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ABSTRACT. We consider the nearest-neighbor simple random walk on Zd, d ≥ 2, driven
by a field of i.i.d. random nearest-neighbor conductances ωxy ∈ [0, 1]. Apart from the
requirement that the bonds with positive conductances percolate, we pose no restriction
on the law of the ω’s. We prove that, for a.e. realization of the environment, the path
distribution of the walk converges weakly to that of non-degenerate, isotropic Brownian
motion. The quenched functional CLT holds despite the fact that the local CLT may fail
in d ≥ 5 due to anomalously slow decay of the probability that the walk returns to the
starting point at a given time.

1. INTRODUCTION

Let Bd denote the set of unordered nearest-neighbor pairs (i.e., edges) of Zd and let
(ωb)b∈Bd be i.i.d. random variables with ωb ∈ [0, 1]. We will refer to ωb as the conductance
of the edge b. Let P denote the law of the ω’s and suppose that

P(ωb > 0) > pc(d), (1.1)

where pc(d) is the threshold for bond percolation on Zd; in d = 1 we have pc(d) = 1 so
there we suppose ωb > 0 a.s. This condition ensures the existence of a unique infinite
connected component C∞ of edges with strictly positive conductances; we will typically
restrict attention to ω’s for which C∞ contains a given site (e.g., the origin).

Each realization of C∞ can be used to define a random walk X = (Xn) which moves
about C∞ by picking, at each unit time, one of its 2d neighbors at random and passing to
it with probability equal to the conductance of the corresponding edge. Technically, X is
a Markov chain with state space C∞ and the transition probabilities defined by

Pω,z(Xn+1 = y|Xn = x) :=
ωxy

2d
(1.2)

if x, y ∈ C∞ and |x− y| = 1, and

Pω,z(Xn+1 = x|Xn = x) := 1− 1
2d ∑

y : |y−x|=1
ωxy. (1.3)
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The second index on Pω,z marks the initial position of the walk, i.e.,

Pω,z(X0 = z) := 1. (1.4)

The counting measure on C∞ is invariant and reversible for this Markov chain.
The d = 1 walk is a simple, but instructive, exercise in harmonic analysis of reversible

random walks in random environments. Let us quickly sketch the proof of the fact that,
for a.e. ω sampled from a translation-invariant, ergodic law on (0, 1]Bd satisfying

E
( 1

ωb

)
< ∞, (1.5)

the walk scales to Brownian motion under the usual diffusive scaling of space and time.
(Here and henceforth E denotes expectation with respect to the environment distribu-
tion.) The derivation works even for unbounded conductances provided (1.2–1.3) are
modified accordingly.

Abbreviate C := E(1/ωb). The key step of the proof is to realize that

ϕω(x) := x +
1
C

x−1

∑
n=0

( 1
ωn,n+1

− C
)

(1.6)

is harmonic for the Markov chain. Hence ϕω(Xn) is a martingale whose increments are,
by (1.5) and a simple calculation, square integrable in the sense

EEω,0
[
ϕω(X1)2] < ∞. (1.7)

Invoking the stationarity and ergodicity of the Markov chain on the space of environ-
ments “from the point of view of the particle” — we will discuss the specifics of this ar-
gument later — the martingale (ϕω(Xn)) satisfies the conditions of the Lindeberg-Feller
martingale functional CLT and so the law of t 7→ ϕω(Xbntc)/

√
n tends weakly to that of a

Brownian motion with diffusion constant given by (1.7). By the Pointwise Ergodic Theo-
rem and (1.5) we have ϕω(x)− x = o(x) as |x| → ∞. Thus the path t 7→ Xbntc/

√
n scales,

in the limit n → ∞, to the same function as the deformed path t 7→ ϕω(Xbntc)/
√

n. As
this holds for a.e. ω, we have proved a quenched functional CLT.

While the main ideas of the above d = 1 solution work in all dimensions, the situation
in d ≥ 2 is, even for i.i.d. conductances, significantly more complicated. Progress has
been made under additional conditions on the environment law. One such condition is
strong ellipticity,

∃α > 0 : P(α ≤ ωb ≤ 1/α) = 1. (1.8)

Here an annealed invariance principle was proved by Kipnis and Varadhan [20] and its
queneched counterpart by Sidoravicius and Sznitman [29]. Another natural family of
environments are those arising from supercritical bond percolation on Zd for which (ωb)
are i.i.d. zero-one valued with P(ωb = 1) > pc(d). For these cases an annealed in-
variance principle was proved by De Masi, Ferrari, Goldstein and Wick [11, 12] and
the quenched case was established in d ≥ 4 by Sidoravicius and Sznitman [29], and in
all d ≥ 2 by Berger and Biskup [6] and Mathieu and Piatnitski [25].
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A common feature of the latter proofs is that, in d ≥ 3, they require the use of heat-
kernel upper bounds of the form

Pω,x(Xn = y) ≤ c1

nd/2 exp
{
−c2
|x− y|2

n

}
, x, y ∈ C∞, (1.9)

where c1, c2 are absolute constants and n is assumed to exceed a random quantity de-
pending on the environment in the vicinity of x and y. These were deduced by Bar-
low [2] using sophisticated arguments that involve isoperimetry, regular volume growth
and comparison of graph-theoretical and Euclidean distances for the percolation cluster.
While the use of (1.9) is conceptually rather unsatisfactory — one seems to need a local-
CLT level of control to establish a plain CLT — no arguments (in d ≥ 3) that avoid
heat-kernel estimates are known at present.

The reliance on heat-kernel bounds also suffers from another problem: (1.9) may ac-
tually fail once the conductance law has sufficiently heavy tails at zero. This was first
noted to happen by Fontes and Mathieu [14] for the heat-kernel averaged over the envi-
ronment; the quenched situation was analyzed recently by Berger, Biskup, Hoffman and
Kozma [7]. The main conclusion of [7] is that the diagonal (i.e., x = y) bound in (1.9)
holds in d = 2, 3 but the decay can be slower than any o(n−2) sequence in d ≥ 5. (The
threshold sequence in d = 4 is presumably o(n−2 log n).) This is caused by the existence
of traps that may capture the walk for a long time and thus, paradoxically, increase its
chances to arrive back to the starting point.

The aformentioned facts lead to a natural question: In the absence of heat-kernel esti-
mates, does the quenched CLT still hold? Our answer to this question is affirmative and
constitutes the main result of this note. Another interesting question is what happens
when the conductances are unbounded from above; this is currently being studied by
Barlow and Deuschel [3].

Note: While this paper was in the process of writing, we received a preprint from Pierre
Mathieu [24] in which he proves a result that is a continuous-time version of our main
theorem. The strategy of [24] differs from ours by the consideration of a time-changed
process (which we use only marginally) and proving that the “new” and “old” time
scales are commensurate. Our approach is focused on proving the (pointwise) sublin-
earity of the corrector and it streamlines considerably the proof of [6] in d ≥ 3 in that it
limits the use of “heat-kernel technology” to a uniform bound on the heat-kernel decay
(implied by isoperimetry) and a diffusive bound on the expected distance travelled by
the walk (implied by regular volume growth).

2. MAIN RESULTS AND OUTLINE

Let Ω := [0, 1]Bd be the set of all admissible random environments and let P be an i.i.d.
law on Ω. Assuming (1.1), let C∞ denote the a.s. unique infinite connected component
of edges with positive conductances and introduce the conditional measure

P0(−) := P(−|0 ∈ C∞). (2.1)



4 M. BISKUP AND T. PRESCOTT

For T > 0, let (C[0, T], WT) be the space of continuous functions f : [0, T]→ Rd equipped
with the Borel σ-algebra defined relative to the supremum topology.

Here is our main result:

Theorem 2.1 Suppose d ≥ 2 and P(ωb > 0) > pc(d). For ω ∈ {0 ∈ C∞}, let (Xn)n≥0 be
the random walk with law Pω,0 and let

Bn(t) :=
1√
n
(
Xbtnc + (tn− btnc)(Xbtnc+1 − Xbtnc)

)
, t ≥ 0. (2.2)

Then for all T > 0 and for P0-almost every ω, the law of (Bn(t) : 0 ≤ t ≤ T) on (C[0, T], WT)
converges, as n → ∞, weakly to the law of an isotropic Brownian motion (Bt : 0 ≤ t ≤ T) with
a positive and finite diffusion constant (which is independent of ω).

Using a variant of [6, Lemma 6.4], from here we can extract a corresponding conclu-
sion for the “agile” version of our random walk (cf [6, Theorem 1.2]) by which we mean
the walk that jumps from x to its neighbor y with probability ωxy/πω(x) where πω(x)
is the sum of ωxz over all of the neighbors z of x. Replacing discrete times by sums of
i.i.d. exponential random variables, these invariance principles then extend also to the
corresponding continuous-time processes. Theorem 2.1 of course implies also an an-
nealed invariance principle, which is the above convergence for the walk sampled from
the path measure integrated over the environment.

Remark 2.2 As we were reminded by Y. Peres, the above functional CLT automatically
implies the “usual” lower bound on the heat-kernel. Indeed, the Markov property and
reversibility of X yield

Pω,0(X2n = 0) ≥ ∑
x∈C∞
|x|≤
√

n

Pω,0(Xn = x)2. (2.3)

Cauchy-Schwarz then gives

Pω,0(X2n = 0) ≥ Pω,0
(
|Xn| ≤

√
n
)2 1∣∣C∞ ∩ [−

√
n,
√

n]d
∣∣ . (2.4)

Now Theorem 2.1 implies that Pω,0(|Xn| ≤
√

n) is uniformly positive as n→ ∞ and the
Spatial Ergodic Theorem shows that |C∞ ∩ [−

√
n,
√

n]d| grows proportionally to nd/2.
Hence we get

Pω,0(X2n = 0) ≥ C(ω)
nd/2 , n ≥ 1, (2.5)

with C(ω) > 0 a.s. on the set {0 ∈ C∞}. Note that, in d = 2, 3, this complements nicely
the “universal” upper bounds derived in [7].

The remainder of this paper is devoted to the proof of Theorem 2.1. The main line
of attack is similar to the above 1D solution: We define a harmonic coordinate ϕω — an
analogue of (1.6) — and then prove an a.s. invariance principle for

t 7→ ϕω(Xbntc)/
√

n (2.6)
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along the martingale argument sketched before. The difficulty comes with showing the
sublinearity of the corrector,

ϕω(x)− x = o(x), |x| → ∞. (2.7)

As in Berger and Biskup [6], sublinearity can be proved directly along coordinate direc-
tions by soft ergodic-theory arguments. The crux is to extend this to a bound throughout
d-dimensional boxes.

Following the d ≥ 3 proof of [6], the bound along coordinate axes readily implies
sublinearity on average, meaning that the set of x where |ϕω(x) − x| exceeds ε|x| has
zero density. The extension of sublinearity on average to pointwise sublinearity is the
main novel part of the proof which, unfortunately, still makes non-trivial use of the
“heat-kernel technology.” A heat-kernel upper bound of the form (1.9) would do but,
to minimize the extraneous input, we show that it suffices to have a diffusive bound for
the expected displacement of the walk from its starting position. This step still requires
detailed control of isoperimetry and volume growth as well as the comparison of the
graph-theoretic and Euclidean distances, but it avoids many spurious calculations that
are needed for the full-fledged heat-kernel estimates.

Of course, the required isoperimetric inequalities may not be true on C∞ because of
the presence of “weak” bonds. As in [7] we circumvent this by observing the random
walk on the set of sites that have a connection to infinity by bonds with uniformly positive
conductances. Specifically we pick α > 0 and let C∞,α denote the set of sites in Zd that
are connected to infinity by a path whose edges obey ωb ≥ α. Here we note:

Proposition 2.3 Let d ≥ 2 and p = P(ωb > 0) > pc(d). Then there exists c(p, d) > 0 such
that if α satisfies

P(ωb ≥ α) > pc(d) (2.8)
and

P(0 < ωb < α) < c(p, d) (2.9)
then C∞,α is nonempty and C∞ \ C∞,α has only finite components a.s. In fact, if F (x) is the set
of sites (possibly empty) in the finite component of C∞ \ C∞,α containing x, then

P
(

x ∈ C∞ & diam F (x) ≥ n
)
≤ Ce−ηn, n ≥ 1, (2.10)

for some C < ∞ and η > 0. Here “diam” is the diameter in the `∞ distance on Zd.

The restriction of ϕω to C∞,α is still harmonic, but with respect to a walk that can “jump
the holes” of C∞,α. A discrete-time version of this walk was utilized heavily in [7]; for the
purposes of this paper it will be more convenient to work with its continuous-time coun-
terpart Y = (Yt)t≥0. Explicitly, sample a path of the random walk X = (Xn) from Pω,0
and denote by T1, T2, . . . the time intervals between successive visits of X to C∞,α. These
are defined recursively by

Tj+1 := inf
{

n ≥ 1 : XT1+···+Tj+n ∈ C∞,α
}

, (2.11)

with T0 = 0. For each x, y ∈ C∞,α, let

ω̂xy := Pω,x(XT1 = y) (2.12)
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and define the operator

(L(α)
ω f )(x) := ∑

y∈C∞,α

ω̂xy
[

f (y)− f (x)
]
. (2.13)

The continuous-time random walk Y is a Markov process with this generator; alterna-
tively take the standard Poisson process (Nt)t≥0 with jump-rate one and set

Yt := XT1+···+TNt
. (2.14)

Note that, while Y may jump “over the holes” of C∞,α, Proposition 2.3 ensures that
all of its jumps are finite. The counting measure on C∞,α is still invariant for this ran-
dom walk, L(α)

ω is self-adjoint on the corresponding space of square integrable functions
and L(α)

ω ϕω = 0 on C∞,α (see Lemma 5.2).

The skeleton of the proof is condensed into the following statement whose proof, and
adaptation to the present situation, is the main novel part of this note:

Theorem 2.4 Fix α as in (2.8–2.9) and suppose ψω : C∞,α → Rd is a function and θ > 0 is a
number such that the following holds for a.e. ω:

(1) (Harmonicity) If ϕω(x) := x + ψω(x), then L(α)
ω ϕω = 0 on C∞,α.

(2) (Sublinearity on average) For every ε > 0,

lim
n→∞

1
nd ∑

x∈C∞,α
|x|≤n

1{|ψω(x)|≥εn} = 0. (2.15)

(3) (Polynomial growth)

lim
n→∞

max
x∈C∞,α
|x|≤n

|ψω(x)|
nθ

= 0. (2.16)

Let Y = (Yt) be the continuous-time random walk on C∞,α with generator L(α)
ω and suppose also:

(4) (Diffusive upper bounds) For a deterministic sequence bn = o(n2) and a.e. ω,

sup
n≥1

max
x∈C∞,α
|x|≤n

sup
t≥bn

Eω,x|Yt − x|√
t

< ∞ (2.17)

and
sup
n≥1

max
x∈C∞,α
|x|≤n

sup
t≥bn

td/2Pω,x(Yt = x) < ∞. (2.18)

Then for almost every ω,

lim
n→∞

max
x∈C∞,α
|x|≤n

|ψω(x)|
n

= 0. (2.19)
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This result — with ψω playing the role of the corrector — shows that ϕω(x) − x =
o(x) on C∞,α. This readily extends to sublinearity on C∞ by the maximum principle
applied to ϕω on the finite components of C∞ \ C∞,α and using that the component sizes
obey a polylogarithmic upper bound. The assumptions (1-3) are known to hold for the
corrector of the supercritical bond-percolation cluster and the proof applies, with minor
modifications, to the present case as well. The crux is to prove (2.17–2.18) which is
where we need to borrow ideas from the “heat-kernel technology.” For our purposes it
will suffice to take bn = n in part (4).

We remark that the outline strategy of proof extends rather seamlessly to other (tran-
slation-invariant, ergodic) conductance distributions with conductances bounded from
above. Of course, one has to assume a number of specific properties for the “strong”
component C∞,α that, in the i.i.d. case, we are able to check explicitly.

The plan of the rest of this paper is a follows: Sect. 3 is devoted to some basic percola-
tion estimates needed in the rest of the paper. In Sect. 4 we define and prove some prop-
erties of the corrector χ, which is a random function marking the difference between the
harmonic coordinate ϕω(x) and the geometric coordinate x. In Sect. 5 we establish the
a.s. sublinearity of the corrector as stated in Theorem 2.4 subject to the diffusive bounds
(2.17–2.18). Then we assemble all facts into the proof of Theorem 2.1. Finally, in Sect. 6
we adapt some arguments from Barlow [2] to prove (2.17–2.18); first in rather general
Propositions 6.1 and 6.2 and then for the case at hand.

3. PERCOLATION ESTIMATES

In this section we provide a proof of Proposition 2.3 and also of a lemma dealing with
the maximal distance the random walk Y can travel in a given number of steps. We will
need to work with the “static” renormalization (cf Grimmett [17, Section 7.4]) whose
salient features we will now recall. The underlying ideas go back to the work of Kesten
and Zhang [19], Grimmett and Marstrand [18] and Antal and Pisztora [1].

We say that an edge b is occupied if ωb > 0. Consider the lattice cubes

BL(x) := x + [0, L]d ∩Zd (3.1)

and
B̃3L(x) := x + [−L, 2L]d ∩Zd (3.2)

and note that B̃3L(x) consists of 3d copies of BL(x) that share only sites on their adjacent
boundaries. Let GL(x) be the “good event” — whose occurrence designates BL(Lx) to
be a “good block” — which is the set of configurations such that:

(1) For each neighbor y of x, the side of the block BL(Ly) adjacent to BL(Lx) is con-
nected to the opposite side of BL(Ly) by an occupied path.

(2) Any two occupied paths connecting BL(Lx) to the boundary of B̃3L(Lx) are con-
nected by an occupied path using only edges with both endpoints in B̃3L(Lx).

The sheer existence of infinite cluster implies that (1) occurs with high probability once L
is large (see Grimmett [17, Theorem 8.97]) while the situation in (2) occurs with large
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probability once there is percolation in half space (see Grimmett [17, Lemma 7.89]). It
follows that

P
(
GL(x)

)
−→
L→∞

1 (3.3)

whenever P(ωb > 0) > pc(d). A crucial consequence of the above conditions is that,
if GL(x) and GL(y) occur for neighboring sites x, y ∈ Zd, then the largest connected
components in B̃3L(Lx) and B̃3L(Ly) — sometimes referred to as spanning clusters — are
connected. Thus, if GL(x) occurs for all x along an infinite path on Zd, the corresponding
spanning clusters are subgraphs of C∞.

A minor complication is that the events {GL(x) : x ∈ Zd} are not independent. How-
ever, they are 4-dependent in the sense that if (xi) and (yj) are such that |xi − yj| > 4
for each i and j, then the families {GL(xi)} and {GL(yj)} are independent. By the main
result of Liggett, Schonmann and Stacey [21, Theorem 0.0] (cf [17, Theorem 7.65]) the in-
dicators {1GL(x) : x ∈ Zd}, regarded as a random process on Zd, stochastically dominate
i.i.d. Bernoulli random variables whose density (of ones) tends to one as L→ ∞.

Proof of Proposition 2.3. In d = 2 the proof is actually very simple because it suffices to
choose α such that (2.8) holds. Then C∞ \ C∞,α ⊂ Z2 \ C∞,α has only finite (subcritical)
components whose diameter has exponential tails (2.10) by, e.g., [17, Theorem 6.10].

To handle general dimensions we will have to invoke the above “static” renormaliza-
tion. Let GL(x) be as above and consider the event GL,α(x) where we in addition require
that ωb 6∈ (0, α) for every edge with both endpoints in B̃3L(Lx). Clearly,

lim
L→∞

lim
α↓0

P
(
GL,α(x)

)
= 1. (3.4)

Using the aforementioned domination by site percolation, and adjusting L and α we can
thus ensure that, with probability one, the set{

x ∈ Zd : GL,α(x) occurs
}

(3.5)

has a unique infinite component C∞, whose complement has only finite components.
Moreover, if G(0) is the finite connected component of Zd \ C∞ containing the origin,
then a standard Peierls argument yields

P
(
diam G(0) ≥ n

)
≤ e−ζn (3.6)

for some ζ > 0. To prove (2.10), it suffices to show that

F (0) ⊂
⋃

x∈G(0)

BL(Lx) (3.7)

once diam F (0) > 3L. Indeed, then diam F (0) ≤ L diam G(0) and so (3.6) implies (2.10)
with η := ζ/L and C := e3Lη .

To prove (3.7), pick z ∈ F (0) and let x be such that z ∈ BL(Lx). It suffices to show
that if GL,α(x) occurs, then x is not adjacent to an infinite component in (3.5). Assuming
that x is adjacent to such a component, the fact that the spanning clusters in adjecent
“good blocks” are connected and thus contained in C∞,α implies

C∞,α ∩ BL(Lx) 6= ∅. (3.8)
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But then BL(Lx) is intersected by two “large” components, C∞,α and F (0), of edges
with ωb ≥ α. (This is where we need diam F (0) > 3L.) If these components are joined
by an occupied path — i.e., a path of edges with ωb > 0 — within B̃3L(Lx), then B̃3L(Lx)
contains a “weak” bond and so GL,α fails. In the absence of such a path the require-
ment (2) in the definition of GL(x) is not satisfied and so GL,α(x) fails too. �

Let d(x, y) be the “Markov distance” on V = C∞,α, i.e., the minimal number of jumps
the random walk Y = (Yt) needs to make to get from x to y. Note that d(x, y) could be
quite smaller than the graph-theoretic distance on C∞,α and/or the Euclidean distance.
(The latter distances are known to be comparable, see Antal and Pisztora [1].) To control
the volume growth for the Markov graph of the random walk Y we will need to know
that d(x, y) is nevertheless comparable with the Euclidean distance |x− y|:

Lemma 3.1 There exists $ > 0 and for each γ > 0 there is α > 0 obeying (2.8–2.9) and C < ∞
such that

P
(

0, x ∈ C∞,α & d(0, x) ≤ $|x|
)
≤ Ce−γ|x|, x ∈ Zd. (3.9)

Proof. Suppose α is as in the proof of Proposition 2.3. Let (ηx) be independent Bernoulli
that dominate the indicators 1GL,α from below and let C∞ be the unique infinite compo-
nent of the set {x ∈ Zd : ηx = 1}. We may “wire” the “holes” of C∞ by putting an edge
between every pair of sites on the external boundary of each finite component of Zd \C∞;
we use d′(0, x) to denote the distance between 0 and x on the induced graph. The pro-
cesses η and (1GL,α(x)) can be coupled so that each connected component of C∞ \ C∞,α

with diameter exceeding 3L is “covered” by a finite component of Zd \ C∞, cf (3.7). As
is easy to check, this implies

d(0, x) ≥ d′(0, x′) and |x′| ≥ 1
L
|x| − 1 (3.10)

whenever x ∈ BL(Lx′). It thus suffices to show the above bound for distance d′(0, x′).
Let p = pL,α be the parameter of the Bernoulli distribution and recall that p can be

made as close to one as desired by adjusting L and α. Let z0 = 0, z1, . . . , zn = x be a
nearest-neighbor path on Zd. Let G(zi) be the unique finite component of Zd \ C∞ that
contains zi — if zi ∈ C∞, we have G(zi) = ∅. Define

`(z0, . . . , zn) :=
n

∑
i=0

diam G(zi)
(

∏
j<i

1{zj 6∈G(zi)}

)
. (3.11)

We claim that for each λ > 0 we can adjust p so that

E eλ`(z0,...,zn) ≤ en (3.12)

for all n ≥ 1 and all paths as above. To verify this we note that the components con-
tributing to `(z0, . . . , zn) are distance at least one from one another. So conditioning on
all but the last component, and the sites in the ultimate vicinity, we may use the Peierls
argument to estimate the conditional expectation of eλ diam G(zn) by, say, e1. (We are using
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also that diam G(zn) is smaller than the boundary of G(zn).) Proceeding by induction n
times, (3.12) follows.

For any given γ > 0 we can adjust p so that (3.12) holds for

λ := 2(1 + log(2d) + γ) (3.13)

As the number of nearest-neighbor paths (z0 = 0, . . . , zn = x) is bounded by (2d)n, an
exponential Chebyshev estimate then shows

P
(
∃(z0 = 0, . . . , zn = x) : `(z0, . . . , zn) >

n
2

)
≤ e−γn. (3.14)

But if (z0 = 0, . . . , zn = x) is the shortest nearest-neighbor interpolation of a path that
achieves d′(0, x), then

d′(0, x) ≥ n− `(z0, . . . , zn). (3.15)
Since, trivially, |x| ≤ n, we deduce

P
(
d′(0, x) ≤ 1

2 |x|
)
≤ e−γ|x| (3.16)

as desired. �

4. CORRECTOR

The purpose of this section is to define, and prove some properties of, the corrector
χ(ω, x) := ϕω(x)− x. This object could be defined probabilistically by the limit

χ(ω, x) = lim
n→∞

(
Eω,x(Xn)− Eω,0(Xn)

)
− x, (4.1)

unfortunately, at this moment we seem to have no direct (probabilistic) argument show-
ing that the limit exists. The traditional definition of the corrector involves spectral cal-
culus (Kipnis and Varadhan [20]); we will invoke a projection construction from Mathieu
and Piatnitski [25] (see also Giacomin, Olla and Spohn [15]).

Let P be an i.i.d. law on (Ω, F ) where Ω := [0, 1]Bd and F is the natural product
σ-algebra. Let τx : Ω→ Ω denote the shift by x, i.e.,

(τzω)xy := ωx+z,y+z (4.2)

and note that P ◦ τ−1
x = P for all x ∈ Zd. Recall that C∞ is the infinite connected

component of edges with ωb > 0 and, for α > 0, let C∞,α denote the set of sites connected
to infinity by edges with ωb ≥ α. If P(0 ∈ C∞,α) > 0, let

Pα(−) := P(−|0 ∈ C∞,α) (4.3)

and let Eα be the corresponding expectation. Given ω ∈ Ω and sites x, y ∈ C∞,α(ω),
let d(α)

ω (x, y) denote the graph distance between x and y as measured on C∞,α. (Note this
is distinct from the Markov distance d(x, y) discussed, e.g., in Lemma 3.1.) We will also
use Lω to denote the generator of the continuous-time version of the walk X, i.e.,

(Lω f )(x) :=
1

2d ∑
y : |y−x|=1

ωxy
[

f (y)− f (x)
]
. (4.4)



RANDOM WALK AMONG RANDOM CONDUCTANCES 11

The following theorem summarizes all relevant properties of the corrector:

Theorem 4.1 Suppose P(0 ∈ C∞) > 0. There exists a function χ : Ω×Zd → Rd such that
the following holds P0-a.s.:

(1) (Gradient field) χ(0, ω) = 0 and, for all x, y ∈ C∞(ω),

χ(ω, x)− χ(ω, y) = χ(τyω, x− y). (4.5)

(2) (Harmonicity) ϕω(x) := x + χ(ω, x) obeys Lω ϕω = 0.
(3) (Square integrability) There is a constant C = C(α) < ∞ such that for all x, y ∈ Zd

satisfying |x− y| = 1,

Eα

(
|χ(·, y)− χ(·, x)|2 ωxy 1{x∈C∞}

)
< C (4.6)

Let α > 0 be such that P(0 ∈ C∞,α) > 0. Then we also have:

(4) (Polynomial growth) For every θ > d, a.s.,

lim
n→∞

max
x∈C∞,α
|x|≤n

|χ(ω, x)|
nθ

= 0. (4.7)

(5) (Zero mean under random shifts) Let Z : Ω→ Zd be a random variable such that
(a) Z(ω) ∈ C∞,α(ω),
(b) Pα is preserved by ω 7→ τZ(ω)(ω),

(c) Eα(d(α)
ω (0, Z(ω))q) < ∞ for some q > 3d.

Then χ(·, Z(·)) ∈ L1(Ω, F , Pα) and

Eα

[
χ(·, Z(·))

]
= 0. (4.8)

As noted before, to construct the corrector we will invoke a projection argument. Ab-
breviate L2(Ω) = L2(Ω, F , P0) and let B := {ê1, . . . , êd} be the set of coordinate vectors.
Consider the space L2(Ω× B) of square integrable functions u : Ω× B → Rd equipped
with the inner product

(u, v) := E0

(
∑
b∈B

u(ω, b) · v(ω, b) ωb

)
. (4.9)

We may interpret u ∈ L2(Ω× B) as a flow by putting u(ω,−b) = −u(τ−bω, b). Some,
but not all, elements of L2(Ω× B) can be obtained as gradients of local functions, where
the gradient ∇ is the map L2(Ω)→ L2(Ω× B) defined by

(∇φ)(ω, b) := φ ◦ τb(ω)− φ(ω). (4.10)

Let L2
∇ denote the closure of the set of gradients of all local functions — i.e., those de-

pending only on the portion of ω in a finite subset of Zd — and note the following
orthogonal decomposition L2(Ω× B) = L2

∇ ⊕ (L2
∇)⊥.
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The elements of (L2
∇)⊥ can be characterized using the concept of divergence, which for

u : Ω× B→ Rd is the function div u : Ω→ Rd defined by

div u(ω) := ∑
b∈B

[
ωbu(ω, b)−ω−bu(τ−bω, b)

]
. (4.11)

Using the interpretation of u as a flow, div u is simply the net flow out of the origin. The
characterization of (L2

∇)⊥ is now as follows:

Lemma 4.2 u ∈ (L2
∇)⊥ if and only if div u(ω) = 0 for P0-a.e. ω.

Proof. Let u ∈ L2(Ω× B) and let φ ∈ L2(Ω) be a local function. A direct calculation and
the fact that ω−b = (τ−bω)b yield

(u,∇φ) = −E0

(
φ(ω) div u(ω)

)
. (4.12)

If u ∈ (L2
∇)⊥, then div u integrates to zero against all local functions. Since these are

dense in L2(Ω), we have div u = 0 a.s. �

It is easy to check that every u ∈ L2
∇ is curl-free in the sense that for any oriented loop

(x0, x1, . . . , xn) on C∞(ω) with xn = x0 we have

n−1

∑
j=0

u(τxj ω, xj+1 − xj) = 0. (4.13)

On the other hand, every u : Ω × B → Rd which is curl-free can be integrated into a
unique function φ : Ω× C∞(·)→ Rd such that

φ(ω, x) =
n−1

∑
j=0

u(τxj ω, xj+1 − xj) (4.14)

holds for any path (x0, . . . , xn) on C∞(ω) with x0 = 0 and xn = x. This function will
automatically satisfy the shift-covariance property

φ(ω, x)− φ(ω, y) = φ(τyω, x− y), x, y ∈ C∞(ω). (4.15)

We will denote the space of such functions H(Ω × Zd). To denote the fact that φ is
assembled from the shifts of u, we will write

u = grad φ, (4.16)

i.e.,“ grad ” is a map from H(Ω ×Zd) to functions Ω × B → Rd that takes a function
φ ∈ H(Ω×Zd) and assigns to it the collection of values {φ(·, b)− φ(·, 0) : b ∈ B}.

Lemma 4.3 Let φ ∈ H(Ω×Zd) be such that grad φ ∈ (L2
∇)⊥. Then φ is (discrete) harmonic

for the random walk on C∞, i.e., for P0-a.e. ω and all x ∈ C∞(ω),

(Lωφ)(ω, x) = 0. (4.17)
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Proof. Our definition of divergence is such that “div grad = 2dLω” holds. Lemma 4.2
implies that u ∈ (L2

∇)⊥ if and only if div u = 0, which is equivalent to (Lωφ)(ω, 0) = 0.
By translation covariance, this extends to all sites in C∞. �

Proof of Theorem 4.1(1-3). Consider the function φ(ω, x) := x and let u := grad φ. Clearly,
u ∈ L2(Ω × B). Let G ∈ L2

∇ be the orthogonal projection of −u onto L2
∇ and define

χ ∈ H(Ω×Zd) to be the unique function such that

G = grad χ and χ(·, 0) = 0. (4.18)

This definition immediately implies (4.5), while the definition of the inner product on
L2(Ω× B) directly yields (4.6). Since u projects to −G on L2

∇, we have u + G ∈ (L2
∇)⊥.

But u + G = grad [x + χ(ω, x)] and so, by Lemma 4.3, x 7→ x + χ(ω, x) is harmonic with
respect to Lω. �

Remark 4.4 We note that the corrector is actually uniquely determined by properties
(1-3) of Theorem 4.1. In fact, x + χ spans the orthogonal complement of L2

∇ in the space
of shift-covariant functions. See Biskup and Spohn [9].

For the remaining parts of Theorem 4.1 we will need to work on C∞,α. However, we
do not yet need the full power of Proposition 2.3; it suffices to note that C∞,α has the law
of a supercritical percolation cluster.

Proof of Theorem 4.1(4). Let θ > d and abbreviate

Rn := max
x∈C∞,α
|x|≤n

∣∣χ(ω, x)
∣∣. (4.19)

By Theorem 1.1 of Antal and Pisztora [1],

λ(ω) := sup
x∈C∞,α

d(α)
ω (0, x)
|x| < ∞, Pα-a.s., (4.20)

and so it suffices to show that Rn/nθ → 0 on {λ(ω) ≤ λ} for every λ < ∞. But on
{λ(ω) ≤ λ} every x ∈ C∞,α with |x| ≤ n can be reached by a path on C∞,α that does not
leave [−λn, λn]d and so, on {λ(ω) ≤ λ},

Rn ≤ ∑
x∈C∞,α
|x|≤λn

∑
b∈B

√
ωx,x+b

α

∣∣χ(ω, x + b)− χ(ω, x)
∣∣. (4.21)

Invoking the bound (4.6) we then get

‖Rn 1{λ(ω)≤λ} ‖2 ≤ Cnd (4.22)

for some constant C = C(α, λ, d) < ∞. Applying Chebyshev’s inequality and sum-
ming n over powers of 2 then yields Rn/nθ → 0 a.s. on {λ(ω) ≤ λ}. �
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Proof of Theorem 4.1(5). Let Z be a random variable satisfying the properties (a-c). By the
fact that G ∈ L2

∇, there exists a sequence ψn ∈ L2(Ω) such that

ψn ◦ τx − ψn −→n→∞
χ(·, x) in L2(Ω× B). (4.23)

Abbreviate χn(ω, x) = ψn ◦ τx(ω)− ψn(ω) and without loss of generality assume that
χn(·, x)→ χ(·, x) almost surely.

By the fact that Z is Pα-preserving we have Eα(χn(·, Z(·))) = 0 as soon as we can
show that χn(·, Z(·)) ∈ L1(Ω). It thus suffices to prove that

χn
(
·, Z(·)

)
−→
n→∞

χ
(
·, Z(·)

)
in L1(Ω). (4.24)

Abbreviate K(ω) := d(α)
ω (0, Z(ω)) and note that, as in part (4),∣∣χn(ω, Z(ω))
∣∣ ≤ ∑

x∈C∞,α
|x|≤K(ω)

∑
b∈B

√
ωx,x+b

α

∣∣χn(ω, x + b)− χn(ω, x)
∣∣. (4.25)

The quantities
√

ωx,x+b
∣∣ χn(ω, x + b)− χn(ω, x)

∣∣ 1{x∈C∞,α} (4.26)

are bounded in L2, uniformly in x, b and n, and assumption (c) tells us that K ∈ Lq

for some q > 3d. Ordering the edges in Bd according to their distance from the origin,
Lemma 4.5 of Berger and Biskup [6] with the specific choices

p := 2, s := q/d and N := d(2K + 1)d (4.27)

(note that N ∈ Ls(Ω)) implies that for some r > 1,

sup
n≥1
‖χn(·, Z(·))‖r < ∞. (4.28)

Hence, the family {χn(·, Z(·))} is uniformly integrable and (4.24) thus follows by the
fact that χn(·, Z(·)) converge almost surely. �

Remark 4.5 It it worth pointing out that the proof of properties (1-3) extends nearly
verbatim to the setting with arbitrary conductances and arbitrary long jumps (i.e., the
case when B is simply all of Zd). One only needs that x is in L2(Ω× B), i.e.,

E

(
∑

x∈Zd

ω0,x|x|2
)

< ∞. (4.29)

The proof of (4-5) seems to require additional (and somewhat unwieldy) conditions.

5. CONVERGENCE TO BROWNIAN MOTION

Here we will prove Theorem 2.1. We commence by establishing the conclusion of Theo-
rem 2.4 whose proof draws on an idea, suggested to us by Yuval Peres, that sublinearity
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on average plus heat kernel upper bounds imply pointwise sublinearity. We have re-
duced the extraneous input from heat-kernel technology to the assumptions (2.17–2.18).
These imply heat-kernel upper bounds but generally require less work to prove.

The main technical part of Theorem 2.1 is encapsulated into the following lemma:

Lemma 5.1 Abusing the notation from (4.19) slightly, let

Rn := max
x∈C∞,α
|x|≤n

∣∣ψω(x)
∣∣. (5.1)

Under the conditions (1,2,4) of Theorem 2.4, for each ε > 0 and δ > 0, there exists an a.s. finite
random variable n0 = n0(ω, ε, δ) such that

Rn ≤ εn + δR3n. n ≥ n0. (5.2)

Before we prove this, let us see how this and (2.16) imply (2.19).

Proof of Theorem 2.4. Suppose that Rn/n 6→ 0 and pick c with 0 < c < lim supn→∞ Rn/n.
Let θ be is as in (2.16) and choose

ε :=
c
2

and δ :=
1

3θ+1 . (5.3)

Note that then c′ − ε ≥ 3θδc′ for all c′ ≥ c. If Rn ≥ cn — which happens for infinitely
many n’s — and n ≥ n0, then (5.2) implies

R3n ≥
c− ε

δ
n ≥ 3θcn (5.4)

and, inductively, R3kn ≥ 3kθcn. However, that contradicts (2.16) by which R3kn/3kθ → 0
as k→ ∞ (with n fixed). �

The idea underlying Lemma 5.1 is simple: We run a continuous-time random walk
(Yt) for time t = o(n2) starting from the maximizer of Rn and apply the harmonicity of
x 7→ x + ψω(x) to derive an estimate on the expectation of ψ(Yt). The right-hand side
of (5.2) expresses two characteristic situations that may occur at time t: Either we have
|ψω(Yt)| ≤ εn — which, by “sublinearity on average,” happens with overwhelming
probability — or Y will not yet have left the box [−3n, 3n]d and so ψω(Yt) ≤ R3n. The
point is to show that these are the dominating strategies.

Proof of Lemma 5.1. Fix ε, δ > 0 and let C1 = C1(ω) and C2 = C2(ω) denote the suprema
in (2.17) and (2.18), respectively. Let z be the site where the maximum Rn is achieved
and denote

On :=
{

x ∈ C∞,α : |x| ≤ n, |ψω(x)| ≥ 1
2 εn
}

. (5.5)

Let Y = (Yt) be a continuous-time random walk on C∞,α with expectation for the walk
started at z denoted by Eω,z. Define the stopping time

Sn := inf
{

t ≥ 0 : |Yt − z| ≥ 2n
}

(5.6)
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and note that, in light of Proposition 2.3, we have |Yt∧Sn − z| ≤ 3n for all t > 0 provided
n ≥ n1(ω) where n1(ω) < ∞ a.s. The harmonicity of x 7→ x + ψω(x) and the Optional
Stopping Theorem yield

Rn ≤ Eω,z
∣∣ψω(Yt∧Sn) + Yt∧Sn − z

∣∣. (5.7)

Restricting to t satisfying
t ≥ b4n, (5.8)

where bn = o(n2) is the sequence in part (4) of Theorem 2.4, we will now estimate the
expectation separately on {Sn < t} and {Sn ≥ t}.

On the event {Sn < t}, the absolute value in the expectation can simply be bounded
by R3n + 3n. To estimate the probability of Sn < t we decompose according to whether
|Y2t − z| ≥ 3

2 n or not. For the former, (5.8) and (2.17) imply

Pω,z
(
|Y2t − z| ≥ 3

2 n
)
≤ Eω,z|Y2t − z|

3
2 n

≤ 2
3

C1

√
2t

n
. (5.9)

For the latter we invoke the inclusion{
|Y2t − z| ≤ 3

2 n
}
∩ {Sn < t} ⊂

{
|Y2t −YSn | ≥ 1

2 n
}
∩ {Sn < t} (5.10)

and note that 2t− Sn ∈ [t, 2t], (5.8) and (2.17) give us similarly

Pω,x
(
|Ys − x| ≥ n/2

)
≤ 2

n
C1
√

2t when x := YSn and s := 2t− Sn. (5.11)

From the Strong Markov Property we thus conclude that this serves also as a bound for
Pω,z(Sn < t, |Y2t − z| ≥ 3

2 n). Combining both parts and using 8
3

√
2 ≤ 4 we thus have

Pω,z(Sn < t) ≤ 4C1
√

t
n

. (5.12)

The Sn < t part of the expectation (5.7) is bounded by R3n + 3n times as much.
On the event {Sn ≥ t}, the expectation in (5.7) is bounded by

Eω,z
(
|ψω(Yt)| 1{Sn≥t}

)
+ Eω,z|Yt − z|. (5.13)

The second term on the right-hand side is then less than C1
√

t provided t ≥ bn. The first
term is estimated depending on whether Yt 6∈ O2n or not:

Eω,z
(
|ψω(Yt)| 1{Sn≥t}

)
≤ 1

2
εn + R3nPω,z(Yt ∈ O2n). (5.14)

For the probability of Yt ∈ O2n we get

Pω,z(Yt ∈ O2n) = ∑
x∈O2n

Pω,z(Yt = x) (5.15)

which, in light of the Cauchy-Schwarz estimate

Pω,z(Yt = x)2 ≤ Pω,z(Yt = z)Pω,x(Yt = x) (5.16)
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and the definition of C2, is further estimated by

Pω,z(Yt ∈ O2n) ≤ C2
|O2n|
td/2 . (5.17)

From the above calculations we conclude that

Rn ≤ (R3n + 3n)
4C1
√

t
n

+ C1
√

t +
1
2

εn + R3nC2
|O2n|
td/2 . (5.18)

Since |O2n| = o(nd) as n→ ∞, by (2.15) we can choose t := ξn2 with ξ > 0 so small that
(5.8) applies and (5.2) holds for the given ε and δ once n is sufficiently large. �

We now proceed to prove convergence of the random walk X = (Xn) to Brownian
motion. Most of the ideas are drawn directly from Berger and Biskup [6] so we stay
rather brief. We will frequently work on the truncated infinite component C∞,α and the
corresponding restriction of the random walk; cf (2.11–2.13). We assume throughout
that α is such that (2.8–2.9) hold.

Lemma 5.2 Let χ be the corrector on C∞. Then ϕω(x) := x + χ(ω, x) is harmonic for the
random walk observed only on C∞,α, i.e.,

L(α)
ω ϕω(x) = 0, ∀x ∈ C∞,α. (5.19)

Proof. We have

(L(α)
ω ϕω)(x) = Eω,x

(
ϕω(XT1)

)
− ϕω(x) (5.20)

But Xn is confined to a finite component of C∞ \ C∞,α for n ∈ [0, T1], and so ϕω(Xn)
is bounded. Since (ϕω(Xn)) is a martingale and T1 is an a.s. finite stopping time, the
Optional Stopping Theorem tells us Eω,x ϕω(XT1) = ϕω(x). �

Next we recall the proof of sublinearity of the corrector along coordinate directions:

Lemma 5.3 For ω ∈ {0 ∈ C∞,α}, let (xn(ω))n∈Z mark the intersections of C∞,α and one of
the coordinate axis so that x0(ω) = 0. Then

lim
n→∞

χ(ω, xn(ω))
n

= 0, Pα-a.s. (5.21)

Proof. Let τx be the “shift by x” on Ω and let σ(ω) := τx1(ω)(ω) denote the “induced”
shift. Standard arguments (cf [6, Theorem 3.2]) prove that σ is Pα preserving and ergodic.
Moreover,

Eα

(
d(α)

ω (0, x1(ω))p) < ∞, p < ∞, (5.22)

by [6, Lemma 4.3] (based on Antal and Pisztora [1]). Define Ψ(ω) := χ(ω, x1(ω)).
Theorem 4.1(5) tells us that

Ψ ∈ L1(Pα) and EαΨ(ω) = 0. (5.23)
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But the gradient property of χ implies

χ(ω, xn(ω))
n

=
1
n

n−1

∑
k=0

Ψ ◦ σk(ω) (5.24)

and so the left-hand side tends to zero a.s. by the Pointwise Ergodic Theorem. �

We will also need sublinearity of the corrector on average:

Lemma 5.4 For each ε > 0 and Pα-a.e. ω:

lim
n→∞

1
nd ∑

x∈C∞,α
|x|≤n

1{|χ(ω,x)|≥εn} = 0. (5.25)

Proof. This follows from Lemma 5.3 exactly as [6, Theorem 5.4]. �

Remark 5.5 The proof of [6, Theorem 5.4] makes a convenient use of separate ergod-
icity (i.e., that with respect to shifts only in one of the coordinate directions). This is
sufficient for i.i.d. environments as considered in the present situation. However, it is
not hard to come up with a modification of the proof that covers general ergodic envi-
ronments as well (Biskup and Deuschel [8]).

Finally, we will assert the validity of the bounds on the return probability and ex-
pected displacement of the walk from Theorem 2.4:

Lemma 5.6 Let (Yt) denote the continuous-time random walk on C∞,α. Then the diffusive
bounds (2.17–2.18) hold for Pα-a.e. ω.

We will prove this lemma at the very end of Sect. 6.

Proof of Theorem 2.1. Let α be such that (2.8–2.9) hold and let χ denote the corrector on C∞
as constructed in Theorem 4.1. The crux of the proof is to show that χ grows sublinearly
with x, i.e., χ(ω, x) = o(|x|) a.s.

By Lemmas 5.2 and 5.4, Theorem 4.1(4) and Lemma 5.6, the corrector satisfies the con-
ditions of Theorem 2.4. It follows that χ is sublinear on C∞,α as stated in (2.19). However,
by (2.10) the largest component of C∞ \ C∞,α in a box [−2n, 2n] is less than C log n in di-
ameter, for some random but finite C = C(ω). Invoking the harmonicity of ϕω on C∞,
the Optional Stopping Theorem gives

max
x∈C∞
|x|≤n

∣∣χ(ω, x)
∣∣ ≤ max

x∈C∞,α
|x|≤n

∣∣χ(ω, x)
∣∣+ 2C(ω) log(2n), (5.26)

whereby we deduce that χ is sublinear on C∞ as well.
Having proved the sublinearity of χ on C∞, we proceed as in the d = 2 proof of [6].

Let ϕω(x) := x + χ(ω, x) and abbreviate Mn := ϕω(Xn). Fix v̂ ∈ Rd and define

fK(ω) := Eω,0
(
(v̂ ·M1)2 1{|v̂·M1|≥K}

)
. (5.27)



RANDOM WALK AMONG RANDOM CONDUCTANCES 19

By Theorem 4.1(3), fK ∈ L1(Ω, F , P0) for all K. Since the Markov chain on environ-
ments, n 7→ τXn(ω), is ergodic (cf [6, Section 3]), we thus have

1
n

n−1

∑
k=0

fK ◦ τXk(ω) −→
n→∞

E0 fK, (5.28)

for P0-a.e. ω and Pω,0-a.e. path X = (Xk) of the random walk. Using this for K := 0
and K := ε

√
n along with the monotonicity of K 7→ fK verifies the conditions of the

Lindeberg-Feller Martingale Functional CLT (e.g., Durrett [13, Theorem 7.7.3]). Thereby
we conclude that the random continuous function

t 7→ 1√
n
(
v̂ ·Mbntc + (nt− bntc) v̂ · (Mbntc+1 −Mbntc)

)
(5.29)

converges weakly to Brownian motion with mean zero and covariance

E0 f0 = E0Eω,0
(
(v̂ ·M1)2). (5.30)

This can be written as v̂ · Dv̂ where D is the matrix with coefficients

Di,j := E0Eω,0
(
(êi ·M1)(êj ·M1)

)
. (5.31)

Invoking the Cramér-Wold device (e.g., Durrett [13, Theorem 2.9.5]) and the fact that
continuity of a stochastic process in Rd is implied by the continuity of its d one-dim-
ensional projections we get that the linear interpolation of t 7→ Mbntc/

√
n scales to d-

dimensional Brownian motion with covariance matrix D. The sublinearity of the correc-
tor then ensures, as in [6, (6.11–6.13)], that

Xn −Mn = χ(ω, Xn) = o(|Xn|) = o(|Mn|) = o(
√

n), (5.32)

and so the same conclusion applies to t 7→ Bn(t) in (2.2).
The reflection symmetry of P0 forces D to be diagonal; the rotation symmetry then

ensures that D = (1/d)σ2 1 where

σ2 := E0Eω,0|M1|2 (5.33)

To see that the limiting process is not degenerate to zero we note that if we had σ = 0
then χ(·, x) = −x would hold a.s. for all x ∈ Zd. But that is impossible since, as we
proved above, x 7→ χ(·, x) is sublinear a.s. �

Remark 5.7 Note that, unlike the proofs in [29, 6, 25], the above line of argument does
not require a separate proof of tightness. In our approach, this comes rather automati-
cally for the deformed random walk ϕω(Xn) — via the (soft) stationarity argument (5.28)
and the Martingale Functional CLT. Sublinearity of the corrector then extends it readily
to the original random walk.

Remark 5.8 We also wish to use the opportunity to correct an erroneous argument
from [6]. There, at the end of the proof of Theorem 6.2 it is claimed that the expectation
E0Eω,0(X1 · χ(X1, ω)) is zero. Unfortunately, this is false. In fact, we have

E0Eω,0
(
X1 · χ(X1, ω)

)
= −E0Eω,0

∣∣χ(X1, ω)
∣∣2 < 0. (5.34)
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where the strict inequality assumes that P is non-degenerate. This shows

E0Eω,0|M1|2 = E0Eω,0|X1|2 −E0Eω,0
∣∣χ(X1, ω)

∣∣2 < E0Eω,0|X1|2. (5.35)

Thus, once P is non-degenerate, the diffusion constant of the limiting Brownian motion
is strictly smaller than the variance of the first step.

A consequence of the above error for the proof of Theorem 6.2 in [6] is that it inval-
idates one of the three listed arguments to prove that the limiting Brownian motion is
non-degenerate. Fortunately, the remaining two arguments are correct.

6. HEAT KERNEL AND EXPECTED DISTANCE

Here we will derive the bounds (2.17–2.18) and thus establish Lemma 5.6. Most of the
derivation will be done for a general countable-state Markov chain; we will specialize
to random walk among i.i.d. conductances at the very end of this section. The general
ideas underlying these derivations are fairly standard and exist, in some form, in the
literature. A novel aspect is the way we control the non-uniformity of volume-growth
caused by local irregularities of the underlying graph; cf (6.4) and Lemma 6.3(1). A well
informed reader may nevertheless wish to read only the statements of Propositions 6.1
and 6.2 and then pass directly to the proof of Lemma 5.6.

Let V be a countable set and let (axy)x,y∈V denote the collection of positive numbers
with the following properties: For all x, y ∈ V,

axy = ayx and π(x) := ∑
y∈V

axy < ∞. (6.1)

Consider a continuous time Markov chain (Yt) on V with the generator

(L f )(x) :=
1

π(x) ∑
y∈V

axy
[

f (y)− f (x)
]
. (6.2)

We use Px to denote the law of the chain started from x, and Ex to denote the corre-
sponding expectation. Consider a graph G = (V, E) where E is the set of all pairs (x, y)
such that axy > 0. Let d(x, y) denote the distance between x and y as measured on G.

For each x ∈ V, let Bn(x) := {y ∈ V : d(x, y) ≤ n}. If Λ ⊂ V, we use Q(Λ, Λc) to
denote the sum

Q(Λ, Λc) := ∑
x∈Λ

∑
y∈Λc

axy. (6.3)

Suppose that there are constants d > 0 and ν ∈ (0, 1/2) such that, for some a > 0,

Cvol(x, a) := sup
0<s≤a

[
sd ∑

y∈V
π(y)e−sd(x,y)

]
< ∞ (6.4)

and

Ciso(x) := inf
n≥1

inf
{

Q(Λ, Λc)

π(Λ)
d−1

d
: Λ ⊂ B2n(x), π(Λ) ≥ nν, Λ connected

}
> 0. (6.5)
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Let V(ε) ⊂ V denote the set of all x ∈ V that are connected to infinity by a self-avoiding
path (x0 = x, x1, . . . ) with axi ,xi+1 ≥ ε for all i ≥ 0. Suppose that

a? := sup
{

ε > 0 : V(ε) = V
}

> 0. (6.6)

(Note that this does not require axy be bounded away from zero.)
The first observation is that the heat-kernel, defined by

qt(x, y) :=
Px(Yt = y)

π(y)
, (6.7)

can be bounded in terms of the isoperimetry constant Ciso(x). Bounds of this form are
well known and have been derived by, e.g., Coulhon, Grigor’yan and Pittet [10] for heat-
kernel on manifolds, and by Lovász and Kannan [22], Morris and Peres [23] and Goel,
Montenegro and Tetali [16] in the context of countable-state Markov chains. We will use
the formulation for infinite graphs developed in Morris and Peres [23].

Proposition 6.1 There exists a constant c1 ∈ (1, ∞) depending only on d and a? such that for
t(x) := c1[log(Ciso(x) ∨ c1)]

1
1−2ν we have

sup
z∈Bt(x)

sup
y∈V

qt(z, y) ≤ c1
Ciso(x)−d

td/2 , t ≥ t(x). (6.8)

Proof. We will first derive the corresponding bound for the discrete-time version of (Yt).
Let P(x, y) := axy/π(x) and define P̂ := 1

2 (1 + P). Let

q̂n(x, y) :=
P̂n(x, y)

π(y)
(6.9)

We claim that, for some absolute constant c1 and any z ∈ Bn(x),

q̂n(z, y) ≤ c1
Ciso(x)−d

nd/2 , n ≥ t(x). (6.10)

To this end, let Q̂ be the object Q for the Markov chain P̂ and let

φ(r) := inf
{ Q̂(Λ, Λc)

π(Λ)
: π(Λ) ≤ r, Λ ⊂ B2n(x)

}
. (6.11)

We claim that Theorem 2 of Morris and Peres [23] then implies that, for any ε that satis-
fies 0 < ε < [π(x) ∧ π(y)]−1 and

n ≥ 1 +
∫ 4/ε

4(π(z)∧π(y))

4dr
rφ(r)2 , (6.12)

we have q̂n(z, y) ≤ ε. To see this we have to check that the restriction Λ ⊂ B2n(x) in the
definition of φ(r), which is absent from the corresponding object in [23], causes no harm.
First note that the Markov chain started at z ∈ Bn(x) will not leave B2n(x) by time n.
Thus, we can modify the chain outside B2n(x) arbitrarily. It is easy to come up with a
modification that will effectively reduce the infimum in (6.11) to sets inside B2n(x).
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It is well known (and easy to check) that the infimum in (6.11) can be restricted to
connected sets Λ. Then (6.5–6.6) give us

φ(r) ≥ 1
2
(
Ciso(x)r−1/d ∧ a?n−ν

)
(6.13)

where the extra half arises due the consideration of time-delayed chain P̂. The two
regimes cross over at rn := (Ciso(x)/a?)dndν; the integral is thus bounded by∫ 4/ε

4(π(z)∧π(y))

4dr
rφ(r)2 ≤ 4

n2ν

a2
?

log
( rn

4a?

)
+ 2dCiso(x)−2

(4
ε

)2/d
. (6.14)

The first term splits into a harmless factor of order n2ν log n = o(n) and a term propor-
tional to n2ν log Ciso(x). This is O(n) by n ≥ t(x) where the (implicit) constant can be
made as small as desired by choosing c1 sufficiently large. Setting

ε := c[Ciso(x)2n]−d/2 (6.15)

we can thus adjust the constant c in such a way that (6.14) is less than n − 1 for all
n ≥ t(x). Thereby (6.10) follows.

To extend the bound (6.10) to continuous time, we note that L = 2(P̂− 1). Thus if Nt
is Poisson with parameter 2t, then

qt(z, y) = Eq̂Nt(z, y). (6.16)

But P(Nt ≤ 3
2 t or Nt ≥ 3t) is exponentially small in t and, in particular, much smaller

than (6.8) for t ≥ c1 log Ciso(x) with c1 sufficiently large. As qt ≤ (a?)−1, the Nt 6∈ ( 3
2 t, 3t)

portion of the expectation in (6.16) is thus negligible. Once Nt is constrained to the
interval (t, 3t) the uniform bound (6.10) implies (6.8). �

Our next item of business is a diffusive bound on the expected (graph-theoretical)
distance traveled by the walk Yt by time t. As was noted by Bass [4] and Nash [27], this
can be derived from the above uniform bound on the heat-kernel assuming regularity
of the volume growth. Our proof is an adaptation of an argument of Barlow [2].

Proposition 6.2 There exist constants c2 = c2(d) and c3 = c3(d) such that the following
holds: Let x ∈ V and suppose A > 0 and t(x) > 1 are numbers for which

sup
y∈V

qt(x, y) ≤ A
td/2 , t ≥ t(x), (6.17)

holds and let T(x) := 1
d (Aa?)−4/d ∨ [t(x) log t(x)]. Then

Exd(x, Yt) ≤ A′(x, t)
√

t, t ≥ T(x), (6.18)

with A′(x, t) := c2 + c3[log A + Cvol(x, t−1/2)].

Much of the proof boils down to the derivation of rather inconspicuous but deep
relations (discovered by Nash [27]) between the following quantities:

M(x, t) := Exd(x, Yt) = ∑
y

π(y)qt(x, y)d(x, y) (6.19)
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and
Q(x, t) := −Ex log qt(x, Yt) = −∑

y
π(y)qt(x, y) log qt(x, y). (6.20)

Note that qt(x, ·) ≤ (a?)−1 implies Q(x, t) ≥ log a?.

Lemma 6.3 For all t ≥ 0 and all x ∈ V,
(1) M(x, t)d ≥ exp{−1− Cvol(x, M(x, t)−1) + Q(x, t)},
(2) M′(x, t)2 ≤ Q′(x, t).

Proof. Part (2) is identical to the proof of Lemma 3.3 in Barlow [2] so we only need to
prove part (1). We will follow the proof of [2, Lemma 3.3] except that we need to keep
track of Cvol(x) in the calculation. Pick two numbers a > 0 and b ∈ R and note that

u log u + λu ≥ −e−λ−1. (6.21)

This implies
−Q(x, t) + aM(x, t) + b ≥ −∑

y
π(y)e−b−1−ad(x,y). (6.22)

Using the definition of Cvol(x, a) and bounding e−1 ≤ 1 we get

−Q(x, t) + aM(x, t) + b ≥ −Cvol(x, a) e−ba−d. (6.23)

Now set e−b := ad with a := M(x, t)−1 to get the result. �

These bounds imply the desired diffusive estimate on M(x, t):

Proof of Proposition 6.2. Suppose without loss of generality that M(x, t) ≥
√

t, because
otherwise there is nothing to prove. We follow the proof of [2, Proposition 3.4]. The key
input is provided by the inequalities in Lemma 6.3. Define the function

L(t) :=
1
d

(
Q(x, t) + log A− d

2
log t

)
(6.24)

and note that L(t) ≥ 0 for t ≥ t(x). Let

t0 := (Aa?)−2/d ∨ sup
{

t ≥ 0 : L(t) ≤ 0
}

. (6.25)

We claim that M(x, t0) ≤
√

dT(x). Indeed, when t0 = (Aa?)−2/d then this follows by

M(x, t0) ≤ t0 = (Aa?)−2/d ≤
√

dT(x) (6.26)

due to our choice of T(x). On the other hand, when t0 > (Aa?)−2/d we use Lemma 6.3(2),
the Fundamental Theorem of Calculus and the Cauchy-Schwarz inequality to derive

M(x, t0) ≤
√

t0
[
Q(x, t0)−Q(x, 0)

]1/2. (6.27)

Since Q(x, 0) ≥ log a? and L(t0) = 0 by continuity, we have

M(x, t0) ≤
√

t0

( d
2

log t0 − log A− log a?

)1/2
≤
√

dt0 log t0 (6.28)
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where we used that t0 ≥ (Aa?)−2/d implies log A + log a? ≥ − d
2 log t0. Since this

implies t0 ≥ 1, the condition t0 ≤ t(x) shows that the right-hand side is again less
than

√
dT(x).

For t ≥ t0 we have L(t) ≥ 0. Lemma 6.3(2) yields

M(x, t)−M(x, t0) ≤
√

d
∫ t

t0

( 1
2s

+ L′(s)
)1/2

ds

≤
√

d
∫ t

t0

( 1√
2s

+ L′(s)
√

s/2

)
ds ≤

√
2dt + L(t)

√
dt,

(6.29)

where we used integration by parts and the positivity of L to derive the last inequal-
ity. Now put this together with M(x, t0) ≤

√
dt and apply Lemma 6.3(1), noting that

Cvol(z, M(x, t)−1) ≤ Cvol(z, t−1/2) by the assumption M(x, t) ≥
√

t. Dividing out an
overall factor

√
t, we thus get[

AeCvol(x,t−1/2)]−1/de−1/d+L(t) ≤ 3
√

d +
√

d L(t). (6.30)

This implies

L(t) ≤ c̃2 + c̃3
[
log A + Cvol(x, t−1/2)

]
(6.31)

for some constants c̃2 and c̃3 depending only on d. Plugging this in (6.29), we get the
desired claim. �

We are now finally ready to complete the proof of our main theorem:

Proof of Lemma 5.6. We will apply the above estimates to obtain the proof of the bounds
(2.17–2.18). We use the following specific choices

V := C∞,α, axy := ω̂xy, π(x) := 2d, and bn := n. (6.32)

As a? ≥ α, all required assumptions are satisfied.
To prove (2.18), we note that by Lemma 3.4 of Berger, Biskup, Hoffman and Kozma [7]

(based on the isoperimetric inequality for the supercritical bond-percolation cluster, cf
Benjamini and Mossel [5], Rau [28, Proposition 1.2] or [7, Section 5]) we have Ciso(0) > 0
a.s. Hence, Proposition 6.1 ensures that, for all z ∈ C∞,α with |z| ≤ t,

td/2Pω,z(Yt = z) ≤ 2dc1Ciso(0)−d (6.33)

provided t exceeds some t1 depending on Ciso(0). From here (2.18) immediately follows.
To prove (2.17), we have to show that, a.s.,

sup
n≥1

max
z∈C∞,α
|z|≤n

sup
t≥n

Cvol(z, t−1/2) < ∞. (6.34)

To this end we note that Lemma 3.1 implies that there is a.s. finite C = C(ω) such that
for all z, y ∈ C∞,α with |z| ≤ n and |z− y| ≥ C log n,

d(z, y) ≥ $|z− y|. (6.35)
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It follows that, once 1/a > C log n, for every z ∈ C∞,α with |z| ≤ n we have

∑
y∈C∞,α

e−ad(z,y) ≤ c4a−d + ∑
y∈C∞,α
|y−z|≥1/a

e−a$|z−y| ≤ c5a−d, (6.36)

where c4 and c5 are constants depending on d and $. Since 1/a = t1/2 ≥
√

n � log n,
(6.34) follows.

Once we have the uniform bound (6.34), as well as the uniform bound (6.17), Propo-
sition 6.2 yields the a.s. inequality

sup
n≥1

max
z∈C∞,α
|z|≤n

sup
t≥n

Eω,zd(z, Yt)√
t

< ∞. (6.37)

To convert d(z, Yt) into |z−Yt| in the expectation, we invoke (6.35) one more time. �
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