΛL we would need to control
order Ld+o(1) of them. To see that this entropy cannot be beaten we note that, in ΛL,
there are blocks of side (log L)1/d+o(1) with no incident long edges at all. We will thus
have to deal with the cases where the requisite connections fail to occur by methods of
nearest-neighbor percolation.

For better understanding of what is to follow, it is actually worth noting that the above
strategy is in the least capable of proving a polylogarithmic bound on DL. Indeed, the
identification of successive levels for all pairs of points can possibly fail at stage k only if
somewhere in ΛL there are two vertices at distance Lγk

whose neighborhoods of size Lγk+1
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are not connected by an edge in GL. By (4.3), this has probability bounded by

L2d exp
{
−Lγk(2dγ−s+o(1))}. (4.4)

Thus, as long as Lγk ≥ (log L)θ , where 1/θ < 2dγ− s, this will not happen with proba-
bility tending to one. Halting the procedure at this step shows that

DL ≤ (log L)∆+θ+o(1). (4.5)

Further improvement can be achieved if from this point on we make the successive
scales related not by exponent γ, but by an exponent ζ which is taken close to one. The
procedure can then be made to work up to the point when the gaps are at most of size
(log L)1/(2d−s)+o(1). This is still way too large to infer the desired bound on DL, but
now the gaps are themselves much smaller than (log L)∆ — see Lemma 4.1 below. It
thus remains to show that such bad regions will not come close to one another. This
is the content of Proposition 4.5 below and this is where methods of nearest-neighbor
percolation need to be brought into play.

Having outlined the general strategy, we now turn to the details. Fix an ε > 0. We
will need numbers s′, γ, ζ and η subject to the restrictions:

s < s′ < 2d and
s′

2d
< γ < 1, (4.6)

log 2
log(1/γ)

< ∆ + ε, (4.7)

γ < ζ < 1 and ∆ >
1

2dζ − s′
(4.8)

and

∆ > η >
1

2dζ − s′
. (4.9)

To see that such choices can be made, we note the following relation:

Lemma 4.1 Let s ∈ (d, 2d) and let ∆ be as in in (1.2). Then ∆ > 1
2d−s .

Proof. It suffices to note that s 7→ (2d − s)∆ is strictly increasing on (d, 2d) and equal
to d (which is at least one) at s = d. For this, write (2d− s)∆ = (2d log 2)/ f (s/2d) with
f (x) := 1

1−x log(1/x). A computation shows that f ′(x) < 0 for 0 < x < 1. �

Using ∨ to denote the maximum (and ∧ the minimum), with the above s′, γ, η and ζ
fixed, we also choose a quantity θ such that

θ >
1

2dγ− s′
∨ η (4.10)

and define
k0 := max

{
k ≥ 1 : bLγkc > (log L)θ

}
. (4.11)



GRAPH DIAMETER IN LONG-RANGE PERCOLATION 11

For any (large) positive integer L we now define a family of scales (Lk) as follows:

Lk :=

bL
γkc, if k ≤ k0,

bLγk0 ζk−k0 c, otherwise.
(4.12)

Thus, for k ≤ k0 the subsequent scales are related by exponent γ, while beyond k0 the
corresponding exponent is “only” ζ. In particular, the subsequent scales for k > k0
are far closer than for k ≤ k0. For later purposes we will need to introduce other two
distinguished values:

k1 := max
{

k ≥ 1 : Lk > (log L)η
}

(4.13)

and
k2 := min

{
k ≥ 1 : Lk < (log L)ε

}
. (4.14)

We will only need to consider the scales Lk up to k = k2. Note that all quantities k0, k1, k2
depend on L; we will write k0(L), k1(L), k2(L) whenever we wish to emphasize this
dependence explicitly. A forthcoming definition (of good blocks) will also depend on
a δ > 0 that is picked so small that

(1− δ)k2−k1 > 1/2. (4.15)

This is possible uniformly in L since k2(L) − k1(L) is bounded by a constant times
log(η/ε)/ log(1/ζ).

Now consider the cubic box ΛL. We wish to partition ΛL into blocks of scale L1 which
in turn should be partitioned into blocks of scale L2, etc. Unfortunately, the subsequent
scales may not be divisible by one another and so we will have to work with rectangular
boxes of uneven dimensions. For an integer ` ≥ 1, we call an `-block any translate of{

(n1, . . . , nd) : 1 ≤ ni ≤ `i, i = 1, . . . , d
}

, (4.16)

where `1, . . . , `d are numbers such that `/2 ≤ `i ≤ ` for all i = 1, . . . , d. We note:

Lemma 4.2 Let 0 < `′ < ` be integers. Then any `-block can be partitioned into `′-blocks.

Proof. Since the partitioning can be done independently in each lattice direction, we
may assume d = 1. Without loss of generality, let ` be the actual size of the larger
block. Let n be the unique integer such that n`′ < ` ≤ (n + 1)`′. If (n + 1

2 )`′ < `, then
`− n`′ ∈ [`′/2, `′] and we may decompose the `-block into n blocks of side `′ and one
block of side `− n`′. If instead (n + 1

2 )`′ ≥ `, then we use only n− 1 blocks of side `′

and two blocks of about the same size between `′/2 and `′ whose combined side-length
is `− (n− 1)`′ — a number between `′ and 3

2`′. �

Given L, we will now choose a partitioning of ΛL into L1-blocks, a partitioning of
these L1-blocks into L2-blocks, etc, for all scales Lk with k ≤ k2. We will now pick a
hierarchical decomposition of ΛL for each L and consider it fixed for the remainder of
the argument.

Next we designate good and bad blocks as follows:
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Definition 4.3 (Good/bad blocks) For the above hierarchical decomposition of ΛL, de-
fine good blocks as follows:

(1) Any Lk2-block is good.
If k < k2, an Lk-block is said to be good if

(2a) at least 1− δ fraction of the Lk+1-blocks contained therein are good, and
(2b) any two distinct good Lk+1-subblocks are linked by an edge from GL whose end-

points are contained only in good Lk′-blocks, for all k′ = k + 1, . . . , k2.
An Lk-block is bad if it is not good.

Let BL,k be the union of all bad Lk-blocks in ΛL and let

BL :=
k2(L)⋃

k=k1(L)

BL,k. (4.17)

We will refer to vertices in ΛL \BL as good and those in BL as bad. The nearest-neighbor
structure on Zd induces a decomposition of BL into connected components; let C(x)
denote the connected component of BL that contains x and define

TL(x) := diam C(x) and TL := max
x∈ΛL

TL(x). (4.18)

Next, consider the restriction G′L of GL to vertex set ΛL \BL and let D′L(x, y) be the
graph-theoretical distance between x and y as measured on G′L. Define

D′L := max
x,y∈ΛL\BL

D′L(x, y). (4.19)

Notice that TL and D′L depend on the choices of s′, γ, η, δ and ε. Our proof of the upper
bound in (1.5) is now reduced to the following propositions:

Proposition 4.4 For ε as above,

lim
L→∞

P
(

D′L ≤ (log L)∆+2ε
)

= 1. (4.20)

Proposition 4.5 For ε as above,

lim
L→∞

P
(

TL ≤ (log L)∆+ε
)

= 1. (4.21)

These are proved in the next section. Subject to these propositions, we are now ready
to establish the main result of this work:
Proof of Theorem 1.1, upper bound. Pick x, y ∈ ΛL. If x is contained in a bad block then,
within Zd-distance TL(x), there is a vertex x′ ∈ ΛL \BL, and similarly we find a ver-
tex y′ ∈ ΛL \BL within distance TL(y) of y. By concatenating the shortest path be-
tween x′ and y′ on G′L with shortest paths connecting x to x′ and y to y′ on Zd, we have

DL(x, y) ≤ TL(x) + TL(y) + D′L(x′, y′). (4.22)

Therefore,
DL ≤ 2TL + D′L. (4.23)
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By Propositions 4.4 and 4.5, the right hand side is bounded by 3(log L)∆+2ε with proba-
bility tending to one. As ε was arbitrary positive, the claim follows. �

5. TAMING THE BAD BLOCKS

To finish the proof of Theorem 1.1 we have to provide proofs of Propositions 4.4 and 4.5.
We begin by a lemma. Recall that a vertex x ∈ ΛL is good if it is contained only in good
Lk-blocks, for all k = k1, . . . , k2. Then we have:

Lemma 5.1 For each k = k1, . . . , k2, at least half of the vertices in each good Lk-block are good.
In addition, if Lk ≥ 32dR, then at least quarter of the vertices in each good Lk-block with distance
at least R from the boundary are good.

Proof. We claim that, in fact, at least (1− δ)k2−k fraction of all vertices in a good Lk-block
are good. This is obviously true for k = k2, as all Lk2-blocks are good by Definition 4.3(1).
For k = k1, . . . , k2 − 1 this is proved by induction using Definition 4.3(2a). The first part
of the claim now follows by invoking the bound (4.15).

To get the second part, we note that for each lattice direction, at most 4R/Lk-fraction
of all vertices are closer than R to the sides of the block in this direction. Thus less than
8dR/Lk ≤ 1/4 of all vertices in the Lk-block are not more than R-away from any side. If
half of all vertices in the Lk-block are good, then at least quarter of all vertices at least R-
away from the boundary must be good. �

For the probability estimates that are to follow, it will be useful to note that by (1.4),
for each s′ ∈ (s, 2d) there is a number R = R(s′) < ∞ such that

pxy ≥ 1− e−|x−y|−s′
, |x− y| ≥ R. (5.1)

Note that this is different from (3.6), where we cared for an upper bound on pxy. We will
henceforth fix R to R(s′) for s′ chosen above.

Proposition 5.2 Given an Lk-block, let Ek be the event that this block is good. There are
constants c1, c2 ∈ (0, ∞) such that, whenever L is so large that Lk2 ≥ 8dR, we have

P(E c
k ) ≤ c1e−c2L2dζ−s′

k , k = k1, . . . , k2. (5.2)

Remark 5.3 The above estimate shows why we need to make the subsequent scales Lk
related by exponent ζ — which can be taken arbitrarily close to one — and not γ (as
is done for scales for k < k1). Indeed, the bound (5.2) permits the existence of bad Lk

blocks already when L2dζ−s′
k = (log L)1+o(1). When ζ obeys (4.8), this rules out existence

of bad Lk blocks with Lk ≈ (log L)∆, but if we worked with ζ = γ this (and consequently,
Proposition 4.5) would fail once γ is not sufficiently close to one. Another instance where
the difference between ζ and γ shows up is the derivation (5.13–5.15).

Proposition 5.2 will be established by proving a recursive estimate on the probability
that an Lk-block is bad:
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Lemma 5.4 Let ak be the maximum value of P(E c
k ) over all Lk-blocks. There are constants

c3, c4, c5 ∈ (0, ∞) such that when Lk2 ≥ 32dR, the sequence (ak) obeys the recursive bound

ak ≤ (2ak+1)c3L2d(1−ζ)
k + c4L2d

k e−c5L2dζ−s′
k , k = k1, . . . , k2 − 1, (5.3)

with terminal condition
ak2 := 0. (5.4)

Proof. Pick an Lk-block and letAk be the event that at least 1− δ fraction of all Lk+1-blocks
therein is good. Then we can bound P(E c

k ) by

P(E c
k ) ≤ P(Ac

k) + P(E c
k |Ak). (5.5)

We will now prove that the probabilities on the right-hand side are bounded, respec-
tively, by the two terms in (5.3).

Fix an Lk-block and let nk denote the number of Lk+1-blocks contained therein. By in-
duction assumption P(E c

k+1) is bounded by ak+1 for each Lk+1-block and the events Ek+1
for distinct blocks are independent. It follows that the number of bad Lk+1-blocks in
the given Lk-block is stochastically dominated by a binomial random variable with pa-
rameters nk and ak+1. In particular, P(Ac

k) is less than the probability that this random
variable is at most δnk. The exponential Chebyshev bound now gives

P(Ac
k) ≤ e−λδnk(1− ak+1 + eλak+1)nk , λ ≥ 0. (5.6)

Choosing e−λ := ak+1 and noting that nk is at least a constant times (Lk/Lk+1)d — which
is bounded below by a constant times L2d(1−ζ)

k — then yields

P(Ac
k) ≤ (2aδ

k+1)
nk ≤ (2ak+1)c3L2d(1−ζ)

k . (5.7)

This proves the first term on the right-hand side of (5.3).
To get the second term, we note that Ak is determined only by the edges with both

endpoints in the same Lk+1-block. Thus, conditioning E c
k on Ak means that the set of

good vertices in one of the good Lk+1-blocks contained therein is not joined by an edge
to the set of good vertices in another such good Lk+1-block. As, by Lemma 5.1, at least a
quarter of all vertices in each such good Lk+1-block that are R-away from its boundary
are good, the use of (5.1) permissible and so we have

P(E c
k |Ak) ≤

(
nk

2

)
exp

{
−
( 1

4 (Lk+1/2)d)2

(dLk)−s′

}
. (5.8)

Here the binomial coefficient counts the number of pairs of Lk+1-blocks, (Lk+1/2)d is
a lower bound on the size of any Lk+1-block, the factor 1/4 accounts for the number of
good vertices in such Lk+1-block that are at least distance R from the boundary and dLk
is the maximum of |x − y| for any pair of such good vertices in the Lk-block. Using
that Lk+1 ≥ c−1Lζ

k and nk ≤ cLd
k for some constant c ∈ (0, ∞), the second term on the

right-hand side of (5.3) is proved too. �
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Proof of Proposition 5.2. We have to show how to get (5.2) from (5.3). Here we we invoke
the inequality

L2dζ−s′
k+1 L2d(1−ζ)

k ≥ cL2dζ−s′
k , (5.9)

valid for some constant c ∈ (0, ∞) for all k, to check that an upper bound of the form

ak ≤ ck2−k
6 e−c2L2dζ−s′

k (5.10)

propagates under this recursion once c2 and c6 are taken sufficiently small but positive.
As this bound holds for k = k2 by (5.4), it holds for all k = k1, . . . , k2. Noting that
k2 − k ≤ k2 − k1 is bounded, we have (5.2) with c1 := ck2−k1

6 ∨ 1. �

An immediate consequence of the bound in Proposition 5.2 is:

Corollary 5.5 Let FL be the event that all Lk1-blocks are good. Then limL→∞ P(FL) = 1.

Proof. As the number of Lk1-blocks is at most cLd for some c < ∞, a union bound yields

P(F c
L) ≤ cLd c1e−c2L2dζ−s′

k1 . (5.11)

By (4.9) and the definition of k1, the exponent is much larger than log L. �

Lemma 5.6 Let GL,k be the event that in every Lk-block, any two distinct Lk+1-blocks are
connected by an edge in GL with both endpoints at good vertices. Then

lim
L→∞

P

( k1(L)−1⋂
k=0

GL,k

)
= 1. (5.12)

Proof. Consider the event Gc
L,k ∩ FL for 0 ≤ k ≤ k1. On this event, Lemma 5.1 ensures

that at least half of all vertices in Lk+1-blocks are good. Moreover, for L sufficiently large,
at least a quarter of the vertices in Lk+1-block are further than R from its boundary. The
probability that two such blocks at distance at most Lk are not connected by an edge
with both endpoints in Bc

L is bounded by exp{−cL2d
k+1/Ls′

k }. In particular,

P(Gc
L,k ∩ FL) ≤ c̃L2d exp{−cL2d

k+1/Ls′
k } (5.13)

for some c̃ < ∞. Let
α := min

{
(2dζ − s′)η, (2dγ− s′)η

}
. (5.14)

Examining separately the cases k ≥ k0 and k < k0, we find L2d
k+1/Ls′

k ≥ β(log L)α for
some constant β > 0. Plugging this into (5.13) we infer

P

(
FL ∩

k1(L)−1⋃
k=0

Gc
L,k

)
≤ k1(L)c̃L2de−βc(log L)α

. (5.15)

As k1(L) = O(log log L) and, by (4.10) and (4.9), α > 1, the right-hand side tends to zero
as L→ ∞. The claim now follows by invoking Corollary 5.5. �
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We are now ready to provide the necessary control of the distance function on G′L.
The key observation we will need is as follows:

Lemma 5.7 Assume GL :=
⋂k1−1

k=0 GL,k occurs and let k(z, z′) denote the maximal k such that
z and z′ belong to the same Lk-block. If z, z′ 6∈ BL, then for each k = k(z, z′) + 1, . . . , k2, the
Lk-blocks Λ and Λ′ containing z and z′, respectively, are connected by an edge in G′L.

Proof. For k ≥ k1 this follows by Definition 4.3 (and the fact that z and z′ are good), for
k < k1 this is implied by the fact that GL occurs. �

Proof of Proposition 4.4. Pick x, y ∈ ΛL \BL and assume that the event GL occurs. We will
show that then G′L contains a path from x to y of length at most (log L)∆+ε.

Let Λ0 and Λ1 be the L1-blocks containing x and y, respectively. If Λ0 6= Λ1, by
Lemma 5.7, there is an edge in G′L with endpoints z01 ∈ Λ0 and z10 ∈ Λ1. If Λ0 = Λ1,
we set z01 = z0 and z10 = z1. This defines the first level of a hieararchy of vertices and
edges. For the next level, denote z00 := z0 and z11 := z1 and for σ ∈ {00, 01, 10, 11}
let Λσ be the L2-blocks containing zσ, respectively. As all of the vertices zσ are good,
Lemma 5.7 ensures the existence of edges (z001, z010) and (z101, z110) from G′L between
“good” vertices z001, z010, z101 and z110 in the L3-blocks containing z000 := x, z011 := z01,
z100 := z10 and z111 := z11, respectively.

Proceeding by induction along scales until we get to level k2, we will thus identify a
collection of vertices (zσ), indexed by σ ∈ {0, 1}k2+1, such that the following properties
hold for each k ≤ k2:

(1) zσ := x if σ = (0, . . . , 0) while zσ := y if σ = (1, . . . , 1).
(2) For each σ ∈ {0, 1}k−1, the pair (zσ01, zσ10) is connected by an edge from G′L.
(3) For each σ ∈ {0, 1}k−1, the vertices zσ00, zσ01 lie in one of the (good) Lk+1-blocks,

and similarly for the pair (zσ10, zσ11).
Here σ is a hierarchical index and “σ01” denotes a concatenation of the string σ with
“01.” The subsequent “generations” of the hierarchy are nested via the “cancellation
rules:” zσ00 = zσ0 and zσ11 = zσ1. The vertices zσ are not required to be distinct.

The pair of pairs of vertices (zσ00, zσ01) and/or (zσ10, zσ11), σ ∈ {0, 1}k2−1, are con-
tained in the same Lk2-block; joining them by shortest paths on Zd we thus construct
a path on G′L from x to y. This path has at most 2k2 − 1 long edges and at most 2k2

nearest-neighbor paths on Zd each of which is of length at most dLk2 . Hence we get

D′L(x, y) ≤ 2k2 − 1 + 2k2 dLk2 . (5.16)

Invoking the explicit definitions of k2 and Lk2 , we find

2k2 � (log L)∆+ε and Lk2 ≤ (log L)ε. (5.17)

The right-hand side of (5.16) is thus at most (log L)∆+2ε, uniformly for all good vertices x
and y. As GL occurs with probability tending to one, the desired claim follows. �

The proof is finished by providing a control of the maximal size of connected compo-
nents of bad vertices.
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Proof of Proposition 4.5. We will derive a uniform bound on the probability P(TL(x) ≥
(log L)∆+ε). Suppose x ∈ BL and consider the connected component C(x). Then C(x)
is the disjoint union of Lk-blocks, k = k1, . . . , k2, all of which are bad. If we fix one
such possible collection,

⋃
k
⋃mk

i=1 Λ(i)
k containing disjoint Lk-blocks Λ(i)

k , i = 1, . . . , mk,
Proposition 5.2 and the fact that disjoint blocks are independent yields

P

(
C(x) =

k2−1⋃
k=k1

mk⋃
i=1

Λ(i)
k

)
≤

k2−1

∏
k=k1

{
c1e−c2L2dζ−s′

k

}mk

. (5.18)

Now, if diam C(x) ≥ t, then ∑k mkLk ≥ t and so

k2−1

∑
k=k1

mkL2dζ−s′
k ≥ t1∧(2dζ−s′). (5.19)

As the number of distinct collections of m := ∑k mk blocks that may give rise to C(x) is
bounded by [2d(k2 − k1)]2m, we may thus borrow half of the exponent in (5.18) and use
the rest to control the entropy. This yields

P
(
TL(x) ≥ t

)
≤ e−

1
2 c2t1∧(2dζ−s′)

∑
m≥1

{
4d2(k2 − k1)2 c1e−

1
2 c2L2dζ−s′

k2

}m

. (5.20)

As k2 − k1 = O(log log L) while Lk2 ≥ (log L)ζε, the term in the large braces is small as
soon as L is sufficiently large. Setting t := (log L)∆+ε and noting that

(∆ + ε)
(
1∧ (2dζ − s′)

)
> 1 (5.21)

by (4.8) and/or ∆ > 1, the probability that TL(x) ≥ (log L)∆+ε is o(L−d) uniformly in x.
The claim is finished by a standard union bound. �
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