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ABSTRACT. We study a continuous-time simple random walk on a regular rooted tree of
depth n in two settings: either the walk is started from a leaf vertex and run until the tree
root is first hit or it is started from the root and run until it has spent a prescribed amount
of time there. In both cases we show that the extremal process associated with centered
square-root local time on the leaves tends, as n Ñ8, to a decorated Poisson point process
with a random intensity measure. While the intensity measure is specific to the local-time
problem at hand, the decorations are exactly those for the tree-indexed Markov chain
(a.k.a. Branching Random Walk or Gaussian Free Field) with normal step distribution.
The proof demonstrates the latter by way of a Lindeberg-type swap of the decorations of
the two processes which itself relies on a well-known isomorphism theorem.

1. INTRODUCTION AND RESULTS

Consider a regular rooted tree Tn of depth n ě 1 and forward degree b ě 2. Pick any of
its bn leaf vertices and use it to start a continuous-time Markov chain with state space Tn
and unit jump rate across each edge of Tn. Write `tpxq for the time spent by the chain
at x up to time t and τ$ for the first time the chain hits the root $ of Tn. We are interested
in the extremal properties of `τ$ on the set Ln of the leaves of Tn.

The limit distribution of the maximal time spent at any leaf-vertex has been identified
in a recent study by the second author and O. Louidor [20] drawing on earlier work of
the first author [2]. One way to state the conclusion is

1
n

ˆ

max
xPLn

`τ$pxq ´
`

n2 log b´ 2n log n
˘

˙

law
ÝÑ
nÑ8

logZ` G, (1.1)

where Z is an a.s.-positive random variable whose law can be characterized and G is a
normalized Gumbel random variable independent of Z. Perhaps more familiar, albeit
equivalent, way to put this is by saying that, for all u P R and xn P Ln,

Pxn

ˆ

max
xPLn

b

`τ$pxq ď
a

log b n´
1

a

log b
log n` u

˙

ÝÑ
nÑ8

E
`

e´Z e´2u
?

log b˘
, (1.2)

where Pxn is the law of the chain started at xn and the expectation is with respect to the
law of Z. The structure of the limit law places this problem in the universality class of
log-correlated models; see Section 2 for more discussion and references.

With the maximal time spent by the chain identified, a natural list of follow-up ques-
tions arises; for instance: How is the maximizer distributed relative to the starting point
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of the chain? What is the law of the second, third, etc maximum? Is there spatial cluster-
ing? What is the dependency structure of individual clusters? As is standard in extreme-
order statistics, such questions are conveniently encoded by an associated empirical ex-
tremal process. The present paper aims to extract a weak limit of this process as the
depth of the tree tends to infinity. We will treat two settings: the chain started from a
leaf and the chain started from the root.

1.1 Random walk started from a leaf.

We start with some notation. Observe that each leaf-vertex x P Ln can be identified
with a sequence px1, . . . , xnq P t0, . . . , b´ 1un of “instructions” indicating the “turns” in
the unique path in Tn from the root to x. Relying on this representation, we define an
injection θn : Ln Ñ r0, 1s by

θnpxq :“
n
ÿ

i“1

b´ixi when x “ px1, . . . , xnq. (1.3)

We will write 0 for the vertex represented by the sequence p0, . . . , 0q.
We are interested in simple random walk on Tn that, technically, is a continuous-

time Markov chain tXt : t ě 0u on Tn with infinitesimal generator acting on functions
f : Tn Ñ R as L f pxq :“

ř

px,yqPEpTnq
r f pyq ´ f pxqs, where EpTnq is the set of undirected

edges of Tn. Let Px denote for the law of the walk started from x P Tn. For x P Tn

and t ě 0, let `tpxq :“
´ t

0 1tXs“xuds be the total time spent by X at x by time t. Write

mn :“
a

log b n´
1

a

log b
log n (1.4)

for the centering sequence from (1.2) and denote a` :“ maxta, 0u. We then have:

Theorem 1.1 There exists a random Borel measure Z on r0, 1s and a (deterministic) law D on
infinite, locally finite point processes on p´8, 0s such that, for `τ$ sampled under P0,

ÿ

xPLn

δθnpxq b δ?`τ$ pxq´mn

law
ÝÑ
nÑ8

ÿ

iě1

ÿ

jě1

δxi b δhi`dpiqj
, (1.5)

where tpxi, hiquiě1 enumerates points in a sample from the Poisson point process

PPP
`

Zpdxq b e´2h
?

log bdh
˘

(1.6)

and tdpiqj : j ě 1uiě1 are i.i.d. samples from D independent of tpxi, hiquiě1 and Z . Moreover, a.e.
sample of Z is such that Zpr0, 1sq ă 8, Zpr0, εqq ą 0 for each ε ą 0 yet Zpt0uq “ 0 and there
exists a constant rC‹ P p0,8q such that, for `τ$ sampled from P0,

rC‹ b´2n
ÿ

xPLn

´

n
a

log b´
b

`τ$pxq
¯`

`τ$pxq
1{4 e2

?
log b

?
`τ$ pxqδθnpxq

law
ÝÑ
nÑ8

Z . (1.7)

A.e. sample of tdj : j ě 1u from D has a point at the origin.

The convergence in law of the point measures in (1.5) is relative to the vague topology
on Radon measures on r0, 1s ˆR. The sampling in (1.6) is done conditional on Z (i.e., Z
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is sampled first and the Poisson points second). An equivalent way to state (1.5) is by
saying that, for all continuous f : r0, 1s ˆR Ñ r0,8qwith compact support,

E0
ˆ

exp
!

´
ÿ

xPLn

f
`

θnpxq,
b

`τ$pxq ´mn
˘

)

˙

ÝÑ
nÑ8

E

ˆ

exp
!

´

ˆ
Zpdxq b e´2h

?
log bdhbDpdξq

`

1´ e´xξ, f px,h`¨qy˘
)

˙

,

(1.8)

where E0 denotes the expectation with respect to P0 and E is the expectation with respect
to the law of Z . The expression xξ, f px, h` ¨qy abbreviates the integral of s ÞÑ f px, h` sq
with respect to the point measure ξ.

The limit law (1.5) has the structure of a randomly-shifted, decorated Poisson point
process. Indeed, writing the intensity in (1.6) as

pZpdxq b
´

Z
`

r0, 1s
˘

e´2h
?

log bdh
¯

, (1.9)

where pZ is Z normalized by its total mass Zpr0, 1sq, we can realize the objects on the
right of (1.5) as follows: First draw Z and then draw i.i.d. samples txiuiě1 from pZ . Then,
given an independent sample th1iuiě1 from the Poisson point process of Gumbel intensity

e´2u
?

log bdu, let thiuiě1 be defined by

hi :“ h1i ` p2
a

log bq´1 logZpr0, 1sq, i ě 1. (1.10)

Finally, “attach” to each hi an independent sample (a “decoration”) from D drawn inde-
pendently of the points tpxi, hiquiě1.

The stated properties of the law D ensure that the “cluster” of points “attached” to hi
has its maximal point at hi. It follows that, for the process on the right of (1.5) to not
charge r0, 1s ˆ pu,8q, we need to have hi ď u for all i ě 1. Taking f along a sequence of
approximations of 1r0,1sˆpu,8q in (1.8) then forces Z from (1.2) to obey

Z
law
“

1
2
a

log b
Z
`

r0, 1s
˘

. (1.11)

The equality in law is confirmed independently from the fact that the total mass of the
measure on the left of (1.7) is known to converge weakly to Z; see [20, Theorem 1.5].
(The change in normalization due to the prefactor in (1.11) accounts for the difference
between rC‹ above and C‹ in [20, Theorem 1.5].)

1.2 Random walk started from the root.

The setting of the random walk started from a leaf and killed upon first visit to the root
has been introduced in order to mimic the exit problem from a lattice domain; see the
discussion in Section 2. For the random walk on Tn, another possible setting of interest
is that of the walk started at the root $. This becomes particularly neat if we parametrize
the process by the time spent at $. To this end we set, for each t ě 0,

rτ$ptq :“ inf
 

s ě 0 : `sp$q ě t
(

(1.12)

and abbreviate
Ltpxq :“ `

rτ$ptqpxq, x P Tn. (1.13)
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A key technical advantage of this representation is that tLtpxq : x P Tnu is a time-homo-
geneous tree-indexed Markov chain; see Lemma 2.1. Note that Ltp$q “ t deterministi-
cally while E$pLtpxqq “ t for all x P Tn.

The present setting does not necessitate that the walk ever visits the leaves by the time
it has accumulated time t at the root and we in fact have Ltpxq “ 0 for all x P Ln with
uniformly positive probability. For this reason we introduce

τLn :“ inf
!

t ě 0 : max
xPLn

Ltpxq ą 0
)

(1.14)

which a.s. coincides with the first time X visits Ln. Recall the notation mn for the se-
quence from (1.4). We then claim:

Theorem 1.2 For all t ą 0, there exists an a.s.-finite random Borel measure Zt on r0, 1s such
that the following holds:

lim
nÑ8

P$pτLn ă tq “ P
`

Ztpr0, 1sq ą 0
˘

P p0, 1q (1.15)

and, for Lt sampled under the conditional law P$p¨ |τLn ă tq,
ÿ

xPLn

δθnpxq b δ?Ltpxq´mn

law
ÝÑ
nÑ8

ÿ

iě1

ÿ

jě1

δxi b δhi`dpiqj
. (1.16)

Here tpxi, hiquiě1 enumerates points in a sample of the Poisson point process

PPP
`

Ztpdxq b e´2h
?

log bdh
˘

(1.17)

with Zt sampled conditional on tZtpr0, 1sq ą 0u and tdpiqj : j ě 1uiě1 denoting i.i.d. samples

from D in Theorem 1.1, drawn independently of tpxi, hiquiě1 and Zt. Moreover, with rC‹ P p0,8q
as in Theorem 1.1 and Lt sampled under P$,

rC‹ b´2n
ÿ

xPLn

´

n
a

log b´
a

Ltpxq
¯`

Ltpxq1{4 e2
?

log b
?

Ltpxqδθnpxq
law
ÝÑ
nÑ8

Zt. (1.18)

A.e. sample of Zt is diffuse (i.e., does not charge singletons).

The form and structure of the limit law (1.16) is quite similar to that in (1.5) and so the
discussion after Theorem 1.1 applies here as well. In particular, the maximum of Lt obeys
the analogue of (1.1), where the random variable Z is replaced by p2

a

log bq´1Ztpr0, 1sq.
As shown in [20], we have PpZtpr0, 1sq ą 0q Ñ 0 as t Ó 0. We will set Z0p¨q :“ 0.

1.3 Connecting the intensity measures.

Theorem 1.1 will be derived from Theorem 1.2 and the proof expresses the law of Z via
those of the random measures tZt : t ě 0u. To state this precisely, note that the weak
convergence (1.18) along with the continuity of the left-hand side in t implies that, for
any continuous f : r0, 1s Ñ r0,8q,

φ f ptq :“ E
`

e´xZt, f y˘ (1.19)

defines a Borel measurable function t ÞÑ φ f ptq. This is enough to couple any random
variable T ě 0 with random Borel measure ZT so that

E
`

e´λT´xZT , f y˘ “ E
`

e´λTφ f pTq
˘

(1.20)
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holds for all continuous f : r0, 1s Ñ r0,8q and all λ ě 0. Under the joint law pT, ZTq, the
conditional law of ZT given T is that of Zt with t :“ T. (If we had control of the law of
the process t ÞÑ Zt, we would simply sample T independently and plug it for t.)

A similar coupling of random Borel measures tZTkukě0 exists for any sequence of non-
negative random “times” tTkukě0, independent or not, so that

E

ˆ

ź

kě0

e´λkTk´xZTk , fky

˙

“ E

ˆ

ź

kě1

“

e´λkTk φ fkpTkq
‰

˙

(1.21)

for all continuous fk : r0, 1s Ñ r0,8q and all λk ě 0. Here, conditionally on tTkukě0, the
random variables tZTkukě0 are independent with ZTk having the law defined in (1.20). In
the proof of Theorem 1.1 we characterize the law of Z as follows:

Corollary 1.3 Let tTkukě0 have the law of t 1
2 |Bk|

2ukě0 for B denoting a standard two-dimen-
sional Brownian motion. Let tZTkukě0 be a sequence of random Borel measures on r0, 1s coupled
with tTkukě0 so that (1.21) holds as stated. Then

Zpdxq law
“

ÿ

kě1

1rb´k´1,b´kqpxq b´2kZTk

`

bkdx
˘

. (1.22)

A.e. sample of Z is diffuse.

Note that the measure in (1.22) is concentrated on r0, b´1q. In light of (1.7), this is no
surprise as, in order for the walk started at 0 to reach the parts of Tn where θnpxq ě b´1,
it must hit the root of Tn first. The representation also yields a limit law for the location
of the maximizer of `τ$ :

Corollary 1.4 Given n ě 1 and a sample `τ$ on Tn under P0, let Yn denote the a.s.-unique
maximizer of x ÞÑ `τ$pxq on Ln. Then θnpYnq converges in law to a random variable U on r0, 1s
described as follows: Given a sample tZTkukě1 of the measures in Corollary 1.3, let K be the
smallest k ě 1 maximizing

k ÞÑ log ZTk

`

rb´1, 1s
˘

´ 2k log b` Gk (1.23)

where log 0 :“ ´8 and tGkukě1 are i.i.d. standard Gumbel independent of tZTk : k ě 1u. Then
K ă 8 a.s. and U is uniform on rb´k´1, b´kq conditional on tK “ ku.

We expect the conclusion of Theorem 1.2 to hold even for t that increases with n (albeit
slower than n2) provided that the centering is done by the sequence

?
t` anptqwith

anptq :“ n
a

log b´
3
4

1
a

log b
log n´

1
4
a

log b
log

´n`
?

t
?

t

¯

(1.24)

instead of mn in (1.4). This would require performing the relevant estimates uniformly
in t P p0, tns, for any sequence tn “ opn2q, similarly as was done for the maximal local
time in [20, Theorem 3.1]. As explained in [20, Remark 3.8], for t growing as, or faster
than, order n2, additional corrections arise; see [2, Theorem 1.1]. (Roughly speaking, the
“constant” rC‹ becomes dependent on the asymptotic value of t{n2.)

We also expect that, under P$,

t´1{4e´2
?

log b
?

tZt
law
ÝÑ
tÑ8

W, (1.25)
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where W is a measure governing the extrema of a tree-indexed Branching Random Walk;
see (1.26) and (1.27) below. In [20, Theorem 1.3] this was checked for the convergence
of the total mass of these measures. The prefactors on the left of (1.25) arise from the
differences between the centering sequences

?
t` anptq and mn.

1.4 The cluster law.

In the above limit results, we have not yet identified the cluster law D beyond its basic
properties. Perhaps the most important part of our conclusions is that we can character-
ize D quite explicitly. We recall a definition:

Definition 1.5 Given a locally-finite random point measure η on R, a Branching Ran-
dom Walk with step distribution η started at x P R is a sequence tξkukě0 of random
locally-finite point measures on R such that ξ0 “ δx a.s. and, denoting Fk :“ σpξ j : j ď kq,

E
`

e´xξk`1, f y |Fk
˘

“ e´xξk , f̃ y where f̃ phq :“ ´ log E
`

e´xη, f ph`¨qy˘ (1.26)

holds for all k ě 0 and all continuous f : R Ñ r0,8qwith compact support.

The formula (1.26) expresses that, to get ξk`1 from ξk, we just replace each point x of
the process ξk by an independent copy of η shifted by x. The choice of the step distribu-
tion η relevant for the local-time problem at hand is

η :“
b
ÿ

i“1

δYi for Y1, . . . , Yb i.i.d. N p0, 1{2q, (1.27)

where N pµ, σ2q denotes normal distribution with mean µ and variance σ2. Since the
family-tree of the associated branching process is the regular rooted tree of forward
degree b, this Branching Random Walk can alternatively be viewed as a tree-indexed
Markov chain with step distribution N p0, 1{2q.

Under suitable moment conditions on η, which comfortably include (1.27), significant
efforts culminating in the work of Aı̈dékon [6] and Madaule [38] showed that there exist
constants c1, c2 P R and α ą 0 such that, for rmn :“ c1n ´ c2 log n and any continuous
f : R Ñ r0,8qwith compact support,

E
`

e´xξn, f p¨´ rmnqy
˘

ÝÑ
nÑ8

E
ˆ

exp
!

´W

ˆ
e´αhdhbD1pdχq

“

1´ e´
´

f ph`¨qqdχ
‰

)

˙

. (1.28)

Here W is an a.s. finite and positive random variable and D1 is a deterministic law on
locally finite point processes such that a.e. sample χ from D1 obeys supppχq Ď p´8, 0s
and sup supppχq “ 0.

The interpretation of (1.28) is that, as n Ñ8, the point process ξn shifted by rmn tends
in law (relative to the vague topology) to a point process of the form

ÿ

iě1

ÿ

jě1

δ
α´1 logW`hi`dpiqj

(1.29)

where thiuiě1 are the points of PPPpe´αhdhq while tdpiqj : j ě 1uiě1 are the points in i.i.d.

samples from D1, with the random objects W, thiuiě1 and tdpiqj : j ě 1uiě1 sampled inde-
pendently. Both α and D1 depend on the law of η.
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Our proof of Theorem 1.2 is readily modified to give an independent proof of (1.28)
for our Branching Random Walk and thus show:

Corollary 1.6 The cluster law D from Theorems 1.1 and 1.2 is the cluster law D1 from (1.28)
for the Branching Random Walk with step distribution (1.27).

In conclusion, we have found that, while the intensity measure governing the spatial
position of the extremal values of the local time is specific to the local time process at
hand, the local structure of the configuration near the extremal points is universal. This
can be attributed to the fact that, for each n ě 1 fixed,

ÿ

xPLn

δ?Ltpxq´
?

t
law
ÝÑ
tÑ8

ξn, (1.30)

where ξn is the state at time n of the Branching Random Walk with step distribution
(1.27). The statement (1.30) is deduced from a Multivariate CLT; the proof of above re-
sults relies on a stronger version encoded in the form of the Second Ray-Knight Theorem
of Eisenbaum, Kaspi, Marcus, Rosen and Shi [30]; see Lemma 2.3.

2. CONNECTIONS, DISCUSSION AND OUTLINE

We proceed by discussing a broader context of extremal behavior of logarithmically cor-
related processes. We also outline the main steps of our proof and mention alternative
approaches to local convergence we considered.

2.1 Extremal properties of random walks.

The study of extremal properties of random walks dates back to an influential study
from 1960 by Erdős and Taylor [31]. There, among other things, the authors addressed
the time T‹n that a d-dimensional simple symmetric random walk of n steps spends at its
most visited site, dubbed a frequent point. The answer turns out to be most interesting in
dimension d “ 2 where a resolution of just the leading order term

T‹n
plog nq2

a.s.
ÝÑ
nÑ8

1
π

(2.1)

was given full 40 years later by Dembo, Peres, Rosen and Zeitouni [27]. What makes
this case hard is the (asymptotic) scale invariance of the random walk which causes T‹n
to collect non-trivial contributions from excursions on all spatial scales.

Further progress occurred on this and related questions over the last decade. For in-
stance, Abe [1] proved a result analogous to [27] for the walk on an N ˆ N torus in Z2

run for times of order N2plog Nq2. Jego [33] generalized the conclusions of [27] to a
large class of random walks. Aiming for an asymptotic limit law, Rosen [42] estab-
lished tightness around an explicit deterministic centering sequence of the kind (1.4) for
a two-dimensional Brownian motion stopped upon its first exit from a bounded domain.
Jego [34] in turn constructed a candidate for the measure that should govern the law of
the maximum via a formula of the kind (1.2). Still, proving such a formula rigorously
seems elusive at present.
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Motivated by this, the present authors and O. Louidor considered the problem of
simple random walk on a b-ary tree. This setting bears a number of close connections
to the random walk on Z2. Indeed, for b “ 4 the set of leaves Ln can be identified with
points in the square

t0, . . . , 2n ´ 1u ˆ t0, . . . , 2n ´ 1u (2.2)

in Z2; the simple random walk on this square is then imitated by the Markov chain on Ln
obtained by recording the successive visits to the leaves of simple random walk on Tn.
(A more quantitative connection is seen in, e.g., the behavior of the Green function.)
Killing the walk on Tn on its first visit to $ then corresponds to killing the lattice random
walk upon its first exit from the square.

In [20], O. Louidor and the second author proved a limit result for the maximal local
time in a (variable speed) continuous time setting and the walk started from both the
leaves and the root. The paper [20] draws on earlier work of the first author [2] where
the whole process of extreme local maxima was controlled for the walk started from
and parametrized by time spent at the root, albeit only for times t that grow at least as
constant times n log n. The present paper extends this to all times and adds control of
the clusters “hanging off” the local maxima.

Taken from a larger perspective, our results add another instance to the universality
class associated with extremal behavior of logarithmically correlated processes. Other
contexts in which similar conclusions have been proved include:

‚ Branching Brownian motion (Arguin, Bovier and Kistler [8–10], Aı̈dékon, Berestycki,
Brunet and Shi [7]),

‚ critical Branching Random Walks (Aı̈dékon [6], Madaule [38]),
‚ Gaussian Free Field in finite subsets of Z2 (Bramson, Ding and Zeitouni [23], Biskup

and Louidor [17–19]),
‚ more general logarithmically correlated Gaussian processes (Madaule [37], Ding,

Roy and Zeitouni [29], Schweiger and Zeitouni [45]) including the four-dimensional
membrane model (Schweiger [43]),

‚ characteristic polynomial of a random matrix ensemble (Paquette and Zeitouni [41]),
‚ a class of non-Gaussian fields on a torus (Bauerschmidt-Hofstetter [12], Hofstet-

ter [32], Barashkov, Gunaratnam and Hofstetter [11]),
‚ subcritical hierarchical DG-model (Biskup and Huang [16]).

Tightness of the maximum has recently been shown for uniformly-convex Ginzburg-
Landau models (Wu and Zeitouni [46], Schweiger, Wu and Zeitouni [44]).

A universal feature of these problems is that a suitably centered maximum tends,
as the system size increases to infinity, to a randomly shifted Gumbel law while the
extremal process tends to a decorated Cox process. The law of the random shift and the
decorations are typically (but, as our results show, not always) specific to the problem at
hand as they depend on the nature of global and local correlations.

2.2 Proof baseline.

We will now move to a discussion of our proofs. As noted in the introduction, the main
result to be proved is Theorem 1.2 from which the rest of the conclusions follow by
relatively soft means. The setting of Theorem 1.2 is more tractable thanks to:
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Lemma 2.1 (Markov property) Suppose that x1, . . . , xm P Tn are vertices such that the
subtrees Tp1q, . . . , Tpmq of Tn rooted at these vertices are vertex-disjoint. Write ni for the depth
of Tpiq and denote

Vpx1, . . . , xmq :“ tx1, . . . , xmu Y
´

Tn r
m
ď

i“1

Tpiq
¯

. (2.3)

Then, for all t ą 0, conditional on tLtpxq : x P Vpx1, . . . , xmqu, the families

tLtpxq : x P Tpiqum
i“1 (2.4)

are independent with the i-th family distributed as tLupxq : x P Tniu for u :“ Ltpxiq.

Proof. This is a direct consequence of the geometry of the tree and the reliance on expo-
nential clocks to run the underlying random walk. See, e.g., [20, Lemma 2.5]. �

A short way to state the above is that tLtpxq : x P Tnu is a tree-indexed Markov chain.
The step distribution is quite explicit; indeed, given the value Ltpxq, the values of Lt at
the “children” z1, . . . , zb of x are independent with each Ltpziq having the law of the sum
of a PoissonpLtpxqq-number of i.i.d. Exponentials with parameter 1.

Another convenient fact (proved in, e.g., Belius, Rosen and Zeitouni [13, Lemma 3.1])
is that the law of

?
Lt on a path x0 “ $, . . . , xn “ x from the root to x P Ln can be

encoded via the zero-dimensional Bessel process. This permits squeezing
?

Lt on the
path by a barrier event (see [2, Lemma 3.2] and [20, Lemma 2.9]) which then shows that,
for

a

Ltpxq “ mn `Op1q, the value Ltpxkq for k and n´ k large is unusually large and the
value Ltpxq is unusually large given the value Ltpxkq.

The above shows that, if we are after the absolute maximum of Lt on the leaves, all we
need is the leading-order asymptotic of the conditional law of maxxPLn´kpxkq

Ltpxq, where
Ln´kpxkq is the set of leaves of the subtree rooted at xk, given that Ltpxkq is large. In [20]
this was supplied by:

Proposition 2.2 There exists c‹ P p0,8q such that the quantity εn,t,u defined for integer n ě 1
and real t ą 0 and u ą 0 by

P$
´

max
xPLn

a

Ltpxq ´
?

t´ anptq ą u
¯

“ c‹
`

1` εn,t,u
˘

ue´2u
?

log b (2.5)

obeys
lim

mÑ8
sup

t,uěm
lim sup

nÑ8

ˇ

ˇ εn,t,u
ˇ

ˇ “ 0. (2.6)

Proof. This is a restatement of [20, Proposition 3.5]. �

Here the centering must be done by
?

t ` anptq as we need to use the result for t
replaced by Ltpxkq in the regime when that is large. The difference in the centering
matters; indeed, the factor

Ltpxq1{4 e2
?

log b
?

Ltpxq (2.7)
in (1.18) arises directly from

?
t` an´kptq ´mn for t :“ Ltpxkq.

The asymptotic (2.5) is actually sufficient to extract a weak limit of the process of
extreme local maxima, which are the leaf-vertices with

?
Lt-values near mn that dominate

a large neighborhood (relative to the intrinsic tree metric) thereof. (This has already
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been done in [2] for the problem at hand in the regime when t ě cn log n. The control of
extreme local maxima is an essential step in the analysis of the extremal process of the
two-dimensional GFF; see [17].) Each extreme local maximum comes with a cluster of
nearby values, to be called decorations, which are strongly correlated but, as it turns out,
with a limit law that is asymptotically independent of the local maximum. The control
of the decorations constitutes the bulk of the proof.

2.3 Strategies for limit of the decorations.

We have actually developed and written up most of the details of three possible ap-
proaches to the limit of the decorations. Using the notation x0 “ $, x1, . . . , xn “ x for a
path from the root $ to x P Ln, our first argument is modeled on the proofs for Branching
Brownian motion whose strategy is to show that, conditional on Ltpxkq large, the whole
process on the leaves of the subtree rooted at xk converges as n Ñ8 followed by k Ñ8.
This does work but, since the calculations have to be done for the local time process, the
arguments quickly become very technical. In this approach, we do not get information
about the law of the decorations.

Another approach we developed is based on the observation that any subsequential
weak limit ζ of the whole extremal process is invariant under post-composition with one
step of the Branching Random Walk with step distribution

η̃ :“
b
ÿ

i“1

δYi for Y1, . . . , Yb i.i.d. N p´
a

log b, 1{2q. (2.8)

This means that

E
`

e´xζ, f y˘ “ E
`

e´xζ, f̃ y˘ for f̃ phq :“ ´ log E
`

e´xη̃, f ph`¨qy˘ (2.9)

holds for each non-negative continuous f with compact support.
In their work on pre-composition invariant processes, Maillard and Mallein [39] con-

jectured that, for η̃ satisfying certain moment assumptions, any point measure ζ satisfy-
ing (2.9) has the law of a randomly-shifted decorated Poisson point process; see [39, Con-
jecture 1.3]. This has so far been verified only for η̃ corresponding to Branching Brown-
ian motion by Kabluchko [35] (supercritical drift) and by Chen, Garban and Shekhar [24]
(critical drift). We did manage to do the same for our Branching Random Walk although
the estimates become quite cumbersome here as well.

We will therefore follow yet another approach that capitalizes on the fact that for t
very large,

?
Lt is well approximated by the Gaussian process thx : x P Tnu such that

h$ “ 0 and
 

hpxq ´ hpmpxqq : x P Tn r t$u
(

are i.i.d. N p0, 1{2q, (2.10)

where mpxq denotes the “mother” vertex of x; i.e., the nearest vertex on the path from x
to the root. We will call this process the Gaussian Free Field (GFF) on Tn, although it can
also be viewed as a Branching Random Walk on its genealogical tree with η given by
(1.27) and thus also as a tree-indexed Markov chain with step distribution N p0, 1{2q.

The said approximation can be formulated as a limit theorem that was noted already
in (1.30). Explicitly, since Lt is the sum of a Poissonptq-number of i.i.d. fields with mean
one at each vertex and (as one has to check) covariance being 4t-times that of h, the
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multivariate CLT gives
 

a

Ltpxq ´
?

t : x P Tn
( law
ÝÑ
tÑ8

 

hpxq : x P Tn
(

. (2.11)

As also mentioned earlier, our proof will actually make use of a stronger connection
whose advantage is that it works even for finite t:

Lemma 2.3 (Isomorphism theorem) For each n ě 0 and each t ą 0 there exists a coupling
of Lt and two copies h and h̃ of GFF on Tn such that

h KK Lt (2.12)

and
Ltpxq ` hpxq2 “

`

h̃pxq `
?

t
˘2 (2.13)

holds pointwise a.s. for all x P Tn. (Note: h̃ and Lt are not independent.)

Proof. The Second Ray-Knight Theorem of Eisenbaum, Kaspi, Marcus, Rosen and Shi [30]
gives (2.13) as equality in distribution. (The reader alerted by absence of factors of 1{2
in (2.13) beware that our GFF is scaled by 1{

?
2 compared to the one usually used.)

Zhai [47] extended this to a pointwise equality by drawing the signs of h̃pxq `
?

t from
the corresponding conditional law. �

Our argument then goes as follows: We first show that the extremal process associated
with

?
Lt is not significantly affected by swapping the increment of

?
Lt in the last k

generations of the tree for an increment of the GFF. This relies on the above coupling
and the observation that, conditional on Ltpzqwith z :“ mkpxq,

a

Ltpxq “
b

Ltpxq ` rhpxq ´ hpzqs2 `O
ˆ

rhpxq ´ hpzqs2
a

Ltpzq

˙

“ h̃pxq ´ h̃pzq `
a

Ltpzq `O
ˆ

rhpxq ´ hpzqs2
a

Ltpzq

˙

,
(2.14)

see Proposition 3.5. Here the error term is negligible because, roughly speaking,
a

Ltpzq
scales with n but hpxq´ hpzq does not. Since h̃ is known to have a positive “gap” between
the first and the second largest value, we also get that the location of the extreme local
maxima of

?
Lt and h̃ agree with high probability.

The argument we just gave shows that the local extremal structure of
?

Lt is asymp-
totically that of h̃. As it turns out, the law of the GFF decorations near an extremely large
local maximum converges; see Proposition 3.6 for a precise statement. This effectively
reduces the problem to the process of extreme local maxima which, as explained earlier,
is handled using Proposition 2.2.

We note that the connection between the local time and the Gaussian Free Field stated
in Lemma 2.3 is a powerful tool that drove a number of earlier sharp conclusions about
the extremal properties of the local time of random walks. This includes studies of the
limit law of the cover time (Ding [28], Cortines, Louidor and Saglietti [26], Louidor and
Saglietti [36]) as well as the intermediate level sets, a.k.a. thick points, of random walks
in planar domains (Abe and Biskup [3], Abe, Biskup and Lee [4]; see [15] for a review).
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2.4 Outline.

The remainder of this paper is organized as follows. In Section 3 we prove Theorem 1.2
in a structured form that records the extremal processes using the position of a nearby
“local maximum” and the “shape” of the configuration relative to it; see Theorem 3.1.
The proof relies on two technical propositions whose details are worked out in Section 4
and Section 6, respectively. The remaining results are proved in Section 5.

3. THE WALK STARTED AT THE ROOT

The proofs of our main results commence with Theorem 1.2 that we prove here assuming
two technical propositions. These propositions encapsulate technical arguments whose
immediate inclusion would detract from the main line of proof.

3.1 The structured extremal process.

Our proof of Theorem 1.2 adopts the strategy developed for the two-dimensional Dis-
crete Gaussian Free field by O. Louidor and the second author [17–19]. In particular, we
will describe the extremal process in a more structured way by keeping track of local
maxima of the field along with the whole configuration nearby.

We start with some definitions and notation. Note that, given any n ě 1 and any leaf
vertex x “ px1, . . . , xnq P Ln, the map πn,x assigning

πn,xpyq :“
n
ÿ

k“1

pyk ´ xk mod bqbn´k (3.1)

to each y “ py1, . . . , ynq P Ln embeds Ln naturally into N. (This map can be thought of
as induced from the natural embedding of Tn to a canopy tree taking x to the “origin”
thereof; see Fig. 1.) Given h : Ln Ñ R and x P Ln, we write hpx¨q : N Ñ R for the map

hpxjq :“

#

h ˝ π´1
n,xpjq, if j P πn,xpLnq,

0, if j P N r πn,xpLnq,
(3.2)

that enumerates the values of h on Tn increasingly in the graph-theoretical distance
from x while breaking ties using the mod-b rule in (3.1).

Let Bkpxq denote the set of vertices in Ln that are at most 2k-steps away from x in the
graph-theoretical distance on Tn. For n ě k ě 1 and a function ϕ : Ln Ñ R, let

Mn,kpϕ, xq :“
!

max
yPBkpxq

ϕpyq “ ϕpxq
)

(3.3)

be the event that x is a “k-local maximum” of ϕ.
If x P Ln is a k-local maximum of

a

Ltp¨q, then a natural way to encode the “shape”
of the configuration near x is through the function

a

Ltpxq ´
a

Ltpx¨q. Including also the
position of and the value of

?
Lt at the local maximum, this leads us to a description

based on the random Borel measure on r0, 1s ˆRˆRN defined by

ζ
ptq
n,k :“

ÿ

xPLn

1Mn,kp
?

Lt, xq δθnpxq b δ?Ltpxq´mn
b δ?Ltpxq´

?
Ltpx¨q

, (3.4)
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FIG 1. The canopy-tree representing the portion of Tn near the special vertex 0. The upper path is
the path from the root to 0. The leaves are then identified with N.

where mn is as in (1.4). We will call ζ
ptq
n,k the structured extremal process.

The structured extremal process may behave somewhat strange in the branches of Tn
where the random walk does not hit Ln by time t. However, as n Ñ 8, the shift by mn
effectively moves such points to ´8 in the second coordinate thus making them unde-
tectable by integrals against compactly supported functions. Similarly, our convention
about the values of the third component that do not come from Tn forces us to probe ζ

ptq
n,k

only by functions that depend on a finite number of coordinates of the third component.
We are thus let to consider the space C`loc of functions f : r0, 1s ˆRˆRN Ñ r0,8q that
depend only on coordinates in r0, 1s ˆRˆRt0,...,ju for some j ě 0 and, when restricted
to these coordinates, are continuous with compact support.

Our main result about the structured extremal process is then:

Theorem 3.1 For each t ą 0, the weak limit (1.18) exists and defines an a.s.-finite random
Borel measure Zt on r0, 1s. Moreover, there exists a Borel probability measure ν on RN such that
for all t ą 0, all f P C`loc and all sequences tknunPN with kn Ñ8 and n´ kn Ñ8,

E$
`

e´xζ
ptq
n,kn

, f y˘

ÝÑ
nÑ8

E

ˆ

exp
!

´

ˆ
Ztpdxq b e´2

?
log b hdhb νpdφqp1´ e´ f px,h,φqq

)

˙

,
(3.5)

where the expectation on the right is with respect to the law of Zt. The measure Zt obeys (1.15),
ν is concentrated on tφ0 “ 0u X

Ş

xPNrt0utφx ą 0u and the set tx P N : φx ď au is finite ν-a.s.
for each a ą 0. A.e. sample of Zt is diffuse (i.e., does not charge singletons).

The statement (3.5) implies that ζ
ptq
n,kn

tends in law to a Poisson point process on r0, 1sˆ
RˆRN with the intensity measure

Ztpdxq b e´2
?

log b hdhb νpdφq. (3.6)

This follows from the fact that (3.5) extends to all continuous compactly supported func-
tions f on r0, 1s ˆRˆRN endowed with product topology.
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3.2 Proof of Theorem 1.2.

Before the delve into the proof of Theorem 3.1, let us see how it implies our main result
from Section 1.2. We will need two lemmas.

Lemma 3.2 Recall the definition of anptq from (1.24). There exist c, c̃ ą 0 such that

P$
´

max
xPLn

a

Ltpxq ě
?

t` anptq ` u
¯

ď cp1` uqe´2
?

log b u´c̃u2{n (3.7)

holds for all n ě 1, t ą 0 and all u ą 0. Moreover, there exist c1, c2 ą 0 such that

P$

ˆ

ˇ

ˇ

ˇ
max
xPLn

a

Ltpxq ´
?

t´ anpt_ 1q
ˇ

ˇ

ˇ
ą u

ˇ

ˇ

ˇ

ˇ

max
xPLn

Ltpxq ą 0
˙

ď c1e´c2u (3.8)

holds for all n ě 1, all t ą 0 and all u P p0, ns. Here s_ t :“ maxts, tu.

Proof. The inequality (3.7) is a restatement of [2, Proposition 3.1]. The inequality (3.8)
appeared in [20, Theorem 2.1]. �

Lemma 3.3 For n ě 1, t ą 0 and λ ą 0, denote

Γpλq :“
 

x P Ln :
a

Ltpxq ě mn ´ λ
(

. (3.9)

Then for all λ ą 0,

lim
kÑ8

lim sup
nÑ8

P$
´

Dx, y P Γpλq : y P Bn´kpxqr Bkpxq
¯

“ 0. (3.10)

Proof. This is [2, Proposition 4.1] with mn instead of anptq `
?

t, which in light of mono-
tonicity in λ is immaterial as |anptq ´ mn| is bounded by a t-dependent constant uni-
formly in n ě 1. (The statement in [2, Proposition 4.1] actually bounds the probability
with λ :“ c log k by c1k´1{8 for n large.) �

The above lemmas show that, with t ą 0 fixed, the centered maximum of
?

Lt is tight
and the level sets close to mn are clustered; meaning that any two points of the level set
are either within Op1q or n´Op1q in graph-theoretical distance on Tn from each other.
Elementary geometric consideration then yield:

Corollary 3.4 For any λ ą 0,

lim
`Ñ8

lim sup
nÑ8

P$
´

ˇ

ˇΓpλq
ˇ

ˇ ą `
¯

“ 0. (3.11)

Proof. The set Ln can be covered by bk sets of the form Bn´kpxq each of which contains at
most bk points from Γpλq, unless the event in (3.10) occurs. The claim thus follows from
Lemma 3.3. �

We are now ready for:
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Proof of Theorem 1.2 from Theorem 3.1. It suffices to show that, for each t ą 0 and each
f : r0, 1s ˆR Ñ r0,8q continuous with compact support,

E$

ˆ

exp
!

´
ÿ

xPLn

f
`

θnpxq,
a

Ltpxq ´mn
˘

)

˙

ÝÑ
nÑ8

E

ˆ

exp
!

´

ˆ
Ztpdxq b e´2h

?
log bdhbDpdχq

`

1´ e´
´

f px,h`¨qdχ
˘

)

˙

(3.12)

holds with Zt as in (3.5) and D being the law of

χφ :“
ÿ

xPN

δ´φx (3.13)

for φ sampled from ν. Note that the properties of ν stated in Theorem 3.1 ensure that χφ

is ν-a.s. a Radon measure on R with supppχφq Ď p´8, 0s and χφpt0uq “ 1.
Let g : r0,8q Ñ r0, 1s be continuous, non-increasing with supppgq Ď r0, 2s and g “ 1

on r0, 1s. For any r ě 1, the function f̃r : r0, 1s ˆRˆRN Ñ r0,8q defined by

f̃rpx, h, φq :“
br´1
ÿ

y“0

f px, h´ φyqg
`

|h|{r
˘

(3.14)

belongs to C`loc and so (3.5) applies. Aiming to take r Ñ 8 limit of the resulting ex-
pression, note that f̃rpx, h, φq increases to

´
f px, h ` ¨qdχφ as r Ñ 8. The Monotone

Convergence Theorem yieldsˆ
Ztpdxq b e´2

?
log b hdhb νpdφqp1´ e´ f̃rpx,h,φqq

ÝÑ
rÑ8

ˆ
Ztpdxq b e´2

?
log b hdhbDpdχq

`

1´ e´
´

f px,h`¨qdχ
˘

(3.15)

and the Bounded Convergence Theorem then shows that, as r Ñ8, the right-hand side
of (3.5) for f replaced by f̃r tends to that of (3.12). Hence, as soon as we prove that

lim
rÑ8

lim sup
nÑ8

P$

˜

ˇ

ˇ

ˇ

ˇ

xζ
ptq
n,kn

, f̃ry ´
ÿ

xPLn

f
`

θnpxq,
a

Ltpxq ´mn
˘

ˇ

ˇ

ˇ

ˇ

ą 0

¸

“ 0 (3.16)

also the left-hand side of (3.5) asymptotically approaches that of (3.12) and so (3.12) is
inferred from (3.5).

For (3.16), let λ ą 0 be such that suppp f q Ď r0, 1s ˆ r´λ, λs. Then r ą λ and
maxyPLn

a

Ltpyq ´mn ď r imply ´r ď ´λ ď
a

Ltpxq ´mn ď r at every kn-local maxi-
mum possibly contributing to xζptqn,kn

, f̃ry. The truncation by g then becomes immaterial
and we get

xζ
ptq
n,kn

, f̃ry “
ÿ

xPLn

1Mn,kn p
?

Lt, xq

ÿ

yPBrpxq

f
`

θnpyq,
a

Ltpyq ´mn
˘

. (3.17)

Assuming mn ą λ, which guarantees that only terms with positive values of Lt can be
local maxima contributing to (3.17), and 2r ă kn along with (the full-measure event)
that no two positive values of Lt coincide, each y P Ln appears at most once in (3.17).
Moreover, for any y P Ln with f pθnpyq,

a

Ltpyq ´ mnq ‰ 0 that does not appear there
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exists x P Ln with Ltpxq ě Ltpyq and y P Bknpxqr Brpxq. (Indeed, otherwise y would be a
kn-local maximum and would appear on the right.)

These observations show that, if mn ą λ and kn{2 ą r ą λ, then the probability
in (3.16) is bounded by

P$
´

max
xPLn

a

Ltpxq ´mn ą r
¯

` P$
´

Dx, y P Γpλq : y P Bknpxqr Brpxq
¯

. (3.18)

Our assumption that kn Ñ 8 with n ´ kn Ñ 8 ensures that the above inequalities
between mn, kn, r and λ are satisfied for n large and, by Lemmas 3.2– 3.3, that (3.18)
vanishes in the limit n Ñ8 followed by r Ñ8. Hence we get (3.16) as desired. �

3.3 Two technical propositions.

We will now move to the proof of Theorem 3.1. As in [17–19], different arguments are
needed to describe the law of the position/value of

?
Lt at its local maxima and the law

of the “shape” of the configuration nearby. The former will conveniently be reduced to
the arguments from the proof of convergence of the law of the maximum in [20] so most
of our technical work will go towards controlling the “shape.”

As discussed in Section 2, we will follow a Lindeberg-like approach based on swap-
ping the increment of

?
Lt in the last k generations of the tree by that of a GFF, which is

the Gaussian process h defined in (2.10). We will write rP for the law of h, use rE for the
associated expectation and let E$ b rE denote the expectation for the product law P$ b rP
under which Lt and h are independent. Recall that mpxq denotes, for x ‰ $, the nearest
vertex to x on the path to the root. The “swapping” argument now comes in:

Proposition 3.5 (Swapping the local time for GFF) Given two naturals n ą k ě 1, a real
t ą 0 and a function f P C`loc, define

Un,kp f q :“ E$

ˆ

ź

xPLn

e
´ f pθnpxq,

?
Ltpxq´mn,

?
Ltpxq´

?
Ltpx¨q q 1Mn,kp

?
Lt , xq

˙

(3.19)

and

Vn,kp f q :“ E$ b rE
ˆ

ź

xPLn

e´ f pθn´kpzq,
?

Ltpzq`hpxq´hpzq´mn, hpxq´hpx¨q q 1Mn,kph,xqXBn,kpxq

˙

, (3.20)

where we put z :“ mkpxq to reduce clutter and with the same convention set

Bn,kpxq :“
!

mk ` k1{3 ď mn ´
a

Ltpzq ď mk ` k2{3
)

. (3.21)

Then
lim
kÑ8

lim sup
nÑ8

ˇ

ˇUn,kp f q ´Vn,kp f q
ˇ

ˇ “ 0 (3.22)

holds for all t ą 0 and all f P C`loc. Moreover,

lim
`Ñ8

lim sup
kÑ8

lim sup
nÑ8

P$ b rP
ˆ

ÿ

xPLn

1Mn,kph,xqXBn,kpxq1t
?

Ltpzq`hpxq´hpzqąmn´λu
ą `

˙

“ 0

(3.23)
holds for all t ą 0 and all λ ą 0.
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To see the relevance of the above for the problem at hand, note that

Un,kp f q “ E$pe´xζ
ptq
n,k , f y

q. (3.24)

The set Bn,kpxq is in turn a kind of barrier event which are generally events that constrain
the whole profile of k ÞÑ Ltpxkq for x0 “ $, x1, . . . , xn “ x labeling the vertices on the
unique path from the root to x. Here we only impose a restriction on one value on this
path. The powers k1{3, resp., k2{3 can be replaced by kα, resp., k1´α for any 0 ă α ă 1{2.
The statement (3.23) shows that the number of terms non-trivially contributing to the
product in (3.20) is tight.

Proposition 3.5 effectively replaces the last k generations of the local time by inde-
pendent GFFs. In order to extract the local behavior from this, we will condition on the
position of the local maxima of x ÞÑ hpxq ´ hpmkpxqq in subtrees of Tn of depth k rooted
at the vertices of Ln´k and apply the following asymptotic:

Proposition 3.6 (“Shape” of local extrema of GFF) There exists a probability law ν on RN

such that the following holds: Given f P C`loc, k ě 1 and u P R, let gk,u : r0, 1s ˆR Ñ r0,8q be
defined by

e´gk,upv,sq :“ rE
´

e´ f pv, s, hp0q´hp0¨qq
ˇ

ˇ

ˇ
hp0q “ max

yPLk
hpyq “ mk ` u

¯

(3.25)

and g : r0, 1s ˆR Ñ r0,8q defined by

gpv, sq :“ ´ log
ˆˆ

νpdφqe´ f pv,s,φq
˙

. (3.26)

Then
sup

vPr0,1s
sup
sPR

sup
k1{13ďuďk12{13

ˇ

ˇgk,upv, sq ´ gpv, sq
ˇ

ˇ ÝÑ
kÑ8

0. (3.27)

The measure ν is concentrated on tφ0 “ 0u X
Ş

xPNrt0utφx ą 0u.

We remark that the finite level set property for samples from ν is not claimed here but
will be proved as part of the proof of Theorem 3.1.

3.4 Integrating out the local component.

The proofs of Propositions 3.5 and 3.6 are technical and so we postpone their execution
to Section 4 and Section 6, respectively. The main role of these propositions is to integrate
out the third component of the test function. We summarize this in:

Lemma 3.7 Assuming the statements of Propositions 3.5–3.6, let f P C`loc and let g be related
to f as in (3.26). Then for all t ą 0,

lim
kÑ8

lim sup
nÑ8

ˇ

ˇUn,kp f q ´Un,kpgq
ˇ

ˇ “ 0. (3.28)

Proof. Fix t ą 0, let f P C`loc and define g as in (3.26). Given n ą k ě 1 and z P
Ln´k, let Tkpzq denote the subtree of Tn rooted at z and abbreviate Lkpzq :“ Tkpzq XLn.
Abusing our earlier notation, let Fk :“ σphpyq, Ltpyq : y P Tn´kq. As Mn,kph, xq depends
only on thpyq : y P Lkpzqu for z such that x P Lkpzqwhile

 

hpxq ´ hpzq : x P Tkpzq
(

zPLn´k
(3.29)
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are independent copies of the GFF in Tk, conditioning the expectation in the definition
of Vn,kp f q on Fk results in the product of conditional expectations

E$ b rE
ˆ

ź

xPLkpzq

e´ f pθn´kpzq,
?

Ltpzq`hpxq´hpzq´mn, hpxq´hpx¨q q 1Mn,kph,xqXBn,kpxq

ˇ

ˇ

ˇ

ˇ

Fk

˙

(3.30)

over all z P Ln´k. Next observe that, in light of the continuous nature of the law of h,
the event Mn,kph, xq occurs at exactly one x P Lkpzq a.s. for each z P Ln´k. This equates
(3.30) with the sum over all z P Ln´k of

ÿ

xPLkpzq

E$ b rE
´

1Mn,kph,xqXBn,kpxq e´ f pθn´kpzq, spxq, hpxq´hpx¨q q
ˇ

ˇ

ˇ
Fk

¯

, (3.31)

where we also abbreviated

spxq :“
a

Ltpzq ´mn ` hpxq ´ hpzq. (3.32)

Conditioning on hpxq ´ hpzq, the symmetries of Tn give

E$ b rE
´

1Mn,kph,xqXBn,kpxq e´ f pθn´kpzq, spxq, hpxq´hpx¨q q
ˇ

ˇ

ˇ
Fk

¯

“ E$ b rE
´

1Mn,kph,xqXBn,kpxq e´gk,upxqpθn´kpzq, spxqq
ˇ

ˇ

ˇ
Fk

¯ (3.33)

where gk,u is as in (3.25) and where

upxq :“ hpxq ´ hpzq ´mk. (3.34)

This now has the same form as the expectation in (3.31) albeit with f replaced by gk,upxq
and so we readily conclude

Vn,kp f q “ E$ b rE
ˆ

ź

xPLn

e´gk,upxqpθn´kpzq, spxqq 1Mn,kph,xqXBn,kpxq

˙

(3.35)

by tracing back the above steps.
We will now argue that gk,upxqpθn´kpzq, spxqq can be replaced by gpθn´kpzq, spxqq with-

out affecting the n Ñ8 and k Ñ8 limit. Indeed, the assumptions on f ensure existence
of a λ ą 0 be such that f p¨, h, ¨q vanishes unless |h| ď λ. Then gk,upxqp¨, spxqq and gp¨, spxqq
vanish unless |spxq| ď λ; i.e., unless |

a

Ltpzq ´mn `mk ` upxq| ď λ. Writing

Spxq :“
!

e´gk,upxqpθn´kpzq, spxqq 1Mn,kph,xqXBn,kpxq ‰ e´gpθn´kpzq, spxqq 1Mn,kph,xqXBn,kpxq
)

(3.36)

the restrictions in Bn,kpxq give

´λ` k1{3 ď upxq ď λ` k2{3 on Spxq (3.37)

for all x P Ln. By Proposition 3.6, gk,upxqpv, spxqq is thus uniformly close to gpv, spxqq
whenever Spxq occurs and k is so large that r´λ` k1{3, λ` k2{3s Ď rk1{13, k12{13s.

In order to swap one function for the other in the exponent, we have to rule out that
the total number of swapped terms explodes with n and k. Here we observe that if Spxq
occurs, the event

Mn,kph, xq X Bn,kpxq X
 

a

Ltpzq ` hpxq ´ hpzq ě mn ´ λ
(

(3.38)
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must occur. Forcing the number of x where the latter occurs to be at most `, the exchange
of all gk,upxqpv, spxqq’s for gpv, spxqq’s causes an error at most `εk, where εk is the quantity
in (3.27). Using the Intermediate-Value Theorem to take this error out of the exponential
and the expectation then gives

ˇ

ˇVn,kp f q ´ eOpεkq`Vn,kpgq
ˇ

ˇ

ď 2eεk` P$ b rP
ˆ

ÿ

xPLn

1Mn,kph,xqXBn,kpxq1t
?

Ltpzq`hpxq´hpzqěmn´λu
ą `

˙

,
(3.39)

where we abuse the notation by treating g as a function of three coordinates, again wrote
z :“ mkpxq and where Opεkq denotes a deterministic quantity with values in r´εk, εks.
Thanks to Vn,kpgq P r0, 1s, the term eOpεkq` can be dropped at the cost of eεk` ´ 1 popping
up on the right-hand side.

Taking n Ñ 8, k Ñ 8 and ` Ñ 8 with the help of (3.23) now allows us to conclude
that the statement holds with Un,k’s replaced by Vn,k’s, i.e.,

lim
kÑ8

lim sup
nÑ8

ˇ

ˇVn,kp f q ´Vn,kpgq
ˇ

ˇ “ 0. (3.40)

To complete the proof observe that, since g P C`loc, Proposition 3.5 lets us exchange Vn,k’s
for Un,k’s at no cost under these limits. �

Lemma 3.7 reduces the proof of Theorem 3.1 to the convergence of the extremal pro-
cess associated with local maxima. For that we will also need a slight upgrade of the
convergence stated in Proposition 2.2:

Lemma 3.8 Let anptq be as in (1.24) and set rC‹ :“ 2c‹
a

log b for c‹ as in Proposition 2.2.
Then for all continuously differentiable f : R Ñ r0,8q with compact support, all natural n ě 1
and all real t ą 0 and u ą 0, the quantity op1q “ on,t,up1q defined implicitly by

E$
´

e´ f pmaxyPLn

?
Ltpyq´anptq´

?
t´uq

¯

“ exp
"

´ rC‹ue´2
?

log b u
´

op1q `
ˆ

dh e´2
?

log b hp1´ e´ f phqq
¯

* (3.41)

obeys
lim

mÑ8
sup

t,uěm
lim sup

nÑ8

ˇ

ˇon,t,up1q
ˇ

ˇ “ 0. (3.42)

Proof. Given n ě 1 and t ą 0, abbreviate Mn,t :“ maxyPLn

a

Ltpyq. Assume f : R Ñ r0,8q
to be continuously differentiable with suppp f q Ď r´λ, λs, for some λ ą 0. Writing the
expectation as a Stieltjes integral and integrating by parts yields

E$
´

e´ f pMn,t´anptq´
?

t´uq
¯

“ 1´
ˆ

dh e´ f phq f 1phq P$
´

Mn,t ą anptq `
?

t` u` h
¯

.
(3.43)

By Lemma 3.2, there exists c P p0,8q such that for all n ě 1 and all u ą 0,

P$
`

Mn,t ą anptq `
?

t` u
˘

ď cp1` uqe´2
?

log b u. (3.44)
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Thanks to the restriction on the support of f , the integral in (3.43) is for u ą λ dominated
by the quantity

δpuq :“ cp1` u` λqe´2
?

log b pu´λq}e´ f f 1}82λ. (3.45)

In particular, once u is so large that δpuq ď 1{2, we get
ˇ

ˇ

ˇ

ˇ

ˇ

log E$
´

e´ f pMn,t´anptq´
?

t´uq
¯

`

ˆ
dh e´ f phq f 1phq P$

´

Mn,t ą anptq `
?

t` u` h
¯

ˇ

ˇ

ˇ

ˇ

ď δpuq2
(3.46)

relying on the inequality | logp1´ xq ` x| ď x2 for |x| ď 1{2.
As is readily checked, δpuq2 “ opue´2

?
log b uq as u Ñ 8 and so for (3.41) it suffices

to control the asymptotic of the integral in (3.46). For this we call upon the asymptotic
stated in Proposition 2.2 to get

ˇ

ˇ

ˇ

ˇ

ˆ
dh e´ f phq f 1phq P$

´

Mn,t ą anptq `
?

t` u` h
¯

´ c‹
ˆ

dh e´ f phq f 1phq pu` hqe´2
?

log b pu`hq
ˇ

ˇ

ˇ

ˇ

ď δpuqεn,t,u,
(3.47)

where c‹ and εn,t,u are as in (2.5) with, we note, c‹ no larger than the constant c from (3.44).
Since δpuq “ Opue´2

?
log buq as u Ñ8, the error is op1que´2

?
log bu.

It remains to find the asymptotic of the second integral in (3.47). Here one more inte-
gration by parts gives

ˇ

ˇ

ˇ

ˇ

ˆ
dh e´ f phq f 1phq pu` hqe´2

?
log b pu`hq

´ 2
a

log b ue´2
?

log b u
ˆ

dh p1´ e´ f phqq e´2
?

log b h
ˇ

ˇ

ˇ

ˇ

ď e´2
?

log b u
ˆ

dh p1´ e´ f phqq
`

2
a

log b |h| ` 1
˘

e´2
?

log b h.

(3.48)

Setting c̃ :“ p2
a

log b λ` 1qe2
?

log b λ2λ, the right-hand side is bounded by c̃e´2
?

log b u

which is u´1-factor smaller than the order of the exponent in (3.41). Putting (3.47–3.48)
together then yields the claim. �

3.5 Limit of the structured extremal process.

We are now ready to give a proof of the main result of this section:
Proof of Theorem 3.1 from Propositions 3.5-3.6. Let f P C`loc and assume that n ą 2k ě 1
with k so large that px, h, φq ÞÑ f px, h, φq depends only on tφy : y “ 0, . . . , ju for some
j ă bk. Let λ ą 0 be such that the support of f in these coordinates is fully contained in
r0, 1s ˆ r´λ, λs ˆ r´λ, λst0,...,ju. The proof comes in six steps.
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Step 1: Reduction to first two coordinates. For n so large that kn ą k we have
ˇ

ˇE$
`

e´xζ
ptq
n,kn

, f y˘
´Un,kp f q

ˇ

ˇ ď P$
´

Dx, y P Γpλq : y P Bknpxqr Bkpxq
¯

, (3.49)

which by Lemma 3.3 tends to zero as n Ñ 8 followed by k Ñ 8. Lemma 3.7 then
permits us to swap Un,kp f q for Un,kpgq in these limits. In light of (3.26), for (3.5) it thus
suffices to prove the existence of a random measure Zt such that

lim
kÑ8

lim sup
nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

Un,kpgq ´E

ˆ

exp
!

´

ˆ
Ztpdxq b e´2

?
log b hdhp1´ e´gpx,hqq

)

˙

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 (3.50)

for any g : r0, 1s ˆR Ñ r0,8q continuous with compact support.
Approximating g by a compactly-supported, continuous g̃ which is C1 in the second

variable, for λ1 ą 0 such that supppgq Y supppg̃q Ď r0, 1s ˆ r´λ1, λ1swe have
ˇ

ˇUn,kpg̃q ´Un,kpgq
ˇ

ˇ ď pe}g´g̃}8` ´ 1q ` P$
`

|Γpλ1q| ą `
˘

. (3.51)

Thanks to Corollary 3.4, for ` :“ }g´ g̃}´1{2
8 the limes superior as n Ñ 8 of the left-hand

side tends to zero with }g´ g̃}8 Ñ 0. A similar approximation argument applies inside
the integral (3.50). It thus suffices to prove (3.50) for g continuous with compact support
that is C1 in the second variable. We will assume g to be such in what follows.

Step 2: Reduction to absolute maxima in subtrees. Write Tn´kpzq for the subtree rooted
at z P Lk, let Mpzq denote the absolute maximum of

?
Lt on the leaves of Tn´kpzq and,

relying on the lexicographic ordering of Ln, let Xpzq P LnXTn´kpzq be the minimal leaf-
vertex where that maximum is achieved, i.e.,

a

LtpXpzqq “ Mpzq. (The maximum can
be degenerate when Lt vanishes on Ln XTn´kpzq.) Observe z P Lk contributes to the
product defining Un,kpgq only if Mpzq ´mn P r´λ, λs. Moreover, the events Mn,kp

?
Lt, ¨q

force that Xpzq is then the only point in Ln XTn´kpzq that contributes unless there exists
another k-local maximum in Bn´kpXpzqqr BkpXpzqq. Hence we get

ˇ

ˇ

ˇ

ˇ

ˇ

Un,kpgq ´ E$

ˆ

ź

zPLk

e´gpθnpXpzqq,Mpzq´mnq

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď P$
´

Dx, y P Γpλq : y P Bn´kpxqr Bkpxq
¯

,

(3.52)

where, by Lemma 3.3, the right-hand side vanishes as n Ñ8 and k Ñ8.
Next observe that, by our assumptions on g we have

ωgprq :“ sup
sPR

sup
|v´v1|ăr

ˇ

ˇgpv, sq ´ gpv1, sq
ˇ

ˇ ÝÑ
rÓ0

0. (3.53)

Proceeding as in the proof of Lemma 3.7, we curb the number of terms in the product
that potentially contribute in order to prevent explosions of exponential factors and then
use |θnpXpzqq ´ θkpzq| ď b´k to swap θnpXpzqq for θkpzqwith the result

ˇ

ˇ

ˇ

ˇ

ˇ

E$

ˆ

ź

zPLk

e´gpθnpXpzqq,Mpzq´mnq

˙

´E$

ˆ

ź

zPLk

e´gpθkpzq,Mpzq´mnq

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď eωgpb´kq` ´ 1` P$
`

|Γpλq| ą `
˘

.

(3.54)
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This tends to zero as n Ñ8, k Ñ8 and `Ñ8 by (3.53) and Corollary 3.4.

Step 3: Representation via a random measure. We have so far reduced the asymptotic
computation of Un,kpgq to the expectation of

ś

zPLk
e´gpθkpzq,Mpzq´mnq. We will address

that by conditioning on Fk :“ σpLtpzq : z P Lkqwhich results in the factorization

E$
´

ź

zPLk

e´gpθkpzq,Mpzq´mnq
ˇ

ˇ

ˇ
Fk

¯

“
ź

zPLk

E$
`

e´gpθkpzq,Mpzq´mnq
ˇ

ˇFk
˘

(3.55)

implied by the Markov property of the local time. This permits us to control the asymp-
totic of the expressions term by term.

Assume containment in the event

Akptq :“
!

max
zPLk

a

Ltpzq ď mk ` log log k
)

. (3.56)

Denoting s :“ Ltpzq, the argument of g in the subtree rooted at z P Lk then becomes

Mpzq ´mn “ Mpzq ´ an´kps_ 1q ´
?

s´ u, (3.57)

where
u :“ mn ´ an´kps_ 1q ´

?
s

“
a

log b k`
3

4
a

log b
log

n´ k
n

`
1

4
a

log b
log

n´ k`
?

s_ 1
n
?

s_ 1
´
?

s

“
a

log b k´
?

s´
1

4
a

log b
log

?
s_ 1`Opk{nq `Op

?
s{nq.

(3.58)

For
?

s ď mk ` log log k as enforced by Akptq, we get

u ě
3

4
a

log b
log k´ c̃ log log k` op1q (3.59)

for some constant c̃ ą 0, implying that u is large uniformly once k is large (with 2k ă n).
We will now use this to extract the asymptotic of the conditional expectation in the terms
where Ltpzq is large and effectively bound it away for the other terms.

Suppose first that z P Lk is such that Akptq X tLtpzq ě log log ku occurs. For k large,
Lemma 3.8 shows

E$
`

e´gpθkpzq,Mpzq´mnq
ˇ

ˇFk
˘

“ exp
"

´ rC‹wkpzq
´

op1q `
ˆ

dh e´2
?

log b hp1´ e´gpθkpzq,hqq
¯

*

,
(3.60)

where op1q Ñ 0 uniformly as k Ñ8 and

wkpzq :“ b´2k
ˆ

a

log b k´
a

Ltpzq ´
1

8
a

log b
logpLtpzq _ 1q

˙`

ˆ pLtpzq _ 1q1{4 e2
?

log b
?

Ltpzq

(3.61)

captures the relevant portion of the expression ue´2
?

log b u for u as in (3.58).
On Akptq X tLtpzq ă log log ku the asymptotic (3.58) in turn gives u´ λ ě

a

log b k´
log log k once k is sufficiently large. We then invoke the restriction on the support along
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with conditional Jensen’s inequality and the uniform bound on the upper tail of the
maximum from Lemma 3.2 to get

1 ě E$
`

e´gpθkpzq,Mpzq´mnq
ˇ

ˇFk
˘

ě exp
 

´E$pgpθkpzq, Mpzq ´mnq
ˇ

ˇFkq
(

ě exp
 

´}g}P$pMpzq ě mn ´ λ |Fkq
(

ě exp
 

´ck2b´2k}g}
(

,

(3.62)

where in the last line we first used that p1 ` u ´ λqe´2
?

log bpu´λq ď k2b´2k once k is
sufficiently large and c is the constant from (3.7).

Note that the exponent in (3.62) is Opk2b´kq even after summation over z P Lk. Since
wkpzq ď k2b´2k when Ltpzq ă log log k, the same applies even to the summation of the
corresponding terms in the exponent in (3.60). The terms with Ltpzq ă log log k are thus
negligible on both sides and so, denoting

Zpkqt :“ rC‹
ÿ

zPLk

wkpzqδθkpzq, (3.63)

on Akptqwe then get

E$
´

ź

zPLk

e´gpθkpzq,Mpzq´mnq
ˇ

ˇ

ˇ
Fk

¯

“ exp
"

op1q
`

1` Zpkqt pr0, 1sq
˘

´

ˆ
Zpkqt pdxq b e´2

?
log b hdh p1´ e´gpx,hqq

¯

*

,
(3.64)

where op1q Ñ 0 as k Ñ8 uniformly on Akptq.

Step 4: Proof of convergence. Note that the tightness of maxzPLk

a

Ltpzq ´ mk from
Lemma 3.2 gives

lim
kÑ8

P$
`

Akptq
˘

“ 1. (3.65)

Summarizing the above arguments, we thus get

lim
kÑ8

lim sup
nÑ8

ˇ

ˇ

ˇ

ˇ

E$
`

e´xζ
ptq
n,kn

,gy˘
´ E$

´

e´
´

Zpkqt pdxqbe´2
?

log b hdhp1´e´gpx,hqq
¯

ˇ

ˇ

ˇ

ˇ

“ 0. (3.66)

But the first term does not depend on k while second term does not depend on n, which
is only possible if they both converge in their respective limits.

Since [20, Corollary 3.2 and Lemma 3.3] gives tightness of tZpkqt pr0, 1sq : k ě 1u, we are
permitted to extract a subsequential weak limit Zt relative to the topology of vague con-
vergence. The k Ñ8 limit of the second term in (3.66) is then realized by substituting Zt

for Zpkqt . But the resulting quantity equals the limit of the first term in (3.66) and so is the
same for all convergent subsequences. This means that the weak limit of Zpkqt as k Ñ 8

actually exists and we get (3.50) as desired.
Next we will prove that Zt is given by the weak limit (1.18). Here the proof of [20,

Lemma 3.3] shows that the measure Zpkqt above receives asymptotically vanishing con-
tribution from z P Lk at which

a

log b k ´
a

Ltpzq ă kδ, for some fixed δ P p0, 1{4q.
This means that we can drop the third term in the positive part in (3.61) as well as the
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truncation by one in pLtpzq _ 1q1{4 without affecting the convergence and/or the limit
measure Zt. This proves (1.18). The limit (1.15) concerns the total mass of Zt and can
thus be referred to [20, Theorem 1.2].

Step 5: Finite level sets in samples of ν. The next item to show is that

Nλ :“
ˇ

ˇtj P N : φj ď λu
ˇ

ˇ (3.67)

is finite for all λ ą 0 and ν-a.e. φ. Given a ą 0 and g : R Ñ r0, 1s continuous with g “ 1
on r´1, 1s and g “ 0 outside p´2, 2q, let

f px, h, φq :“ agpλ´1hq
ÿ

jďr

g
`

p2λq´1ph´ φjq
˘

. (3.68)

The properties of g imply that f P C`loc and that f px, h, φq exceeds a|tj ď r : 0 ď φj ď λu|
whenever h P r´λ, 0s. Noting also that, for kn ą r,

xζt
n,kn

, f y ď a|Γp4λq|, (3.69)

the limit result in (3.5) shows

lim inf
nÑ8

E$
`

e´a|Γp4λq|
˘

ď E

˜

exp
"

´Ztpr0, 1sq
ˆ
r´λ,0s

dh e´2
?

log b h
ˆ

νpdφq
`

1´ e´a|tjďr : 0ďφjďλu|
˘

*

¸

.
(3.70)

Next observe that the left-hand side is independent of r and, by Corollary 3.4, tends to
one in the limit as a Ó 0. Taking r Ñ 8 followed by a Ó 0 with the help of the Bounded
Convergence Theorem then gives

1 ď E
´

exp
 

´cpλqZtpr0, 1sqνpNλ “ 8q
(

¯

(3.71)

for cpλq :“ p2
a

log bq´1pe2
?

log b λ ´ 1q. As Ztpr0, 1sq ą 0 with positive probability, it
follows that νpNλ “ 8q “ 0 as desired.

Step 6: No atoms in Zt. It remains to check that Zt is a.s. diffuse. The intuitive argu-
ment is simple: If Zt had an atom at some (random) point, say X, then with positive
probability the process of limiting extreme local maxima would have two points with
non-negative second coordinates at X. Rolling back the n Ñ 8 limit we infer that,
for sufficiently large n, there would have to be two local maxima of

?
Lt that are more

than kn but less than, say, n{2 in graph-theoretical distance on Tn from each other. This
is impossible unless the event in (3.10) occurs.

A formal argument unfortunately requires work. We start by noting that, by linearity
of f ÞÑ xζt

n,kn
, f y, the above shows that for all f1, . . . , fN P C

`
loc and all λ1, . . . , λN ě 0,

lim
nÑ8

E$
´

N
ź

i“1

e´λkxζ
t
n,kn , fiy

¯

“ E
`

e´Φpλ1 f1`¨¨¨`λN fNq
˘

(3.72)

holds with

Φp f q :“
ˆ

Ztpdxq b e´2
?

log b hdhb νpdφq
`

1´ e´ f px,h,φq˘. (3.73)
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Next observe that, while Zt may a priori have atoms, the fact that ZtpRq ă 8 P-a.s.
implies that

S :“
 

x P R : PpZtptxuq ą 0q ą 0
(

(3.74)

is at most countable. (Indeed, S is the set where x ÞÑ EpZtpp´8, xsq1tZtpRqďMuq has
a discontinuity for some M P N.) Writing I for the set of finite intervals with both
endpoints in R r S, we claim that (3.72) applies even to functions f1, . . . , fN of the form

fipx, h, φq :“ 1Iipxq1p0,1qphq, (3.75)

where I1, . . . , IN P I . Indeed, let f̂1, . . . , f̂N be defined using the interiors and f̃1, . . . , f̃N
using the closures of some I1, . . . , IN P I , respectively, where we also use 1r0,1sphq in the
second variable for f̃i’s. Note that then f̂i ď fi ď f̃i for all i “ 1, . . . , N. Now use that
each f̂i can be written as an increasing limit of functions from C`loc and f̃i as a decreasing
limit of functions from C`loc to get

E
`

e´Φpλ1 f̃1`¨¨¨`λN f̃Nq
˘

ď lim inf
nÑ8

E$
´

N
ź

i“1

e´λkxζ
t
n,kn , fiy

¯

ď lim sup
nÑ8

E$
´

N
ź

i“1

e´λkxζ
t
n,kn , fiy

¯

“ E
`

e´Φpλ1 f̂1`¨¨¨`λN f̂Nq
˘

.

(3.76)

The a.s.-equality of Φpλ1 f1` ¨ ¨ ¨ ` λN fNq to Φpλ1 f̃1` ¨ ¨ ¨ ` λN f̃Nq implied by the restric-
tion on the interval endpoints then proves (3.72) for f1, . . . , fN .

As a consequence of (3.75), the Curtiss theorem implies joint convergence in law of
random variables txζt

n,kn
, fiy : i “ 1, . . . , Nu for any f1, . . . , fN of the form (3.75) with

intervals in I . If these functions have also disjoint supports, then

Φpλ1 f1 ` ¨ ¨ ¨ ` λN fNq “

N
ÿ

i“1

αZtpIiqp1´ e´λiq (3.77)

with α :“ p2
a

log bq´1p1´ e´2
?

log bq implying that, conditional on Zt, the limit law of
the N-tuple txζt

n,kn
, fiy : i “ 1, . . . , Nu is Poisson with parameters pαZtpI1q, . . . , αZtpINqq.

The Portmanteau theorem then gives

lim sup
nÑ8

P$
´

max
i“1,...,N

xζt
n,kn

, fiy ď 1
¯

ď E

ˆ N
ź

i“1

e´αZtpIiq
`

1` αZtpIiq
˘

˙

(3.78)

whenever f1, . . . , fN are as in (3.75) for disjoint I1, . . . , IN P I .
We are now ready to give a formal version of our intuitive argument. Denote by Gn,k

the complement of the event in (3.10) with λ :“ 0 and, for k ě 1 and i P Z, let Ii P I
be an open subinterval of ppi ´ 1qb´k, ib´kq. Define fi by (3.75) using these intervals.
Assuming Gn,k along with the full probability event that no two positive values of Lt
coincide, Lt has only one local maximum in θ´1

n prpi ´ 1qb´k, ib´kqq unless it vanishes
there. For kn ě k this implies xζt

n,kn
, fiy ď 1 a.s. on Gn,k for all i P Z and so

P$pGn,kq ď P$
´

max
iPZ

xζt
n,kn

, fiy ď 1
¯

, (3.79)
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where the use of “max” is justified by noting that xζt
n,kn

, fiy ‰ 0 for only a finite num-
ber i P Z. Using that u ÞÑ e´up1` uq is decreasing on R` we in turn get

E

ˆ

ź

iPZ

e´αZtpIiq
`

1` αZtpIiq
˘

˙

ď 1´
`

1´ e´αδp1` αδq
˘

P
`

max
iPZ

ZtpIiq ą δ
˘

(3.80)

for any δ ą 0, where we again use that only a finite number of intervals can possibly
contribute on each side. Invoking (3.78) and, relying on S being countable, we now
increase each Ii to fill all of ppi´ 1qb´k, ib´kq to conclude

P
´

max
iPZ

Zt
`

ppi´ 1qb´k, ib´kq
˘

ą δ
¯

ď
1´ lim supnÑ8 P$pGn,kq

1´ e´αδp1` αδq
(3.81)

for any k ě 1 and δ ą 0. But the symmetries of Tn observed by Lt imply
!

Zt
`

rib´k, b´k´1 ` ib´kq
˘

: i P Z
)

law
“

!

Zt
`

rb´k´1 ` ib´k, 2b´k´1 ` ib´kq
˘

: i P Z
)

(3.82)

and the inclusions
tib´ku Ď rib´k, b´k´1 ` ib´kq (3.83)

and
“

b´k´1 ` ib´k, 2b´k´1 ` ib´k˘ Ď
`

ib´k, pi` 1qb´k˘ (3.84)
give

P
´

max
iPZ

Zt
`

tib´ku
˘

ą δ
¯

ď P
´

max
iPZ

Zt
`

ppi´ 1qb´k, ib´kq
˘

ą δ
¯

. (3.85)

Taking k Ñ 8 in (3.81) and (3.85) with the help of Lemma 3.3 rules out atoms of Zt of
size in excess of δ. Taking δ Ó 0 then shows that Zt has no atoms a.s. �

4. SWAPPING THE LOCAL TIME FOR GFF

We now move to the proof of Proposition 3.5 dealing with the swap of the local time for
GFF in the last couple of generations of the tree. This proposition has served as one of
the key inputs for our proof of Theorem 3.1 and thus also Theorem 1.2. The other key
input, Proposition 3.6, will be proved in Section 6.

4.1 Useful lemmas.

We start by proving a sequence of useful lemmas. The first of these deals with the con-
struction of a coupling that drives the rest of the argument.

Lemma 4.1 (Coupling to GFF) Fix n ą k ě 1 and t ą 0. There exists a coupling of the local
time Lt and two GFFs h and h̃ on Tn such that

h KK Lt ^ h̃ KK
 

Ltpzq : z P Tn´k
(

(4.1)

and such that the following holds almost surely:

@x P Tn´k : h̃pxq “ hpxq (4.2)

and
@x P Tn r Tn´k : Ltpxq `

“

hpxq ´ hpzq
‰2
“

´

h̃pxq ´ h̃pzq `
a

Ltpzq
¯2

, (4.3)

where we used the shorthand z :“ mkpxq to make (4.3) easier to parse.
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Proof. The idea of the proof is to apply Lemma 2.3 or, more precisely, arguments from
its proof, separately in each Tkpzq for z ranging through Ln´k. Recall that rP denotes
the law of GFF. Define pk : t´1,`1uTk ˆ r0,8qTk ˆ r0,8q Ñ r0, 1s to be the conditional
probability mass function of the signs of thx `

?
s : x P Tku given their absolute values

t|hx `
?

s| : x P Tku, i.e.,

pk
`

σ, y, sq :“ rP
ˆ

č

xPTk

 

hx “ σx|hx `
?

s| ´
?

s
)

ˇ

ˇ

ˇ

ˇ

|hx `
?

s| “ ypxq, x P Tk

˙

. (4.4)

Given a sample of pLt, hq from P$ b rP, use these to sample σ P t´1,`1uTnzTn´k with
probability

ź

zPLn´k

pk

´

tσx : x P Tkpzqu,
 
a

Ltpxq ` rhpxq ´ hpzqs2 : x P Tkpzq
(

, Ltpzq
¯

. (4.5)

Now set h̃ “ h on Tn´k as required by (4.2) and, for each z P Ln´k, let

h̃pxq :“ hpzq ´
a

Ltpzq ` σx

b

Ltpxq ` rhpxq ´ hpzqs2, x P Tkpzq. (4.6)

This identifies h̃ on all of Tn and thus defines a coupling of h, Lt and h̃.
The definition ensures the validity of (4.2–4.3) and h KK Lt was assumed from the

beginning. What remains to be shown is the second part of (4.1) and that h̃ is a GFF. This
is where Lemmas 2.1 and 2.3 come handy: Condition on

Fk :“ σ
`

tLtpzq : z P Tn´ku
˘

(4.7)

and note that, by the Markov property of Lt, the conditional law of tLtpxq : x P Tkpzqu, for
z P Ln´k, is that of tLupzqpxq : x P Tku for upzq :“ Ltpzq. In addition, the Markov property
implies that ttLtpxq : x P Tkpzqu : z P Ln´ku are independent conditionally on Fk. Noting
also that thpxq ´ hpzq : x P Tkpzqu are independent samples of GFF in Tk for each z,
Lemma 2.3 along with the product structure of (4.5) gives that, conditionally on Fk, the
fields tth̃pxq ´ h̃pzq : Tkpzqu : z P Ln´ku, are independent copies of GFF.

Thanks to (4.2) we now conclude the second part of (4.1). The tree-indexed random
walk structure of GFF combined with (4.2) in turn shows that h̃ is a GFF in Tn. �

We will write P$ for the coupling measure and prove the claim with h̃ instead of h.
We will repeatedly use the following explicit version of (2.14):

a

Ltpxq ď
b

Ltpxq ` rhpxq ´ hpzqs2 ď
a

Ltpxq `
rhpxq ´ hpzqs2

a

Ltpxq
, (4.8)

where z :“ mkpxq. Next we observe that we can always assume the containment in the
“barrier” event Bn,kpxqwhenever Ltpxq is large:

Lemma 4.2 For all λ ě 0,

lim
kÑ8

lim sup
nÑ8

P$

ˆ

ď

xPLn

 

a

Ltpxq ě mn ´ λ
(

X Bn,kpxqc
˙

“ 0, (4.9)

where Bn,kpxq is the barrier event from (3.21).
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Proof. The proof builds on a barrier estimate proved as part of the proof of [2, Proposi-
tion 3.1], which we will cite from heavily. The argument there works with the local time
of a Brownian motion on an associated metric tree, which is constructed by replacing the
edges of Tn by line-segments of length 1{2. We will write dp¨, ¨q for the associated metric
and, abusing the notation both here and in [2], will keep writing Tn for the metric tree
and Lt for the underlying local time there.

We start by recalling the event Gn
uptq from [2, Eq. (3.3)] with κ :“ 5

8plog bq´1{2 and y
replaced by u ą 0. For each z P Ln´k and s P r0, n´ ks, let zs be the point on the unique
path from $ to z with dp$, zsq “ s{2. Then, the probability on the left-hand side of (4.9) is
bounded from above by P$pGn

uptqq plus the sum over z P Ln´k of

P$

˜

"

max
xPLkpzq

a

Ltpxq ě mn ´ λ

*

X

!

a

Ltpzq ´ pmn ´mkq R r´k2{3,´k1{3s

)

X

"

a

Ltpzsq ď
?

t`
anptq

n
s` κplogps^ pn´ sqqq` ` u` 1,@s P r0, n´ ks

*

¸

,

(4.10)

where the last event arises from the complement of Gn
uptq. Thanks to [2, Lemma 3.2] we

have limuÑ8 lim supnÑ8 P$pGn
uptqq “ 0 and so we only need to focus on (4.10).

Abbreviate

ψpsq :“ P$

ˆ

max
xPLk

a

Lspxq ě mn ´ λ

˙

. (4.11)

Since the second and third event in (4.10) depend only on zs for s ď n´ k (note also that
zn´k “ z), the Markov property (Lemma 2.1) allows us to condition on Ltpzq and rewrite
the probability in (4.10) as

E$

„

ψ
`

Ltpzq
˘

1
t
?

Ltpzq´pmn´mkqRr´k2{3,´k1{3s, Ltpzqą0u

ˆ 1!?
Ltpzsqď

?
t` anptq

n s`κplogps^pn´sqqq``u`1,@sPr0,n´ks
)



,
(4.12)

where we also assumed that n is so large that mn ą λ. Next we recall that t
?

Ls : s ě 0u
has the law of a zero-dimensional Bessel process (see Belius, Rosen and Zeitouni [13,
Lemma 3.1(e)]). Using the well-known connection between this process and Brownian
motion (see, e.g., [20, Lemma 2.6]) the above expectation is bounded by

E

«

d ?
t

?
t` Bn´k

ψ
`

p
?

t` Bn´kq
2˘1

t
?

t`Bn´k´pmn´mkqRr´k2{3,´k1{3s,
?

t`Bn´ką0u

ˆ 1!
Bsď

anptq
n s`κplogps^pn´sqqq``u`1,@sPr0,n´ks

)

ff

,

(4.13)

where the expectation is with respect to the law of Brownian motion pBsqsě0 on R with
EpBsq “ 0 and VarpBsq “ s{2 for s ě 0.
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We will now estimate (4.13) by methods of stochastic calculus. Let rP be the probability
measure defined by

rPpAq :“ E

ˆ

1Ae
2anptq

n Bn´k´
anptq2

n2 pn´kq
˙

, A P σpBs : s ď n´ kq. (4.14)

By the Girsanov theorem, under rP, the process

rBs :“ Bs ´
anptq

n
s, s P r0, n´ ks (4.15)

is a Brownian motion on R with VarpBsq “ s{2 for s ě 0 started at 0. Then, for sufficiently
large n and k, the expectation is bounded from above by

rE

«

e´
2anptq

n
rBn´k´

anptq2

n2 pn´kq

g

f

f

e

?
t

?
t` anptq

n pn´ kq ` rBn´k
ψ

ˆ

´?
t`

anptq
n
pn´ kq ` rBn´k

¯2
˙

ˆ 1
trBn´kPIn,ku

1
trBsďκ logpk`1q`κplogps^pn´k´sqqq``u`1,@sPr0,n´ksu

ff

,

(4.16)
where

In,k :“

˜

´
?

t´
anptq

n
pn´ kq, ´

k2{3

2

¸

Y

´

´k1{3, κ log k` u` 1
¯

(4.17)

and we have used the inequality

plogps^ pn´ sqqq` ď logpk` 1q ` plogps^ pn´ k´ sqqq`, s P r0, n´ ks (4.18)

for n " k " 1. Note that for any s P In,k, we have

mn ´ λ ě

ˆ

?
t`

anptq
n
pn´ kq ` s

˙

` ak

˜

ˆ

?
t`

anptq
n
pn´ kq ` s

˙2
¸

`
3

4
a

log b
log k´ s´ λ´

?
t`O

ˆ

log n
n

k
˙

.

(4.19)

The second line is positive for sufficiently large k in light of s ď κ log k ` u ` 1 and
κ ă 3

4plog bq´1{2. Lemma 3.2 implies that for any s P In,k,

ψ

ˆ

´?
t`

anptq
n
pn´ kq ` s

¯2
˙

ď c
´ 3

4
a

log b
log k´ s

¯

k´3{2e2s
?

log be´c1
p 3

4
?

log b
log k´sq2

k

(4.20)
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for some constants c, c1 ą 0 that depend on neither n nor k. This estimate along with [2,
Lemma 2.4(i)] show that (4.10) is bounded from above by

c1
`

κ logpk` 1q ` u` 1
˘

k´3{2
ˆ

In,k

pκ logpk` 1q ` u` 1´ sq

˜

3
4
a

log b
log k´ s

¸

ˆ

g

f

f

e

?
t` n

?
t` anptq

n pn´ kq ` s
ec2

log n
n s´c3

p 3
4
?

log b
log k´sq2

k ds

(4.21)

for some positive constants c1, c2, c3 that depend on neither n nor k.
It remains to bound the integral in (4.21). Partitioning the integration domain into

the intervals p´
?

t´ anptq
n pn´ kq, ´1

2p
?

t` anptq
n pn´ kqqq, p´ 1

2p
?

t` anptq
n pn´ kqq, ´ k2{3

2 q,
and p´k1{3, κ log k` u` 1q and estimating the resulting three integrals, (4.21) is bounded
from above by

c4 log k k´3{2
ˆˆ 8

k2{3{2
s2e´c5

s2
k ds` nc6e´c7n ` k

˙

(4.22)

for some positive constants c4, . . . , c7 that depend on neither n nor k. This quantity van-
ishes in the limits as n Ñ8 and k Ñ8. �

Next we note that, whenever Bn,kpxq occurs, we can bound hpxq ´ hpzq by a quantity
proportional to k:

Lemma 4.3 There exists â ą 0 such that

lim
kÑ8

lim sup
nÑ8

P$ b rP
ˆ

ď

xPLn

!

ˇ

ˇhpxq ´ hpmkpxqq
ˇ

ˇ ą âk
)

X Bn,kpxq
˙

“ 0. (4.23)

Proof. Set â :“ a`
a

log b for a ą 0 to be determined and write z :“ mkpxq whenever
x P Ln is clear from context. By symmetry of the Gaussian distribution, the probability
in the statement is bounded by twice the probability without the absolute value around
the term hpxq ´ hpmkpxqq. It suffices to prove the claim without the absolute value.

Note that on Bn,kpxq we have
a

Ltpzq ě mn ´ mk ´ k2{3 and so hpxq ´ hpzq ą pa `
a

log bqk along with mk ď
a

log b k show

hpxq ´ hpzq `
a

Ltpzq ą pa`
a

log bqk`mn ´mk ´ k2{3 ě mn ` pa{2qk. (4.24)

Interpreting this under the coupling measure P$, the independence in (4.1) allows us to
swap h for h̃ conditional on tLtpz1q : z1 P Tn´ku. This bounds the probability in (4.23)
(without absolute value) by

P$
´

Dx P Ln : h̃pxq ´ h̃pzq `
a

Ltpzq ą mn ` pa{2qk
¯

ď P$
´

Dx P Ln :
b

Ltpxq ` rhpxq ´ hpzqs2 ą mn ` pa{2qk
¯

(4.25)

where the inequality follows from the coupling identity (4.3).
Next notice that |hpxq ´ hpzq| ď r1` log bs1{2

?
k
?

n and Ltpxq ` |hpxq ´ hpzq|2 ą m2
n

force Ltpxq ą 1
2 m2

n whenever k ď r2p1` log bqs´1m2
n{n. Under these circumstances the



LOCAL-TIME EXTREMAL PROCESS 31

inequality in the event on the right of (4.25) along with (4.8) give
a

Ltpxq ě mn ` pa{2qk´ 2
1` log b
a

log b
k (4.26)

whenever n is so large that mn ě
1?
2

a

log b n. For a :“ 4 1`log b?
log b

` 2, the probability

in (4.25) is thus bounded by

rP
´

max
xPLn

ˇ

ˇhpxq ´ hpzq
ˇ

ˇ ą r1` log bs1{2
?

k
?

n
¯

` P$
´

max
xPLn

a

Ltpxq ě mn ` k
¯

. (4.27)

The union bound along with a standard Gaussian tail estimate dominate the first prob-
ability by bne´p1`log bqn “ e´n, which tends to zero as n Ñ 8. The second probability
vanishes as n Ñ8 and k Ñ8 by Lemma 3.2. �

Finally, we observe some consequences of the previous proof for the objects entering
the coupling identity (4.3):

Lemma 4.4 We have

lim
kÑ8

lim sup
nÑ8

P$

ˆ

ď

xPLn

!

a

Ltpxq ď
1
2

mn

)

X Bn,kpxq
˙

“ 0 (4.28)

and, recalling that P$ denotes the coupling measure from Lemma 4.1,

lim
kÑ8

lim sup
nÑ8

P$
ˆ

ď

xPLn

 

h̃pxq ´ h̃pzq `
a

Ltpzq ă 0
(

X Bn,kpxq
˙

“ 0, (4.29)

where we again invoked the shorthand z :“ mkpxq.

Proof. Interpreting (4.23) using the coupling measure, (4.1) shows that the statement of
(4.23) holds with h̃ in place of h. Hence we may assume that |hpxq ´ hpzq| ď âk and
|h̃pxq ´ h̃pzq| ď âk whenever Bn,kpxq occurs. But then

a

Ltpzq ě mn ´mk ´ k2{3 imposed
by Bn,kpxq forces h̃pxq ´ h̃pzq `

a

Ltpzq ě 3
4 mn once n " k, proving (4.29). The identity

(4.3) turns that bound into Ltpxq` rhpxq´ hpzqs2 ě 9
16 m2

n which then gives
a

Ltpxq ą 1
2 mn

once n " k, proving (4.28) as well. �

4.2 Key lemma and proof of Proposition 3.5.

The proof of Proposition 3.5 requires one additional lemma that we will state and prove
next. First, given n ě k ą 1 and λ ą 0, let Gλ

n,k denote the intersection of the complements
of the events in (4.9), (4.28) and (4.29) along with the complement of the event in (4.23)
for both h and h̃. The above lemmas then show

lim
kÑ8

lim inf
nÑ8

P$`Gλ
n,k
˘

“ 1. (4.30)

Next let Eλ
n,k be the event that the set

!

x P Ln : Mn,kp
a

Lt, xq X Bn,kpxq occurs ^
b

Ltpxq ` rhpxq ´ hpzqs2 ě mn ´ λ
)

(4.31)
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equals the set
!

x P Ln : Mn,kph̃, xq X Bn,kpxq occurs ^ h̃pxq ´ h̃pzq `
a

Ltpzq ě mn ´ λ
)

, (4.32)

where, as before, we are using the shorthand z :“ mkpxq throughout. This event ad-
dresses the most difficult part of the “swap” of the local time for GFF because being a
local maximum is generally not preserved by perturbations, however small they may
be. Notwithstanding, we still get:

Lemma 4.5 For all λ ą 0,
lim
kÑ8

lim inf
nÑ8

P$`Eλ
n,k
˘

“ 1. (4.33)

Proof. For each x P Ln, let gapph̃, xq be the difference between the largest and second
largest value of h̃ in Bkpxq. If Gλ

n,k X Bn,kpxq occurs, then the inequality (4.8) gives
ˇ

ˇ

ˇ

a

Ltpxq ´
a

Ltpzq ´
`

h̃pxq ´ h̃pzq
˘

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

a

Ltpxq ´
b

Ltpxq ` rhpxq ´ hpzqs2
ˇ

ˇ

ˇ
ď
rhpxq ´ hpzqs2

a

Ltpxq
ď 2â2 k2

mn

(4.34)

for z :“ mkpxq. Thanks to the coupling identity (4.3), the conditions for the fields on the
right of (4.31) and (4.32) are identical so the only difference is the status of the events
Mn,kp

?
Lt, xq and Mn,kph̃, xq. A routine use of the triangle inequality then shows that,

on Gλ
n,k r Eλ

n,k, there exists x — namely, one that lies in one but not both of the sets (4.31)
and (4.32) — for which Bn,kpxq occurs and yet gapph̃, xq ď 4â2k2{mn. Hence we get

P$`Gλ
n,k r Eλ

n,k
˘

ď P$

˜

ď

xPLn

"

gapph̃, xq ď 4â2 k2

mn

*

X Bn,kpxq

¸

. (4.35)

Since Bn,kpxq is determined by Ltpzq, it is independent of gapph̃, xq by (4.1). Using Nn,k
to denote the number of z P Ln´k such that Bn,kpxq occurs for some (and thus all) x P
Ln XTkpzq and denoting

Fkpuq :“ P$
´

gapph̃, xq ď u
¯

, (4.36)

which by the symmetries of the tree does not depend on x or n, the probability on the
right of (4.35) equals

1´ E$

˜

„

1´ Fk

´

4â2 k2

mn

¯

Nn,k
¸

. (4.37)

As mn ´mk “ mn´k `Oplog kq, Corollary 3.4 shows that tNn,k : n ě 1u is tight for each
k ě 1. The continuity of the law of GFF in turn implies that Fkpuq Ñ 0 as u Ó 0. It follows
that (4.37) tends to zero as n Ñ8. The proof is completed by invoking (4.30). �

We are now ready for:
Proof of Proposition 3.5. Let f P C`loc and assume n ą k " 1. Let λ ą 0 be such
that px, h, φq ÞÑ f px, h, φq depends only on tφy : y “ 0, . . . , ju for some j ă bk and, when
restricted to these coordinates, is supported in r0, 1s ˆ r´λ, λs ˆ r´λ, λst0,...,ju. Let us
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write osc f prq for the supremum of | f px, t, φq ´ f px1, t1, φ1q| over all triplets of coordinates
satisfying |x´ x1| ă r, |t´ t1| ă r and }φ´ φ1}8 ă r.

Thanks to (4.30) and Lemma 4.5, the event

Hn,k :“ Gλ
n,k X Eλ

n,k (4.38)

occurs with probability tending to one as n Ñ 8 and k Ñ 8. Suppose that Hn,k occurs
along with the event

J q
n,k :“

"

ÿ

xPLn

1Mn,kph̃,xqXBn,kpxq
1
th̃pxq´h̃pzq`

?
Ltpzqěmn´λu

ď q
*

(4.39)

for some q ě 1. Noting that f in the term corresponding to x in Un,kp f q vanishes un-
less

a

Ltpxq ě mn ´ λ, on Hn,k X J q
n,k we can insert the indicator of Bn,kpxq in front of

that term without changing the result. Then we use (4.34) along with |θnpxq ´ θn´kpzq| ď
b

b´1 b´pn´kq to replace the arguments of f in Un,kp f q by those in Vn,kp f q causing an error
at most q osc f prn,kq in the exponent, where

rn,k :“ max
! b

b´ 1
b´pn´kq, 4â2 k2

mn

)

. (4.40)

Since f in the term corresponding to x in Un,kp f q vanishes unless
a

Ltpxq ě mn ´ λ

while f in the term corresponding to x in Vn,kp f q vanishes unless h̃pxq ´ h̃pzq `
a

Ltpzq ě
mn´λ, the containment in Eλ

n,k permits us to swap the event Mn,kp
?

Lt, xq for Mn,kph̃, xq
at all x P Ln.

As a result of these manipulations, we get
ˇ

ˇUn,kp f q ´Vn,kp f q
ˇ

ˇ ď 2
“

1´ P$
pHn,k XJ q

n,kq
‰

` eq osc f prn,kq ´ 1. (4.41)

The continuity of f now ensures that osc f prn,kq Ñ 0 as n Ñ8, regardless of k ě 1. As to
the event Hn,k XJ q

n,k, here the bound (4.34) gives

Hn,k rJ q
n,k Ď

 

|Γpλ` 1q| ą q
(

(4.42)

as soon as 2â2 k2

mn
ď 1. Corollary 3.4 shows that the probability of the event on the right

tends to zero as n Ñ8 and q Ñ8. As P$
pHn,kq Ñ 1 in the limits n Ñ8 and k Ñ8, we

get both (3.22) and (3.23). �

5. CLUSTER PROCESS AND WALK STARTED FROM A LEAF

We will now address the proof of Corollary 1.6, which links the cluster process of the
local time to that of GFF/BRW, and that of Theorem 1.1, which deals with the random
walk started from the leaves. As part of the latter, we also prove Corollary 1.4 which
identifies the law of the position of the local-time maximizer.

5.1 Connection to BRW cluster process.

Our proof of Corollary 1.6 follows that of Theorem 3.1 with the local time replaced by
the BRW/GFF. A key point is that Proposition 3.6, which is where the cluster process is
extracted for the local time, plugs in seamlessly for the GFF as well.
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We start by recalling some needed facts about the extremal properties of BRW/GFF.
Let us write Mn for the maximum of the GFF on Ln. Then, as shown in Addario-Berry
and Reed [5, Theorem 3] for fairly general BRW (and for the particular case at hand
in [14, Lecture 7]),

rP
`

|Mn ´ rmn| ą λ
˘

ď c1e´c2λ (5.1)

holds for all n ě 1 and all λ ą 0, where

rmn :“
a

log b n´
3

4
a

log b
log n, (5.2)

and c1 and c2 are positive constants. For the extremal level set,

rΓpλq :“
 

x P Ln : hpxq ě rmn ´ λ
(

, (5.3)

Mallein [40, Theorem 4.5] proves the clustering property

lim
kÑ8

lim sup
nÑ8

rP
´

Dx, y P rΓpλq : y P Bn´kpxqr Bkpxq
¯

“ 0. (5.4)

This also readily implies tightness

lim
`Ñ8

lim sup
nÑ8

rP
´

ˇ

ˇrΓpλq
ˇ

ˇ ą `
¯

“ 0 (5.5)

of the cardinality of rΓpλq. Note that the above are the analogues of Lemmas 3.2-3.3 and
Corollary 3.4 for the case at hand.

The extraction of the limit process will also require the asymptotic statement

rP
`

Mn ´ rmn ą u
˘

“ c̃‹
`

1` ε̃n,u
˘

ue´2u
?

log b, (5.6)

where c̃‹ is a positive constant and ε̃n,u defined by this expression obeys

lim
uÑ8

lim sup
nÑ8

ˇ

ˇ ε̃n,u
ˇ

ˇ “ 0. (5.7)

This statement, which plays the role of Proposition 2.2 for the case at hand, can be found
in Bramson, Ding and Zeitouni [22, Proposition 3.1].

In addition to the above, we will need an analogue of Lemma 4.2:

Lemma 5.1 For all λ ě 0,

lim
kÑ8

lim sup
nÑ8

rP
ˆ

ď

xPLn

 

hpxq ě rmn ´ λ
(

X rBn,kpxqc
˙

“ 0, (5.8)

where for σ̃ :“ 1
12 ,

rBn,kpxq :“
!

rmk ` kσ̃ ď rmn ´ hpzq ď rmk ` k1´σ̃
)

(5.9)

with our convention z :“ mkpxq.

The proof of this lemma requires ideas similar to those entering the proof of Proposi-
tion 3.6 and so we relegate it to Section 6. Taking this lemma for granted in what follows,
we are now ready for:
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Proof of Corollary 1.6 from Proposition 3.6 and Lemma 5.1. We follow the proof of The-
orem 3.1 and its reduction to Theorem 1.2. We start by the definition of the struc-
tured extremal process associated with the BRW/GFF. This is a random measure on
r0, 1s ˆRˆRN defined by

rηn,k :“
ÿ

xPLn

1Mn,kph, xq δθnpxq b δhpxq´ rmn b δhpxq´hpx¨q. (5.10)

Given f P C`loc, set

rVn,kp f q :“ rE
ˆ

ź

xPLn

e
´ f pθn´kpzq, hpxq´ rmn, hpxq´hpx¨q q 1Mn,kph,xqX rBn,kpxq

˙

, (5.11)

where we used our standard shorthand z :“ mkpxq. Lemma 5.1 along with uniform
continuity of f then show

lim
kÑ8

lim sup
nÑ8

ˇ

ˇrEpe´xrηn,k , f yq ´ rVn,kp f q
ˇ

ˇ “ 0. (5.12)

We thus need to compute the limit of rVn,kp f q as n Ñ8 followed by k Ñ8.
Assume that n ą 2k ě 1 with k so large that px, h, φq ÞÑ f px, h, φq depends only on

tφy : y “ 0, . . . , ju for some j ă bk. Then, similarly as in (3.35), the Markov property of
the BRW/GFF along with a simple calculation show

rVn,kp f q “ rE
ˆ

ź

xPLn

e
´gk,ũpxqpθn´kpzq, hpxq´ rmnq 1Mn,kph,xqX rBn,kpxq

˙

, (5.13)

where
ũpxq :“ hpxq ´ rmn ` rmn ´mk ´ hpzq. (5.14)

For λ ą 0 such that suppp f q is contained in r0, 1s ˆ r´λ, λs ˆ r´λ, λst0,...,ju, the term
corresponding to x in (5.13) is non-trivial only if

´λ` kσ̃ ď ũpxq ď λ` k1´σ̃ `
1

4
a

log b
log k (5.15)

where σ̃ :“ 1
12 . Under these conditions Proposition 3.6 permits us to replace gk,ũpxq on

the right of (5.13) by g from (3.26); Lemma 5.1 then also allows us to drop the barrier
event rBn,kpxq at the cost of an error term that vanishes as n Ñ8 and k Ñ8.

The previous manipulations reduce the computation to the limit of the process of
local maxima that, with the help of the tightness of the extreme level sets (5.4–5.5) is
reduced to the asymptotic (5.6–5.7). Leaving the details to the reader, for any kn Ñ 8

with n´ kn Ñ8 this gives

E$
`

e´xrηn,kn , f y˘

ÝÑ
nÑ8

E

ˆ

exp
!

´

ˆ
Wpdxq b e´2

?
log b hdhb νpdφqp1´ e´ f px,h,φqq

)

˙

,
(5.16)

for a random measure W on r0, 1s and ν as in Proposition 3.6. Proceeding along the same
argument as in the reduction of Theorem 3.1 to Theorem 1.2 then shows that the cluster
process of GFF is that defined in (3.13), thus identifying it with the cluster process of the
local time of the random walk on Tn. �
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5.2 Random walk started from the leaves.

We now move to the proof of Theorem 1.1 which will be deduced from Theorem 1.2.
Here we note that the corresponding reduction in [20] for the maximum of the local
time relied on a convenient trick: The law of maxxPLn `τ$pxq is that of maxxPLn Ltpxq
conditioned on being positive, in the limit as t Ó 0. This capitalized on the observation
that the law of maxxPLn Ltpxq does not depend on where the walk started from the root
first hits the leaves. Unfortunately, this symmetry no longer helpful once we aim to
include information on where the maximum is achieved, let alone how the other nearly-
maximal values are distributed, and so we proceed along different lines.

We will rely on the Markovian nature of the local time that yields the following de-
composition of `τ$ :

Lemma 5.2 Writing x0 :“ $, x1, . . . , xn :“ 0 for the vertices on the unique path in Tn from
the root to vertex 0, for any Borel sets Ek Ď RT1k indexed by k “ 1, . . . , n we have

P0
ˆ n
č

k“1

!

 

`τ$pxq : x P T1n´kpxkq
(

P En´k

)

ˇ

ˇ

ˇ

ˇ

σ
`

`τ$pxkq : k “ 1, . . . , n
˘

˙

“

n
ź

k“1

P$
´

 

Ltkpxq : x P T1n´k
(

P En´k

¯ˇ

ˇ

ˇ

tk :“`τ$ pxkq
a.s.

(5.17)

where T1n´kpxkq is the connected component of Tn containing xk when the edges on the path
px0, . . . , xnq are removed from Tn. (We regard T1n´kpxkq as isomorphic to T1n´k defined earlier.)

Proof. This follows using the exponential memoryless property of the exponential distri-
bution similarly as Lemma 2.1. �

In order to understand the extremal process associated with `τ$ we thus need to un-
derstand the extremal behavior of independent processes Lt1 , Lt2 , . . . , Ltn , for which we
now have Theorem 1.2 at our disposal, with the sequence ttku

n
k“1 set via tk :“ `τ$pxkq.

Here are the facts we need to know about this sequence:

Lemma 5.3 Let tTkukě0 be as defined in Corollary 1.3. Then for all n ě 1,
`

`τ$px0q, . . . , `τ$pxnq
˘

under P0 law
“ pT0, . . . , Tnq. (5.18)

In addition,

lim
kÑ8

inf
něk

P
ˆ n
č

j“k

 

Tj ď αj logpjq
(

˙

“ 1 (5.19)

holds true for each α ą 1.

Proof. The law of p`τ$px0q, . . . , `τ$pxnqq was identified in Zhai [47, Corollary 5.3] (it ap-
pears that a factor 1{2 is missing there). The formula (5.19) then follows from a union
bound and a standard tail estimate for Gaussian random variables. �

The tail bound in the previous lemma shows that the relevant contribution to the
extremal process of `τ$ arrive only in the trees Tn´kpxkqwith k small:
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Corollary 5.4 For each λ ą 0,

sup
něk

P0
ˆ

Dx P Ln X

n
ď

j“k

T1n´jpxjq :
b

`τ$pxq ě mn ´ λ

˙

ÝÑ
kÑ8

0. (5.20)

Proof. Suppose k ě 1 is such that the event in (5.19) with α :“ 2 occurs. Then (3.58) gives
that, for each j “ k, . . . , n,

mn ´ an´jpTjq ´
b

Tj ě
a

log b j´
a

2j log j´
1

4
a

log b
logp2j log jq `Op1q, (5.21)

where we also used that t ÞÑ an´jptq `
?

t is non-decreasing. As this grows linearly
with j, Lemma 3.2 along with the observation that the maximum of the local time on Tn´j
dominates that on T1n´j show that, on the event in (5.19), the probability that the maxi-
mum of LTj exceeds mn´λ is exponentially small in j. Along with (5.19), a routine union
bound then proves the claim. �

We are now ready for:
Proof of Theorem 1.1 except for (1.7). Given n ě k ą 0 and a sample of `τ$ , write ηn for the
process on the left-hand side of (1.5) and denote its truncated version by

ηn,k :“
ÿ

xPLn

1tθnpxqěb´kuδθnpxq b δ?`τ$ pxq´mn
. (5.22)

Given t ě 0 and a sample of Lt on Tn, let also

ζt
n :“

ÿ

xPLn

δθnpxq b δ?Ltpxq´mn
. (5.23)

Pick f : r0, 1s ˆR Ñ r0,8q continuous with support in r0, 1s ˆ r´λ, λs, for some λ ą 0,
and observe that

lim
kÑ8

lim sup
nÑ8

ˇ

ˇ

ˇ
E0`e´xηn,k , f y˘´ E0`e´xηn, f y˘

ˇ

ˇ

ˇ
“ 0 (5.24)

by Corollary 5.4.
Next let us call upon Lemma 5.2 to produce a coupling of p`τ$px0q, . . . , `τ$pxnqq with

conditionally independent processes pLt0 , . . . , Ltnq on Tn for the choices tj :“ `τ$pxjq such
that `τ$ coincides with appropriately parametrized Ltj on T1n´jpxjq, for each j “ 0, . . . , n.
Under this coupling we have

xηn,k, f y “
k´1
ÿ

j“0

ÿ

xPLn

1rb´j´1,b´jq

`

θnpxq
˘

f
´

θnpxq,
b

`τ$pxq ´mn

¯

“

k´1
ÿ

j“0

ÿ

xPLn´j

1rb´1,1q
`

θn´jpxq
˘

f
´

b´jθn´jpxq,
b

Ltjpxq ´mn

¯
ˇ

ˇ

ˇ

tj“`τ$ pxjq
.

(5.25)

Abbreviating

fn,jpx, hq :“ 1rb´1,1qpxq f
`

b´jx, h`mn´j ´mn
˘

, (5.26)
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Lemmas 5.2–5.3 (along with the fact that the local time process Lt on T1n´i is a restriction
of the process on Tn´i) give

E0`e´xηn,k , f y˘ “ E
ˆ k´1
ź

i“1

E$
`

e´xζ
ti
n´i , fn,iy

˘
ˇ

ˇ

ti :“Ti

˙

, (5.27)

where the outer expectation is with respect to the law of pT0, T1, . . . q. Here the term
corresponding to j “ 0 has been dropped because T0 “ 0 a.s. and so the corresponding
process ζt0

n is thus zero when t0 “ T0.
Note that mn´j ´ mn “ ´j

a

log b ` op1q as n Ñ 8. Using the uniform continuity
of f to absorb the error and the lack of atoms of Zu to deal with the discontinuity of fn,j

at x :“ b´1, Theorem 1.2 shows that E$pe´xζ
u
n´j, fn,jyq converges, for each u ě 0, to

E

ˆ

exp
!

´

ˆ
1rb´1,1qpxqZupdxq b e´2h

?
log bdhbDpdξq

`

1´ e´xξ, f jpx,h`¨qy˘
)

˙

, (5.28)

where the expectation is with respect to the law of Zu and f jpx, hq :“ f pb´jx, h´ j
a

log bq.
A change of variables casts this in the form

E

ˆ

exp
!

´

ˆ
Zpjqu pdxq b e´2h

?
log bdhbDpdξq

`

1´ e´xξ, f px,h`¨qy˘
)

˙

, (5.29)

where
Zpjqu pdxq :“ b´2j1rb´j´1,b´jqpxqZu

`

bjdx
˘

. (5.30)

Plugging the above convergence statements into (5.27) it follows that if tZTjujě0 is the
family of random measures associated with tTjujě0 as specified in (1.21) and

Zkpdxq :“
k´1
ÿ

j“1

b´2j1rb´j´1,b´jqpxqZTj

`

bjdx
˘

(5.31)

then the Bounded Convergence Theorem gives

E0`e´xηn,k , f y˘

ÝÑ
nÑ8

E

ˆ

exp
!

´

ˆ
Zkpdxq b e´2h

?
log bdhbDpdξq

`

1´ e´xξ, f px,h`¨qy˘
)

˙ (5.32)

for each k ě 1.
To finish the proof of convergence (1.5) observe that Zk increases to the measure Z

defined by the right-hand side of (1.22) and so, by the Bounded Convergence Theorem,
the right-hand side of (5.32) tends to that with Zk replaced by Z as k Ñ 8. Thanks to
(5.24), the limiting expression is then also the limit of E0pe´xηn, f yq as n Ñ 8 (and the
limit thus exists) for each f as above.

The properties of D were proved along with Theorem 1.2. To address the proper-
ties of Z , note that Z is finite a.s. by the tightness of maxxPLn `τ$pxq proved in [20,
Theorem 1.1]. While the measures Zt may vanish with positive probability, by (1.15)
this probability decreases with t. Since Tk Ñ 8 a.s. it follows that a positive frac-
tion of ZTi -measures are non-vanishing almost surely, thus showing Zpr0, εqq ą 0 for
each ε ą 0 a.s. That Zpt0uq “ 0 a.s. follows from the construction of Z as an increasing
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limit of Zk and the fact that, since Zk is supported in rb´k, 1q and Zpr0, 1sq ă 8, we have
Zpr0, b´kqq ď Zpr0, 1sq ´Zkpr0, 1sq Ñ 0 as k Ñ8. �

From the above we immediately get:
Proof of Corollary 1.3. The above proof shows that Zk defined in (5.31) increases in law to
measure Z governing the limit extremal process. Hence we get (1.22). �

Proof of Corollary 1.4. For n ě k ě 1 abbreviate Ln,k :“ Ln XT1n´kpxkq. Corollary 5.4 tells
us that the maximum of `τ$ occurs in

Ťk
j“1 Ln,j with probability tending to one as n Ñ8

and k Ñ8. Writing Mn,j :“ maxxPLn,j

b

`τ$pxq ´mn, the joint law of pMn,1, . . . , Mn,kq has
a limit described by

P0
ˆ k
č

j“1

tMn,j ď uju

˙

ÝÑ
nÑ8

E

ˆ k
ź

j“1

e
´ 1

2
?

log b
b´2jZTj prb

´1,1qqe´2
?

log b uj
˙

. (5.33)

Another way to write this is as
 

Mn,j : j “ 1, . . . , k
(

law
ÝÑ
nÑ8

! 1
2
a

log b

`

log ZTjprb
´1, 1qq ´ 2j log b` G1j

˘

: j “ 1, . . . , k
)

,
(5.34)

where G11, . . . , G1k are i.i.d. standard Gumbel random variables shifted by logp2
a

log bq.
As the Gi’s are continuously distributed, the largest term in the sequence on the right

of (5.34) is unique a.s. Thanks to Corollary 5.4 again, so must be the maximizer of the
infinite sequence. This yields the claim by the fact that, within Ln,k, the maximizer
of x ÞÑ `τ$pxq is uniformly distributed by the symmetries of the tree. �

5.3 Limit characterization of Z-measure.

To complete the proof of Theorem 1.1 it remains to prove the limit characterization (1.7).
Our argument relies on the convergence of the total mass of the measure on the left
of (1.7) to the total mass of Z . This was claimed in [20, Theorem 1.5]; unfortunately, the
proof of this part appears to be missing. As this fact enters rather delicately our proof
of (1.7), we state and prove the result here.

Proposition 5.5 Let rC‹ :“ 2c‹
a

log b for c‹ as in Proposition 2.2. Then

rC‹ b´2n
ÿ

xPLn

´

n
a

log b´
b

`τ$pxq
¯`

`τ$pxq
1{4 e2

?
log b

?
`τ$ pxq law

ÝÑ
nÑ8

Z
`

r0, 1s
˘

, (5.35)

where Z is the measure from Theorem 1.1.

The proof of this proposition will rely on one useful fact:

Lemma 5.6 Given n ě 1, let `pnqτ$
be the local time on Tn for the walk started from 0 P Ln and

stopped upon first hit of $. Then for all 1 ď k ď n,
 

`
pnq
τ$
pxq : x P Tk

( law
“

 

`
pkq
τ$
pxq : x P Tk

(

. (5.36)
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In particular, the laws of t`pnqτ$
: n ě 1u are Kolmogorov-consistent.

Proof. This follows by combining (5.17) and (5.18), along with the fact that the law
of tTkukě0 does not depend on n. (A direct argument can be based on the memory-
less property of the exponential distribution and the fact that the walk started from 0
on Tn enters Tk through 0 on Tk.) �

Using this we now give:

Proof of Proposition 5.5. Given n ě 1, write Z pnq for the measure from (1.7). Our goal is to
show that Z pnqpr0, 1sq tends in law to Zpr0, 1sq as n Ñ 8. Let s P R and let us continue
writing `

pnq
τ$

for the local time `τ$ on Tn under P0. Conditioning on the values in Tk for
some 1 ď k ď n, Lemmas 5.2 and 5.6 imply

P0
´

max
xPLn

b

`
pnq
τ$
pxq ď mn ` s

¯

“ E0
ˆ

ź

zPLk

P$
´

max
xPLn´k

a

Ltpxq ď mn ` s
¯
ˇ

ˇ

ˇ

t:“`pkqτ$ pzq

˙

. (5.37)

We will represent the probabilities under the product using the asymptotic form in
Proposition 2.2. For this we assume that

A1k :“
!

max
zPLk

b

`
pkq
τ$
pzq ď mk ` log log k

)

(5.38)

occurs and note that, for t :“ `
pkq
τ$
pzq, we have mn ` s “ an´kptq `

?
t` u with

u :“ mn ` s´ an´kptq ´
?

t

“ k
a

log b´
1

8
a

log b
log t` s`

1
4
a

log b
log

´n´ k`
?

t
n

¯

´
?

t`
3

4
a

log b
log

ˆ

1´
k
n

˙

ě k
a

log b´
1

8
a

log b
log t`Op1q ´mk ´ log log k

ě
1

a

log b
log k´ 2 log log k`Op1q,

(5.39)
where the third inequality follows by plugging the constraint from (5.38). Also note that
for such u and t we get

ue´2u
?

log b “

ˆ

1`O
´ log log k

log k

¯

˙

´

k
a

log b´
b

`τ$pxq
¯`

ˆ b´2k`τ$pxq
1{4e2

?
log b
?

`τ$ pxqe´2s
?

log b,

(5.40)

where the error term is random but bounded by a deterministic constant times the stated
ratio. For k large, u is large and the quantity (5.40) is small uniformly for all terms in the
product in (5.37). This allows us to apply Proposition 2.2 to the terms with t :“ `

pkq
τ$
pzq ě

log log k while handling the remaining terms using the bound (3.7) in Lemma 3.2. As
is seen from (5.40), each of the latter terms contributes at most exptOp1qb´2kk2u to the
product and contributes at most Opb´2kk2q to Z pkq. These terms are thus negligible and
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we may rewrite the expectation in (5.37) as

O
`

P0pA1ck q
˘

` E0
ˆ

exp
!

õp1q ´ rC´1
‹ pc‹ ` op1qqe´2s

?
log bZ pkq

`

r0, 1s
˘

)

˙

, (5.41)

where the op1q-terms vanish in the limit as n Ñ8 followed by k Ñ8.
Appealing to the structured-process convergence in Theorem 3.1, a simple approxi-

mation argument shows that P0pA1ck q Ñ 0 as k Ñ 8 while the left-hand side of (5.37)
converges to

E

ˆ

exp
!

´p2
a

log bq´1e´2s
?

log bZpr0, 1sq
)

˙

(5.42)

as n Ñ 8. Since s is arbitrary, taking k Ñ 8 we get convergence of the Laplace trans-
forms of the laws of Z pkqpr0, 1sq to that of Zpr0, 1sq. This is enough to imply the claim. �

With the above in hand, we are ready to give:

Proof of (1.7) in Theorem 1.1. Set rC‹ :“ 2c‹
a

log b for c‹ as in Proposition 2.2. Given
n ě k ě 1 and a sample `τ$ of the local time on Tn from P0, denote

Z pnqk :“ rC‹ b´2n
ÿ

xPLn

k´1
ÿ

j“0

1rb´j´1,b´jqpθnpxqq

ˆ

ˆ

pn´ jq
a

log b´
b

`τ$pxq
˙`

`τ$pxq
1{4 e2

?
log b

?
`τ$ pxqδθnpxq.

(5.43)

Observe that, if the factor n ´ j were replaced by n, then this would simply be the re-
striction of the measure in (1.7) to rb´k, 1q.

Next let x0 :“ $, x1, . . . , xn :“ 0 label the vertices on the unique path from the root to 0.
Lemma 2.1 implies that, conditional on p`τ$px0q, . . . , `τ$pxnqq, the local time process `τ$

restricted to tx P Ln : θnpxq P rb´j´1, b´jqu has the law of Ltj on tx P Ln´j : θn´jpxq P
rb´1, 1qu for tj :“ `τ$pxjq. Using this we get

Z pnqk pdxq law
“

k´1
ÿ

j“1

b´2j 1rb´j´1,b´jqpxqrZ
pn´jq
tj

pbjdxq
ˇ

ˇ

tj :“Tj
, (5.44)

where pT0, . . . , Tnq are independent with law given in Corollary 1.3 and prZpn´1q
t1

, . . . , rZp1qtn´1
q

are independent samples of measures from (1.18); i.e., measures of the form

rZpkqt :“ rC‹ b´2k
ÿ

xPLk

´

k
a

log b´
b

Lpkqt pxq
¯`

Lpkqt pxq
1{4 e2

?
log b

b

Lpkqt pxqδθkpxq (5.45)

with tt ÞÑ Lpkqt : k ě 1u independent for different k. We again dropped the j :“ 0 term in
(5.44) due to the fact that T0 “ 0 a.s. Invoking the convergence (1.18) we then get

Z pnqk
law
ÝÑ
nÑ8

Zk (5.46)

where Zk is as in (5.31). Recall also that Zk
law
ÝÑZ as k Ñ8.
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Let Z pnq denote the measure on the left of (1.7). Clearly, Z pnqk ď Z pnq pointwise as
measures for each k “ 1, . . . , n. Moreover, by Proposition 5.5,

Z pnq
`

r0, 1s
˘ law
ÝÑ
nÑ8

Z
`

r0, 1s
˘

. (5.47)

In particular, tZ pnq : n ě 1u is a tight family of random Borel measures on r0, 1s which
permits consideration of weak subsequential limits. But the inequality Z pnqk ď Z pnq
along with (5.46) and the weak convergence of Zk to Z show that any subsequential
weak limit Z 1 of tZ pnq : n ě 1u dominates Z in law and yet, by (5.47), has the same total
mass. This forces Z 1 to coincide with Z , proving the claim. �

6. BARRIER ESTIMATES FOR BRW

To settle all aspects of the proof of Theorem 3.1, it remains to prove the convergence in
Proposition 3.6 and the barrier estimate in Lemma 5.1 for the Branching Random Walk
with normal step distribution.

6.1 Gaussian random walk above a barrier.

We begin by a statement that belongs to the theory of inhomogeneous Ballot Theorems.
This subject has been treated systematically in many sources; e.g., Bramson [21], Biskup
and Louidor [19], Mallein [40] or Cortines, Hartung and Louidor [25]; unfortunately,
none of these treatments seem to give precisely what we need due to either a differ-
ent setting or non-uniformity in the relevant parameters (specifically, allowing that u in
(3.25) scales as a power of k). We will therefore work out the needed details here focusing
solely on the setting relevant for the above claims.

Proposition 6.1 Fix any σ P p0, 1{10q and let X0, X1, . . . be a random walk with step distri-
bution N p0, 1{2q. For each ε P p0, 1q and each δ P p0, 1q there exists a0 “ a0pε, δq ě 1 such that
for all a ě a0, all naturals k ě 2 and all reals r, u satisfying

r, u ě a1{σ and ru ď k1´δ (6.1)

and all γ : t0, . . . , ku Ñ R obeying
ˇ

ˇγpiq
ˇ

ˇ ď a`
`

minti, k´ iu
˘σ, i “ 0, . . . , k, (6.2)

we have

p1´ εq
4ru

k
ď E

ˆ k´1
ź

j“1

1tXjěγpjqu

ˇ

ˇ

ˇ

ˇ

X0 “ r, Xk “ u
˙

ď p1` εq
4ru

k
. (6.3)

A key step of the proof is to show that, conditional on X ě ´|γ|, the walk actually
obeys X ě |γ|. We prove this first as:

Lemma 6.2 Let X be as in Proposition 6.1. For each ε ą 0 and σ P p0, 1{10q there exists a1 ě 1
such that for all a ě a1 and all non-negative γ satisfying (6.2),

E
ˆ

1tmin1ďjďk´1rXj´γpjqsă0u

k´1
ź

j“1

1tXjě´γpjqu

ˇ

ˇ

ˇ

ˇ

X0 “ r, Xk “ u
˙

ď ε
ru
k

(6.4)
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holds whenever r, u ě a1{σ, uniformly in k ě 2.

Proof. Abbreviate the law of X conditioned on Xi “ r and Xj “ u as Pr,u
i,j . We first make

one useful observation. Given a path X of the random walk, note that if i ÞÑ Xi ´ γpiq
is minimized at some `, then Xi ě X` ´ γp`q ` γpiq ě X` ´ γp`q for all i “ 1, . . . , k´ 1.
Hence we get

Pr,u
0,k

´

min
1ďiăk

rXi´γpiqs “ X` ´ γp`q
ˇ

ˇ

ˇ
X` “ s

¯

ď Pr,s
0,`

ˆ `´1
č

i“1

tXi ě s´ γp`qu

˙

Ps,u
`,k

ˆ k´1
č

i“``1

tXi ě s´ γp`qu

˙ (6.5)

for all ` “ 1, . . . , k ´ 1. For s P r´γp`q, γp`qs the homogeneous Ballot Theorem (or the
argument in the last part of the proof of Proposition 6.1) bounds the first probability by
a constant that depends only on the distribution of X times `´1rr` γp`qsγp`q. A similar
argument applies to the second probability as well.

Next observe that, by a calculation with Gaussian densities, the probability density f
of X` under Pr,u

0,k equals

f psq “
1
?

π

d

k
`pk´ `q

exp
"

´

´1
`
`

1
k´ `

¯´1”1
`
pr´ sq `

1
k´ `

pu´ sq
ı2
*

(6.6)

which is readily bounded as

f psq ď
1
?

π

d

k
`pk´ `q

e´rpmintr,uu´sq`s2{mint`,k´`u. (6.7)

Let Er,u
0,k denote the expectation with respect to Pr,u

0,k . Partitioning according to the first
maximizer of i ÞÑ Xi ´ γpiqwe then dominate the quantity of interest as

Er,u
0,k

ˆ

1tmin1ďjďk´1rXj´γpjqsă0u

k´1
ź

j“1

1tXjě´γpjqu

˙

ď c̃
k´1
ÿ

`“1

γp`q3rr` γp`qsru` γp`qs

?
k

r`pk´ `qs3{2
e´

rpmintr,uu´γp`qq`s
2

mint`,k´`u ,

(6.8)

where the terms `´1γp`qrr ` γp`qs and pk ´ `q´1γp`qru` γp`qs arise from the estimates
of the conditional probability as discussed after (6.5), the exponential on the right domi-
nates that in (6.7) uniformly in s P r´γp`q, γp`qs and another factor 2γp`q arises from the
integral over s subject to the aforementioned restrictions.

Assuming a ě 1 and r, u ě a1{σ ě 1 we have
“

r` γp`q
‰“

u` γp`q
‰

ď rur1` γp`qs2. (6.9)

We now finally call upon the assumed bound (6.2) on γ which permits us to dominate
the sum in (6.8) by ru

k times
k´1
ÿ

`“1

“

1` a` pmint`, k´ `uqσ
‰5 k3{2

r`pk´ `qs3{2
e´

rpa1{σ´a´pmint`,k´`uqσq`s
2

mint`,k´`u . (6.10)
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This sum is bounded by twice that for ` ď rk{2s, with k3{2 subsequently cancelling
against the lower bound on pk ´ `q3{2 arising in the denominator. We then split the
resulting sum according to whether `σ ď a{2 or not. Under σ ă 1{10, the former part is
checked to be exponentially small in a1{σ while the latter part is bounded by a constant
times ap´1{2`5σq{σ. As 5σ ă 1{2, (6.10) is thus bounded uniformly in k ě 1 and tends to
zero as a Ñ8. We conclude that (6.4) holds for a sufficiently large. �

With (6.4) established, we now use it to prove the bounds in (6.3).

Proof of Proposition 6.1. Denote γ‹piq :“ a`
`

minti, k ´ iu
˘σ and assume a ě a1, for a1

related to ε as in Lemma 6.2. Abbreviate the expectation in (6.3) as Fkpγq. If |γ| ď γ‹
and r, u ě a1{σ, then the above tells us

Fkpγq ě Fkpγ‹q ě Fkp´γ‹q ´
ur
k

ε ě Fkp0q ´
ur
k

ε. (6.11)

To estimate the right-hand side, let B “ tBs : 0 ď s ď k{2u be the standard Brownian
bridge of time-length k{2 and endpoints fixed to B0 “ r and Bk{2 “ u a.s. Thanks to the
specific step distribution, under Pr,u

0,k the family tXj : j “ 0, . . . , ku is equidistributed to
tBj{2 : j “ 0, . . . , ku. Using Pr,u to denote the law of B, the Reflection Principle gives

Fkp0q ě Pr,u
´

inf
0ďsďk{2

Bs ě 0
¯

“ 1´ exp
!

´4
ur
k

)

. (6.12)

The right-hand side exceeds p1´ ε{2q 4ur
k when ur ď k1´δ and both u and r (and thus k)

are sufficiently large. Plugging this in (6.11) proves the lower bound in (6.3).
For the bound on the right of (6.3), a similar argument as one used for (6.11) shows

Fkpγq ď Fkp´γ‹q ď Fkpγ‹q `
ur
k

ε. (6.13)

Proceeding as in the proof of [19, Lemma 4.16], we now bound Fkpγ‹q as follows. First
note that, for B the above Brownian bridge and each j “ 1, . . . , k,

Wpjq
s :“ B

p1´sq j´1
2 `s j

2
´ p1´ sqB j´1

2
´ sB j

2
, 0 ď s ď 1, (6.14)

defines a family tWpjq : j “ 1, . . . , ku of i.i.d. Brownian bridges of time-length 1 and end-
points fixed to zero. Abbreviating Wpjq

‹ :“ inf0ďsď1 Wpjq
s , we readily check

k´1
č

j“1

 

B j
2
ě γ‹pjq

(

X

k
č

j“1

!

Wpjq
‹ ě ´mintγ‹pj´ 1q, γ‹pjqu

)

Ď
č

0ďsďk{2

 

Bs ě 0
(

. (6.15)

The properties of Brownian motion imply that the two giant intersections on the left are
independent. This yields

Fkpγ‹q
k
ź

j“1

P0,0
´

Wpjq
‹ ě ´mintγ‹pj´ 1q, γ‹pjqu

¯

ď 1´ exp
!

´4
ur
k

)

. (6.16)

The Reflection Principle shows that Wpjq
‹ has a Gaussian lower tail and our choice of γ‹

then ensures that the product on the left is at least p1` ε{2q´1 when a is sufficiently large,
uniformly in k ě 1. The inequality 1´ e´s ď s bounds the right-hand side by 4 ur

k . Using
this in (6.13) proves the bound on the right of (6.3). �
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If we do not insist on precise asymptotic and just aim for an upper bound, we can
drop most of the restrictions between the parameters in Proposition 6.1:

Corollary 6.3 Assume X is as Proposition 6.1. For each σ P p0, 1{10q and a ě 0 there exists
c ą 0 such that

E
ˆ k´1
ź

j“1

1tXjěγpjqu

ˇ

ˇ

ˇ

ˇ

X0 “ r, Xk “ u
˙

ď c
p1` uqp1` rq

k
(6.17)

holds for all r, u ě 0, all k ě 2 and all γ : t0, . . . , ku Ñ R satisfying (6.2).

Proof. Fix σ P p0, 1{10q and let a1 be the constant from Lemma 6.2 with ε :“ 1. Given a ě 0
let γ satisfy (6.2). Set ã :“ maxta1, a, 1u, abbreviate rγpiq :“ ã` pminti, k´ iuqσ and note
that γ ě ´rγ. Using that the expectation increases when r and u increase, the argument
(6.13–6.16) along with the inequality 1´ e´s ď s show

E
ˆ k´1

ź

j“1

1tXjěγpjqu

ˇ

ˇ

ˇ

ˇ

X0 “ r, Xk “ u
˙

ď E
ˆ k´1
ź

j“1

1tXjě´rγpjqu

ˇ

ˇ

ˇ

ˇ

X0 “ ã1{σ ` r, Xk “ ã1{σ ` u
˙

ď

ˆ

ε` 4
k
ź

j“1

P0,0
´

Wpjq
‹ ě ´mintrγpj´ 1q, rγpjqu

¯´1
˙

pã1{σ ` rqpã1{σ ` uq
k

.

(6.18)

To get the claim, note that the product is bounded uniformly in k ě 2 and that ã1{σ ě 1
implies pã1{σ ` rqpã1{σ ` uq ď ã2{σp1` rqp1` uq. �

6.2 Reduction to a barrier estimate for random walks.

We now move attention to the Branching Random Walk with step distribution (1.27)
whose first n generations can alternatively be viewed as a Tn-indexed Markov chain
with steps distributed as N p0, 1{2q. Our next goal will be to show that, along a path
from the root to a near-maximal leaf, the Markov chain stays above a barrier of the kind
studied earlier, modulo a linear tilt of the whole path.

We start with some notation. Given a sample h of the BRW on Tn with step distribu-
tion N p0, 1{2q, for each k “ 1, . . . , n let

M1
k :“ max

 

hpxq : x P Lk, θkpxq ě b´1(. (6.19)

Departing from our previous labeling convention, let x0 :“ 0, x1, . . . , xn :“ $ be the path
from 0 to the root on Tn. For u P R and A P σphpx0q, . . . , hpxnqq, define the probability
measure

Pn,upAq :“ rP
`

A
ˇ

ˇ hpx0q “ rmn ` u
˘

(6.20)
and, for s ě u, another measure

Qn,s,upAq :“ rE
ˆ

1A

n
ź

k“1

rP
`

M1
k ď rmk ` t

˘
ˇ

ˇ

t:“ rmn`s´ rmk´hpxkq

ˇ

ˇ

ˇ

ˇ

hpx0q “ rmn ` u
˙

. (6.21)
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In both cases the conditioning is well defined for all u P R thanks to the probability
density of h being a continuous function.

The measure Pn,u gives us access to the law of the sequence phpx0q, . . . , hpxnqq condi-
tioned on hp0q “ rmn ` u, which by the structure of the Branching Random Walk reduces
to the law of a random walk with step distribution N p0, 1{2q conditioned to reach mn`u
at time n. For Qn,s,u we in turn get:

Lemma 6.4 For each s ě u and A P σphpx0q, . . . , hpxnqq,

Qn,s,upAq “ rP
´

AX
 

max
xPLn

hpxq ď rmn ` s
(

ˇ

ˇ

ˇ
hp0q “ rmn ` u

¯

. (6.22)

Proof. Given a sample h of the BRW on Tn, for each k “ 1, . . . , n set

M2
k :“ max

!

hpxq ´ hpxkq : x P Ln, b´n`k´1 ď θnpxq ă b´n`k
)

. (6.23)

By the structure of Tn and the Markov property of the BRW, the random variables

M2
1 , . . . , M2

n are independent of each other and of phpx0q, . . . , hpxnqq with M2
k

law
“ M1

k
for each k “ 1, . . . , n. Using these variables, the event tmaxxPLn hpxq ď rmn ` su becomes

thpx0q ď rmn ` s
(

X

n
č

k“1

 

hpxkq `M2
k ď rmn ` s

(

. (6.24)

For s ě u the first event occurs automatically under the conditioning on hp0q “ mn ` u.
Using the independence of M2

1 , . . . , M2
n, the conditional probability of the second event

given phpx0q, . . . , hpxnqq turns into the product in (6.21). �

We now proceed to prove three lemmas about Qn,s,u. In the first lemma we ob-
serve that the product of the probabilities “inside” Qn,s,u effectively pushes the path
phpx0q, . . . , hpxnqq below a barrier:

Lemma 6.5 For all λ ą 0, σ P p0, 1{10q and δ P p0, 1q there exist c ą 0 and a2 ě 0 such that
for all s ě 1, all u satisfying s ě u ě s´ λ and all n with s ď n1´δ,

Qn,s,u

˜

ˆ n
č

k“1

!

hpxkq ď
n´ k

n
rmn ` s` γn,apkq

)

˙c
¸

ď c
p1` s´ uqs

n

ÿ

1ďkďn{2

“

k` γn,apkq2
‰

e´
1
8 c2γn,apkq

(6.25)

holds for all a ě a2 with

γn,apkq :“ a`
`

mintk, n´ ku
˘σ. (6.26)

Here c2 is as in (5.1).

Proof. Abbreviate

Aj :“
"

hpxjq ď
n´ j

n
rmn ` s` γn,apjq

*

. (6.27)
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On Ac
k we have

rmn ` s´ rmk ´ hpxkq ď rmn ´ rmk ´
n´ k

n
rmn ´ γn,apkq

“
3

4
a

log b

´

log k´
k
n

log n
¯

´ γn,apkq ď ´
1
2

γn,apkq
(6.28)

once a is sufficiently large. Using (5.1) along with the fact that, by the FKG inequality
and the symmetries of the tree, rPpM1

k ď rmk ´ λq2 ď rPpMk ď rmk ´ λq, we then get

Qn,s,u

ˆ

pAk X An´kq
c X

n´k´1
č

j“k`1

Aj

˙

ď 2
?

c1 e´
1
4 c2γn,apkqPn,u

ˆ n´k´1
č

j“k`1

Aj

˙

. (6.29)

Since the probability in (6.25) is dominated by the sum of the probabilities on the left of
(6.29) and γn,apkq ´ γn,apk´ 1q is uniformly bounded, it suffices to show

Pn,u

ˆ n´k
č

j“k

Aj

˙

ď c
p1` s´ uqs

n
“

k` γn,apkq2
‰

e
1
8 c2γn,apkq (6.30)

for some constant c ą 0, uniformly in 1 ď k ď n{2 and u and s as above.
As the quantity on the right of (6.30) exceeds 1 once nδ ă k ď n{2 and n is large, it

suffices to focus on k ď nδ. Abbreviate

Xk :“
n´ k

n
rmn ` s´ hpxkq (6.31)

and note that hpx0q “ rmn` u translates into X0 “ s´ u and hpxnq “ 0 into Xn “ s. Using
this we get

Pn,u

ˆ n´k
č

j“k

Aj

˙

“ P
ˆ n´k
č

j“k

 

Xj ě ´γn,apjq
(

ˇ

ˇ

ˇ

ˇ

X0 “ s´ u, Xn “ s
˙

, (6.32)

where, capitalizing on the fact that conditioning i.i.d. normals on their sum makes their
mean irrelevant, X is a random walk with step distribution N p0, 1{2q under the law on
the right. Shifting the whole path X by γn,apkq and abbreviating γpiq :“ γn,apkq ´ γn,apiq
dominates the probability in (6.32) by

P
ˆ n´k
č

j“k

 

Xj ě γpjq
(

ˇ

ˇ

ˇ

ˇ

X0 “ s´ u` γn,apkq, Xn “ s` γn,apkq
˙

. (6.33)

We now invoke pα` βqσ ď ασ ` βσ to get |γpk` jq| ď jσ for all j “ 0, . . . , n{2´ k. This
allows us to call upon Corollary 6.3 under the conditional measure given Xk and Xn´k
to bound the probability (6.33) by a constant times

E
ˆ

|1` Xk||1` Xn´k|

n´ 2k

ˇ

ˇ

ˇ

ˇ

X0 “ s´ u` γn,apkq, Xn “ s` γn,apkq
˙

. (6.34)

Shifting X by k ÞÑ k
n s` n´k

n ps´ uq ` γn,apkq while using the Gaussian nature of X, the
expectation is written as pn´ 2kq´1 times

E
´

ˇ

ˇXk ` ϕnpkq
ˇ

ˇ

ˇ

ˇXn´k ` ϕnpn´ kq
ˇ

ˇ

ˇ

ˇ

ˇ
X0 “ 0, Xn “ 0

¯

, (6.35)
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where ϕnpkq :“ 1` γn,apkq ` k
n s` n´k

n ps´ uq.
In order to bound (6.35), we first separate terms using the Cauchy-Schwarz inequality

and the inequality pα` βq2 ď 2α2 ` 2β2. Then we invoke the observation that

E
`

X2
k
ˇ

ˇX0 “ 0, Xn “ 0
˘

ď c1mintk, n´ ku, (6.36)

holds with some constant c1 ą 0 for all k “ 1, . . . , n´ 1 and note that

ϕnpkq ď γn,apkq ` s` 1 (6.37)

and, relying on k ď nδ and u ď s ď n1´δ, also

ϕnpkq ď γn,apkq ` 2` s´ u. (6.38)

Putting these together bounds (6.35) by a constant times p1` s´ uqsrk` γn,apkq2swhen-
ever k ď nδ, thus proving (6.30) in this case. �

We now invoke the same argument as in the proof of Lemma 6.2 to get:

Lemma 6.6 There exists c̃ ą 0 such that for all n ě 1, all γ : t0, . . . , nu Ñ r0,8q and all
s ě u ě 0,

Qn,s,u

˜

ˆ n´k1
č

j“k

!

hpxjq ď
n´ j

n
rmn ` s´ γpjq

)

˙c

X

n
č

i“1

!

hpxiq ď
n´ i

n
rmn ` s` γpiq

)

¸

ď c̃
p1` s´ uqp1` sq

n

n´k1
ÿ

`“k

n3{2

r`pn´ `qs3{2
γp`q5

(6.39)
for any k, k1 “ 1, . . . , tn{2u such that γpiq ě 1 for all i “ k, . . . , n´ k1.

Proof. Abbreviate the second intersection in (6.39) as A while noting that the i “ n term
can be dropped due to the fact that s ě 0. Denote

Bj :“
!

hpxjq ď
n´ j

n
rmn ` s´ γpjq

)

. (6.40)

Relying on the substitution (6.31) with γ instead of γn,a we then get

Qn,s,upBc
` X Aq ď Pn,upBc

` X Aq

“ E
ˆ

1tX`ăγp`qu

n´1
ź

j“1

1tXjě´γpjqu

ˇ

ˇ

ˇ

ˇ

X0 “ s´ u, Xn “ s
˙

.
(6.41)

Proceeding as in (6.8), this is bounded by a term proportional to

γp`q3rs´ u` γp`qsrs` γp`qs

?
n

r`pn´ `qs3{2
. (6.42)

Using the bounds s´ u` γp`q ď γp`qp1` s´ uq and s` γp`q ď γp`qp1` sq once γp`q ě 1
instead of (6.9), the claim follows by summing the bound over ` “ k, . . . , n´ k1. �

The conclusion of Lemma 6.6 will be used both in the proof of Lemma 5.1 and Propo-
sition 3.6. For Lemma 5.1 we will also need:
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Lemma 6.7 Let σ P p0, 1{10q and let γn,a be as in (6.26). For each a ě 0 there exists a
constant c1 ą 0 such that for all n, k ě 1 with 2k ď n, all s ě 0, all u ď s and all v ą 0,

Qn,s,u

˜

!

hpxkq ă
n´ k

n
rmn ` s´ v

)

X

n
č

i“1

!

hpxiq ď
n´ i

n
rmn ` s` γn,apiq

)

¸

ď c1
p1` s´ uqp1` sq

n
E
ˆ

p1` Xkq
21tXkąvu

ˇ

ˇ

ˇ

ˇ

X0 “ s´ u, Xn “ s
˙

.

(6.43)

Proof. Proceeding via the substitution (6.31), the probability is dominated by

E
ˆ

1tXkąvu

n´1
ź

j“1

1tXją´γn,apjqu

ˇ

ˇ

ˇ

ˇ

X0 “ s´ u, Xn “ s
˙

. (6.44)

We will bound this by conditioning on Xk and separately estimating the conditional
probability of the product for indices less than k and larger than k.

Noting that γn,apjq ď γn,apkq for all j ď k, the homogeneous Ballot Theorem (or Corol-
lary 6.3) dominates the former probability as

E
ˆ k´1
ź

j“1

1tXją´γn,apjqu

ˇ

ˇ

ˇ

ˇ

X0 “ s´ u, Xk “ ¨

˙

ď c
p1` s´ u` γn,apkqqp1` Xk ` γn,apkqq

k
.

(6.45)

For the latter probability we note that γn,apjq ď γn´k,apj´ kq ` γn,apkqwhich then gives

E
ˆ n´1

ź

j“k`1

1tXją´γn,apjqu

ˇ

ˇ

ˇ

ˇ

Xn “ s, Xk “ ¨

˙

ď c
p1` s` γn,apkqqp1` Xk ` γn,apkqq

n´ k
. (6.46)

Separating terms as before, this dominates (6.44) by p1` s´ uqp1` sq times

c2 r1` γn,apkqs4

kpn´ kq
E
ˆ

p1` Xkq
21tXkąvu

ˇ

ˇX0 “ s´ u, Xn “ s
˙

. (6.47)

Since σ ă 1{4, the prefactor is bounded by c1{n independently of k ď n{2. �

6.3 Proofs of Proposition 3.6 and Lemma 5.1.

For the proofs of our claims, we first summarize the above lemmas as:

Lemma 6.8 Given any σ P p0, 1{10q, a ě 0 and with γn,a as in (6.26), for k ď n let

Gn,k :“
 

Xk P rkσ, k1´σs
(

X

n´k
č

j“k

 

Xj ě γn,apjq
(

, (6.48)

where X is related to h via (6.31). For each ε ą 0 and λ ą 0 there exist a P R and k0 ě 1 such
that for all s ě 1 and all u ď s with s´ u ď λ,

Qn,s,upGc
n,kq ď ε

1` u`
n

(6.49)

holds once nσ ě k ě k0 and n1´σ ě s.
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Proof. Let Aj be defined by (6.27) and set A :“
Şn

j“1 Aj. Next let Bj be as in (6.40)

with γ :“ γn,a and set rBk :“
Şn´k

j“k Bj. Finally, set

Ck :“
!

hpxkq ě
n´ k

n
rmn ` s´ k1´σ

)

. (6.50)

Then
Gc

n,k “ p
rBk X Ckq

c Ď Ac Y pAX rBc
kq Y pAX Cc

kq. (6.51)
Invoking the union bound, it suffices to show that the Qn,s,u-measure of each event on
the right is less than 1

3
1`u`

n ε once k is large and the other restrictions hold.
As s ď u` λ ď p1` λqp1` u`q, Lemma 6.5 with δ :“ σ gives Qn,s,upAcq ď 1

3 ε 1`u`
n

once a is sufficiently large, uniformly in 1 ď k ď n{2. With this a fixed, Lemma 6.6 does
the same for Qn,s,upAX rBc

kq once k is sufficiently large (and 2k ă n). Finally, Lemma 6.7
with v :“ k1´σ bounds Qn,s,upAX Cc

kq by a constant times 1`u`
n times

E
ˆ

p1` Xkq
21tXkąk1´σu

ˇ

ˇ

ˇ

ˇ

X0 “ s´ u, Xn “ s
˙

. (6.52)

A calculation (or an inspection of (6.6)) shows that the probability density f of Xk under
the conditional measure equals

f pxq “
1
?

π

c

n
kpn´ kq

exp
"

´
n

kpn´ kq

´

x´ ps´ uq ´
k
n

u
¯2
*

. (6.53)

Invoking the constraints s´ λ ď u ď s ď n1´σ and k ď nσ (and 2k ă n), this is bounded
by a constant times the probability density of N p1` λ, kq whenever x ě 1` λ. Since
1´ σ ą 1{2, it follows that the expectation (6.52) can be made as small as desired by
taking k large, uniformly in n subject to k ď nσ. �

We are now in a position to complete the proof of our first desired claim:
Proof of Lemma 5.1. Invoking the union bound and the symmetries of the tree, the desired
probability is for any s ě ´λ bounded by

rP
´

max
xPLn

hpxq ą rmn ` s
¯

` bn
rP
ˆ

 

hp0q ě rmn ´ λ
(

X rBn,kp0qc X
!

max
xPLn

hpxq ď rmn ` s
)

˙

.
(6.54)

Given any ε ą 0, by (5.1) the first probability can be made smaller than ε by taking s
sufficiently large. (We assume s ě 1 in what follows.) Writing fn for the probability
density of hp0q ´ rmn, Lemma 6.4 casts the second probability asˆ s

´λ
Qn,s,u

ˆ

!

rmn ´ rmk ´ hpxkq P rkσ̃, k1´σ̃s

)c
˙

fnpuqdu, (6.55)

where σ̃ :“ 1
12 . As is checked by a calculation, there exists a constant c ą 0 such that,

uniformly in n ě 1 over the interval of integration,

fnpuq ď cnb´ne´2u
?

log b. (6.56)

We set ε1 :“ εp2
a

log bqe´2λ
?

log bc´1 in what follows.
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Next let σ :“ 1
11 and use Lemma 6.8 to find a ě 0 and k0 ě 1 such that

Qn,s,upGc
n,kq ď ε1n´1 (6.57)

for the given s, all u P r´λ, ss and all n ą 2k obeying nσ ě k ě k0 and n1´σ ě s. As
ˇ

ˇ

ˇ

rmn ´ rmk ´
n´ k

n
rmn

ˇ

ˇ

ˇ
ď kσ̃ (6.58)

once k is large and n ą 2k, we get the inclusion
!

rmn ´ rmk ´ hpxkq P rkσ̃, k1´σ̃s

)

Ě Gn,k (6.59)

once k is so large that also 2kσ̃ ` s ď kσ and k1´σ̃ ´ kσ̃ ` s ě k1´σ hold. Hence the
probability under the integral is also at most ε1n´1 and the integral is thus bounded by

ε1n´1cnb´np2
a

log bq´1e2λ
?

log b “ εb´n. (6.60)

Plugging this in (6.54), the desired probability is less than 2ε once k is large and n " k.
Since ε is arbitrary, this implies the claim. �

The proof of Proposition 3.6 requires additional lemmas. We start with control of the
the total mass of Qn,u,u:

Lemma 6.9 For all δ P p0, 1q there exist c ą c1 ą 0 and u0 ą 0 such that for all n ě 1 and
all u ě u0 with u ď n1´δ,

c1
u
n
ď Qn,u,upR

n`1q ď c
u
n

. (6.61)

Proof. We start with the lower bound. Given σ P p0, 1{10q and a ě 0, let

A1 :“
n
č

k“1

!

hpxkq ď
n´ k

n
rmn ` u` a1{σ ´ γn,apkq

)

. (6.62)

For hpx0q “ rmn ` u, the substitution (6.31) gives

hpx0q ´ hpxjq “ rmn ` u´ hpxjq “ Xj `
j
n
rmn. (6.63)

On A1 we can bound the product in the definition of Qn,u,u by

c̃npaq :“
n
ź

k“1

PpM1
k ď rmk ` tq|t:“ rmn´ rmk´

n´k
n rmn`γn,apkq´a1{σ (6.64)

from below and hereby get

Qn,u,upA1q ě c̃npaqE
ˆ n
ź

k“1

1tXkěγn,apkq´a1{σu

ˇ

ˇ

ˇ

ˇ

X0 “ 0, Xn “ u
˙

. (6.65)

Using Mk ě M1
k, the bound (5.1) and that infně1 PpMn ď rmn ` tq ą 0 for all t P R

we check infně1 c̃npaq ą 0 for each a ě 0, so it remains to find a lower bound on the
expectation in (6.65). Here a shift of the whole path by a1{σ turns the expectation into the
form in (6.3) with pr, uq given by pa1{σ, u` a1{σq. Proposition 6.1 with ε :“ 1{2 and δ equal
to half of that above bounds the expectation from below by 2a1{σpu` a1{σqn´1 provided
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that a ě a0 and a1{σpu` a1{σq ď n1´δ{2. This gives the claim once u is sufficiently large
with u ď n1´δ.

For the upper bound let Aj be defined by (6.27) and set A :“
Şn

j“1 Aj. Lemma 6.5
gives that Qn,u,upAcq is at most a constant times un´1 once u is sufficiently large. Next
we invoke Qn,u,upAq ď Pn,upAq and bound the right-hand side by the expectation in
(6.65) albeit with Xk ě γn,apkq ´ a1{σ replaced by Xk ě ´γn,apkq. Corollary 6.3 then
bounds the expectation by a constant times un´1 once u is sufficiently large, proving
that also Qn,u,upAq is at most a constant times un´1. �

Next we give a representation of expectations of functions that depend only on a few
initial values from hpx0q, . . . , hpxnq:

Lemma 6.10 Given k ě ` ě 1, σ P p0, 1{10q and f P CcpR
`q let

Ξkp f q :“ E

˜

f
´

tXj ` j
a

log bu`j“1

¯

ˆ k
ź

j“1

rPpM1
j ď tq|t:“Xj`j

?
log b

˙

1tXkPrkσ ,k1´σsuXk

¸

,

(6.66)
where X is the random walk with step distribution N p0, 1{2q. Let δ P p0, 1{2q. Then εn,kpu, f q
defined for each u ą 0 and n ě k by

EQn,u,u

´

f
`

thpx0q ´ hpxjqu
`
j“1

˘

¯

“
4u
n

Ξkp f q `
u
n

εn,kpu, f q (6.67)

obeys
lim
kÑ8

lim sup
nÑ8

sup
nδďuďn1´δ

ˇ

ˇεn,kpu, f q
ˇ

ˇ “ 0. (6.68)

Moreover, writing 1 for the constant function equal to 1, we have

0 ă inf
kě1

Ξkp1q ď sup
kě1

Ξkp1q ă 8. (6.69)

Proof. Fix σ P p0, 1{10q and let σ̂ P p0, σq. Let ε P p0, 1{2q and let a ě 0 and k0 ě 1 be as in
Lemma 6.8 for s “ u (and so, e.g., λ :“ 1). Define the event

pGn,k :“
 

Xk P rkσ, k1´σs
(

X

n´k
č

j“k

 

Xj ě pγn,apjq
(

, (6.70)

where pγn,a is defined using σ̂ instead of σ. Note that pγn,a ď γn,a gives pGn,k Ě Gn,k and so
the bound in Lemma 6.8 applies to pGn,k as well. Denoting

Fn,k :“
k
č

j“1

 

p1´ εqu ď Xn´j ď p1` εqu
(

(6.71)

a calculation based on the conditional probability density (6.53) shows that

Qn,u,upFc
n,kq ď Pn,upFc

n,kq ď cke´
1
4 ε2u2{k (6.72)

for some constant c ą 0, uniformly in k, n ě 1 subject to k{n ă ε{2. For u ě nδ, this
decays faster than polynomially in n.
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In light of these observations, it suffices to prove the claim for the expectation re-
stricted to the event pGn,k X Fn,k. Using (6.63) this can be written as

EQn,u,u

´

1
pGn,kXFn,k

f
`

thpx0q ´ hpxjqu
`
j“1

˘

¯

“ E

˜

f
`

tXj `
j
n rmnu

`
j“1

˘

ˆ k
ź

j“1

PpM1
j ď tq|t:“Xj`

j
n rmn

˙

Yn,kpXq1 pGn,kXFn,k

ˇ

ˇ

ˇ

ˇ

ˇ

Xn “ u
˙

,
(6.73)

where for brevity we dropped the explicit conditioning on X0 “ 0 and where

Yn,kpXq :“
n
ź

j“k`1

PpM1
j ď mj ` tq|t:“Xj`

j
n rmn´mj

. (6.74)

On pGn,k X Fn,k we have

Yn,kpXq ě
ˆ n´k

ź

j“k`1

PpM1
j ď mj`tq|t:“pγn,apjq`

j
n rmn´mj

˙

ˆ

n
ź

j“n´k

PpM1
j ď mj ` tq|t:“ 1

2 u` j
n rmn´mj

.

(6.75)

Since j
n rmn ´ mj ě ´1

2 pγn,apjq once j is sufficiently large (with j ď n ´ k), while u ě nδ

implies 1
2 u ` j

n rmn ´ mj ě
1
4 u for all j “ n ´ k, . . . , n once k is large (with 2k ă n), the

bound (5.1) shows that 1 ě Yn,k ě 1´ ε on pGn,k X Fn,k once k is large and 2k ă n.
With Yn,kpXq effectively removed, conditioning on Xk separates the indicator of the

event pGn,k X Fn,k from the remaining terms inside the expectation. Conditioning on Xn´k

in turn separates the events pGn,k and Fn,k from each other. As σ̂ ă σ gives Xk ´ pγn,apkq ě
1
2 kσ for k large, on Fn,k Proposition 6.1 gives

p1´ εq4
4uXk

n
1tXkPrkσ ,k1´σsu ď P

`

pGn,k
ˇ

ˇ σpXk, Xn´kq
˘

ď p1` εq3
4uXk

n
1tXkPrkσ ,k1´σsu, (6.76)

where we also assumed that n´ 2k ě np1` εq´1 on the right-hand side and that Xk ´

kpσ ě p1´ εqXk and u´ kpσ ě p1´ εqu on the left-hand side. Since (6.72) implies |Pn,upFn,kq´

1| ď ε once n " k " 1 and u ě nδ, the Intermediate Value Theorem allows us to summa-
rize the above bounds as

EQn,u,u

´

1
pGn,kXFn,k

f
`

thpx0q ´ hpxjqu
`
j“1

˘

¯

“ p1`Opεqq
4u
n

Ξn,kp f q, (6.77)

where Ξn,kp f q abbreviates

E

˜

f
`

tXj `
j
n rmnu

`
j“1

˘

ˆ k
ź

j“1

PpM1
j ď tq|t:“Xj`

j
n rmn

˙

1tXkPrkσ ,k1´σsuXk

ˇ

ˇ

ˇ

ˇ

ˇ

Xn “ u
˙

. (6.78)

The claim now reduces to showing that

lim
kÑ8

lim sup
nÑ8

sup
nδďuďn1´δ

ˇ

ˇΞn,kp f q ´ Ξkp f q
ˇ

ˇ “ 0. (6.79)

Note that this and Lemma 6.9 then give the bounds (6.69).
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To get (6.79) note that, thanks to u ď n1´δ, the probability density of Xk under the
conditional measure converges to that of the unconditional variable as n Ñ 8. Since
also 1

n m̃n Ñ
a

log b, the convergence (6.79) then follows from the continuity of f and
t ÞÑ PpM1

j ď tq along with the Bounded Convergence Theorem. �

Proof of Proposition 3.6. We will write n instead of k as it is more consistent with the
notations throughout this section. Let f P C`loc depend only on the coordinates in the
subtrees rooted in x0, . . . , x`, for some ` ě 0. Note that the law of h on the leaves in the
subtree rooted at xj with j ě 1 has a bounded and continuous probability density. It
follows that there exists a unique continuous function f̃v,s : R` Ñ R such that

f̃v,s
`

thpx0q´ hpxjqu
`
j“0

˘

“

rE
´

e´ f pv,s,hp0q´hp0¨qq1thpx0q“maxxPLn hpxqu

ˇ

ˇ

ˇ
σ
`

hpx0q, . . . , hpxnq
˘

¯

rE
´

1thpx0q“maxxPLn hpxqu

ˇ

ˇ

ˇ
σ
`

hpx0q, . . . , hpxnq
˘

¯

(6.80)

holds for almost every sample of h. Hence we get

e´gn,upv,sq “ rE
´

f̃v,s
`

thpx0q ´ hpxjqu
`
j“0

˘

ˇ

ˇ

ˇ
hp0q “ max

yPLn
hpyq “ mn ` u

¯

. (6.81)

Invoking the definition of Qn,s,u we then rewrite this further as

e´gn,upv,sq “
EQn,ũ,ũp f̃v,spthpx0q ´ hpxjqu

`
j“0qq

EQn,ũ,ũp1q
, (6.82)

where ũ :“ u` rmn ´mn.
Let now f̃ be a generic function in CcpR

`q. Lemma 6.10 permits us to write the ratio
in (6.82) as

EQn,ũ,ũp f̃ pthpx0q ´ hpxjqu
`
j“1qq

EQn,ũ,ũp1q
“

4Ξkp f̃ q ` εn,kpũ, f̃ q
4Ξkp1q ` εn,kpũ, 1q

. (6.83)

Noting that the left-hand side is at most } f̃ }, we can consider a subsequence of n Ñ

8 along which it converges. By (6.68), taking this limit on the right-hand side wipes
out the εn,k-terms. With the help of (6.69), this allows us to take k Ñ 8 along another
subsequence to get

lim
nÑ8

EQn,ũ,ũp f̃ pthpx0q ´ hpxjqu
`
j“1qq

EQn,ũ,ũp1q
“ lim

kÑ8

Ξkp f̃ q
Ξkp1q

(6.84)

along any subsequence on the left and any subsequence of on the right. It follows that
both limits exist and are equal. The limit is uniform in ũ P rnδ, n1´δs.

In order to express the result as an integral with respect to a measure, note that

f̃ ÞÑ lim
kÑ8

Ξkp f̃ q
Ξkp1q

(6.85)

is a positive linear functional on bounded continuous functions R` Ñ R with norm one.
Moreover, Lemmas 6.6-6.7 imply that, for f̃ supported outside r´a, as``1, the value of the
functional on f̃ can be made as small as desired by taking a sufficiently large. The Riesz
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Representation Theorem then gives existence of a unique Borel probability measure µ`

on R` such that

lim
kÑ8

Ξkp f̃ q
Ξkp1q

“

ˆ
f̃ dµ` (6.86)

for all bounded continuous f̃ : R` Ñ R. Since the measures tµ`u`ě0 are consistent, the
Kolmogorov Extension Theorem implies that they are restrictions of a unique probability
measure µ on RN concentrated on zero in the first coordinate.

To obtain ν from µ, we need to undo the step that led from f ps, v, ¨q to f̃ . Consider
the canopy tree in Fig. 1 and, given a sample tSkukě0 from µ, where S0 “ 0, sample
the Branching Random Walk with step distribution N p0, 1{2q starting from hpxkq :“ Sk,
conditional on the leaf values to be non-negative everywhere. Identifying the leaves of
the canopy tree with N the distribution of h on the leaves is then ν.

The last item to address is the uniformity of the limit in parameters v and s. Here we
use that, for f continuous with compact support, for each ε ą 0 there exist m ě 1 and
pairs pv1, s1q, . . . , pvm, smq P r0, 1s ˆR such that for all pv, sq P r0, 1s ˆR,

max
i“1,...,m

›

› f pv, s, ¨q ´ f pvi, si, ¨q
›

› ă ε (6.87)

where } ¨ } is the supremum norm on RN. An elementary estimate then shows

max
i“1,...,m

} f̃v,s ´ f̃vi ,si} ă 2ε. (6.88)

The convergence (6.84) is thus uniform in f̃ P t f̃v,s : v P r0, 1s, s P Ru as desired. �
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[7] E. Aı̈dékon, J. Berestycki, E. Brunet and Z. Shi (2013). Branching Brownian motion seen from its tip.
Probab. Theory Rel. Fields 157, 405–451.

[8] L.-P. Arguin, A. Bovier, and N. Kistler (2011). Genealogy of extremal particles of branching brownian
motion. Commun. Pure Appl. Math. 64, 1647–1676.

[9] L.-P. Arguin, A. Bovier, and N. Kistler (2012). Poissonian statistics in the extremal process of branching
brownian motion. Ann. Appl. Probab. 22, no. 4, 1693–1711.



56 Y. ABE, M. BISKUP

[10] L.-P. Arguin, A. Bovier, and N. Kistler (2013). The extremal process of branching Brownian motion.
Probab. Theory Rel. Fields 157, 535–574.

[11] N. Barashkov, T.S. Gunaratnam and M. Hofstetter (2023). Multiscale coupling and the maximum of
Ppϕq2 models on the torus. Commun. Math. Phys. 404, 833–882.

[12] R. Bauerschmidt and M. Hofstetter (2022). Maximum and coupling of the sine-Gordon field. Ann.
Probab. 50, no. 2, 455–508.

[13] D. Belius, J. Rosen, and O. Zeitouni (2019). Barrier estimates for a critical Galton-Watson process and
the cover time of the binary tree. Ann. Inst. Henri Poincaré Probab. Statist. 55 127-154.
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