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ABSTRACT. We study a continuous-time simple random walk on a regular rooted tree of
depth n in two settings: either the walk is started from a leaf vertex and run until the tree
root is first hit or it is started from the root and run until it has spent a prescribed amount
of time there. In both cases we show that the extremal process associated with centered
square-root local time on the leaves tends, as n — o, to a decorated Poisson point process
with a random intensity measure. While the intensity measure is specific to the local-time
problem at hand, the decorations are exactly those for the tree-indexed Markov chain
(a.k.a. Branching Random Walk or Gaussian Free Field) with normal step distribution.
The proof demonstrates the latter by way of a Lindeberg-type swap of the decorations of
the two processes which itself relies on a well-known isomorphism theorem.

1. INTRODUCTION AND RESULTS

Consider a regular rooted tree T, of depth n > 1 and forward degree b > 2. Pick any of
its b" leaf vertices and use it to start a continuous-time Markov chain with state space T,
and unit jump rate across each edge of T,. Write ¢;(x) for the time spent by the chain
at x up to time t and 7, for the first time the chain hits the root ¢ of T,. We are interested
in the extremal properties of ETQ on the set IL,, of the leaves of T,,.

The limit distribution of the maximal time spent at any leaf-vertex has been identified
in a recent study by the second author and O. Louidor [20] drawing on earlier work of
the first author [2]. One way to state the conclusion is

! (maxf (x) — (n*logb —2nlog n)) logZ + G, (1.1)
n \ xel,

where Z is an a.s.-positive random variable whose law can be characterized and G is a
normalized Gumbel random variable independent of Z. Perhaps more familiar, albeit
equivalent, way to put this is by saying that, for all # € R and x,, € L,

o o-2un/logh
<£Créii<4/ 7 (% «/logbn—\/ilogn—ku) — E(e %¢ lgb), (1.2)

where P* is the law of the chain started at x,, and the expectation is with respect to the
law of Z. The structure of the limit law places this problem in the universality class of
log-correlated models; see Section 2 for more discussion and references.

With the maximal time spent by the chain identified, a natural list of follow-up ques-
tions arises; for instance: How is the maximizer distributed relative to the starting point
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of the chain? What is the law of the second, third, etc maximum? Is there spatial cluster-
ing? What is the dependency structure of individual clusters? As is standard in extreme-
order statistics, such questions are conveniently encoded by an associated empirical ex-
tremal process. The present paper aims to extract a weak limit of this process as the
depth of the tree tends to infinity. We will treat two settings: the chain started from a
leaf and the chain started from the root.

1.1 Random walk started from a leaf.

We start with some notation. Observe that each leaf-vertex x € IL, can be identified
with a sequence (x1,...,x,) € {0,...,b —1}" of “instructions” indicating the “turns” in
the unique path in T, from the root to x. Relying on this representation, we define an
injection 6,,: IL,, — [0,1] by

n
On(x) := Z b~ix; when x= (X1, ,Xn). (1.3)
i=1
We will write 0 for the vertex represented by the sequence (0, ...,0).

We are interested in simple random walk on T, that, technically, is a continuous-
time Markov chain {X;: t > 0} on T, with infinitesimal generator acting on functions
f: Ty — Ras Lf(x) := X yyeper,) f (¥) — f(x)], where E(T},) is the set of undirected
edges of T,. Let Px denote for the law of the walk started from x € T,. For x € T,
and t > 0, let ¢;(x fo 1{x,=x}ds be the total time spent by X at x by time t. Write

1
ni=/logbn —
m \/logbn Togb

for the centering sequence from (1.2) and denote a* := max{a, 0}. We then have:

logn (14)

Theorem 1.1 There exists a random Borel measure Z on [0, 1] and a (deterministic) law D on
infinite, locally finite point processes on (—oo,0] such that, for £, sampled under P2,

law
Z 56;1(35 ® 5\/&7 my nioc Z Z 5}(1 ® (Sh +d(1 (1.5)
xell, i=1j>1

where {(x;, h;)}i=1 enumerates points in a sample from the Poisson point process
PPP( Z(dx) ® e #V1osbdp) (1.6)

and {d(i) : j = 1}i>1 are ii.d. samples from D independent of {(x;, h;)}i=1 and Z. Moreover, a.e.
sample on is such that Z([0,1]) < oo, Z([0,€)) > 0 for each € > 0 yet Z({0}) = 0 and there
exists a constant C, € (0,00) such that, for £r, sampled from pe,

&y (n\/lo? \/7) x) V4 2Viogt Vi (g, laj“c’; Z. (1.7)

n
xell,

A.e. sample of {d;: j = 1} from D has a point at the origin.

The convergence in law of the point measures in (1.5) is relative to the vague topology
on Radon measures on [0, 1] x R. The sampling in (1.6) is done conditional on Z (i.e., Z
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is sampled first and the Poisson points second). An equivalent way to state (1.5) is by
saying that, for all continuous f: [0,1] x R — [0, ) with compact support,

Eexp{= 3 S(0u(r) /()= m)})

xell, (1.8)
— E (exp{ / Z(dx) @ e ?V10Bbq @ D(AE) (1 — e~ &/ (oh D) })

where E denotes the expectation with respect to PY and [E is the expectation with respect
to the law of Z. The expression (¢, f(x,h + -)) abbreviates the integral of s — f(x,h +s)
with respect to the point measure .

The limit law (1.5) has the structure of a randomly-shifted, decorated Poisson point
process. Indeed, writing the intensity in (1.6) as

Z(dx)® (z ([0, 1])e*2h\/@dh>, (1.9)

where Z is Z normalized by its total mass Z([0,1]), we can realize the objects on the

right of (1.5) as follows: First draw Z and then draw i.i.d. samples {x;};>1 from Z. Then,
given an independent sample {/}};>1 from the Poisson point process of Gumbel intensity

e 2V1080qy, let {I;};>1 be defined by
hi :=Hh:+ (24/logb)~tlog Z([0,1]), i>1. (1.10)

Finally, “attach” to each h; an independent sample (a “decoration”) from D drawn inde-
pendently of the points {(x;, h;)}i>1.

The stated properties of the law D ensure that the “cluster” of points “attached” to h;
has its maximal point at k;. It follows that, for the process on the right of (1.5) to not
charge [0,1] x (u,0), we need to have h; < u for all i > 1. Taking f along a sequence of
approximations of 1jg 1] (4, in (1.8) then forces Z from (1.2) to obey

law 1
Z = ——— Z([0,1]). 1.11
2 ogs - 0 1) (1.11)
The equality in law is confirmed independently from the fact that the total mass of the
measure on the left of (1.7) is known to converge weakly to Z; see [20, Theorem 1.5].
(The change in normalization due to the prefactor in (1.11) accounts for the difference

between C, above and C, in [20, Theorem 1.5].)
1.2 Random walk started from the root.

The setting of the random walk started from a leaf and killed upon first visit to the root
has been introduced in order to mimic the exit problem from a lattice domain; see the
discussion in Section 2. For the random walk on T, another possible setting of interest
is that of the walk started at the root ¢. This becomes particularly neat if we parametrize
the process by the time spent at ¢. To this end we set, for each t > 0,

To(t) :=inf{s = 0: 4s(0) > t} (1.12)

and abbreviate
Lt(X) = f%g(t) (X), X € Tn. (113)
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A key technical advantage of this representation is that {L;(x): x € T} is a time-homo-
geneous tree-indexed Markov chain; see Lemma 2.1. Note that L;(0) = t deterministi-
cally while E¢(L¢(x)) = t for all x € T,,.

The present setting does not necessitate that the walk ever visits the leaves by the time
it has accumulated time ¢ at the root and we in fact have L;(x) = 0 for all x € IL,, with
uniformly positive probability. For this reason we introduce

T, = inf{t > 0: maxLi(x) > 0} (1.14)
xelL,
which a.s. coincides with the first time X visits IL,,. Recall the notation m,, for the se-
quence from (1.4). We then claim:

Theorem 1.2 Forall t > 0, there exists an a.s.-finite random Borel measure Z; on [0, 1] such
that the following holds:

lim (i, < t) = P(Z([0,1]) > 0) € (0,1) (1.15)
n—
and, for L; sampled under the conditional law P°(- |1, < t),
1
Z 59,,(3() ® (S\/ Ly (x)—my 1%0 Z Z (Sxi ®§hi+d(i)' (116)
xelL, =121 !

Here {(x;, h;)}i=1 enumerates points in a sample of the Poisson point process
PPP( Z;(dx) ® e 2vIo8bdp) (1.17)

with Z; sampled conditional on {Z:(]0,1]) > 0} and {d]@: j = 1}i>1 denoting i.i.d. samples

from D in Theorem 1.1, drawn independently of {(x;, h;)}i=1 and Z;. Moreover, with C.e (0, 0)
as in Theorem 1.1 and L; sampled under P?,

~ +
Cov ) (n/logb— VLi(x) ) Liw)*e2VIsiVECg () =% 7, (118)

xell,

A.e. sample of Z; is diffuse (i.e., does not charge singletons).

The form and structure of the limit law (1.16) is quite similar to that in (1.5) and so the
discussion after Theorem 1.1 applies here as well. In particular, the maximum of L; obeys
the analogue of (1.1), where the random variable Z is replaced by (2+/log b)~1Z;([0, 1]).
As shown in [20], we have P(Z;([0,1]) > 0) —> 0 as t | 0. We will set Zy(-) := 0.

1.3 Connecting the intensity measures.

Theorem 1.1 will be derived from Theorem 1.2 and the proof expresses the law of Z via
those of the random measures {Z;: t > 0}. To state this precisely, note that the weak
convergence (1.18) along with the continuity of the left-hand side in ¢ implies that, for
any continuous f: [0,1] — [0, ),

pr(t) == B (e #) (1.19)

defines a Borel measurable function t +— ¢¢(t). This is enough to couple any random
variable T > 0 with random Borel measure Z7 so that

E(e M%) = B(e M p/(T)) (1.20)
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holds for all continuous f: [0,1] — [0,%0) and all A > 0. Under the joint law (T, Zr), the
conditional law of Zr given T is that of Z; with t := T. (If we had control of the law of
the process t — Z;, we would simply sample T independently and plug it for ¢.)

A similar coupling of random Borel measures {Zr, };> exists for any sequence of non-
negative random “times” {Tj};>o, independent or not, so that

E < [1 eAkT”ZTk'f”) =E ( H[e‘“%fk(m]) (121)

k=0 k=1
for all continuous f: [0,1] — [0,0) and all Ay > 0. Here, conditionally on { T }i>o, the
random variables {Zr, };~( are independent with Zr, having the law defined in (1.20). In
the proof of Theorem 1.1 we characterize the law of Z as follows:

Corollary 1.3  Let {Tj}i>0 have the law of {%|Bk\2}k>0 for B denoting a standard two-dimen-
sional Brownian motion. Let {Z, }r=0 be a sequence of random Borel measures on [0, 1] coupled
with {Ti}xk=0 so that (1.21) holds as stated. Then

Z(dx) ' D i1 iy (x) b Zg (V). (1.22)
k=1
A.e. sample of Z is diffuse.

Note that the measure in (1.22) is concentrated on [0,b7!). In light of (1.7), this is no
surprise as, in order for the walk started at 0 to reach the parts of T, where 6,,(x) > b1,
it must hit the root of T, first. The representation also yields a limit law for the location
of the maximizer of ¢ :

Corollary 1.4 Given n > 1 and a sample (-, on T,, under P, let Y,, denote the a.s.-unique
maximizer of x +— £, (x) on IL,. Then 0, (Yy) converges in law to a random variable U on [0, 1]
described as follows: Given a sample {Z }i>1 of the measures in Corollary 1.3, let K be the
smallest k > 1 maximizing

k — log Zr ([b~1,1]) — 2klog b + Gy (1.23)

where log 0 := —oo and {Gy }x>1 are i.i.d. standard Gumbel independent of {Zt : k > 1}. Then
K < o a.s. and U is uniform on [b=%=1,b=*) conditional on {K = k}.

We expect the conclusion of Theorem 1.2 to hold even for t that increases with # (albeit
slower than 1?) provided that the centering is done by the sequence v/t + a,(t) with

3 1 1 n+/t

ay(t) := ny/logh — ————=1logn — lo
() g4\/@g4\/@g<\/z>
instead of m, in (1.4). This would require performing the relevant estimates uniformly
in t € (0,t,], for any sequence t, = 0(n?), similarly as was done for the maximal local
time in [20, Theorem 3.1]. As explained in [20, Remark 3.8], for ¢t growing as, or faster
than, order n?, additional corrections arise; see [2, Theorem 1.1]. (Roughly speaking, the

“constant” C, becomes dependent on the asymptotic value of t/n%.)
We also expect that, under P¢,

/Ao =2/logbviz, 1wy (1.25)

t—00

(1.24)
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where W is a measure governing the extrema of a tree-indexed Branching Random Walk;
see (1.26) and (1.27) below. In [20, Theorem 1.3] this was checked for the convergence
of the total mass of these measures. The prefactors on the left of (1.25) arise from the
differences between the centering sequences Vt + a,(t) and my,.

1.4 The cluster law.

In the above limit results, we have not yet identified the cluster law D beyond its basic
properties. Perhaps the most important part of our conclusions is that we can character-
ize D quite explicitly. We recall a definition:

Definition 1.5 Given a locally-finite random point measure 17 on R, a Branching Ran-
dom Walk with step distribution 1 started at x € R is a sequence {Cy}i>o of random
locally-finite point measures on R such that ¢y = Jy a.s. and, denoting 7 := 0(¢;: j < k),

E(e G| ) = el where f(h):= —log E(e~f(ht0) (1.26)
holds for all k > 0 and all continuous f: R — [0, ) with compact support.

The formula (1.26) expresses that, to get {11 from ¢, we just replace each point x of
the process ¢ by an independent copy of 1 shifted by x. The choice of the step distribu-
tion 17 relevant for the local-time problem at hand is

b
ni= Y6y for Yi,...Y, iid. N(0,1/2), (1.27)
i=1
where N (i, %) denotes normal distribution with mean p and variance ¢?. Since the
family-tree of the associated branching process is the regular rooted tree of forward
degree b, this Branching Random Walk can alternatively be viewed as a tree-indexed
Markov chain with step distribution N (0,1/2).

Under suitable moment conditions on 1, which comfortably include (1.27), significant
efforts culminating in the work of Aidékon [6] and Madaule [38] showed that there exist
constants ¢1,¢, € R and a > 0 such that, for 1, := ¢in — cplogn and any continuous
f: R — [0, 00) with compact support,

E(e=Gnf(—mnd) E<exp{_w / e—whdmpf(dx)[l_e—ff<h+~>>d>c]}>. (1.28)

n—o0

Here W is an a.s. finite and positive random variable and D’ is a deterministic law on
locally finite point processes such that a.e. sample x from D’ obeys supp(x) < (—0,0]
and sup supp(x) = 0.

The interpretation of (1.28) is that, as n — oo, the point process ¢, shifted by 1, tends
in law (relative to the vague topology) to a point process of the form

Z Z 5(x—1 logW+hi+dj(i) (129)

i>1j>1
where {h;};>1 are the points of PPP(e~*"dh) while {d](.i) : j = 1};>1 are the points in i.i.d.

samples from D’, with the random objects W, {h;};>1 and {d](i) : j = 1}i>1 sampled inde-
pendently. Both « and D’ depend on the law of 7.
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Our proof of Theorem 1.2 is readily modified to give an independent proof of (1.28)
for our Branching Random Walk and thus show:

Corollary 1.6  The cluster law D from Theorems 1.1 and 1.2 is the cluster law D’ from (1.28)
for the Branching Random Walk with step distribution (1.27).

In conclusion, we have found that, while the intensity measure governing the spatial
position of the extremal values of the local time is specific to the local time process at
hand, the local structure of the configuration near the extremal points is universal. This
can be attributed to the fact that, for each n > 1 fixed,

law
ZIL: 5\/@,\5 s Cn, (1.30)
x€lL,

where ¢, is the state at time n of the Branching Random Walk with step distribution
(1.27). The statement (1.30) is deduced from a Multivariate CLT; the proof of above re-
sults relies on a stronger version encoded in the form of the Second Ray-Knight Theorem
of Eisenbaum, Kaspi, Marcus, Rosen and Shi [30]; see Lemma 2.3.

2. CONNECTIONS, DISCUSSION AND OUTLINE

We proceed by discussing a broader context of extremal behavior of logarithmically cor-
related processes. We also outline the main steps of our proof and mention alternative
approaches to local convergence we considered.

2.1 Extremal properties of random walks.

The study of extremal properties of random walks dates back to an influential study
from 1960 by Erd6s and Taylor [31]. There, among other things, the authors addressed
the time T,, that a d-dimensional simple symmetric random walk of 1 steps spends at its
most visited site, dubbed a frequent point. The answer turns out to be most interesting in
dimension d = 2 where a resolution of just the leading order term

T*
n a.s.
—

1
(logn)? n—w 1

(2.1)

was given full 40 years later by Dembo, Peres, Rosen and Zeitouni [27]. What makes
this case hard is the (asymptotic) scale invariance of the random walk which causes T;;
to collect non-trivial contributions from excursions on all spatial scales.

Further progress occurred on this and related questions over the last decade. For in-
stance, Abe [1] proved a result analogous to [27] for the walk on an N x N torus in Z>
run for times of order N?(log N)2. Jego [33] generalized the conclusions of [27] to a
large class of random walks. Aiming for an asymptotic limit law, Rosen [42] estab-
lished tightness around an explicit deterministic centering sequence of the kind (1.4) for
a two-dimensional Brownian motion stopped upon its first exit from a bounded domain.
Jego [34] in turn constructed a candidate for the measure that should govern the law of
the maximum via a formula of the kind (1.2). Still, proving such a formula rigorously
seems elusive at present.
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Motivated by this, the present authors and O. Louidor considered the problem of
simple random walk on a b-ary tree. This setting bears a number of close connections
to the random walk on Z2. Indeed, for b = 4 the set of leaves IL,, can be identified with
points in the square

{0,...,2" =1} x {0,...,2" — 1} 2.2)

in Z2; the simple random walk on this square is then imitated by the Markov chain on IL,,
obtained by recording the successive visits to the leaves of simple random walk on T,.
(A more quantitative connection is seen in, e.g., the behavior of the Green function.)
Killing the walk on T, on its first visit to ¢ then corresponds to killing the lattice random
walk upon its first exit from the square.

In [20], O. Louidor and the second author proved a limit result for the maximal local
time in a (variable speed) continuous time setting and the walk started from both the
leaves and the root. The paper [20] draws on earlier work of the first author [2] where
the whole process of extreme local maxima was controlled for the walk started from
and parametrized by time spent at the root, albeit only for times t that grow at least as
constant times nlogn. The present paper extends this to all times and adds control of
the clusters “hanging off” the local maxima.

Taken from a larger perspective, our results add another instance to the universality
class associated with extremal behavior of logarithmically correlated processes. Other
contexts in which similar conclusions have been proved include:

e Branching Brownian motion (Arguin, Bovier and Kistler [8-10], Aidékon, Berestycki,
Brunet and Shi [7]),

e critical Branching Random Walks (Aidékon [6], Madaule [38]),

o Gaussian Free Field in finite subsets of Z? (Bramson, Ding and Zeitouni [23], Biskup
and Louidor [17-19]),

e more general logarithmically correlated Gaussian processes (Madaule [37], Ding,
Roy and Zeitouni [29], Schweiger and Zeitouni [45]) including the four-dimensional
membrane model (Schweiger [43]),

e characteristic polynomial of a random matrix ensemble (Paquette and Zeitouni [41]),

e a class of non-Gaussian fields on a torus (Bauerschmidt-Hofstetter [12], Hofstet-
ter [32], Barashkov, Gunaratnam and Hofstetter [11]),

e subcritical hierarchical DG-model (Biskup and Huang [16]).

Tightness of the maximum has recently been shown for uniformly-convex Ginzburg-
Landau models (Wu and Zeitouni [46], Schweiger, Wu and Zeitouni [44]).

A universal feature of these problems is that a suitably centered maximum tends,
as the system size increases to infinity, to a randomly shifted Gumbel law while the
extremal process tends to a decorated Cox process. The law of the random shift and the
decorations are typically (but, as our results show, not always) specific to the problem at
hand as they depend on the nature of global and local correlations.

2.2 Proof baseline.

We will now move to a discussion of our proofs. As noted in the introduction, the main
result to be proved is Theorem 1.2 from which the rest of the conclusions follow by
relatively soft means. The setting of Theorem 1.2 is more tractable thanks to:
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Lemma 2.1 (Markov property) Suppose that xi,...,x, € T, are vertices such that the
subtrees T, ..., T of T, rooted at these vertices are vertex-disjoint. Write n; for the depth
of T and denote

Vi(xi,...,%m) :=={x1,..., Xm} U <Tn ~ LmJT(")>. (2.3)
i=1

Then, for all t > 0, conditional on {L;(x): x € V(x1,...,xm)}, the families
{Ly(x): x e TOH", (2.4)
are independent with the i-th family distributed as {L,(x): x € Ty} for u := L(x;).

Proof. This is a direct consequence of the geometry of the tree and the reliance on expo-
nential clocks to run the underlying random walk. See, e.g., [20, Lemma 2.5]. O

A short way to state the above is that {L;(x): x € T, } is a tree-indexed Markov chain.
The step distribution is quite explicit; indeed, given the value L;(x), the values of L; at
the “children” zy, . .., z; of x are independent with each L¢(z;) having the law of the sum
of a Poisson(L;(x))-number of i.i.d. Exponentials with parameter 1.

Another convenient fact (proved in, e.g., Belius, Rosen and Zeitouni [13, Lemma 3.1])
is that the law of /L; on a path xp = ¢,...,x, = x from the root to x € IL, can be
encoded via the zero-dimensional Bessel process. This permits squeezing /L; on the
path by a barrier event (see [2, Lemma 3.2] and [20, Lemma 2.9]) which then shows that,
for /L¢(x) = m, + O(1), the value L(xy) for k and n — k large is unusually large and the
value L;(x) is unusually large given the value L (xy).

The above shows that, if we are after the absolute maximum of L; on the leaves, all we
need is the leading-order asymptotic of the conditional law of max,cy, ,(x,) Lt(x), where
IL,,_x(xx) is the set of leaves of the subtree rooted at x, given that L;(xy) is large. In [20]
this was supplied by:

Proposition 2.2  There exists c. € (0,0) such that the quantity €, 1, defined for integer n > 1
and real t > 0 and u > 0 by

PQ(mix VLi(x) =Vt —a,(t) > u) = (1+ en/t,u)ue_z’“’v logb (2.5)
xell,
obeys
lim sup limsup ] en,t,u‘ = 0. (2.6)
Mm=0yy>m n—w
Proof. This is a restatement of [20, Proposition 3.5]. O

Here the centering must be done by +/t + a,(t) as we need to use the result for ¢
replaced by L;(xx) in the regime when that is large. The difference in the centering

matters; indeed, the factor
Lt(x)1/4 eZ«/logb\/Lt(x) (2.7)

in (1.18) arises directly from Vt+a,_i(t) —my for t := Li(x).

The asymptotic (2.5) is actually sufficient to extract a weak limit of the process of
extreme local maxima, which are the leaf-vertices with 1/L;-values near m,, that dominate
a large neighborhood (relative to the intrinsic tree metric) thereof. (This has already
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been done in [2] for the problem at hand in the regime when t > cnlog n. The control of
extreme local maxima is an essential step in the analysis of the extremal process of the
two-dimensional GFF; see [17].) Each extreme local maximum comes with a cluster of
nearby values, to be called decorations, which are strongly correlated but, as it turns out,
with a limit law that is asymptotically independent of the local maximum. The control
of the decorations constitutes the bulk of the proof.

2.3 Strategies for limit of the decorations.

We have actually developed and written up most of the details of three possible ap-
proaches to the limit of the decorations. Using the notation xo = ¢, x1,...,x, = x for a
path from the root ¢ to x € IL,;, our first argument is modeled on the proofs for Branching
Brownian motion whose strategy is to show that, conditional on L;(xy) large, the whole
process on the leaves of the subtree rooted at x; converges as n — o followed by k — 0.
This does work but, since the calculations have to be done for the local time process, the
arguments quickly become very technical. In this approach, we do not get information
about the law of the decorations.

Another approach we developed is based on the observation that any subsequential
weak limit ¢ of the whole extremal process is invariant under post-composition with one
step of the Branching Random Walk with step distribution

b
=0y for Yi,...,Y, iid. N(—+/logh,1/2). (2.8)
i=1
This means that
E(e_<§’f>) — E(e_@’ﬂ) for f(h):= —logE(e_<’7rf(h+.)>) (2.9)

holds for each non-negative continuous f with compact support.

In their work on pre-composition invariant processes, Maillard and Mallein [39] con-
jectured that, for 77 satisfying certain moment assumptions, any point measure { satisfy-
ing (2.9) has the law of a randomly-shifted decorated Poisson point process; see [39, Con-
jecture 1.3]. This has so far been verified only for 7j corresponding to Branching Brown-
ian motion by Kabluchko [35] (supercritical drift) and by Chen, Garban and Shekhar [24]
(critical drift). We did manage to do the same for our Branching Random Walk although
the estimates become quite cumbersome here as well.

We will therefore follow yet another approach that capitalizes on the fact that for ¢
very large, v/L; is well approximated by the Gaussian process {h,: x € T} such that

he=0 and {h(x)—h(m(x)): x € T, \ {o}} areiid. N'(0,1/2), (2.10)

where m(x) denotes the “mother” vertex of x; i.e., the nearest vertex on the path from x
to the root. We will call this process the Gaussian Free Field (GFF) on T, although it can
also be viewed as a Branching Random Walk on its genealogical tree with 1 given by
(1.27) and thus also as a tree-indexed Markov chain with step distribution N'(0,1/2).
The said approximation can be formulated as a limit theorem that was noted already
in (1.30). Explicitly, since L is the sum of a Poisson(t)-number of i.i.d. fields with mean
one at each vertex and (as one has to check) covariance being 4t-times that of h, the
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multivariate CLT gives

{(VL(x)— vVt xeTa} =% {h(x): xe Ty}, @.11)

As also mentioned earlier, our proof will actually make use of a stronger connection
whose advantage is that it works even for finite #:

Lemma 2.3 (Isomorphism theorem) For each n > 0 and each t > 0 there exists a coupling
of Ly and two copies h and h of GFF on T, such that

h L (2.12)

and
Li(x) + h(x)? = (R(x) + V1) (2.13)

holds pointwise a.s. for all x € T,. (Note: h and Ly are not independent.)

Proof. The Second Ray-Knight Theorem of Eisenbaum, Kaspi, Marcus, Rosen and Shi [30]
gives (2.13) as equality in distribution. (The reader alerted by absence of factors of 1/2
in (2.13) beware that our GFF is scaled by 1/v/2 compared to the one usually used.)
Zhai [47] extended this to a pointwise equality by drawing the signs of /i(x) + v/t from
the corresponding conditional law. U

Our argument then goes as follows: We first show that the extremal process associated
with /L; is not significantly affected by swapping the increment of +/L; in the last k
generations of the tree for an increment of the GFF. This relies on the above coupling
and the observation that, conditional on L;(z) with z := m*(x),

()2
VLi(x) = \/Lt(X) + [h(x) = h(2)]2 + O(W)

_ 2
= hi(x) — hi(z) + /Li(2) + o<[h(x) Lt?z()Z)] >

(2.14)

see Proposition 3.5. Here the error term is negligible because, roughly speaking, /L;(z)
scales with n but i(x) — h(z) does not. Since 1 is known to have a positive “gap” between
the first and the second largest value, we also get that the location of the extreme local
maxima of 4/L; and /1 agree with high probability.

The argument we just gave shows that the local extremal structure of /L; is asymp-
totically that of /1. As it turns out, the law of the GFF decorations near an extremely large
local maximum converges; see Proposition 3.6 for a precise statement. This effectively
reduces the problem to the process of extreme local maxima which, as explained earlier,
is handled using Proposition 2.2.

We note that the connection between the local time and the Gaussian Free Field stated
in Lemma 2.3 is a powerful tool that drove a number of earlier sharp conclusions about
the extremal properties of the local time of random walks. This includes studies of the
limit law of the cover time (Ding [28], Cortines, Louidor and Saglietti [26], Louidor and
Saglietti [36]) as well as the intermediate level sets, a.k.a. thick points, of random walks
in planar domains (Abe and Biskup [3], Abe, Biskup and Lee [4]; see [15] for a review).
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2.4 Outline.

The remainder of this paper is organized as follows. In Section 3 we prove Theorem 1.2
in a structured form that records the extremal processes using the position of a nearby
“local maximum” and the “shape” of the configuration relative to it; see Theorem 3.1.
The proof relies on two technical propositions whose details are worked out in Section 4
and Section 6, respectively. The remaining results are proved in Section 5.

3. THE WALK STARTED AT THE ROOT

The proofs of our main results commence with Theorem 1.2 that we prove here assuming
two technical propositions. These propositions encapsulate technical arguments whose
immediate inclusion would detract from the main line of proof.

3.1 The structured extremal process.

Our proof of Theorem 1.2 adopts the strategy developed for the two-dimensional Dis-
crete Gaussian Free field by O. Louidor and the second author [17-19]. In particular, we
will describe the extremal process in a more structured way by keeping track of local
maxima of the field along with the whole configuration nearby.
We start with some definitions and notation. Note that, given any n > 1 and any leaf
vertex x = (x1,...,X,) € L,,, the map 71, , assigning
n
T (Y) = Z (yx — xx mod b)b"* (3.1)
k=1

toeachy = (y1,...,yn) € L, embeds IL, naturally into IN. (This map can be thought of

as induced from the natural embedding of T, to a canopy tree taking x to the “origin”
thereof; see Fig. 1.) Given h: L, —» R and x € IL,,, we write h(x-): N — R for the map

, hom, L(j), if j € 70 (Ly),
h(xj) = nx ' 3.2
(%)) {O, if je N~ mux(ILy), (3.2)

that enumerates the values of 1 on T, increasingly in the graph-theoretical distance
from x while breaking ties using the mod-b rule in (3.1).

Let By (x) denote the set of vertices in IL,, that are at most 2k-steps away from x in the
graph-theoretical distance on T,. For n > k > 1 and a function ¢: L, — R, let

Mox(@,%) = { max o(y) = p(x)} (3:3)

yeB(x)
be the event that x is a “k-local maximum” of ¢.

If x € IL, is a k-local maximum of 4/L¢(-), then a natural way to encode the “shape”
of the configuration near x is through the function 4/L;(x) — 4/L¢(x+). Including also the
position of and the value of v/L; at the local maximum, this leads us to a description
based on the random Borel measure on [0,1] x R x RN defined by

) ._
gn,k T Z 1Mn,k(\/LT,x) 597!(’() ® 54/Lt(x)—mn ® 54/Lt(x)—1/Lt(x~)’ (34)

xell,
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FIG 1. The canopy-tree representing the portion of T, near the special vertex 0. The upper path is
the path from the root to 0. The leaves are then identified with IN.

where m,, is as in (1.4). We will call ;(f,)( the structured extremal process.

The structured extremal process may behave somewhat strange in the branches of T,
where the random walk does not hit IL,, by time t. However, as n — o0, the shift by m,
effectively moves such points to —o0 in the second coordinate thus making them unde-
tectable by integrals against compactly supported functions. Similarly, our convention
about the values of the third component that do not come from T, forces us to probe { ,(f,)(
only by functions that depend on a finite number of coordinates of the third component.
We are thus let to consider the space €, _ of functions f: [0,1] x R x RN — [0, 0) that
depend only on coordinates in [0,1] x R x R{%/} for some j > 0 and, when restricted
to these coordinates, are continuous with compact support.

Our main result about the structured extremal process is then:

Theorem 3.1 For each t > 0, the weak limit (1.18) exists and defines an a.s.-finite random
Borel measure Z; on [0, 1]. Moreover, there exists a Borel probability measure v on RN such that
forallt > 0,all fe fogc and all sequences {ky}neN with k, — o0 and n —k, — o,

E¢ (e—<Cf,fin )

o ]E(eXP{ / Zt(dx)®e_2\/@hdh®v(dgb)(1e_f(x'h"”))}),

n—0o0

(3.5)

where the expectation on the right is with respect to the law of Z;. The measure Z; obeys (1.15),
v is concentrated on {¢p = 0} N ﬂxe]N\{O}{(PX > 0} and the set {x € N: ¢, < a} is finite v-a.s.
foreach a > 0. A.e. sample of Z; is diffuse (i.e., does not charge singletons).

The statement (3.5) implies that { 52{” tends in law to a Poisson point process on [0, 1] x
R x RN with the intensity measure

Zi(dx) @ e 2V1080 i dp @ v (dgh). (3.6)

This follows from the fact that (3.5) extends to all continuous compactly supported func-
tions f on [0,1] x R x RN endowed with product topology.
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3.2 Proof of Theorem 1.2.

Before the delve into the proof of Theorem 3.1, let us see how it implies our main result
from Section 1.2. We will need two lemmas.

Lemma 3.2 Recall the definition of a,(t) from (1.24). There exist c,¢ > 0 such that

P@(max VLi(x) = VE+an(t) + u) < (1 + u)e~2V/logbu—cu/n (3.7)

xell,

holds for alln > 1, t > 0 and all u > 0. Moreover, there exist c¢1,co > 0 such that

Pe<

holds forallm > 1,all t > O and all u € (0, n]. Here s v t := max{s, t}.

max +/Le(x) — vV — an(t v 1)‘ > u

xell,

max L(x) > 0> < cje” (3.8)

xell,

Proof. The inequality (3.7) is a restatement of [2, Proposition 3.1]. The inequality (3.8)
appeared in [20, Theorem 2.1]. O

Lemma3.3 Forn=>1,t>0and A > 0, denote

[(A):={xeLy: /Le(x) = my, — A}. (3.9)
Then for all A > 0,
lim limsup P° <3x,y eT(A): y € By(x) ~ Bk(x)> ~ 0. (3.10)
k= peo

Proof. This is [2, Proposition 4.1] with m,, instead of a,(t) + v/t, which in light of mono-
tonicity in A is immaterial as |a,(t) — m,| is bounded by a t-dependent constant uni-
formly in n > 1. (The statement in [2, Proposition 4.1] actually bounds the probability
with A := clogk by c’k~'/8 for n large.) O

The above lemmas show that, with ¢ > 0 fixed, the centered maximum of /L; is tight
and the level sets close to m,, are clustered; meaning that any two points of the level set
are either within O(1) or n — O(1) in graph-theoretical distance on T, from each other.
Elementary geometric consideration then yield:

Corollary 3.4 Forany A > 0,

lim lim sup P¢(|T(A)] > ¢) = 0. (3.11)

l—0  p o

Proof. The set I, can be covered by b sets of the form B,_i(x) each of which contains at
most b* points from T'(A), unless the event in (3.10) occurs. The claim thus follows from
Lemma 3.3. O

We are now ready for:



LOCAL-TIME EXTREMAL PROCESS 15

Proof of Theorem 1.2 from Theorem 3.1. It suffices to show that, for each ¢t > 0 and each
f:10,1] x R — [0, 0) continuous with compact support,

£ (exp{= X 0,00, VLG - m)} )

el (3.12)
.k <exp{— [ zitdn@e Vistan e Didx) (1 - e S ) })
holds with Z; as in (3.5) and D being the law of
SERDILES (3.13)
xelN

for ¢ sampled from v. Note that the properties of v stated in Theorem 3.1 ensure that x?
is v-a.s. a Radon measure on R with supp(x?) < (—0,0] and x?({0}) = 1.
Let g: [0,0) — [0, 1] be continuous, non-increasing with supp(g) < [0,2] and g = 1
on [0,1]. For any r > 1, the function f,: [0,1] x R x RN — [0, 0) defined by
-1
frle @) = > fx,h—¢y,)g(|hl/r) (3.14)
y=0
belongs to " and so (3.5) applies. Aiming to take r — oo limit of the resulting ex-

pression, note that fr(x, h,¢) increases to [ f(x,h + )dx? as r — . The Monotone
Convergence Theorem yields

/ Zy(dx) @ e 2VIo8bhdp @ v (dgp) (1 — e h9))
| (3.15)
N Zt(dx) ®€_2\/@hdh®D(dx) (1 o e—j f(x,h+-)dx)

r—00

and the Bounded Convergence Theorem then shows that, as ¥ — 0, the right-hand side
of (3.5) for f replaced by f, tends to that of (3.12). Hence, as soon as we prove that

s msop 2 ([0, ) - 3 1000,/ )

=00 xelL,,

> 0) -0 (3.16)

also the left-hand side of (3.5) asymptotically approaches that of (3.12) and so (3.12) is
inferred from (3.5).

For (3.16), let A > 0 be such that supp(f) < [0,1] x [-A,A]. Then r > A and
maxyer, v/ Li(y) —my < 7rimply —r < —A < 4/Li(x) —m, < r at every k,-local maxi-
mum possibly contributing to ({ ,(3%, f;>. The truncation by g then becomes immaterial
and we get

<€ff}<n,fr>=ZL (Vi) BZ)f ¥),V/Lily) — ). (3.17)
Xelly yeB, (x

Assuming m, > A, which guarantees that only terms with positive values of L; can be
local maxima contributing to (3.17), and 2r < k, along with (the full-measure event)
that no two positive values of L; coincide, each y € IL,, appears at most once in (3.17).
Moreover, for any y € 1L, with f(0,(y), v/Lt(y) — my,) # 0 that does not appear there
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exists x € IL,, with L¢(x) > L(y) and y € By, (x) \ Br(x). (Indeed, otherwise y would be a
ky-local maximum and would appear on the right.)

These observations show that, if m, > A and k,/2 > r > A, then the probability
in (3.16) is bounded by

Pg(gelﬁ( Li(x) — my, > r) + P? (Hx,y eI'(A): y e By, (x) Br(x)). (3.18)

Our assumption that k, — oo with n —k, — o0 ensures that the above inequalities
between m,,, k,, ¥ and A are satisfied for n large and, by Lemmas 3.2— 3.3, that (3.18)
vanishes in the limit n — oo followed by » — oo. Hence we get (3.16) as desired. O

3.3 Two technical propositions.

We will now move to the proof of Theorem 3.1. As in [17-19], different arguments are
needed to describe the law of the position/value of 1/L; at its local maxima and the law
of the “shape” of the configuration nearby. The former will conveniently be reduced to
the arguments from the proof of convergence of the law of the maximum in [20] so most
of our technical work will go towards controlling the “shape.”

As discussed in Section 2, we will follow a Lindeberg-like approach based on swap-
ping the increment of /L in the last k generations of the tree by that of a GFF, which is

the Gaussian process I defined in (2.10). We will write P for the law of &, use E for the

associated expectation and let E¢ ® E denote the expectation for the product law P¢ ® P
under which L; and h are independent. Recall that m(x) denotes, for x # g, the nearest
vertex to x on the path to the root. The “swapping” argument now comes in:

Proposition 3.5 (Swapping the local time for GFF) Given two naturals n > k > 1, a real
t > 0and a function f € ' , define

un,k(f) = Eg( H ef(en(x),\/Lt(x)mn,\/Lt(X)\/Lt(x'))lfvln,k(\/ﬁ/x)> (3.19)

xell,
and
Voi(f) := E°®QE H e_f(enk(Z)r\/Lt(Z)"l‘h(x)_h(Z)_mnrh(x)—h(x'))1Mn,k(h,x)r\Bn,k(x)), (3.20)
xellL,
where we put z := m*(x) to reduce clutter and with the same convention set
B(x) i= {mk kY3 < iy — A/Le(z) < g + kz/f’}. (3.21)
Then
lim lim sup| U,k (f) — Vii(f)| =0 (3.22)

k=0 o0

holds for all t > 0 and all f € &, . Moreover,

. . . Q N —
Jim lim suplim sup P¢ & P < x;},, WMsh00Bus L (L ) -n@y>m-ny = E) 0
(323)

holds for all t > 0 and all A > 0.
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To see the relevance of the above for the problem at hand, note that

Uyp(f) = E2(e~Cnt), (3.24)

The set B, «(x) is in turn a kind of barrier event which are generally events that constrain
the whole profile of k — Ls(xx) for xo = 9,x1,...,x, = x labeling the vertices on the
unique path from the root to x. Here we only impose a restriction on one value on this
path. The powers k'/3, resp., k?/3 can be replaced by k*, resp., k'™ for any 0 < a < 1/2.
The statement (3.23) shows that the number of terms non-trivially contributing to the
product in (3.20) is tight.

Proposition 3.5 effectively replaces the last k generations of the local time by inde-
pendent GFFs. In order to extract the local behavior from this, we will condition on the
position of the local maxima of x — h(x) — h(m*(x)) in subtrees of T, of depth k rooted
at the vertices of IL,,_; and apply the following asymptotic:

Proposition 3.6 (“Shape” of local extrema of GFF) There exists a probability law v on RN
such that the following holds: Given f € €' k> 1and u € R, let g ,,: [0,1] x R — [0, 00) be

loc’

defined by
e~ 05) i F (/05010 | (0) — maxh(y) = m + 1) (3.25)
]/E]Lk
and g: [0,1] x R — [0, ) defined by
g(v,s) := —log ( / v(dq))e_f(v's"f’)). (3.26)
Then
sup sup  sup  |gku(v,5) —g(v,9)| — 0 (3.27)
ve[0,1] seR  k1/13<y<k12/13 —00

The measure v is concentrated on {¢o = 0} N (Ve o3 {¢x > 0}

We remark that the finite level set property for samples from v is not claimed here but
will be proved as part of the proof of Theorem 3.1.

3.4 Integrating out the local component.

The proofs of Propositions 3.5 and 3.6 are technical and so we postpone their execution
to Section 4 and Section 6, respectively. The main role of these propositions is to integrate
out the third component of the test function. We summarize this in:

Lemma 3.7 Assuming the statements of Propositions 3.5-3.6, let f € &," _and let g be related
to f as in (3.26). Then for all t > 0,

lim limsup |U,x(f) — Uyk(g)| = 0. (3.28)

k= psen

Proof. Fixt > 0, let f € € and define ¢ as in (3.26). Givenn > k > land z €

1
L,,_¢, let Ti(z) denote the subtree of T, rooted at z and abbreviate IL(z) := Ty(z) N L,,.
Abusing our earlier notation, let % := o (h(y), L¢(y): y € T;,_x). As M, x(h, x) depends
only on {h(y): y € ILy(z)} for z such that x € IL;(z) while

{h(x) —h(z): x € Tx(2)} (3.29)

z€L,
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are independent copies of the GFF in T}, conditioning the expectation in the definition
of V, k(f) on Z results in the product of conditional expectations

E2® E< H o On—ik(2)/ Li(2)+h(x) —h(2) =, () =(x:)) Lat, 1 (13) B, ()
x€lly(z)

fik> (3.30)

over all z € IL,,_. Next observe that, in light of the continuous nature of the law of ,
the event M, (I, x) occurs at exactly one x € ILi(z) a.s. for each z € IL,,_i. This equates
(3.30) with the sum over all z € IL,,_; of

M e g( Lt () By () € CrklD S M@ =RG) ‘ Jozk) (3.31)
xelLi(z)
where we also abbreviated
s(x) :=+/L¢(z) — my + h(x) — h(z). (3.32)
Conditioning on h(x) — h(z), the symmetries of T, give

ECQE < Lt () By () € Crt(2) 5 M) =) ‘ y")

B @ (L S 5 | 5)
where gy, is as in (3.25) and where
u(x) := h(x) — h(z) — my. (3.34)

This now has the same form as the expectation in (3.31) albeit with f replaced by gy ,(x)
and so we readily conclude

VVl k(f) = EQ ® E( H e_gk,M(X) (9;1—k(Z)/S(x)) 1/Vln/k(h,x)m8n,k(x)> (335)

xell,

(3.33)

by tracing back the above steps.

We will now argue that g ,,(x)(0,—x(2),s(x)) can be replaced by g(6,,_(z),s(x)) with-
out affecting the n — co and k — oo limit. Indeed, the assumptions on f ensure existence
ofa A > 0be such that f(-,h, ) vanishes unless || < A. Then g ,x)(-,5(x)) and g(-,5(x))

vanish unless |s(x)| < A; i.e., unless |\/L;(z) — m, + my + u(x)| < A. Writin,
g
S(x) — {e_gk’“<x) (Bn,k(z),s(x)) 1Mn,k(h’x>ﬁ3n,k<x) 7& e—g(9n7k(z), S(x)) l/\/lﬂ’k(h,x)nlin,k(x) } (3.36)

the restrictions in B, x(x) give
A+ KR <u(x) <A+ER onS(x) (3.37)

for all x € IL,. By Proposition 3.6, gx .(x)(v,s(x)) is thus uniformly close to g(v,s(x))
whenever S(x) occurs and k is so large that [—A + k/3, A + k%3] < [k1/13, k12/13].

In order to swap one function for the other in the exponent, we have to rule out that
the total number of swapped terms explodes with n and k. Here we observe that if S(x)
occurs, the event

Mnk(h x ﬁBnk {\/Lt +h = my —)\} (338)
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must occur. Forcing the number of x where the latter occurs to be at most ¢, the exchange
of all g ,(x)(v,5(x))’s for g(v,s(x))’s causes an error at most (i, where ¢ is the quantity
in (3.27). Using the Intermediate-Value Theorem to take this error out of the exponential
and the expectation then gives

Viuk(f) = €%V, k(9|

. (3.39)
< ek P@®P< Z 1/\4 (h,x) By i (x {\/Wm(x 2)zma—A} ~ £>’

xell,
where we abuse the notation by treating g as a function of three coordinates, again wrote
z := mF(x) and where O(¢;) denotes a deterministic quantity with values in [—ey, €].
Thanks to V,,x(g) € [0, 1], the term e®(¢)’ can be dropped at the cost of e®* — 1 popping
up on the right-hand side.
Taking n — o, k — o and ¢ — oo with the help of (3.23) now allows us to conclude
that the statement holds with U, ;s replaced by V, /s, i.e.,

lim limsup |V, x(f) — Vi (8)| = 0. (3.40)
k=0 yo

To complete the proof observe that, since g € ;! , Proposition 3.5 lets us exchange V,, x’s

for U, ;s at no cost under these limits. ]

Lemma 3.7 reduces the proof of Theorem 3.1 to the convergence of the extremal pro-
cess associated with local maxima. For that we will also need a slight upgrade of the
convergence stated in Proposition 2.2:

Lemma 3.8 Let a,(t) be as in (1.24) and set C, := 2, /log b for c, as in Proposition 2.2.
Then for all continuously differentiable f: R — [0, 00) with compact support, all natural n > 1
and all real t > 0 and u > 0, the quantity o(1) = 0,4 (1) defined implicitly by

E¢ (e_f(maXyeILn Lt(:l/)—g”(t)_\/f_u)>

(3.41)
:exp{ C e -2 logbu /dhe 24/loghb h eff( )))}

obeys
lim sup hrnsup|0ntu 1)| =0. (3.42)

Mm=90 4 y>m n—-w

Proof. Givenn > 1and t > 0, abbreviate M+ := maxyer, v/Lt(y). Assume f: R — [0, 0)
to be continuously differentiable with supp(f) < [—A, A], for some A > 0. Writing the
expectation as a Stieltjes integral and integrating by parts yields

2 (eff(Mn,ﬁanu)f«zfu))

_ 1—/dhe P@(Mn,t > an(t) + VE+uth). G4

By Lemma 3.2, there exists ¢ € (0, 0) such that foralln > 1and allu > 0,

Pe( M,y > an(t) + v+ 1) < c(1 + u)e 2Vlogbu, (3.44)
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Thanks to the restriction on the support of f, the integral in (3.43) is for u > A dominated
by the quantity

O(u) == c(1+u + A)e 2VIosb (=) o=f ¢/ D7, (3.45)

In particular, once u is so large that é(u) < 1/2, we get

log E® <e_f(Mn,t—lln(t)—\/f_u)>

(3.46)
/dhe PQ(Mn,t>an(t)+\ﬁ+u+h>‘ < 6(u)?

relying on the inequality |log(1 — x) + x| < x2 for |x| < 1/2.
As is readily checked, 6(u)? = o(ue 2V!°8'") as 4 — oo and so for (3.41) it suffices

to control the asymptotic of the integral in (3.46). For this we call upon the asymptotic
stated in Proposition 2.2 to get

‘/dhe P@(Mn,t>an(t)+\/¥+u+h)

(3.47)
/dhe (u+h) —24/log b (u+h) <4

(”)en,t,uz

where c, and €, 1, are as in (2.5) with, we note, c, no larger than the constant c from (3.44).

Since 6(1) = O(ue 2V'°8") as u — oo, the error is o(l)ue_z\/@”,
It remains to find the asymptotic of the second integral in (3.47). Here one more inte-
gration by parts gives

)/dhe (u+h) log b (u+h)
—2+/log b ue~2Vlosbu / dh (1 —e~f(M)e=2vlosbh (3.48)
ée—Zq/logbu/dh e ) (24/logb || + 1) e 2V 1oBY",

Setting & := (24/logb A + 1)e*V!°8042)  the right-hand side is bounded by ée 2Vt
which is u~!-factor smaller than the order of the exponent in (3.41). Putting (3.47-3.48)
together then yields the claim. U

3.5 Limit of the structured extremal process.

We are now ready to give a proof of the main result of this section:

Proof of Theorem 3.1 from Propositions 3.5-3.6. Let f € € and assume that n > 2k > 1
with k so large that (x,h,¢) — f(x,h,¢) depends only on {¢,: y = 0,...,j} for some
j < b*. Let A > 0 be such that the support of f in these coordinates is fully contained in
[0,1] x [=A, A] x [=A, A]{%I}, The proof comes in six steps.
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Step 1: Reduction to first two coordinates. For n so large that k,, > k we have
()
|E® (e*<€ntknff>) — Uy i(f)| < P? (Hx,y eT(A): y e By, (x) Bk(x)>, (3.49)

which by Lemma 3.3 tends to zero as n — oo followed by k — oo. Lemma 3.7 then
permits us to swap U, x(f) for U, x(g) in these limits. In light of (3.26), for (3.5) it thus
suffices to prove the existence of a random measure Z; such that

lim lim sup
k=0 o

U, x(g) — E (exp{— / Z(dx) @ e~ 2VIosbhqp(1 — eg@h))}) ‘ —0 (3.50)

for any g: [0,1] x R — [0, 20) continuous with compact support.
Approximating g by a compactly-supported, continuous § which is C! in the second
variable, for A’ > 0 such that supp(g) u supp(§) < [0,1] x [-A’, A'] we have

U (§) — Unk(8)| < (8781 — 1) + Pe(IT(V)| > ¢). (3.51)

Thanks to Corollary 3.4, for ¢ := ||g — gH;l/ % the limes superior as n — oo of the left-hand
side tends to zero with | — §[lsc — 0. A similar approximation argument applies inside
the integral (3.50). It thus suffices to prove (3.50) for ¢ continuous with compact support
that is C! in the second variable. We will assume g to be such in what follows.

Step 2: Reduction to absolute maxima in subtrees. Write T,_,(z) for the subtree rooted
at z € I, let M(z) denote the absolute maximum of +/L; on the leaves of T, _x(z) and,
relying on the lexicographic ordering of IL,;, let X(z) € IL,, n T,,_¢(z) be the minimal leaf-
vertex where that maximum is achieved, i.e., 1/L¢(X(z)) = M(z). (The maximum can
be degenerate when L; vanishes on L, n T, _(z).) Observe z € i contributes to the
product defining U, x(g) only if M(z) — m, € [—A, A]. Moreover, the events M,, ;(v/Lt, *)
force that X(z) is then the only point in IL, n T,,_(z) that contributes unless there exists
another k-local maximum in B, _(X(z)) \ Bx(X(z)). Hence we get

un k(g) - EQ( Heg(erl(X(Z)),M(z)mn)> ‘

zelly (3.52)
< p¢ <3x,y ell'(A):ye By_x(x) Bk(x)>,
where, by Lemma 3.3, the right-hand side vanishes as n — o and k — co.
Next observe that, by our assumptions on g we have
wg(r) :=sup sup |g(v,s)—g(v',s)] — 0. (3.53)
seER |v—v'|<r ri0

Proceeding as in the proof of Lemma 3.7, we curb the number of terms in the product
that potentially contribute in order to prevent explosions of exponential factors and then
use 0, (X(z)) — 0k(z)| < b~ to swap 6,(X(z)) for 6;(z) with the result

EQ< H e_g(en(X(Z))rM(Z)_mn)> _EQ( H e_g(sk(z)’M(Z)_mn)> ‘

ZE]Lk ZElLk

(3.54)
< et 14 pe(IT(A)] > 4).
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This tends to zero as n — o, k — o and ¢ — oo by (3.53) and Corollary 3.4.

Step 3: Representation via a random measure. We have so far reduced the asymptotic
computation of U, k(g) to the expectation of [ [,y e~ (0(2),M(z)=m1) - We will address
that by conditioning on .%y := 0(L¢(z): z € ILx) which results in the factorization

EQ(H a—8(0k(2),M(2)—my) yk> — T B¢ (e s@@ME-m)

ZE]Lk ZE]Lk

F) (3.55)

implied by the Markov property of the local time. This permits us to control the asymp-
totic of the expressions term by term.
Assume containment in the event

Ap(t) == {max Li(z) < my +loglog k}. (3.56)
zelly

Denoting s := L(z), the argument of g in the subtree rooted at z € IL; then becomes
M(z) —my = M(z) —a,_r(sv1) —+s—u, (3.57)
where

ui=my—a,_r(sv1) —+/s

=\/@k+ 3 1 ”_k+ 1 o 11—I<+\/5v1_\/g

4@ 0 Ta/logh ° nvsvi (3.58)
= /logbk —+/s — log\/s v 1+ O(k/n) + O(+\/s/n).
4+/logb
For /s < my + loglog k as enforced by Ai(t), we get
u > 4\/5’0? logk — ¢loglogk + o(1) (3.59)

for some constant ¢ > 0, implying that u is large uniformly once k is large (with 2k < n).
We will now use this to extract the asymptotic of the conditional expectation in the terms
where L(z) is large and effectively bound it away for the other terms.
Suppose first that z € 1Ly is such that Ai(t) n {L;(z) > loglogk} occurs. For k large,
Lemma 3.8 shows
7 )

EQ (e _g(ek(z)/M(Z)_mn)
= exp{ —C.wy(z / dhe2VIesbh(q g(9k<z),h>)> } (3.60)

where 0(1) — 0 uniformly as k — oo and

z) :=b%* (« flogbk —A/Li(z) —

N
log(L(z) v 1))
x (L(z) v 1)V 02+/10gb/Le(2)

84/logb (3.61)

captures the relevant portion of the expression ue 2V!°8% for 4 as in (3.58).
On Ax(t) n {L¢(z) < loglogk} the asymptotic (3.58) in turn gives u — A > /logbk —
loglog k once k is sufficiently large. We then invoke the restriction on the support along
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with conditional Jensen’s inequality and the uniform bound on the upper tail of the
maximum from Lemma 3.2 to get

1> E2(e 86 ME) -m)

k)
exp{—E®(g(6k(z), M(z) — my)
exp{—|g|P*(M(z) = my — A |
> exp{—ckzb_ZngH},

EZ
Fk)

}

(3.62)

)
}

AR\

where in the last line we first used that (1 + u — A)efz\/@(”*)\) < k2% once k is
sufficiently large and c is the constant from (3.7).

Note that the exponent in (3.62) is O(k?b~¥) even after summation over z € IL;. Since
wi(z) < k*b~2 when Li(z) < loglogk, the same applies even to the summation of the
corresponding terms in the exponent in (3.60). The terms with L;(z) < loglogk are thus
negligible on both sides and so, denoting

k ~
7= ¢, > wi(2)dg,2), (3.63)
ZE]Lk
on Ai(t) we then get

Ee( [T e 8@ ME-m)

ZE]Lk

fk)
:exp{o(l)(1+Zt(k)([O,1])) —/ 70 (dx) @ e 2VIosbhgp (1 — <xh>))},

where 0(1) — 0 as k — oo uniformly on A(t).

(3.64)

Step 4: Proof of convergence. Note that the tightness of max,ey, \/Lt(z) — my from
Lemma 3.2 gives
klim Pe (Ak(t)) =1 (3.65)
—00

Summarizing the above arguments, we thus get

lim im sup EQ( < n kn g>) E¢ (e—f Zt(k)(dx)®e*2\/logbhdh(l_efg(X,h))) _o. (366)
k=00 p oo

But the first term does not depend on k while second term does not depend on 7, which

is only possible if they both converge in their respective limits.

Since [20, Corollary 3.2 and Lemma 3.3] gives tightness of {Zlgk) ([0,1]): k = 1}, we are
permitted to extract a subsequential weak limit Z; relative to the topology of vague con-
vergence. The k — oo limit of the second term in (3.66) is then realized by substituting Z;
for Zt(k). But the resulting quantity equals the limit of the first term in (3.66) and so is the
same for all convergent subsequences. This means that the weak limit of Zt(k)
actually exists and we get (3.50) as desired.

Next we will prove that Z; is given by the weak limit (1.18). Here the proof of [20,

Lemma 3.3] shows that the measure Zt(k) above receives asymptotically vanishing con-

tribution from z € Ly at which /logbk —+/Li(z) < k%, for some fixed 6 € (0,1/4).
This means that we can drop the third term in the positive part in (3.61) as well as the

ask — o
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truncation by one in (L(z) v 1)//* without affecting the convergence and/or the limit
measure Z;. This proves (1.18). The limit (1.15) concerns the total mass of Z; and can
thus be referred to [20, Theorem 1.2].

Step 5: Finite level sets in samples of v. The next item to show is that
Ny :=|{je N: ¢; < A}| (3.67)
is finite for all A > 0 and v-a.e. ¢. Givena > 0 and g: R — [0, 1] continuous with g =1
on [—1,1] and g = 0 outside (—2,2), let
FOe b, @) = ag(A"'h) Y g () (h—¢y)). (3.68)
jsr
The properties of g imply that f € €,"_and that f(x,h,¢) exceeds al{j < 7: 0 < ¢; < A}
whenever 1 € [—A,0]. Noting also that, for k,, > r,
o ) < all(4A)], (3.69)
the limit result in (3.5) shows

liminf E° (e‘”lrw‘)l)
n—oo

<E(exp{—zt([o,l])/[_w]dhe2 k’gbh/v(dqb)(l—e”"{K“K‘f’f@‘”)}).

Next observe that the left-hand side is independent of r and, by Corollary 3.4, tends to
one in the limit as a | 0. Taking » — o followed by a | 0 with the help of the Bounded
Convergence Theorem then gives

1< IE(exp{—c(/\)Zt([O, 1)v(N, = oo)}) (3.71)

(3.70)

for c(A) := (24/logh)~(e?V18%* _ 1), As 7;([0,1]) > 0 with positive probability, it
follows that V(N = o) = 0 as desired.

Step 6: No atoms in Z;. It remains to check that Z; is a.s. diffuse. The intuitive argu-
ment is simple: If Z; had an atom at some (random) point, say X, then with positive
probability the process of limiting extreme local maxima would have two points with
non-negative second coordinates at X. Rolling back the n — oo limit we infer that,
for sufficiently large n, there would have to be two local maxima of /L; that are more
than k, but less than, say, /2 in graph-theoretical distance on T, from each other. This
is impossible unless the event in (3.10) occurs.

A formal argument unfortunately requires work. We start by noting that, by linearity
of f — <€fq,kn,f>, the above shows that forall fi,..., fy € € _andall Ay,...,An =0,

n—o0

N
lim E° ( He—Ak@?kwa) — E(e ®MAt-+Anfn)) (3.72)
i=1

holds with
O(f) := / Zi(dx) @e 2VIsbhdp @ v(dg) (1 — e~/ h9)), (3.73)
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Next observe that, while Z; may a priori have atoms, the fact that Z;(R) < oo P-a.s.
implies that

S := {x e R: P(Z({x}) > 0) > 0} (3.74)
is at most countable. (Indeed, S is the set where x — E(Z;((—, x])1{z®)<m}) has

a discontinuity for some M € IN.) Writing 7 for the set of finite intervals with both
endpoints in R \ S, we claim that (3.72) applies even to functions fi, ..., fy of the form

fi(x, b, @) :=11,(x)1 01y (h), (3.75)

where I1, ..., Iy € Z. Indeed, let fl, ... ,fN be defined using the interiors and fl, ... ,fN
using the closures of some I, ..., Iy € Z, respectively, where we also use Lo (h) in the
second variable for f;’s. Note that then f; < f; < f; foralli = 1,...,N. Now use that
each f; can be written as an increasing limit of functions from ¢ and f; as a decreasing
limit of functions from €/ _to get

E ( e*‘1>(/\1]?1+"'+)‘NfN)) < liminf EQ(

n—aoo

(=

N
Il
-

e —Ak<gf7,k7, rfl>>
(3.76)

=

I
—_

< limsup E* (

n—o0

e—/\k<§;,k,,rﬁ>) =E ( e—@(A1f1+~--+ANfN)) .

The a.s.-equality of @(A1f1 + - + Anfn) to ®(A1 fi + - - - + Ay fv) implied by the restric-
tion on the interval endpoints then proves (3.72) for fi, ..., fn.

As a consequence of (3.75), the Curtiss theorem implies joint convergence in law of
random variables {<€1t1,kn’fi>: i =1,...,N} for any fi,..., fy of the form (3.75) with
intervals in Z. If these functions have also disjoint supports, then

N
(Arfi+ -+ Anfn) = D aZi(I)(1—e™h) (3.77)

with a := (24/logh) (1 — e 2V°8?) implying that, conditional on Z;, the limit law of
the N-tuple {<C;,kn,fi>: i =1,...,N} is Poisson with parameters (a«Z;(ly),...,aZ:(Iyn)).
The Portmanteau theorem then gives

n—0o0

lim sup PQ< max <§n o fi) < ) (He aZi I) +aZ(1, ))) (3.78)

whenever fi,..., fy are as in (3.75) for disjoint Iy,..., Iy € Z.

We are now ready to give a formal version of our intuitive argument. Denote by G, «
the complement of the event in (3.10) with A := Oand, fork > landie Z,let; € 7
be an open subinterval of ((i — 1)b*,ib=*). Define f; by (3.75) using these intervals.
Assuming G, , along with the full probability event that no two positive values of L;
coincide, L; has only one local maximum in 6, ([(i — 1)b~%,ib=F)) unless it vanishes
there. For k;, > k this implies {7} , , fi) <1as.on G, forallie Z and so

P(Gp) < P° (nig%x g fi> < 1), (3.79)
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where the use of “max” is justified by noting that (], , , fi) # 0 for only a finite num-
ber i € Z. Using that u — e™"(1 + u) is decreasing on IR} we in turn get

IE(H e *Zl) (1 + tth(Ii))> <1—(1-e™(1+a0))P(maxZi(L) > 5)  (3.80)
ieZ e

for any 6 > 0, where we again use that only a finite number of intervals can possibly
contribute on each side. Invoking (3.78) and, relying on S being countable, we now
increase each I; to fill all of ((i — 1)b=%,ib=¥) to conclude

) < 1—limsup,_,  P%(G,x)
1—e (1 +ad)
for any k > 1 and 4 > 0. But the symmetries of T, observed by L; imply

{Zi(lo 5 b i) ez W {Z (b b 2 b)) ie 2} (3.82)

]P(max Z(((i— )bk, ib %) > 6

i€eZ

(3.81)

and the inclusions

{ib™%} < [ib™%, b= *1 4+ ibF) (3.83)

and
(b7 +ib %, 267F 1 1 ip ) < (ib7F, (i + 1)b7F) (3.84)

give

ok . —k s1—k

]I’(rlré%xzt({zb e 5) < ]P(rlré%xzt(((z — )bk, ib k) > 5). (3.85)
Taking k — oo in (3.81) and (3.85) with the help of Lemma 3.3 rules out atoms of Z; of
size in excess of 4. Taking J | 0 then shows that Z; has no atoms a.s. U

4. SWAPPING THE LOCAL TIME FOR GFF

We now move to the proof of Proposition 3.5 dealing with the swap of the local time for
GFF in the last couple of generations of the tree. This proposition has served as one of
the key inputs for our proof of Theorem 3.1 and thus also Theorem 1.2. The other key
input, Proposition 3.6, will be proved in Section 6.

4.1 Useful lemmas.

We start by proving a sequence of useful lemmas. The first of these deals with the con-
struction of a coupling that drives the rest of the argument.

Lemma 4.1 (Coupling to GFF) Fixn >k > 1and t > 0. There exists a coupling of the local
time L; and two GFFs h and h on T, such that

h Ly A h L {L(z):zeT, 4} (4.1)
and such that the following holds almost surely:
Vx e T,_: h(x) = h(x) (4.2)

and
Vxe Ty~ Ty g Le(x) + [h(x) — h(z)]* = (fz(x) —h(z) + Lt(z)>2, (4.3)

where we used the shorthand z := m*(x) to make (4.3) easier to parse.
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Proof. The idea of the proof is to apply Lemma 2.3 or, more precisely, arguments from

its proof, separately in each Ty (z) for z ranging through IL, . Recall that P denotes
the law of GFF. Define py: {—1, +1}T* x [0,00)T¢ x [0,00) — [0,1] to be the conditional
probability mass function of the signs of {h, + 1/s: x € T} given their absolute values
{lhx + /s|: x € Ty}, ie.,

pe(e5) 1= B () U = ol 4 V5| = V5 |l + V8] = ) 7€ T )
xeTy

Given a sample of (L;, k) from P2 ® P, use these to sample ¢ € {—1, +1}T"\Tu-k with
probability

[T pefon: v e Tu@) (VL) + [h(x) — hE@P: x € Ty(@)}, Lilz)).  (45)

ZE]LV,,](

Now set 1 = hon T,,_ as required by (4.2) and, for each z € IL,,_, let

i(x) = h(z) ~ /L) + 0o/ Le0) + [(x) —h(@) 2, x e Ti(2). (4.6)

This identifies /1 on all of T, and thus defines a coupling of h, Ly and h.

The definition ensures the validity of (4.2-4.3) and h 1L L; was assumed from the
beginning. What remains to be shown is the second part of (4.1) and that / is a GFF. This
is where Lemmas 2.1 and 2.3 come handy: Condition on

T =0({Li(z): z € Ty_}) 4.7)

and note that, by the Markov property of L, the conditional law of {L;(x): x € Ty(z)}, for
z € L,y is that of {L,,)(x): x € Ty} for u(z) := L¢(z). In addition, the Markov property
implies that {{L;(x): x € T(z)}: z € L,,_¢} are independent conditionally on .%;. Noting
also that {h(x) — h(z): x € Ty(z)} are independent samples of GFF in T} for each z,
Lemma 2.3 along with the product structure of (4.5) gives that, conditionally on .7, the
fields {{/1(x) — h(z): T(z)}: z € IL,,_x}, are independent copies of GFF.

Thanks to (4.2) we now conclude the second part of (4.1). The tree-indexed random
walk structure of GFF combined with (4.2) in turn shows that /1 is a GFF in T,,. O

We will write P° for the coupling measure and prove the claim with / instead of .
We will repeatedly use the following explicit version of (2.14):

VL) < A/ Le(x) + [h(x) — h(2) P < v/Li(x) + () —h)F (4.8)
Lt(X)

where z := m*(x). Next we observe that we can always assume the containment in the
“barrier” event B, (x) whenever L;(x) is large:

Lemma4.2 Forall A >0,
klim lim sup PQ< U {VLi(x) =my—A} 0 Bn,k(x)c) =0, 4.9)
—P now xelL,,

where By, i(x) is the barrier event from (3.21).
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Proof. The proof builds on a barrier estimate proved as part of the proof of [2, Proposi-
tion 3.1], which we will cite from heavily. The argument there works with the local time
of a Brownian motion on an associated metric tree, which is constructed by replacing the
edges of T, by line-segments of length 1/2. We will write d(-, -) for the associated metric
and, abusing the notation both here and in [2], will keep writing T, for the metric tree
and L; for the underlying local time there.

We start by recalling the event G!'(t) from [2, Eq. (3.3)] with x := 2(logb)~/? and y
replaced by u > 0. For each z € IL,,_ and s € [0, n — k|, let z; be the point on the unique
path from ¢ to z with d(g, zs) = s/2. Then, the probability on the left-hand side of (4.9) is
bounded from above by P?(G}}(t)) plus the sum over z € IL,,_; of

pe ({ max +/Li(x) = m, — /\} N {\/Lt(z) — (my —my) ¢ [-K*5, —kl/S]}

x€lli(z)
(4.10)

N {«/Lt(zs) <V a"(t)s +x(log(s A (n—s))t +u+1,Vse[0,n —k]}),

n

where the last event arises from the complement of GJ;(¢). Thanks to [2, Lemma 3.2] we
have lim,_,, limsup,_, , P%(G}i(t)) = 0 and so we only need to focus on (4.10).
Abbreviate

P(s) := P? <m%x«/Ls(x) = my — A) . (4.11)
X€ElLy

Since the second and third event in (4.10) depend only on z; for s < n — k (note also that

Zy— = z), the Markov property (Lemma 2.1) allows us to condition on L;(z) and rewrite

the probability in (4.10) as

g {I’D(Lt(z)) VL@ - )25, ~k15), 1,(2)>0)
(4.12)

x 1{\/Lt(zs)<\ﬁ+ u"nmS+K(log(s/\(n—s)))*-&-u-i—l,Vse[O,n—k]}:| !

where we also assumed that 7 is so large that m, > A. Next we recall that {v/Ls: s > 0}
has the law of a zero-dimensional Bessel process (see Belius, Rosen and Zeitouni [13,
Lemma 3.1(e)]). Using the well-known connection between this process and Brownian
motion (see, e.g., [20, Lemma 2.6]) the above expectation is bounded by

Vit
]E [ \/Z + Bn k ll] ((\/E * Bn_k)z) 1{\/E"’_ank_(mn—mk)$[_k2/3/_k1/3]/ \/E+Bn7k>0}
- (4.13)

x 1{Bs<@s+x(log(sxx (n—s)))*+u+1,Vse[0,n—k]} ’

where the expectation is with respect to the law of Brownian motion (B;)s>0 on R with
E(B;s) = 0 and Var(B;) = s/2 for s = 0.
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We will now estimate (4.13) by methods of stochastic calculus. Let IP be the probability
measure defined by

2ap (1) B an (1?2

P(A) :=E <1Ae Z "—k‘nz(”"‘)) , Aeo(Bs:s<n—k). (4.14)

By the Girsanov theorem, under If’, the process

By := B, — ””n(t) s,s€[0,n—K] (4.15)

is a Brownian motion on R with Var(B;) = s/2 for s > 0 started at 0. Then, for sufficiently
large n and k, the expectation is bounded from above by

~ | _2an(f _an(H? (n—Fk) \/E ( aﬂ(t) D 2
Ele » 7F a2 Vi + (n—k)+ B,k

anT(t)(TZ—k) + Enfk n

X 1{§n_keln/k}1{gssklog(k+1)+K(log(s/\(n—k—s)))*+u+1,Vse[0,n—k]} ’

(4.16)
where

2/3
L= <—\/E IO —k> U (—k1/3, xlogk + 1+ 1) 4.17)
’ n 2
and we have used the inequality

(log(s A (n—5)))" <log(k+1)+ (log(s A (n—k—s)))*, se[0,n—k (4.18)

for n » k » 1. Note that for any s € I,,, we have

= <ﬁ+an(t)<”—k)+s> + ((\/5+”’*(t)(n—k)+s>2>

n n
(4.19)

5 1ogksA\/E+o(1°§"k>.

" 44/logb

The second line is positive for sufficiently large k in light of s < xlogk +u + 1 and
K< %(log b)~1/2. Lemma 3.2 implies that for any s € I,

lp<<\/¥+u”(t) (n—k)+ s)2>

n

3 jogkos)? (4.20)

(77—
k—3/20254/log be—c’ %

< C<4—\/30@10gk_5)
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for some constants ¢, ¢’ > 0 that depend on neither n nor k. This estimate along with [2,
Lemma 2.4(i)] show that (4.10) is bounded from above by

c1(rlog(k +1) +u+ 1)k3/2/ (klog(k+1)+u+1—s)

> logk-s
Lo 4,/logb &
(410 k—s
% J \/Z+n eCZIO;g,”S*C:i 4 IOgbk i ds

Vit+ 20 k) 45

for some positive constants ¢, ¢z, c3 that depend on neither 7 nor k.
It remains to bound the integral in (4.21). Partitioning the integration domain into

1 n n n 2/3
the intervals (—v/f — 28 (n — k), ~1(vE+ 28 (0 — k), (-2(VE+ 2B —k)), —E2),
and (—k'/3,xlogk + u + 1) and estimating the resulting three integrals, (4.21) is bounded
from above by

o0 2
cslogk k32 (/ s2e S Fds + ne 7" + k) (4.22)
K2/3/2

for some positive constants cy, . . ., c; that depend on neither n nor k. This quantity van-
ishes in the limits as n — o0 and k — o0.

Next we note that, whenever B, ;(x) occurs, we can bound h(x) — h(z) by a quantity
proportional to k:

Lemma 4.3 There exists 4 > 0 such that

lim lim sup P¢ ® P ( U {|h(x) — h(mk(x))| > ak} A Bn,k(x)) —0.  (423)

k—o0
=00 xelL,,

Proof. Set 4 := a + +/logb for a > 0 to be determined and write z := m*(x) whenever
x € IL, is clear from context. By symmetry of the Gaussian distribution, the probability
in the statement is bounded by twice the probability without the absolute value around
the term h(x) — h(m*(x)). It suffices to prove the claim without the absolute value.
Note that on B, x(x) we have /L;(z) = m, —my —k?/* and so h(x) — h(z) > (a+
v/1og b)k along with m; < /log bk show
h(x) — h(z) + \/Li(z) > (a + /log b)k + m, — my — k*> = my, + (a/2)k. (4.24)

Interpreting this under the coupling measure P*, the independence in (4.1) allows us to
swap h for i conditional on {L;(z'): z’ € T,_x}. This bounds the probability in (4.23)
(without absolute value) by

P’ <3x e LLy: hi(x) — h(z) + /Li(z) > my + (a/2)k>
(4.25)

<P'(Irel, VL) + [h(x) — ()12 > m + (a/2)k)

where the inequality follows from the coupling identity (4.3).

Next notice that |i(x) — h(z)| < [1 + logb]Y?>vky/n and Li(x) + |h(x) — h(z)> > m?>

force Li(x) > 2m? whenever k < [2(1 +logb)]~'m2/n. Under these circumstances the
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inequality in the event on the right of (4.25) along with (4.8) give

L) > mn + (a/2)k — 2111080

y/logb
. 1+logh 1
whenever 7 is so large that m, > \%«/logbn. For a := 4&% + 2, the probability
in (4.25) is thus bounded by

k (4.26)

p(max\h —h(z)] >[1+1ogb]1/2\/E\/ﬁ)+P@(max Lt(x)Zanrk). (4.27)

xell x€ll,

The union bound along with a standard Gaussian tail estimate dominate the first prob-
ability by b"e~(1+1080)" — =" which tends to zero as n — . The second probability
vanishes as n — o0 and k — o0 by Lemma 3.2. U

Finally, we observe some consequences of the previous proof for the objects entering
the coupling identity (4.3):

Lemma 4.4 We have

11rn lim sup PQ< U { Li(x) < %mn} N Bn,k(x)> =0 (4.28)

k=0 oo xelL,

and, recalling that P* denotes the coupling measure from Lemma 4.1,

lim lim sup PQ< U {h ) ++/Li(z) < 0} N B i( )) =0, (4.29)

k=0 n—o xelL,
where we again invoked the shorthand z := m*(x).

Proof. Interpreting (4.23) using the coupling measure, (4.1) shows that the statement of
(4.23) holds with & in place of h. Hence we may assume that |i(x) — h(z)| < ak and
\h(x) — h(z)| < ak whenever B (x ) occurs. But then \/L;(z) > m, — my — k*° imposed
by B, x(x) forces h(x )+ /L > 3m, once n » k, proving (4.29). The identity

(4.3) turns that bound 1nto L t(x) + [h(x) —h(z)]? = 96m which then gives 4/ L¢(x) > %mn
once n » k, proving (4.28) as well. U

4.2 Key lemma and proof of Proposition 3.5.

The proof of Proposition 3.5 requires one additional lemma that we will state and prove
next. First, givenn > k > land A > 0, let QA denote the intersection of the complements
of the events in (4.9), (4.28) and (4.29) along with the complement of the event in (4.23)
for both  and /. The above lemmas then show

lim liminf P* (Q o) =1 (4.30)

k—o0 Nn—0

Next let 52‘ . be the event that the set

{x € Ly: My x(+/Lt, ) 0 Byi(x) occurs A \/Lt(x) 4 [h(x) — h(2)]2 = my — A} (4.31)
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equals the set
{x eLy: My x(h,x) A By(x) occurs A hi(x) — h(z) ++/Li(z) = my — A}, (4.32)

where, as before, we are using the shorthand z := mk (x) throughout. This event ad-
dresses the most difficult part of the “swap” of the local time for GFF because being a
local maximum is generally not preserved by perturbations, however small they may
be. Notwithstanding, we still get:

Lemma4.5 Forall A >0,
lim liminf P°(£),) = 1. (4.33)

k—o0 n—0

Proof. For each x € L, let gap(fl, x) be the difference between the largest and second
largest value of /1 in By (x). If gﬁ‘,k N B, k(x) occurs, then the inequality (4.8) gives

VL) = VL)~ (h(x) — h(z)

_ 2 2
= ‘m— \/Lt(X) + [l/l(X) — h(z)]Z‘ < W < 2&2:”[

for z := m*(x). Thanks to the coupling identity (4.3), the conditions for the fields on the
right of (4.31) and (4.32) are identical so the only difference is the status of the events
M (VL x) and ./\/ln,k(fl, x). A routine use of the triangle inequality then shows that,
on G fl"k ~ 5{1\’ . there exists x — namely, one that lies in one but not both of the sets (4.31)

and (4.32) — for which B, x(x) occurs and yet gap(f, x) < 44?k? /m,,. Hence we get

2
PY(Gre~EN) < PQ( U {gap(fz, x) < 4&2:1} A Bn,k(x)) (4.35)

xelL, n

Since B, x(x) is determined by L;(z), it is independent of gap(, x) by (4.1). Using N,,
to denote the number of z € IL,,_ such that B, ,(x) occurs for some (and thus all) x €
L, n Tk(z) and denoting

Fe(u) :=P° <gap(fz,x) < u), (4.36)
which by the symmetries of the tree does not depend on x or 1, the probability on the

right of (4.35) equals
k2 Nn,k
Crof|1- p (a2
1 E([l Fk<4a mﬂ)} ) (4.37)

As my, —my = my,_i + O(logk), Corollary 3.4 shows that {N,,: n > 1} is tight for each

k > 1. The continuity of the law of GFF in turn implies that F(#) — 0 as u | 0. It follows

that (4.37) tends to zero as n — co. The proof is completed by invoking (4.30). O
We are now ready for:

Proof of Proposition 3.5. Let f € €} and assume n > k » 1. Let A > 0 be such

that (x,h,¢) — f(x,h,¢) depends only on {¢,: y = 0,...,} for some j < b and, when

restricted to these coordinates, is supported in [0,1] x [—A, A] x [=A, A]{%7}. Let us
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write osc(r) for the supremum of |f(x,t,¢) — f(x',#,¢")| over all triplets of coordinates
satisfying [x —x'| <7, |t —t'| <rand |¢p — ¢'| <.
Thanks to (4.30) and Lemma 4.5, the event
Houk = Gp 0 Eny (4.38)

occurs with probability tending to one as n — o0 and k — oo. Suppose that H,, , occurs
along with the event

q ._ _
Tk { 2 Lt o)) L)@ s L@ o} S ‘7} (4.39)

xell;,
for some g > 1. Noting that f in the term corresponding to x in U, x(f) vanishes un-
less \/Li(x) = my, — A, on Hy N *77:7, , we can insert the indicator of B, x(x) in front of
that term without changing the result. Then we use (4.34) along with |6,,(x) — 6,,_x(z)| <
5276~ ("9 to replace the arguments of f in U, x(f) by those in V,, x(f) causing an error
at most q 0sc(r,, k) in the exponent, where

b k>
o —(n—=k) g2
P max{ U } (4.40)
Since f in the term corresponding to x in U, x(f) vanishes unless /L¢(x) > m, — A
while f in the term corresponding to x in V,, x(f) vanishes unless f1(x) — i(z) + +/Li(z) >
m, — A, the containment in 5}?, . permits us to swap the event M, 1 (v/L¢, x) for M, x(h, x)

atallx e LL,.
As a result of these manipulations, we get

U i(f) = Vg (F)] < 2[1 = P (Hpp 0 T,)] + o5 — 1, (4.41)

The continuity of f now ensures that oscs(r,x) — 0 asn — oo, regardless of k > 1. As to
theevent H, y N J, j’ .- here the bound (4.34) gives

Hup N T < {ITA+1)| > q} (4.42)

as soon as 2&2% < 1. Corollary 3.4 shows that the probability of the event on the right

tends to zeroas n — o0 and g — 0. As FQ(Hn,k) — 1 in the limits n — oo and k — o0, we
get both (3.22) and (3.23). O

5. CLUSTER PROCESS AND WALK STARTED FROM A LEAF

We will now address the proof of Corollary 1.6, which links the cluster process of the
local time to that of GFF/BRW, and that of Theorem 1.1, which deals with the random
walk started from the leaves. As part of the latter, we also prove Corollary 1.4 which
identifies the law of the position of the local-time maximizer.

5.1 Connection to BRW cluster process.

Our proof of Corollary 1.6 follows that of Theorem 3.1 with the local time replaced by
the BRW/GFE. A key point is that Proposition 3.6, which is where the cluster process is
extracted for the local time, plugs in seamlessly for the GFF as well.
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We start by recalling some needed facts about the extremal properties of BRW /GFF.
Let us write M, for the maximum of the GFF on IL,,. Then, as shown in Addario-Berry
and Reed [5, Theorem 3] for fairly general BRW (and for the particular case at hand
in [14, Lecture 7]),

P(IMy — fit] > A) < cre™ (5.1)

holds forall # > 1 and all A > 0, where

~ 3
m, = +/logbn — logn, 5.2
and c¢q and ¢ are positive constants. For the extremal level set,

T(A) == {xeL,: h(x) =i, — A}, (5.3)
Mallein [40, Theorem 4.5] proves the clustering property

lim limsup ﬁ(ﬂx,y eT(A): Y€ By_k(x) N Bk(x)) =0. (5.4)

k= oo

This also readily implies tightness

lim lim sup ﬁ(‘f(/\)‘ > E) =0 (5.5)
=0 psop
of the cardinality of I'(A). Note that the above are the analogues of Lemmas 3.2-3.3 and
Corollary 3.4 for the case at hand.
The extraction of the limit process will also require the asymptotic statement

13(Mn — 1ty > 1) = G (1 + &) ue "V logh, (5.6)
where ¢, is a positive constant and &, , defined by this expression obeys
lim lim sup ] én,u] =0. (5.7)
u—0o0

n—o0

This statement, which plays the role of Proposition 2.2 for the case at hand, can be found
in Bramson, Ding and Zeitouni [22, Proposition 3.1].
In addition to the above, we will need an analogue of Lemma 4.2:

Lemma5.1 Forall A =0,

lim i P h(x) = ity — A} A B(x)° ) =0, :
fy s 2 L) 0> 7 4] e Y
where for & := %

B, i(x) := {ﬁik + k7 < ity — h(z) < i+ kl_&} (5.9)

with our convention z := mF(x).

The proof of this lemma requires ideas similar to those entering the proof of Proposi-
tion 3.6 and so we relegate it to Section 6. Taking this lemma for granted in what follows,
we are now ready for:
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Proof of Corollary 1.6 from Proposition 3.6 and Lemma 5.1. We follow the proof of The-
orem 3.1 and its reduction to Theorem 1.2. We start by the definition of the struc-
tured extremal process associated with the BRW/GFF. This is a random measure on
[0,1] x R x RN defined by

T = Z Lty (1, %) 98, (x) @ On() =ity @ On(x)—h(x-)- (5.10)
xell,
Given f € € , set
Vn/k(f) = E( H e_f(en—k(z)r h(X)_ﬁlnr h(x)—h(x) ) 1Mn,k(lt,x)mBNn'k(x) ) , (5.11)
xell,
where we used our standard shorthand z := mf(x). Lemma 5.1 along with uniform
continuity of f then show
lim lim sup|]:j(e_<’7"r"'f>) - Vnk(f)| =0. (5.12)

k—wo  yo
We thus need to compute the limit of V,, x(f) as n — o followed by k — oo.
Assume that n > 2k > 1 with k so large that (x,1,¢) — f(x,h,¢) depends only on

{py:y =0,...,j} for some j < b*. Then, similarly as in (3.35), the Markov property of
the BRW /GFF along with a simple calculation show

Vix(f) = E ( I e_gk'”<">(9”"‘(7‘)'“")"71")1~Mn,k<fux>mﬁn,k(x)> (5.13)

xell,
where
i(x) := h(x) — 1y + m, — my — h(z). (5.14)
For A > 0 such that supp(f) is contained in [0,1] x [-A,A] x [—=A, A]{%7}, the term
corresponding to x in (5.13) is non-trivial only if

A+ K <ii(x) S A+ kT4 log k (5.15)

1
4,/logb
where 0 := % Under these conditions Proposition 3.6 permits us to replace g z(x) on
the right of (5.13) by g from (3.26); Lemma 5.1 then also allows us to drop the barrier

event B, i (x) at the cost of an error term that vanishes as n — o and k — c0.

The previous manipulations reduce the computation to the limit of the process of
local maxima that, with the help of the tightness of the extreme level sets (5.4-5.5) is
reduced to the asymptotic (5.6-5.7). Leaving the details to the reader, for any k, — oo
with n — k, — oo this gives

EQ (e_<77n,kn 'f>)

- ]E<e><p{ / W(dx)®e_2\/@hdh®v(dcp)(le‘f(x'h"i’))}),

n—ao0

(5.16)

for a random measure W on [0, 1] and v as in Proposition 3.6. Proceeding along the same
argument as in the reduction of Theorem 3.1 to Theorem 1.2 then shows that the cluster
process of GFF is that defined in (3.13), thus identifying it with the cluster process of the
local time of the random walk on T,. O
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5.2 Random walk started from the leaves.

We now move to the proof of Theorem 1.1 which will be deduced from Theorem 1.2.
Here we note that the corresponding reduction in [20] for the maximum of the local
time relied on a convenient trick: The law of maxyer, (4, (x) is that of maxyer, L¢(x)
conditioned on being positive, in the limit as t | 0. This capitalized on the observation
that the law of maxyer,, L¢(x) does not depend on where the walk started from the root
first hits the leaves. Unfortunately, this symmetry no longer helpful once we aim to
include information on where the maximum is achieved, let alone how the other nearly-
maximal values are distributed, and so we proceed along different lines.

We will rely on the Markovian nature of the local time that yields the following de-
composition of £r,:

Lemma 5.2 Writing xo := 0,x1,...,%, := 0 for the vertices on the unique path in T, from
the root to vertex 0, for any Borel sets Ex < Rk indexed by k = 1,...,n we have

P0< ﬂ{{érg(x): xeT, i (x)}e En_k} o (e, (x): k=1,.. .,n)>
. (5.17)

= ﬁ pe ({Ltk(X)I X € T;,k} € En7k>
k=1

a.s.

tk:zf‘r‘? (Xk)

where T, (xy) is the connected component of T, containing xi when the edges on the path
(xo, ..., xy) are removed from T . (We regard T, (xy) as isomorphic to T, _, defined earlier.)

Proof. This follows using the exponential memoryless property of the exponential distri-
bution similarly as Lemma 2.1. U

In order to understand the extremal process associated with ¢, we thus need to un-
derstand the extremal behavior of independent processes Ly, Ly,, . .., Lt,, for which we
now have Theorem 1.2 at our disposal, with the sequence {t;};_; set via t; := 1, (x¢).
Here are the facts we need to know about this sequence:

Lemma 5.3 Let {Tj}x>0 be as defined in Corollary 1.3. Then forall n > 1

(0x,(x0), - -, £z, (xn)) under P° (T, .., Th). (5.18)
In addition,
khf;j ’g{ P<O < ajlog(j }> 1 (5.19)

holds true for each & > 1.

Proof. The law of (ZTQ (x0), .- ,KTQ(xn)) was identified in Zhai [47, Corollary 5.3] (it ap-
pears that a factor 1/2 is missing there). The formula (5.19) then follows from a union
bound and a standard tail estimate for Gaussian random variables. ]

The tail bound in the previous lemma shows that the relevant contribution to the
extremal process of /r, arrive only in the trees T, _(xx) with k small:
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Corollary 5.4 Foreach A > 0,

sup P2 <3x elL,n U T, i(x)): o/l () = My — A) — 0. (5.20)

n=k k—o0

Proof. Suppose k > 1 is such that the event in (5.19) with « := 2 occurs. Then (3.58) gives
that, foreachj =k,...,n,

my — an_j(T, \/7 \/1oghbj—+/2jlogj— \/@

where we also used that t — a,_;(t) + +/t is non-decreasing. As this grows linearly
with j, Lemma 3.2 along with the observatlon that the maximum of the local timeon T, _;
dominates that on T/, _ j show that, on the event in (5.19), the probability that the maxi-
mum of Lt exceeds m;, — A is exponentially small in j. Along with (5.19), a routine union
bound then proves the claim. U

log(2jlogj)+0O(1), (5.21)

We are now ready for:

Proof of Theorem 1.1 except for (1.7). Given n > k > 0 and a sample of {r,, write 77, for the
process on the left-hand side of (1.5) and denote its truncated version by

;/]Vlk - Z 1{911 >h k}éf)n(x ®(5\/7 my”* (522)
xell,
Given t > 0 and a sample of L; on T}, let also
= D S ®0 /L —m, (5.23)
xell,

Pick f: [0,1] x R — [0, %) continuous with support in [0, 1] x [-A, A], for some A > 0,
and observe that

lim lim sup| E%(e™"/7) — EQ(e~ )| = 0 (5.24)

k= oo
by Corollary 5.4.

Next let us call upon Lemma 5.2 to produce a coupling of ({r,(xo), . .- ETO (xn)) with
conditionally independent processes (Ly,, . . ., Li,) on T}, for the choices ¢; := /- (x]) such
that /-, coincides with appropriately parametrlzed Ly, on T, _j(xj), for each j=0,.
Under this coupling we have

(g f) = 221,7]1;7] (X)) £ (8 (x), /£, () = )

=0 xelL,

:2 3 i) (Bamj(x) f(b—fen,j(x), Lt/.(x)—mn)

j:O xe]Ln,]-

(5.25)

t=lry ()

Abbreviating
e, 1) = e gy () f (7%, B4ty — ), (5.26)
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Lemmas 5.2-5.3 (along with the fact that the local time process L; on T/, _; is a restriction
of the process on T,_;) give

Eg( <77nkf> (HEQ <€n zf”l> |t':=T'>’ (527)

where the outer expectation is with respect to the law of (Tp, T1,...). Here the term
corresponding to j = 0 has been dropped because Ty = 0 a.s. and so the corresponding
process Qf{’ is thus zero when ty = Tj.

Note that m,_; —m, = —jy/logb +0(1) as n — . Using the uniform continuity
of f to absorb the error and the lack of atoms of Z, to deal with the discontinuity of f, ;

at x := b~! Theorem 1.2 shows that EQ(efﬁ—f’f ”'f>) converges, for each u > 0, to
E <exp{— / 111y (x)Zy(dx) @ e VI8P dh @ D(dE) (1 — e ~EAiht0) }> (5.28)

where the expectation is with respect to the law of Z, and fj(x, i) := f(b~/x,h — j\/logb).
A change of variables casts this in the form

E (exp{— / z{ (dx) @ e 2V108bd ) @ D(E) (1 — e~ G htD) }) , (5.29)

where _

ZP(dx) 1= b~ V115 (¥) Zy (). (5.30)
Plugging the above convergence statements into (5.27) it follows that if {ZT]. Jj=0 is the
family of random measures associated with {T}};~¢ as specified in (1.21) and

k—1
= > b oy (%) Zg, (b dx) (5.31)

then the Bounded Convergence Theorem gives
2 (e_<77n/krf>)

L E (eXP{— / Z(dx) ® e 2VIBhdh @ D(dE) (1 — e~ @) })

n—o0

(5.32)

foreachk >1

To finish the proof of convergence (1.5) observe that Z; increases to the measure Z
defined by the right-hand side of (1.22) and so, by the Bounded Convergence Theorem,
the right-hand side of (5.32) tends to that with Zj replaced by Z as k — . Thanks to
(5.24), the limiting expression is then also the limit of E%e=mf)) as n — oo (and the
limit thus exists) for each f as above.

The properties of D were proved along with Theorem 1.2. To address the proper-
ties of Z, note that Z is finite a.s. by the tightness of maxycy, ¢, (x) proved in [20,
Theorem 1.1]. While the measures Z; may vanish with positive probability, by (1.15)
this probability decreases with t. Since Ty — o a.s. it follows that a positive frac-
tion of Zr,-measures are non-vanishing almost surely, thus showing Z([0,€)) > 0 for
each € > 0 a.s. That Z({0}) = 0 a.s. follows from the construction of Z as an increasing
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limit of Z; and the fact that, since Z; is supported in [b=*, 1) and Z([0,1]) < oo, we have
Z([0,b5)) < Z([0,1]) — 2¢([0,1]) — 0 as k — . O
From the above we immediately get:

Proof of Corollary 1.3. The above proof shows that Zj defined in (5.31) increases in law to
measure Z governing the limit extremal process. Hence we get (1.22). 0

Proof of Corollary 1.4. For n > k > 1 abbreviate IL,, ;. := IL,, n T’,_, (x¢). Corollary 5.4 tells
us that the maximum of £, occurs in U;'(=1 IL,, ; with probability tending to one as n — oo

and k — oo. Writing M, j := maxyel ETQ(x) — my, the joint law of (M,, 1, ..., M,, k) has

n,j

a limit described by

0 . - 2 } bb_ZjZTj(
P< Q{Mn,]‘ < M]}> njo)o ]E< ne og
= =

Another way to write this is as

{M,j:j=1,...,k}
aw 1 - . , 5.34
! { (log Zr,([b 1,1))—2]10gb+c;):]:1,...,k}, (5:34)

— 24/logb
where Gi, ., G,’C are i.i.d. standard Gumbel random variables shifted by log(2+/logb).
As the G;’s are continuously distributed, the largest term in the sequence on the right
of (5.34) is unique a.s. Thanks to Corollary 5.4 again, so must be the maximizer of the
infinite sequence. This yields the claim by the fact that, within IL,,;, the maximizer
of x — {r,(x) is uniformly distributed by the symmetries of the tree. U

b_l,l —24/logbu;
=) J). (5.33)

5.3 Limit characterization of Z-measure.

To complete the proof of Theorem 1.1 it remains to prove the limit characterization (1.7).
Our argument relies on the convergence of the total mass of the measure on the left
of (1.7) to the total mass of Z. This was claimed in [20, Theorem 1.5]; unfortunately, the
proof of this part appears to be missing. As this fact enters rather delicately our proof
of (1.7), we state and prove the result here.

Proposition 5.5 Let C, 1= 2¢,4 /log b for c, as in Proposition 2.2. Then
~ +
Cob™ Y (my/logh — 4/l (x) ) L, ()4 VIBIVERET I 2 ([0,1]),  (5.35)

n—0o0
xell,
where Z is the measure from Theorem 1.1.

The proof of this proposition will rely on one useful fact:

Lemma 5.6 Givenn > 1, let E(TZ) be the local time on T, for the walk started from 0 € IL,, and
stopped upon first hit of . Then forall 1 < k < n,

(0 (x): x e T} "2 {69 (x): x e Ty} (5.36)
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In particular, the laws of {E(TZ) : n = 1} are Kolmogorov-consistent.

Proof. This follows by combining (5.17) and (5.18), along with the fact that the law
of {Ti}k=0 does not depend on n. (A direct argument can be based on the memory-
less property of the exponential distribution and the fact that the walk started from 0
on T, enters Ty through 0 on T}.) ]

Using this we now give:
Proof of Proposition 5.5. Given n > 1, write Z() for the measure from (1.7). Our goal is to

show that Z("([0,1]) tends in law to Z([0,1]) as # — 0. Let s € R and let us continue

writing K(T':) for the local time ¢, on T, under P2. Conditioning on the values in Ty for

some 1 < k < 1, Lemmas 5.2 and 5.6 imply

P9<max 6 (x) < my +s) - EO(};{}( P@( max /L¢(x) < 11y +s)‘ e )). (5.37)

xell, xell,_k 70

We will represent the probabilities under the product using the asymptotic form in
Proposition 2.2. For this we assume that

(k)
A = {rzrelﬁq/é (z) < mk+loglogk} (5.38)

occurs and note that, for t := E(T];) (z), we have m, + s = a,_i(t) + v/t + u with

U=y +5—a,_i(t) =Vt

1 1
= ky/logh — ———
%877 g /logh 14/logh

> k+/logb — L logt + O(1) — my — loglogk

8./logb

logk —2loglogk + O(1),

log(n_k+\/¥>—\/f+

logt+s+
gL TS "

1
>
y/logb
(5.39)

where the third inequality follows by plugging the constraint from (5.38). Also note that
for such u and t we get

loglogk
uequ logh _ (1+O &108 ) k\/l()?
V (Flogk ) ( V) 540
% bkaETQ(x)l/4e2\/10g \/frg(x)efZS«/logb’

where the error term is random but bounded by a deterministic constant times the stated
ratio. For k large, u is large and the quantity (5.40) is small uniformly for all terms in the

product in (5.37). This allows us to apply Proposition 2.2 to the terms with ¢ := E(TI:) (z) =
loglog k while handling the remaining terms using the bound (3.7) in Lemma 3.2. As
is seen from (5.40), each of the latter terms contributes at most exp{O(1)b~2k?} to the
product and contributes at most O(b~2k?) to Z(*). These terms are thus negligible and
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we may rewrite the expectation in (5.37) as
O(PY(Af)) + E0<exp{5(1) — C M ew + 0(1))e 2 VI8t 2(K) (10, 1)) }> (5.41)

where the o(1)-terms vanish in the limit as n — o followed by k — .

Appealing to the structured-process convergence in Theorem 3.1, a simple approxi-
mation argument shows that P2(AJ¢) — 0 as k — oo while the left-hand side of (5.37)
converges to

E (exp{—(Z\/@)lezs\/@Z([O, 1])}) (5.42)

as n — o0. Since s is arbitrary, taking k — o0 we get convergence of the Laplace trans-
forms of the laws of Z)([0,1]) to that of Z([0, 1]). This is enough to imply the claim. [

With the above in hand, we are ready to give:

Proof of (1.7) in Theorem 1.1. Set C, 1= 20,4/ logb for c, as in Proposition 2.2. Given
n =k > 1and a sample KTQ of the local time on T,, from P2, denote

k—1
Zlgn) =C, b Z Z 1[b—j—1/b—j)(6n<x»
x€lL, j=0 (5.43)

+
o N N ) O R

Observe that, if the factor n — j were replaced by 7, then this would simply be the re-
striction of the measure in (1.7) to [bF, 1).

Nextlet xo := 0, x1,...,x, := 0label the vertices on the unique path from the root to 0.
Lemma 2.1 implies that, conditional on (ETQ(xo), . ,Erg(xn)), the local time process ETQ
restricted to {x € IL,: 8,(x) € [b~/=1,b7/)} has the law of Ly, on {x € L, ;: 6,_j(x) €
[b~1,1)} for t; := £, (x;). Using this we get

k—1
2z (dx) ' Zlb 2 i oy () 2 (B
]=

ity (5.44)

where (Ty, ..., T,) are independent with law given in Corollary 1.3 and (Zt(lnfl), cee, Zf:zl)

are independent samples of measures from (1.18); i.e., measures of the form

~ ~ +
Zt(k) =C, b Z <k«/log - \/Lgk)(x)) Lik)(x)l/4 e?viogh L*(k)(x)%k(x) (5.45)

xelly

with {t — Lgk) : k > 1} independent for different k. We again dropped the j := 0 term in
(5.44) due to the fact that Ty = 0 a.s. Invoking the convergence (1.18) we then get

zW 2 oz (5.46)

n—o0

where Z; is as in (5.31). Recall also that Z; W 2 ask — 0.
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Let Z(") denote the measure on the left of (1.7). Clearly, Z,En) < Z pointwise as
measures for each k = 1, ..., n. Moreover, by Proposition 5.5,

20 (jo,1]) =% 2([0,1]), (5.47)

In particular, {Z(": n > 1} is a tight family of random Borel measures on [0, 1] which
permits consideration of weak subsequential limits. But the inequality ZIE") < Zm
along with (5.46) and the weak convergence of Z; to Z show that any subsequential
weak limit Z’ of {Z("): n > 1} dominates Z in law and yet, by (5.47), has the same total
mass. This forces Z’ to coincide with Z, proving the claim. O

6. BARRIER ESTIMATES FOR BRW

To settle all aspects of the proof of Theorem 3.1, it remains to prove the convergence in
Proposition 3.6 and the barrier estimate in Lemma 5.1 for the Branching Random Walk
with normal step distribution.

6.1 Gaussian random walk above a barrier.

We begin by a statement that belongs to the theory of inhomogeneous Ballot Theorems.
This subject has been treated systematically in many sources; e.g., Bramson [21], Biskup
and Louidor [19], Mallein [40] or Cortines, Hartung and Louidor [25]; unfortunately,
none of these treatments seem to give precisely what we need due to either a differ-
ent setting or non-uniformity in the relevant parameters (specifically, allowing that u in
(3.25) scales as a power of k). We will therefore work out the needed details here focusing
solely on the setting relevant for the above claims.

Proposition 6.1 Fix any o € (0,1/10) and let Xy, X1, ... be a random walk with step distri-
bution N'(0,1/2). For each € € (0,1) and each é € (0,1) there exists ag = ag(€,6) = 1 such that
forall a > ag, all naturals k > 2 and all reals r, u satisfying
r,u=a’ and ru<k'° (6.1)
and all y: {0, ..., k} — R obeying
lv(i)| < a+(min{i,k—i})?, i=0,...,k (6.2)

we have

(1— )it (]‘[1{ X5 ‘Xo—r Xk—u> (1+e )42” (6.3)

A key step of the proof is to show that, conditional on X > —|v/|, the walk actually
obeys X > |y|. We prove this first as:

Lemma 6.2 Let X beas in Proposition 6.1. For each e > 0and o € (0,1/10) there exists a; > 1
such that for all a > ay and all non-negative vy satisfying (6.2),

k—1
ru
E < Lming<ycea 1= <0} | [ 12000 ‘ Xo =1, X = ”) Ser (6.4)
j=1
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1/0

holds whenever r,u > , uniformly in k = 2.

Proof. Abbreviate the law of X conditioned on X; = r and X; = u as PIZ.“. We first make
one useful observation. Given a path X of the random walk, note that if i — X; — (i)
is minimized at some ¢, then X; > Xy —y(¢) + y(i) = Xy —y(¢) foralli = 1,...,k—1.
Hence we get

Pt (min [Xi—7(i)] = X, = 7(0) | X, = s)

1<i<k
<t Qowssv@)eiz( () xmsvien)

i=(+1
forall¢ =1,...,k—1. Fors € [—y({),v({)] the homogeneous Ballot Theorem (or the
argument in the last part of the proof of Proposition 6.1) bounds the first probability by
a constant that depends only on the distribution of X times ¢=1[r + y(£)]y(£). A similar
argument applies to the second probability as well.
Next observe that, by a calculation with Gaussian densities, the probability density f
of X, under Pg:;: equals

fls) = \1F (kk e)ep{ Qﬂcie)1[2(“5)%16(”_5)]2} 6:6)

which is readily bounded as

1 k [(min{ru}—s), P/ min{tk—e

F(5) <y | K oltminira) o) 2/ min{tk-6) 67)
NI

Let Ej; denote the expectation with respect to P} Partitioning according to the first

max1rmzer of i — X; — (i) we then dominate the quantity of interest as

k—1
Eqx < Lming <o aX—101<0} | | 1{Xf>v<j>}>
= 6.8)

- vk B [(mi“n{ﬂ’n”}&ﬂfm]z
Z Sr+ (¢ ][u+’y(€)][€(k_€)]3/2e =
where the terms (=1 (£)[r + v(¢)] and (k — £) Ly (£)[u + (£)] arise from the estimates
of the conditional probability as discussed after (6.5), the exponential on the right domi-
nates that in (6.7) uniformly in s € [—y(¢), v(¢)] and another factor 2y (¥) arises from the
integral over s subject to the aforementioned restrictions.
Assuming a > 1and r,u > a'/? > 1 we have

[r+7(O)][u+7(0)] < ru[l +~(0)]% (6.9)
We now finally call upon the assumed bound (6.2) on o which permits us to dominate
the sum in (6.8) by 7 times

k=1 k3/2 [(@}/7 —a—(min{tk—})7)  ]?

g [1+a+ (min{¢,k — £}) fWg (LT} _ (6.10)
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This sum is bounded by twice that for ¢ < [k/2], with k*? subsequently cancelling
against the lower bound on (k — ¢)¥? arising in the denominator. We then split the
resulting sum according to whether /7 < a/2 or not. Under ¢ < 1/10, the former part is
checked to be exponentially small in 2!/ while the latter part is bounded by a constant
times a(~1/2+59)/7  Ag 50 < 1 /2, (6.10) is thus bounded uniformly in k > 1 and tends to
zero as a — . We conclude that (6.4) holds for a sufficiently large. O

With (6.4) established, we now use it to prove the bounds in (6.3).
Proof of Proposition 6.1. Denote 7y,(i) := a+(min{i, k — i})a and assume a > ay, for a;
related to € as in Lemma 6.2. Abbreviate the expectation in (6.3) as Fi(7y). If |y < 7«

and 7, u > /7, then the above tells us

Fe() = Fe(7x) = Fe(—7+) — L,lc €= F(0) - %e- (6.11)

To estimate the right-hand side, let B = {B;: 0 < s < k/2} be the standard Brownian
bridge of time-length k/2 and endpoints fixed to By = r and By, = u a.s. Thanks to the
specific step distribution, under Py the family {X;: j = 0,...,k} is equidistributed to
{Bj:j=0,...,k}. Using P"" to denote the law of B, the Reflection Principle gives

7 . _ 1 _ _ ﬂ
F(0) > P (0<1srlfk/2Bs > o) —1—exp{—4 ; 3 (6.12)

The right-hand side exceeds (1 — €/2) 4;{” when ur < k!¢ and both u and r (and thus k)
are sufficiently large. Plugging this in (6.11) proves the lower bound in (6.3).
For the bound on the right of (6.3), a similar argument as one used for (6.11) shows

F(r) < Fe(=72) < Fel) + e (6.13)

Proceeding as in the proof of [19, Lemma 4.16], we now bound Fy(-y.) as follows. First
note that, for B the above Brownian bridge and each j = 1,...,k,

WS =B, i1, —(1-5)Bi—sB, 0<s<l, (6.14)

defines a family {W®): j = 1,...,k} of i.i.d. Brownian bridges of time-length 1 and end-
points fixed to zero. Abbreviating w9 = infocs<1 WS(] ), we readily check

k—1
(V4B = 1)} ﬂ{ > —min{y.(- 1,0 c () {B>0} (615
=1

0<<s<k/2

The properties of Browman motion imply that the two giant intersections on the left are
independent. This yields

(7 H P00< —min{y.,(j — 1),’)/*(]')}) <1- exp{—4%}. (6.16)

The Reflection Principle shows that WY has a Gaussian lower tail and our choice of 7,
then ensures that the product on the left is at least (1 + €/2) ! when a is sufficiently large,
uniformly in k > 1. The inequality 1 —e™ <'s bounds the right-hand side by 4%". Usmg
this in (6.13) proves the bound on the right of (6.3).
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If we do not insist on precise asymptotic and just aim for an upper bound, we can
drop most of the restrictions between the parameters in Proposition 6.1:

Corollary 6.3 Assume X is as Proposition 6.1. For each o € (0,1/10) and a > 0 there exists
¢ > 0 such that

<H1{ X570} ‘onr, Xk=u> <c(1+”;{(1”) 6.17)

holds for all r,u > 0,all k = 2 and all y: {0, ..., k} — R satisfying (6.2).
Proof. Fix o € (0,1/10) and let a; be the constant from Lemma 6.2 with € := 1. Givena > 0
let <y satisfy (6.2). Set @ := max{ay, a,1}, abbreviate (i) := 4 + (min{i, k — i})” and note

that ¢y > —9. Using that the expectation increases when r and u increase, the argument
(6.13-6.16) along with the inequality 1 — e ™ < s show

(Hl{xj>’¥ ’XO—T’ Xk—u>

(Hl{ Xj>— w)}’Xo—al/ +7, Xk—al/"+u> (6.18)

=1\ (@Y7 + 7)(@V7 + u)
)

< <e +4HP0'0 (wﬁ” > —min{Y(j — 1)/7(]”)

j=1

To get the claim, note that the product is bounded uniformly in k > 2 and that 4/ > 1
implies (87 + r) (@Y7 + u) < @7 (1+r)(1 + u). O

6.2 Reduction to a barrier estimate for random walks.

We now move attention to the Branching Random Walk with step distribution (1.27)
whose first n generations can alternatively be viewed as a T,-indexed Markov chain
with steps distributed as N(0,1/2). Our next goal will be to show that, along a path
from the root to a near-maximal leaf, the Markov chain stays above a barrier of the kind
studied earlier, modulo a linear tilt of the whole path.

We start with some notation. Given a sample & of the BRW on T, with step distribu-
tion N(0,1/2), foreachk =1,...,nlet

Mj := max{h(x): x € Ly, f(x) > b~'}. (6.19)

Departing from our previous labeling convention, let X0 :=0,x1,...,x, := 0 be the path
from 0 to the root on T,,. For u € R and A € o(h(xp),...,h(xy)), define the probability
measure

Puu(A) := P(A| h(xo) = ity + u) (6.20)
and, for s > u, another measure
Qs =E <1A H P < i + t) ‘t::n?n+s—r7lk—h(xk) h(xo) = My + u> . (6.21)
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In both cases the conditioning is well defined for all u € R thanks to the probability
density of h being a continuous function.

The measure P, , gives us access to the law of the sequence (h(xp),...,h(x,)) condi-
tioned on h(0) = 71, + u, which by the structure of the Branching Random Walk reduces
to the law of a random walk with step distribution NV (0, 1/2) conditioned to reach m,, + u
at time n. For Q; s, we in turn get:

Lemma 6.4 Foreachs > uand A € o(h(xo), ..., h(xn)),

Qusu(A) = (A N {maxh(x) < i, + s} ‘h = 1, + u). (6.22)

xell,

Proof. Given a sample h of the BRW on T, foreachk =1, ...,n set
MY = max{h(x) —h(xg): x € Ly, b7 1 <0, (x) < b—”+’<}. (6.23)

By the structure of T, and the Markov property of the BRW, the random variables

M{,..., M, are independent of each other and of (h(xo),...,h(x,)) with M} faw M,
foreach k = 1,...,n. Using these variables, the event {maxxe]L h(x) < my, + s} becomes

{h(x0) < ity + s} N ﬂ{h (xk) + M < iy + s} (6.24)
k=1

For s > u the first event occurs automatically under the conditioning on /(0) = m, + u.
Using the independence of M7, ..., M, the conditional probability of the second event
given (h(xo),...,h(x,)) turns into the product in (6.21). U

We now proceed to prove three lemmas about Q,,,. In the first lemma we ob-
serve that the product of the probabilities “inside” Q, effectively pushes the path
(h(xo), ..., h(x,)) below a barrier:

Lemma 6.5 Forall A > 0,0 € (0,1/10) and § € (0,1) there exist ¢ > 0 and ap > 0 such that
forall s =1, all u satisfying s > u >s — A and all n with s < n'~,

Qus (( ({0 <"y <5+ vn,uac)})C)

k=1

1+ ) (6.25)
s—u)s
<c— Z [k + f)/l’l,/l (k)z]e_%cz')’n,a(k)
n 1<k<n/2
holds for all a > ap with
Yna(k) := a+ (min{k,n —k}). (6.26)
Here c; is as in (5.1).
Proof. Abbreviate
n—j. .
Aj= {h(x]) < . ]mn +s+ 'yn,a(])}. (6.27)
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On Ai we have

~ - - ~ n—k.
my + s — my — h(xg) < My, — g —

— Yua(k)
3 r 1 (6.28)
S I RS

once a is sufficiently large. Using (5.1) along with the fact that, by the FKG inequality
and the symmetries of the tree, P(M], < ity — A)? < P(M; < fitg — A), we then get

Qn,s,u((AkmAn %) ﬂ A> 2 /cre” 462%’01?,”( ﬂ A) (6.29)

j=k+1 j=k+1

Since the probability in (6.25) is dominated by the sum of the probabilities on the left of
(6.29) and vy 4(k) — Yna(k — 1) is uniformly bounded, it suffices to show

nk (1+5—1u)s 1
Pn’u ( ﬂ A]) < CT [k + r)/n,a (k>2:|egc2')/n,a(k) (6.30)
j=k

for some constant ¢ > 0, uniformly in 1 < k < n/2 and u and s as above.
As the quantity on the right of (6.30) exceeds 1 once n° < k < n/2 and n is large, it
suffices to focus on k < n°. Abbreviate
n—k

X = 1y + s — h(xg) (6.31)

and note that h(xg) = 1, + u translates into Xo = s —u and h(x,) = 0 into X,, = s. Using
this we get

n—k
PM,(ﬂ ) <ﬂ{x ~Yua()} [Xo =5 — 1, Xn=s>, (6.32)
j=k
where, capitalizing on the fact that conditioning i.i.d. normals on their sum makes their
mean irrelevant, X is a random walk with step distribution N (0,1/2) under the law on
the right. Shifting the whole path X by 1, ,(k) and abbreviating y(7) := ,4(k) — Yn,a(i)
dominates the probability in (6.32) by

n—k
P< ﬂ{X] = 7(])} ’ Xo=s—u+ 'Yn,a(k)/ Xn =5+ ')’n,a(k)>' (6.33)

We now invoke (lX +B) <a’+p7toget|y(k+7j)| <jforallj =0,...,n/2 —k. This
allows us to call upon Corollary 6.3 under the conditional measure given X; and X,,_x
to bound the probability (6.33) by a constant times
gL+ Xelll + X,
n—2k

Shifting X by k — %s + ”T’k(s — U) + Yn,a(k) while using the Gaussian nature of X, the
expectation is written as (n — 2k)~! times

E(|Xi+ gu(k)| [ X + puln = K)[| Xo = 0, X, = 0)), (6.35)

Xo=s—u+Ynalk), Xy =5+ Yna <k>) (6.34)
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where @, (k) := 1+ Ya(k) + s+ K (s — ).
In order to bound (6.35), we first separate terms using the Cauchy-Schwarz inequality
and the inequality (« + B)? < 242 + 22. Then we invoke the observation that

E(X;|Xo =0,Xy =0) < min{k,n —k}, (6.36)
holds with some constant ¢’ > 0 forallk = 1,...,n — 1 and note that
Pn(k) < Ynalk) +s+1 (6.37)
and, relying on k < ndand u <s < n'?, also
Pn(k) < Yna(k) +2+s—u. (6.38)
Putting these together bounds (6.35) by a constant times (1 + s — u)s[k + 7y, (k)] when-
ever k < n°, thus proving (6.30) in this case. O

We now invoke the same argument as in the proof of Lemma 6.2 to get:

Lemma 6.6 There exists ¢ > 0 such that for alln > 1, all v: {0,...,n} — [0,00) and all
s=zuz=0,

Qusu <<nﬁ/{h(x]') <n;jn”1n +5— ’Y(j)})c N ﬁ{h(xi) < n?_in?n +5+ ’Y(i)})
i=1

j=k

<é

()

(I+s—u)(1+s) nk n3/2
n 2 e

(6.39)
forany k, k' =1,...,|n/2| such that y(i) > 1 foralli=k,...,n—Kk.

Proof. Abbreviate the second intersection in (6.39) as A while noting that the i = n term
can be dropped due to the fact that s > 0. Denote

n—j. .
Bj:= {h(xj) <= Vit +s 7(1)}- (6.40)
Relying on the substitution (6.31) with vy instead of 7, , we then get
QI’I,S,M(BZ M A) < Pn,u(BE M A)

n—1
(6.41)
= E(l{XK’Y(f)} | R ’ Xo=s—u Xy = S>-
j=1

Proceeding as in (6.8), this is bounded by a term proportional to

V(0% =+ 3Ol + 7O i

Using the bounds s —u + y(¢) < y(€)(1+s—u)and s+ y(¢) < y(£)(1+s)once y({) > 1
instead of (6.9), the claim follows by summing the bound over £ = k,...,n —k'. ]

(6.42)

The conclusion of Lemma 6.6 will be used both in the proof of Lemma 5.1 and Propo-
sition 3.6. For Lemma 5.1 we will also need:
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Lemma 6.7 Let ¢ € (0,1/10) and let vy, , be as in (6.26). For each a > 0 there exists a
constant ¢’ > 0 such that for all n,k > 1 with 2k < n,all s > 0,all u < sandall v > 0,

Qusi ({h(xk) <”n_kn~1n +s-0} n ﬁ{h(xi) < %ﬁq +5+ 'yn,u(i)}>

i= (6.43)
1+s—u)(l
<o 1ts :)( +S)E<(1 + X)L x0 |Xo = 5 — 14, Xy =5 ).
Proof. Proceeding via the substitution (6.31), the probability is dominated by
n—1
E <1{Xk>v} H 1{Xj>_%/a(]‘)} ‘ XO =S—1U, Xn = S> . (64.4)
j=1

We will bound this by conditioning on Xj and separately estimating the conditional
probability of the product for indices less than k and larger than k.

Noting that 7,,4(j) < yn,«(k) for all j < k, the homogeneous Ballot Theorem (or Corol-
lary 6.3) dominates the former probability as

k—1
E ( | [ ST — ‘ Xo=5—u Xy = )

= (6.45)

p .
For the latter probability we note that ,,4(j) < Yn—ka(j — k) + ¥n,a(k) which then gives

n—1

1+s+ k) (1+ Xi + k

E( [1 1{xj>vn,a(j)}’Xn =5, Xi = ) <! nal L)(_k Kt Tnalk)), (6.46)
j=k+1

<c

Separating terms as before, this dominates (6.44) by (1 +s —u)(1 + s) times

1+ yna(k)]?
c2[k(Z”f§<))]E<(1 + X)L, 0 [Xo =5 —u, Xy = s>. (6.47)
Since o < 1/4, the prefactor is bounded by ¢’/n independently of k < n/2. O

6.3 Proofs of Proposition 3.6 and Lemma 5.1.

For the proofs of our claims, we first summarize the above lemmas as:

Lemma 6.8 Given any o € (0,1/10), a > 0 and with 7y, , as in (6.26), for k < n let
n—k

G i= {Xe € K, KT} o (V{X) = 1na(i)} (6.48)
j=k

where X is related to h via (6.31). For each € > 0and A > 0 there exist a € R and kg > 1 such
that forall s > 1and all u < s withs —u < A,

Qn,s,u( Zk) <

holds once n” >k > ko and n'=7 > s.

1+U+
n

(6.49)
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Proof. Let A; be defined by (6.27) and set A := ]’7:1 Aj. Next let B; be as in (6.40)
with y := v,,, and set By := ﬂ;:kk B;. Finally, set

n—k

Cp = {h(xk) > Ay + 5 — kl“f}. (6.50)

Then R N
Gfbk = (BknCp) < AU (AN Bp) u(AnCy). (6.51)
Invoking the union bound, it suffices to show that the Qs ,-measure of each event on

the right is less than %17” € once k is large and the other restrictions hold.

Ass <u+A < (1+A)(1+uy), Lemma 6.5 with 6 := 0 gives Qpsu(A°) < %€1+nu+
once 7 is sufficiently large, uniformly in 1 < k < n/2. With this a fixed, Lemma 6.6 does

the same for Q5 (A N g,‘;) once k is sufficiently large (and 2k < n). Finally, Lemma 6.7

1+u,
n

with v := k=7 bounds Qu,su(A N Cf) by a constant times times

E<(1 + X)L, ok

A calculation (or an inspection of (6.6)) shows that the probability density f of Xj under
the conditional measure equals

fx) = \/15 Mexp{—k(nn_k)(x—(s—u)—i@z}. (6.53)

Invoking the constraints s — A < u < s < n!77 and k < 7% (and 2k < n), this is bounded
by a constant times the probability density of A (1 + A, k) whenever x > 1+ A. Since
1— 0 > 1/2, it follows that the expectation (6.52) can be made as small as desired by
taking k large, uniformly in n subject to k < n”. O

Xo=s—u, X, = s). (6.52)

We are now in a position to complete the proof of our first desired claim:

Proof of Lemma 5.1. Invoking the union bound and the symmetries of the tree, the desired
probability is for any s > —A bounded by

~

P<maxh(x) > iy + S)

xell,

xelL,

N . (6.54)
n b”P( {h(0) = #ity — A} A By(0)° {maxh(x) < ity + s}>

Given any € > 0, by (5.1) the first probability can be made smaller than € by taking s
sufficiently large. (We assume s > 1 in what follows.) Writing f, for the probability
density of h(0) — n1,, Lemma 6.4 casts the second probability as

/_ SA Qs ( {r?z g — h(x) € [K7, k“f]}°> Fulu) du, (6.55)

where 7 := ﬁ As is checked by a calculation, there exists a constant ¢ > 0 such that,
uniformly in n > 1 over the interval of integration,

fu(u) < cnb™"e 211080, (6.56)
We set €’ := €(24/logb)e 2*V1°80c—1 in what follows.
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Next let 0 := 11 and use Lemma 6.8 to find a2 > 0 and kg > 1 such that

Qn,s,u( n,k) <€ 7’1_1 (657)
for the given s, all u € [ A, s] and all n > 2k obeying n? > k > ko and n'~7 > s. As

‘ﬁqn iy = ;kr?zn <K (6.58)
once k is large and n > 2k, we get the inclusion
{ﬁn i — hix) € [, kl—ff]} > Gpg (6.59)

once k is so large that also 2k% +s < k% and k=7 — k% +s > k! hold. Hence the
probability under the integral is also at most €'n~! and the integral is thus bounded by

“lenb™(24/logb) ~te? V108D — pm, (6.60)

Plugging this in (6.54), the desired probability is less than 2€ once k is large and n » k.
Since € is arbitrary, this implies the claim. U

/

The proof of Proposition 3.6 requires additional lemmas. We start with control of the
the total mass of Qy, ;, u:

Lemma 6.9 Forall 6 € (0,1) there exist ¢ > ¢’ > 0 and ug > 0 such that for alln > 1 and

all u > ug withu < nl=2,
¥ < Quun(R™1) < c%. (6.61)
Proof. We start with the lower bound. Given ¢ € (0,%49) and a > 0, let
n
—k
A= () < it 4+ a7 = a(R) . (6.62)
k=1 n
For h(xg) = i, + u, the substitution (6.31) gives
h(x0) — h(xj) = fity + 1 — h(x}) = X + %n? (6.63)
On A’ we can bound the product in the definition of Qy, ,,, by
n
H P(Mj. < it + D=, —it— " ity -y, (k) —al/ (6.64)
k=1
from below and hereby get
Quuu(A”) = En( (H L s a(h)—at/ey | Xo = 0, Xy = u> (6.65)

Using My > M, the bound (5.1) and that inf,> P(M,, < ni, +1t) > Oforallt € R
we check inf,>1 ¢,(a) > 0 for each a > 0, so it remains to find a lower bound on the
expectation in (6.65). Here a shift of the whole path by a'/¢ turns the expectation into the
form in (6.3) with (r, u) given by (a'/?, u + a'/?). Proposition 6.1 with € := 1/2 and  equal
to half of that above bounds the expectation from below by 2a'/? (1 + a'/?)n~! provided
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that a > ag and a'/?(u + a'/?) < n1=9/2. This gives the claim once u is sufficiently large
with u < n'=°.
For the upper bound let A; be defined by (6.27) and set A := 7:1 Aj. Lemma 6.5

gives that Qy 4 (AS) is at most a constant times un~! once u is sufficiently large. Next

we invoke Q. u(A) < P,u(A) and bound the right-hand side by the expectation in
(6.65) albeit with Xx = v,q(k) — alle replaced by Xy > —vu.(k). Corollary 6.3 then
bounds the expectation by a constant times un~! once u is sufficiently large, proving
that also Q,, ., (A) is at most a constant times un~!. U

Next we give a representation of expectations of functions that depend only on a few
initial values from h(xy), ..., h(x,):

Lemma 6.10 Givenk > ¢ > 1,0 € (0,1/10) and f € Cc(R") let

k
Ek(f) :=E (f (1 + j\/log b}y ) < [ [P <) |t:=Xj+j\/@> 1{xke[kv,kw]}Xk> /
j=1

(6.66)
where X is the random walk with step distribution N'(0,1/2). Let 6 € (0,1/2). Then €, x(u, f)
defined for each u > 0 and n = k by

Euu (f(1h(x0) ~ h(¥_1) ) = 218(F) + Beetu, f) (667)
obeys
lim limsup  sup ~}e,,,k(u,f)| =0. (6.68)

k—c0 n—ao0 nﬁgugnl—t)

Moreover, writing 1 for the constant function equal to 1, we have

0 < inf 5k (1) < sup E(1) < oo. (6.69)
k=1 k=1

Proof. Fix o € (0,1/10) and let & € (0,0). Lete € (0,1/2) and leta > 0 and kg > 1 be as in
Lemma 6.8 for s = u (and so, e.g., A := 1). Define the event

n—k
Guje = {Xe € [T} o (1{X) = Fua(i)}, (6.70)
j=k
where 7, , is defined using ¢ instead of ¢. Note that 7, , < ¥4, gives (A;n,k 2 G,k and so
the bound in Lemma 6.8 applies to G, x as well. Denoting

k
E,f = ﬂ{(l —e)u < Xy j < (1+e€)u} (6.71)
j=1

a calculation based on the conditional probability density (6.53) shows that
Quu(FS ) < Puu(FSy) < cke™ i€ /k (6.72)

for some constant ¢ > 0, uniformly in k,n > 1 subject to k/n < €/2. For u > n°, this
decays faster than polynomially in .
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In light of these observations, it suffices to prove the claim for the expectation re-
stricted to the event G, x N F,, x. Using (6.63) this can be written as

EQuun (16,05, £ ({h(x0) = h(x)}{1))

o e (6.73)
= E{ (X} + i} i) (HP(M]' < t)’t;_x/+z;n~1n>Yn/k(X)lén,an,k Xn = ”>'
j=1

where for brevity we dropped the explicit conditioning on Xy = 0 and where

n
Yo(X) = [ P(M} < mj+t)

X+ Lty (6.74)
j=k+1
On én,k N F, r we have
n—k
Y, (X) > < [ PV <mj+ t)|t:=%,a<j)+{;m—mf>
j=k+1 (6.75)

n

x | P(Mj <m;+1)],

N P -
. i L
j=n—k

I

n

Since 5

fily — mj > —379ua(j) once j is sufficiently large (with j < n —k), while u > n
implies %u + %ﬁin —mj = %u forall j = n—k,...,n once k is large (with 2k < n), the
bound (5.1) shows that1 > Y, > 1 —€on én,k N F, r once k is large and 2k < n.

With Y, x(X) effectively removed, conditioning on Xj separates the indicator of the
event én,k N F, x from the remaining terms inside the expectation. Conditioning on X,
in turn separates the events @n,k and F, x from each other. As & < o gives Xy — Yy,q(k) >
%k" for k large, on F, x Proposition 6.1 gives
44MXk

n

n

(1—e) Lxeppo o)y < P(Guk | o(Xe, Xui)) < (1+¢€) Lixefo pi-o1y,  (6.76)

where we also assumed that n — 2k > n(1 + €)~! on the right-hand side and that X; —
k? > (1—€)Xyand u — k% > (1—e€)u on the left-hand side. Since (6.72) implies | Py, , (F, ) —
l]<eoncen>»k>»landu > n’, the Intermediate Value Theorem allows us to summa-
rize the above bounds as

4u

EQuun (16,4, f(1h(x0) = h(x)}[1) ) = A+ 0@ Eui(f),  (677)

where E, 1 (f) abbreviates

k
E (f({xj + L }i_y) (]‘[ P(M} < t)ytzxﬁ%>1{xke[kalkl,,]}xk X, = u>. (6.78)
j=1

The claim now reduces to showing that
lim limsup sup |Z,x(f) — Ek(f)| = 0. (6.79)

—®0 p—o0 n‘5<u<n1*5

Note that this and Lemma 6.9 then give the bounds (6.69).
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To get (6.79) note that, thanks to u < n'=%, the probability density of X under the
conditional measure converges to that of the unconditional variable as n — co. Since
also %rfln — 4/logb, the convergence (6.79) then follows from the continuity of f and
t— P (M; < t) along with the Bounded Convergence Theorem. U

Proof of Proposition 3.6. We will write n instead of k as it is more consistent with the
notations throughout this section. Let f € € depend only on the coordinates in the
subtrees rooted in xy, ..., xy, for some ¢ > 0. Note that the law of / on the leaves in the
subtree rooted at x; w1th j = 1 has a bounded and continuous probability density. It

follows that there exists a unique continuous function f;s: R’ — R such that
fos ({1(x0)= h(x))} o)
E(ef@hOMONY ey oy [ (o), (xn) ) (6.80)
E (1{h(xo>=maxxemn nxy | @ (h(x0), - rh(xn)))

holds for almost every sample of h. Hence we get

o—nu(08) _ 1:;’( fos (h(x0) — 1(x;)} o) ] 1(0) = max /i(y) = my + u). (6.81)

yelL,

Invoking the definition of Q, s, we then rewrite this further as

EQ, 1.4( fos({h(x0) — h(x))}i_o))

e 8nu (vs) —
EQn,ﬁ,ﬁ (1)

) (6.82)

where i := u + m, — m,.
Let now f be a generic function in C.(IR?). Lemma 6.10 permits us to write the ratio
in (6.82) as
EQ, o (f({h(x0) =h(x))}[ 1) 4, (F) + e, u(it, f)
= — e, (6.83)
EQn,ﬁ,ﬁ (1) 4&]((1) + en,k(u, 1)
Noting that the left-hand side is at most | f|, we can consider a subsequence of n —
oo along which it converges. By (6.68), taking this limit on the right-hand side wipes
out the €, (-terms. With the help of (6.69), this allows us to take k — oo along another
subsequence to get

Eo,..( f({h(x = (F

hm Qn/u,u(f({ ( 0 ( ]) ] 1)) _ lm flal (f

=0 EQn,ﬂ,ﬁ( ) k—c0 ‘—‘k( )

along any subsequence on the left and any subsequence of on the right. It follows that

both limits exist and are equal. The limit is uniform in 7 € [n’, n1=9].

In order to express the result as an integral with respect to a measure, note that

~—

(6.84)

£ lim Ex(f) (6.85)

k—o0 dk(l)

is a positive linear functional on bounded continuous functions R’ — R with norm one.
Moreover, Lemmas 6.6-6.7 imply that, for f supported outside [—a,a]*?, the value of the
functional on f can be made as small as desired by taking a sufficiently large. The Riesz
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Representation Theorem then gives existence of a unique Borel probability measure y,
on IR’ such that

lim — = [ fdu, (6.86)

for all bounded continuous f: R’ — R. Since the measures {i/},>( are consistent, the
Kolmogorov Extension Theorem implies that they are restrictions of a unique probability
measure # on RN concentrated on zero in the first coordinate.

To obtain v from p, we need to undo the step that led from f(s,v,-) to f. Consider
the canopy tree in Fig. 1 and, given a sample {Si}>o from u, where Sp = 0, sample
the Branching Random Walk with step distribution N (0,1/2) starting from h(xy) := S,
conditional on the leaf values to be non-negative everywhere. Identifying the leaves of
the canopy tree with IN the distribution of  on the leaves is then v.

The last item to address is the uniformity of the limit in parameters v and s. Here we
use that, for f continuous with compact support, for each € > 0 there exist m > 1 and
pairs (v1,51), ..., (Um,Sm) € [0,1] x R such that for all (v,s) € [0,1] x R,

Jax |f(0,s,) = f(visi, )| <€ (6.87)
where | - | is the supremum norm on RN. An elementary estimate then shows
max | fos = fo] < 2e. (6.88)
The convergence (6.84) is thus uniform in f e { fv,s :v€0,1],s € R} as desired. O
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