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Abstract: We present a general, rigorous theory of partition function zeros for lat-
tice spin models depending on one complex parameter. First, we formulate a set of
natural assumptions which are verified for a large class of spin models in a compan-
ion paper [5]. Under these assumptions, we derive equations whose solutions give the
location of the zeros of the partition function with periodic boundary conditions, up to
an error which we prove is (generically) exponentially small in the linear size of the
system. For asymptotically large systems, the zeros concentrate on phase boundaries
which are simple curves ending in multiple points. For models with an Ising-like plus-
minus symmetry, we also establish a local version of the Lee-Yang Circle Theorem.
This result allows us to control situations when in one region of the complex plane the
zeros lie precisely on the unit circle, while in the complement of this region the zeros
concentrate on less symmetric curves.
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1. Introduction

1.1. Motivation. One of the cornerstones of equilibrium statistical mechanics is the
notion that macroscopic systems undergo phase transitions as the external parameters
change. A mathematical description of phase transitions was given by Gibbs [17] who
characterized a phase transition as a point of non-analyticity in thermodynamic func-
tions, e.g., the pressure. This definition was originally somewhat puzzling since actual
physical systems are finite, and therefore their thermodynamic functions are manifestly
real-analytic. A solution to this contradiction came in two seminal papers by Yang and
Lee [25, 42], where it was argued that non-analyticities develop in physical quantities
because, as the system passes to the thermodynamic limit, complex singularities of
the pressure pinch the physical (i.e., real) domain of the system parameters. Since the
pressure is proportional to the logarithm of the partition function, these singularities
correspond exactly to the zeros of the partition function.

In their second paper [25], Lee and Yang demonstrated the validity of their theory in
a particular example of the Ising model in a complex magnetic fieldsing an induc-
tion argument, they proved the celebrated Lee-Yang Circle Theorem which states that,
in this model, the compleg! zeros of the partition function on any finite graph with
free boundary conditions lie on the unit circle. The subject has been further pursued by a
number of authors in the following fifty years. Generalizations of the Lee-Yang theorem
have been developed [26, 31, 32, 35] and extensions to other complex parameters have
been derived (for instance, the Fisher zeros [14] in the complex temperature plane and
the zeros of theg-state Potts model in the complepplane [40,41]). Numerous papers
have appeared studying the partition function zeros using various techniques including
computer simulations [10, 20, 22], approximate analyses [21, 24, 29] and exact solu-
tions of 1D and 2D lattice systems [8,9, 12,18, 27,28, 38, 39]. However, in spite of this
progress, it seems fair to say that much of the original Lee-Yang program—namely,
to learn about the transitions in physical systems by studying the zeros of partition
functions—had remained unfulfilled.

In [2], we outlined a general program, based on Pirogov-Sinai theory [6, 33, 34,43],
to determine the partition function zeros for a large class of lattice models depending
on one complex parameter The present paper, and its companion [5], give the math-
ematical details of that program. Our results apply to a host of systems with first-order
phase transitions; among others, they can be applied to field-driven transitions in many
low-temperature spin systems as well as temperature-driven transitions—for instance,
the order-disorder transition in tliestate Potts model with larggor the confinement
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Higgs transition in lattice gauge theories. We consider lattice models with a finite num-
ber of equilibrium states that satisfy several general assumptions (formulated in detalil
below). The validity of the assumptions follows whenever a model can be analyzed us-
ing a convergent contour expansion based on Pirogov-Sinai theory, even in the complex
domain. In the present work, we study only models with periodic boundary conditions,
although—with some technically involved modifications—our techniques should allow
us to treat also other boundary conditions.

Under our general assumptions, we derive a set of model-specific equations; the
solutions of these equations yield the locations of the partition function zeros, up to
rigorously controlled errors which are typically exponentially small in the linear size of
the system. It turns out that, as the system size tends to infinity, the partition function
zeros concentrate on the union of a countable number of simple smooth curves in the
complexz-plane. Another outcome of our analysis is a local version of the Lee-Yang
Circle Theorem. Whereas the global theorem says that, for models with the full Ising
interaction, all partition function zeros lie on the unit circle, our local theorem says that
if the model has an Ising-like symmetry in a restricted region of the conmpfdane,
the corresponding portion of the zeros lies on a piece of the unit circle. In particular,
there are natural examples (see the discussion of the Blume-Capel model in [2]) where
only some of the partition function zeros lie on the unit circle, and others lie on less
symmetric curves. Our proof indicates that it is just the Ising plus-minus symmetry
(and a natural non-degeneracy condition) that makes the Lee-Yang theorem true, which
is a fact not entirely apparent in the original derivations of this result.

In addition to being of interest for the foundations of statistical mechanics, our re-
sults can often be useful on a practical level—even when the parameters of the model
are such that we cannot rigorously verify all of our assumptions. We have found that
our equations seem to give accurate locations of finite-volume patrtition function zeros
for system sizes well beyond what can be currently achieved using, e.g., computer-
assisted evaluations of these partition functions (see [2] for the example of the three
dimensional 25-state Potts model on 1000 sites). Our techniques are also capable of
handling situations with more than one complex parameter in the system. However, the
actual analysis of the manifolds of partition function zeros may be technically rather
involved. Finally, we remark that, in one respect, our program falls short of the ultimate
goal of the original Lee-Young program—namely, to describe the phase structure of
any statistical-mechanical system directly on the basis of its partition function zeros.
Instead, we show that both the location of the partition function zeros and the phase
structure are consequences of an even more fundamental property: the ability to rep-
resent the partition function as a sum of terms corresponding to different metastable
phases. This representation is described in the next section.

1.2. Basic ideasHere we will discuss the main ideas of our program, its technical diffi-
culties and our assumptions in more detail. We consider spin mod&l%,avithd > 2,
whose interaction depends on a complex paranetur program is based on the fact
that, for a large class of such models, the partition funcﬂ§ in a box of sidel. and
with periodic boundary conditions can be written as

r
d d
ZEer(Z) _ Z Ome™ fm(2)L + O(e—constL e—f(z)L ). (1_1)

m=1
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Hereq, ..., gr are positive integers describing the degeneracies of the phasesr,
the quantitiesfs, ..., f, are smooth (but not in general analytic) complex functions of
the parametez which play the role oimetastable free energies the corresponding
phases, and (z) = mini<m<r Refm(2). The real version of the formula (1.1) was
instrumental for the theory of finite-size scaling near first-order phase transitions [7];
the original derivation goes back to [6].

It follows immediately from (1.1) that, asymptotically astends to infinity,2?*" =
0 requires that R&,(2) = Refs(2) = f(2) for at least two distinct indices andm.
(Indeed, otherwise the sum in (1.1) would be dominated by a single, non-vanishing
term.) Therefore, asymptotically, all zerosDf*' concentrate on the set

¢ = {z: there existm # M with Refn(2) = Refm(2) = f(2)}. (1.2)

Our first concern is the topological structuregfLet us call a point where Rig,(z) =
f (2) for at least three differemh amultiple point the pointsz € ¢ that are not multiple
points are callegboints of two-phase coexistendénder suitable assumptions on the
functions f1, ..., f;, we show that/ is a countable union of non-intersecting simple
smooth curves that begin and end at multiple points. Moreover, there are only a finite
number of multiple points inside any compact subsét obee Theorem 2.1 for details.
The relative interior of each curve comprisigconsists entirely of the points of
two-phase coexistence, i.e., we havefR&) = Refm(z) = f(2) for exactly two
indicesm andm. In particular, the sum in (1.1) is dominated by two terms. Supposing
for a moment that we can neglect all the remaining contributions, we would have

2°(2) = gme™ DL 1 gre @ (1.3)

and the zeros o2} would be determined by the equations

Refm(2) = Refm(2) + L~ log(am/am)

d (1.4)
IMfn(2) = Imfzs2) + 20+ Dz L™,
where is an integer. The presence of additional terms of course makes the actual zeros
only approximate solutions to (1.4); the main technical problem is to give a reasonable
estimate of the distance between the solutions of (1.4) and the zeZ$§'on a neigh-
borhood of multiple points, the situation is even more complicated because there the
equations (1.4) will not be even approximately correct.
It turns out that the above heuristic argument cannot possibly be converted into a
rigorous proof without making serious adjustments to the initial formula (1.1). This is
a consequence of subtle analytic properties of the functigng-or typical physical
systems, the metastable free enefgyis known to be analytic only in the interior of
the region
“m = {z: Refn(2) = f(2)}. (1.5)

On the boundary of/,, one expects—and in some cases proves [15,19]—the existence
of essential singularities. Thus (1.1) describes an approximation of an analytic function,
the functionZEe, by a sum of non-analytic functions, with singularities appearing pre-
cisely in the region where we expect to find the zeroZPt' It is easy to construct
examples where an arbitrarily small non-analytic perturbation of a complex polynomial
with a degenerate zemroduces extraneous roots. This would not be an issue along the
two-phase coexistence lines, where the rooth_%?fturn out to be non-degenerate, but
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we would not be able to say much about the roots near the multiple points. In short, we
need an approximation that respects the analytic structure of our model.

Fortunately, we do not need to look far to get the desirable analytic counterpart of
(1.1). In fact, it suffices to modify slightly the derivation of the original formula. For
the benefit of the reader, we will recall the main steps of this derivation: First we use
a contour representation of the model—the class of models we consider is character-
ized by the property of having such a contour reformulation—to rewrite the partition
function as a sum over the collections of contours. Then we divide the configurations
contributing toZEer intor + 1 categories: Those in which all contours are of diameter
smaller than, say., /3 and in which the dominant phasenswherem=1,...,r, and

those not falling into the preceding categories. Z%t) be the partial partition function
obtained by summing the contributions corresponding to the configurationsnm-the
category, see Fig. 1. It turns out that the error term is still uniformly bounded as in (1.1),

so we have
r

2P = 3" 2P (@) + O(e™ st e @Y, (1.6)

m=1

but now the functionsZr(nL)(z) are analytic, and non-zero in a small neighborhood
of 7. (However, the size of the neighborhood shrinks with— oo, and one of

the challenges of using the formula (1.6) is to cope with this restriction of analyticity.)
Moreover, writing

_s d
Z\Y (2) = gme=m @t 1.7)

and using the contour representation, the functi@ﬂ’§ can be expressed by means
of convergent cluster expansions [11, 23]. In particular, they can be shown to converge
quickly to the functionsf,, asL — oo.

In this paper, we carry out the analysis of the partition function zeros starting from
the representation (1.6). In particular, we formulate minimal conditions (see Assump-

tions A and B in Sect. 2) on the function‘éq") and the error terms that allow us to

analyze the roots oz in great detail. The actual construction of the functidgs’
and the proof that they satisfy the required conditions is presented in [3, 4] for the
state Potts model with one complex external field @msaifficiently large, and in [5] for

a general class lattice models with finite number of equilibrium states.

1.3. Discussion of assumptions and resultiere we will describe our main assump-
tions and indicate how they feed into the proofs of our main theorems. For consistency
with the previous sections, we will keep using the functidpsand fr%L) even though

the assumptions will actually be stated in terms of the associated exponential variables

i@ =e @ and @) =e 'O, (1.8)

The first set of assumptions (Assumption A, see Sect. 2.1) concerns the infinite-volume
quantitiesfy,, and is important for the description of the set of coexistence p#@intse
functions f,, are taken to be twice differentiable in the variabtes Rezandy = Imz,

and analytic in the interior of the setyy,. If, in addition, f (z) = miny, Refy, is uni-
formly bounded from above, good control of the two-phase coexistence curves is ob-
tained by assuming that, for any distimstandm, the difference of the first derivatives
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Fig. 1. Schematic examples of configurations, along with their associated contours, which contribute to dif-
ferent terms in the decomposition in (1.6). Here we have a spin modet witB3 equilibrium phases denoted
by 4+, — and 0. The configuration on the left has all contours smaller than the cutoff—which welsg to

wherelL is the side of the box—and will thus contribute Zc_ﬂ‘) becauset is the external phase for all
external contours. The configuration on the right has long contours and will be assigned to the error term.

of fy and f is uniformly bounded from below o, N Y. Finally, in order to dis-
cuss multiple coexistence points, we need an additional non-degeneracy assumption on
the derivatives of the function§, for the coexisting phases. Given these assumptions,
we are able to give a very precise characterization of the topology of the coexistence
set¥, see Theorem 2.1.

The second set of assumptions (Assumption B, see Sect. 2.2) is crucial for our re-

sults on the patrtition function zeros, and is formulated in terms of the funcﬂélﬂs
These will be taken to be analytic with a uniform upper bound on therfustivatives
in an order¢1/L) neighborhood of the set$,. In this neighborhoodfrﬂ‘) is also as-
sumed to be exponentially close tg, with a lower bound on the difference of the first

derivatives for any pairfn(qL) and fr%L) in the intersection of the corresponding order-
(1/L) neighborhoods. Finally, we need a bound on the error term and its derivatives in
an approximation of the form (1.6) where the sum runs only over the dominating terms,
i.e., thosam for which z lies in the ordercl/L) neighborhood of#y,.

Combining Assumptions A and B, we are able to prove several statements on the
location of the partition function zeros. We will start by covering the set of available
z-values by sets with a given number of stable (or “almost stable”) phases. The cov-
ering involves three scale functions, , y, andp_ which give rise to three classes of
sets: the region where one phase is decisively dominating the others (more precisely,
the complement of ah ~%9w| -neighborhood of the s&f), a y, -neighborhood of sets
with two stable phases, excludingyg-neighborhood of multiple points, and tie -
neighborhoods of multiple points. As is shown in Proposition 2.6, for a suitable choice
of sequences, y|, andp_, these three sets cover all possibilities.

In each part of the cover, we will control the zeros by a different method. The re-
sults of our analysis can be summarized as follows: First, there are no zeFd§'of
outside anL ~9w| -neighborhood of the se&f. This claim, together with a statement
on the maximal possible degeneracy of zeros, is the content of Theorem 2.2. The next
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theorem, Theorem 2.3, states that imaneighborhood of the two-phase coexistence
points, excluding a neighborhood of multiple points, the zeroiﬁr are exponen-

tially close to the solutions of (1.4). In particular, this implies that the zeros are spaced
in intervals of order 9 along the two-phase coexistence curves with the asymptotic
density expressed in terms of the difference of the derivatives of the corresponding free
energies—a result known in a special case already to Yang and Lee [42]; see Proposi-
tion 2.4. The control of the zeros in the vicinity of multiple points is more difficult and
the results are less detailed. Specifically, in theneighborhood of a multiple point

with g coexisting phases, the zeros 8" are shown to be located withinla9-9/d
neighborhood of the solutions of an explicitly specified equation.

We finish our discussion with a remark concerning the positions of zeros of complex
functions of the form:

r
ZN@) = D am@m@", (1.9)
m=1
whereas, ..., ar andzy, . . ., ¢¢ are analytic functions of. Here there is a general theo-

rem, due to Beraha, Kahane and Weiss [1] (generalized recently by Sokal [41]), that the
set of zeros o N asymptotically concentrates on the setsfich that eithes,(z) = 0
and|¢m(2)| = max [¢k(2)| for somem = 1,...,1 or [(m(2)| = [¢tn(2)] = max |¢k(2)]

for two distinct indicesn andn. The present paper provides a substantial extension of
this result to situations when analyticity gf(z) can be guaranteed only in a shrinking
neighborhood of the sets whareis the “dominant” index. In addition, we also provide
detailed control of the rate of convergence.

2. Main results

2.1. Complex phase diagranWe begin by abstracting the assumptions on the meta-
stable free energies of the contour model and showing what kind of complex phase
diagram they can yield. Throughout the paper, we will assume that a dafhanC

and a positive integer are given, and us® to denote the seR = {1,...,r}. For
eachz € 0, we letx = Rez andy = Imz and define, as usual,
o,=3(%-1%5) and & =3(&+i%) (2.1)

Assumption A. There exists a constaat > 0 and, for eachm € R, a function
¢{m: ¢ — C, such that the following conditions are satisfied:

(1) The quantityr(z) = maxner [¢m(2)| is uniformly positive in2, i.e., we have

inf,ep ¢(2) > 0.

(2) Each functioryy, viewed as a function of two real variablgs= Rez andy =
Imz, is twice continuously differentiable off and it satisfies the Cauchy-Riemann
equation®z¢m(z) = 0 for all z € .S, where

Im={ze0: Itm@)| = @)} (2.2)
In particular,cm is analytic on the interior of/y,.
(3) For any pair of distinct indices, n € R and anyz € ., N ., we have
0z2¢m(2)  0z(n(2)
— > a.
{m(2) n(2)

(2.3)
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(4) If @ c RissuchthatQ] > 3, then forany € (.o Sm,

02(m(2)
m(2) "’

om(2) = me Q, (2.4)

are the vertices of a strictly convex polygonGn~ R2.

Remark 1In (1), we assumed uniform positivity in order to simplify some of our later
arguments. However, uniformity ir can easily be replaced by uniformity on compact
sets. Note that Assumptions A3-4 are invariant with respect to conformal transforma-
tions of & because the functions involved in (2.3) and (2.4) satisfy the Cauchy-Riemann
conditions. Also note that, by Assumption A3, the length of each side of the polygon
from Assumption A4 is at least; cf Fig. 3.

The indiceam € R will be often referred to aphasesWe call a phasen stableatz
if ze S, i.e., if|tm(2)| = ¢(2). For eaclez € & we define

Q@) ={meR: |tm(2| =@} (2.5)

to be the set of phasasable at zIf m, n € Q(z), then we say that the phasasandn
coexist at zThe phase diagram is determined by $le¢ of coexistence points

= |J @mn with ¢mn)=%n%. (2.6)

m,neR: m#n

If |tm(2)] = ¢(2) for at least three distineh € R, we call suctz € & amultiple point

In the following, the phrassimple arcdenotes the image @0, 1) under a continu-
ous and injective map whileimple closed curvdenotes a corresponding image of the
unit circle{z € C: |z] = 1}. A curve will be calledsmoothif it can be parametrized
using twice continuously differentiable functions.

Our main result concerning the topology#fis then as follows.

Theorem 2.1.Suppose that Assumption A holds and4etc ¢ be a compact set.

Then there exists a finite set of open diBgsy, ..., D, C & covering?, such that
foreach k= 1,...,¢, the setek = ¢4 N Dy satisfies exactly one of the following
properties:

(1) ok =9.

(2) 94 is a smooth simple arc with both endpointsadbk. Exactly two distinct phases
coexist along the arc constituting.

(3) @k contains a single multiple poingavith ¢ = |Q(z«)| > 3 coexisting phases,
and.o \ {z} is a collection of g smooth, non-intersecting, simple arcs connect-
ing z to 8Dy. Each pair of distinct curves fromy \ {z} intersects at a positive
angle at z. Exactly two distinct phases coexist along each componeusit Ofz} .

In particular, 4 = (Jyce ¢, WhereC is a finite or countably-infinite collection of
smooth simple closed curves and simple arcs which intersect each other only at the
endpoints.

Theorem 2.1 is proved in Sect. 3.2. Further discussion is provided in Sect. 2.4.
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@ (b) (©

Fig. 2. An illustration of the sets% (Q) in the vicinity of a multiple point. The thick lines indicate the
visible portion of the set of coexistence poit#s Three phases, here labeled 1, 2 and 3, are stable at the
multiple point. In (a), the three shaded domains represent theZs€td}), % ({2}) and % ({3}), with the

label indicated by the number in the box. Similarly, in (b) the three regions represent thg $€ts2}),

Y ({2, 3}) and % ({1, 3}). Finally, (c) contains only one shaded region, representing the/sgt, 2, 3}).

The various region%/ (Q) generously overlap so that their union covers the entire box.

2.2. Partition function zerosNext we will discuss our assumptions and results con-
cerning the zeros of the partition function. We assume that the funcipfis & — C,
playing the role of the partition function in a box of silewith periodic boundary con-
ditions, are defined for each intederor, more generally, for anly € I, where. ¢ N

is a fixed infinite set. Given any € R ande > 0, we use¥,(m) to denote the region
where the phasm is “almost stable,”

Fe(m) ={ze 0: |tm(2)] > e C(2)}. 2.7)

For anyQ c R, we also introduce the region where all phases fi@mare “almost
stable” while the remaining ones are not,

%(Q) = [ L\ | Fe2(), (2.8)
meQ ne Q°

with the bar denoting the set closure. Notice that the functigris non-vanishing
on . (m) and thatJor %(Q) = 0O, see Fig. 2. Note also tha (4) = 0, so
we may assume th& # @ for the rest of this paper.

Assumption B. There exist constants r € (0, co) and, for eachm € R, a positive
integergm and a functiorrr%"): Z%/L(m) — C such that for any. € LL the following
is true:

(1) The functionzP®'is analytic in&.

(2) Eacf’(r%") is non-vanishing and analytic i&, ;. (m). Furthermore,

L)
‘Io n @] _ et (2.9)

m@ |~
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and (L) (L)
tm (2 (m (2 L
o710 + |0z10 <e’’ 2.10
2199 @ 299 @ (2.10)

forallm e R and allz € %, (m). (Here “log” denotes the principal branch of
the complex logarithm.) ) )

(3) There exist constants > 0, M < oo andLg < oo such that for an\. > Lg we
have L
A’ @)
@)
wheneveme R, ¢ =1,...,r,andz € %, (m). In addition,

<M, (2.11)

o @) 0\ (2)

@ &P@

whenevem, n € R are distinct and € .7, (M) N Z /L (n).
(4) There exist constan@; < oo, =0,1,...,r + 1, such that for an® c R, the
difference

> G (2.12)

d
20L1@=2"D - > am[cP@)]" (2.13)
meQ
satisfies the bound
201 @] < CLUH R ( > an)ert (2.14)
meR

forall¢ =0,1,...,r + 1, uniformly inz € %L (Q).

Remark 2In applicationsgm will represent the degeneracy of the phasethus we

have taken it to be a positive integer. However, our arguments would go through even
if we assumed only that ali,,’s are real and positive. It is also worth noting that

in many physical models the partition function is not directly of the form required
by Assumption B; but it can be brought into this form by extracting a multiplicative

“fudge” factor F(z)Ld, whereF (z) # 0 in the region of interest. For instance, in the
Ising model withz related to the complex external figdby z = € we will have to
takeF (z) = z~%/? to make the partition function analytic in the neighborhood ef 0.

Our first theorem in this section states that the zeroZ[5f(z) are concentrated
in a narrow strip along the phase boundaries. In addition, their maximal degeneracy
near the multiple points of the phase diagram can be evaluated. In accord with the
standard terminology, we will call a poiap a k-times degenerate roaif an analytic
function h(z) if h(z) = g(z2)(z — z0)¥ for someg(z) that is finite and non-zero in a
neighborhood ofy. Recalling the definition (2.8) of the séf (Q), we introduce the
shorthand

Y= (5”6/2(”) m«5”6/2("1)) =0\ |J %((my). (2.15)
mzn meR

An easy way to check the second equality in (2.15) is by notingdhatZ, ({m}) can
be written as the uniol) .., .m -7¢/2(n). Then we have the following result.
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Theorem 2.2.Suppose that Assumptions A1-3 and B hold and let O be as in As-
sumption B. Lefw| ) be a sequence of positive numbers suchdhat> co. Then there
exists a constant¢- < oo such that for L> L all roots of Z''lie in 4, -a,, and are

at most|R| — 1 times degenerate. For ead c R, the roots of 2% in %,/ (Q) are
at most| Q| — 1times degenerate.

In other words, a¢ — oo, the zeros oz asymptotically concentrate on the set
of coexistence point¥. Notice that we explicitly danot require Assumption A4 to
hold; see Sect. 2.4 for further discussion. Theorem 2.2 is proved in Sect. 4.1.

Our next theorem deals with the zerosZJffer in the regions where at most two
phases fronR are “almost stable.” It turns out that we have a much better control on
the location of zeros in regions that are sufficiently far from multiple points. To quantify
the meaning of “sufficiently far,” we leg; be a sequence of positive numbers (to be
specified below) and, for an® c R with |Q| = 2 and anyL > 0, letd, : %, (Q) —

(0, ) be a function defined by

el if ze %, (Q) N Uu/L(Q),

2.16
Lde—ant?, otherwise (2.16)

oL = [

(Clearly,d. (z) depends on the index sét However, this set will always be clear from
the context and so we will not make it notationally explicit.) Finally, gives 0 and
z € 0, letD(2) denote the open disc of radiusentered ar.

The exact control of the roots in two-phase regions is then as follows.

Theorem 2.3.Suppose that Assumptions A and B hold an€tebe the set of all zeros

of the function 2%'(2) in @, including multiplicity. If mn e R are distinct indices,
let @ = {m, n}, and letQ (Q) be the set of the solutions of the system of equations

A lm@] = & i@, 2.17)
L9 Arg(¢m(2)/n(2)) = = mod 2r. (2.18)
Lety, be such that
liminf L% >4d and limsupL9ly, <2r, (2.19)
L—oo logL L o0

and leto, : %, (Q) — (0, c0) be as defined in (2.16). Then there exist finite positive
constants B, C, D, andd-such that for anyQ c R with |Q] = 2and any L> Lg
we have:

(1) Forallze 9N %, (Q) withDp | -a(2) C O, the disdDp, -4(2) contains at least
one root fromQ; .

(2) For all z € Qf N %, (Q) with D¢y, (z(2) C O, the discDcs, (z(2) contains
exactly one point fron@ (Q).

(3) Forall z e Q_(Q) N %, (Q) withDcs (z(2) C O, the discDcs, () (2) contains
exactly one root frong2| .

(4) Any two distinct roots of " in the set{z € %, (Q): Dg -a(2) C O} are at
least BL~9 apart.
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Note that the first limit in (2.19) ensures tHald (z) — 0 asL — oo throughout
#y, (Q) (for any @ c R with |Q| = 2). Thusdy (z) is much smaller than the distance
of the “neighboring” roots of (2.17-2.18). Theorem 2.3 is proved in Sect. 4.2.

Theorem 2.3 allows us to describe the asymptotic density of the ro@8°6élong
the arcs of the complex phase diagram. iret € R be distinct and le¥ (m, n) be as
in (2.6). For eaclr > 0 and eaclz € ¥(m, n), Ietpﬁn'jﬁ‘)(z) be defined by

1
pii(2) = 1Q; NDe(2)], (2.20)

2¢Ld

where|Q: N D,(2)] is the number of roots oZ}*" in D, (2) including multiplicity.
Since¥ (m, n) is a union of simple arcs and closed curves, and since the roots of (2.17-
2.18) are spaced withi@ (L %) from each otherp,%;f) (2) has the natural interpretation

of the approximatéine density of zerosf Z* along# (m, n). As can be expected from
Theorem 2.3, the approximate densjﬁ,'[ﬁf)(z) tends to an explicitly computable limit.

Proposition 2.4.Let m n € R be distinct and Iey)r(nL,ﬁE)(z) be as in (2.20). Then the
limit
pmn(2) =lim lim p{(2) (2.21)
€l0 Lo i

exists for all ze ¢(m, n) such thaijQ(z)| = 2, and

1102{m(@  92tn(2)
2x | (m(2) m@ |

Remark 3Note that, on the basis of Assumption A3, we have fhah(2) > a/(2r).

In particular, the density of zeros is always positive. This is directly related to the fact
that all pointsz € ¢ will exhibit a first-order phase transition (defined in an appropriate
sense, once lm+# 0 or Re < 0)—hence the title of the paper. The observation that the
(positive) density of zeros and the order of the transition are closely related goes back
to [42].

(2.22)

pmn(2) =

In order to complete the description of the rootsZﬁer, we also need to cover
the regions with more than two “almost stable” phases. This is done in the following
theorem.

Theorem 2.5.Suppose that Assumptions A and B are satisfied. zebez a multiple
point and let@ = Q(zv) with g = |Q| > 3. For each me Q, let

$m(L) = LYArg cm(zm) (mod2r)  and  om = Oztm(Zv) (2.23)
¢m(zm)
Consider the se®| (Q) of all solutions of the equation
> tm glém(L+Lz=2zmom — (2.24)

meQ

including multiplicity, and le{p.) be a sequence of positive numbers such that

lim L9 =00 but lim L9-9/@D, =0 (2.25)

L—>oo
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Definep| = pL + L~d+1/a) Then there exists a constang ks oo and, for any L>
Lo, an open, connected and simply connected%esatisfyingD,, (zu) ¢ # C
DPL (zm) such that the zeros i@ N % are in one-to-one correspondence with the solu-

tions inQ(Q) N% and the corresponding points are not farther apart tharf {1+1/%)

Theorem 2.5 is proved in Sect. 4.4. Sect. 2.4 contains a discussion of the role of
Assumption A4 in this theorem; some information will also be provided concerning the
actual form of the solutions of (2.24).

To finish the exposition of our results, we will need to show that the results of The-
orems 2.2, 2.3 and 2.5 can be patched together to provide complete control of the roots
of P, at least in any compact subset®f This is done in the following claim, the
proof of which essentially relies only on Assumption A and compactness arguments:

Proposition 2.6. Suppose that Assumption A holds anddef y, andp be sequences
of positive numbers such tha{ < y L9,y — 0, andp_ — 0. For each compact
set? c 0, there exist constants = (%) > 0and Lg = Lo(Z) < oo such that, if

pL = xvL, We have

G- N2C |J % QU ] Dyw) (2.26)
QCR zmeg
Q=2 1Q(m)|>3

forany L > Lo.

Note that in (2.26) we consider only that portion @fin ¢, -4, , since by The-

orem 2.2 the roots oZ["* are contained in this set. Note also that the conditions we
impose on the sequences, y, andp_ in Theorems 2.1, 2.3 and 2.5 and Proposi-
tion 2.6 are not very restrictive. In particular, it is very easy to verify the existence
of these sequences. (For example, one can takeytgoﬁmdpL to be proportional to
L~9%log L with suitable prefactors and then tet = L9y, .)

2.3. Local Lee-Yang theoremf\s our last result, we state a generalized version of the
classic Lee-Yang Circle Theorem [25], the proof of which is based entirely on the exact
symmetries of the model.

Theorem 2.7.Suppose that Assumptions A and B hold. +eind — be two selected
indices fromR and let% be an open set with compact closue c ¢ such that
% N{z: |z| = 1} # @. Assume tha® is invariant under circle inversion 2> 1/z*, and

(1) 2% = Z°'(1/z)",

(2) (+(@ =¢-(1/z")"and q. =q-
holdforallze 2 and all L € IL. Then there exists a constang &uch that the following
holds for all L > Lg: If the intersection ofZ with the set of coexistence poirifsis
connected and i and — are the only stable phases ¥, then all zeros irZ lie on the

unit circle, and the number of zeros on any segme 6f{z: |z| = 1} is proportional
toL9as L— oo.

Condition (2) is the rigorous formulation of the statement thatthend — phases
are related by <> 1/z* (or h <> —h, whenz = €") symmetry. Condition (1) then
stipulates that this symmetry is actually respected by the remaining phases and, in par-
ticular, by Z[® itself.
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Remark 4 As discussed in Remark 2, in order to satisfy Assumption B it may be nec-
essary to extract a multiplicative “fudge” factor from the partition function, perform
the analysis of partition function zeros in various restricted regiods amd patch the
results appropriately. A similar manipulation may be required in order to apply Theo-
rem2.7.

Here are the main steps of the proof of Theorem 2.7: First we show that the phase
diagram inZ falls exactly on the unit circle, i.e.,

9NY ={zeP: |zl =1}. (2.27)

This fact is essentially an immediate consequence of the symmetry betwé&eamd

“—. A priori one would then expect that the zeros are close to, but not necessarily on,
the unit circle. However, the symmetry &f°' combined with the fact that distinct zeros
are at leasB L9 apart is not compatible with the existence of zeros away from the unit
circle. Indeed, ifz is a root of P, it is bound to be within a distand®(e~"") of the

unit circle. If, in addition|z| # 1, then the <> 1/z* symmetry implies that 1z* is also
aroot ofZP®', again withinO(e~*") of the unit circle. But then the distance between

and 1/z* is of the ordere™t which is forbidden by claim (4) of Theorem 2.3.

This argument is made precise in the following proof.

Proof of Theorem 2.AMe start with the proof of (2.27). Let us suppose that: ¢ and
Q(2) c {+, —} for all z € 2. Invoking the continuity ofx. and condition (2) above,
we haveQ(z) = {+, —}forallze 2N {z: |zl =1} and thusZ N {z: |zl = 1} C ¥.
Assume now tha¥ N 2\ {z: |z] = 1} # @. By the fact that¢ N 2 is connected and
the assumption tha¥ N {z: |z| = 1} # @, we canfind apatk € Y N 2,t € [—-1, 1],
suchthatzz e 2N {z: |zl =1} ift <0andzz e YN 2\ {z: |zl = 1} if t > 0. Since
9(z0) = {+, —}, we know that there is a did@.(zg) C ¢ that contains no multiple
points. Applying Theorem 2.1 to this disc, we conclude that there is an opeb digh
Zo € D c D¢ (2p), such that# N D is a simple curve which ends &b. However, using
condition (2) above, we note that as with also the curve — 1/z liesin¥ N ,
contradicting the fact tha N D is a simple curve. This completes the proof of (2.27).

Next, we will show that for angg € 2N {z: |z| = 1}, and any > 0, there exists an
open disdD¢ (zg) C ¢ such that the s&f N D¢ (zp) is a smooth curve with the property
that for anyz € D, (zp) with |z| # 1, the line connecting and 1/z* intersects the curve
% N D¢ (z9) exactly once, and at an angle that lies betwegh — 6 andz /2 + 0. If zg
lies in the interior of%, this statement (witlh = 0) follows trivially from (2.27). If zg
is a boundary point of7, we first choose a sufficiently small difcs zg so thatD c &
and, for all points ifD, only the phases- and— are stable. Then we use Theorem 2.3
and (2.27) to infer that¢ can be chosen small enough to guarantee the above statement
about intersection angles.

Furthermore, we claim that givemy € 2 N {z: |z| = 1} ande > 0 such that
D3c(z0) € € andQ(2) C {+, —} for all z € D3 (zp), one can choosk sufficiently
large so that

D2¢(20) NG ~dy C Uy ({+, =D O U2/t ({+, —D). (2.28)

To prove this, let us first note that, for < 2« /L, the right hand side can be rewritten as

U, (4. =D\ |J Fecm. (2.29)
m—,+
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Next, by the compactness B (zg) and the fact that nan € R different from+ is
stable anywhere iidz. (z9), we can choosé g so large that?,, (m) N Dy (z0) = 0
forall L > Lo and allm # +. Using the closure a2 (zp) in place of the setZ in
(2.26), we get (2.28).

We are now ready to prove that for amye 2 N {z: |z| = 1}, there exist constants

€ > 0 andL such that all roots oZ}'in D, (z9) N Z lie on the unit circle. To this end,

let us first assume thathas been chosen small enough to guaranteghat)~1 < 1+
2¢,D3.(20) C 0, Q(2) C {+, —}forall z € D3 (z9), and¥ND3¢(zp) is a smooth curve
with the above property about the intersections angles, with,dsay,z /4. Assume
further thatL is chosen so that (2.28) holds and> max(Cdy (zo), BL—d), whereC
andB are the constants from Theorem 2.3.

Letz € D¢(20) N 2 be aroot ofZ{" If L is so large that Theorem 2.2 applies, we
havez € 4| -a,, andthus_(z) = e~k in view of (2.28). By Theorem 2.3, there exists
a solutionZ to (2.17-2.18) that lies in @J, (z)-neighborhood of, implying thatz has
distance less tha@od| (z) from Dy (29) N'¥Y. (Here we need thaf, = g- to conclude
thatZ € ¢.) Suppose now thdg| # 1. Then the condition (1) above implies that=
(z)~tis adistinctroot of Z*"in 2. Moreover, ife is so small thatl — €)% < 1+ 2e,
thenz' € 9| —u,, N D2 (20) andd (Z) also equale~’t, implying thatz has distance
less tharCd| (z) from D3 (zg) N ¥4. Since bottz andZ' have distance less th&v, (2)
from D3 (z0) N ¥, and the curvéds. (z0) N ¥ intersects the line throughandz in an
angle that is neat /2, we conclude thgz — 7| < 2+/2Ce 7" which for L sufficiently
large contradicts the last claim of Theorem 2.3. Herzceust have been on the unit
circle after all.

The rest of the argument is based on compactness. The se{z: |z] = 1} is
compact, and can thus be covered by a finite number of such discs. Picking one such
cover, let?’ be the complement of these discgh Then the se’ is a finite distance
away from% and thus?’ N %, -4, = @ for L sufficiently large. From here it follows
that for some finitd_g < oo (which has to exceed the maximum of the corresponding
quantity for the discs that constitute the coveringof {z: |z| = 1}), all roots of ZP'
in % lie on the unit circle. O

2.4. Discussion.We finish with a brief discussion of the results stated in the previ-
ous three sections. We will also mention the role of (and possible exceptions to) our
assumptions, as well as extensions to more general situations.

We begin with the results on the complex phase diagram. Theorem 2.1 describes the
situation in the generic cases when Assumptions A1-A4 hold. We note that Assump-
tion A3 is crucial for the fact that the s@t is a collection ofcurves A consequence
of this is also that the zeros dffer asymptotically concentrate on curves—exceptions
to this “rule” are known, see, e.g., [36]. Assumption A4 prevents the phase coexistence
curves from merging in a tangential fashion and, as a result of that, guarantees that
multiple points do not proliferate througho&it Unfortunately, in several models of in-
terest (e.g., the Potts and Blume-Capel model) Assumption A4 happens to be violated
at somez for one or two “critical” values of the model parameters. In such cases, the
region& has to be restricted to the complement of some neighborhobdrd, inside
the neighborhood, the claim has to be verified using a refined and often model-specific
analysis. (It often suffices to show that the phase coexistence curves medtingvat
different curvatures, which amounts to a statement about the second derivatives of the
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Fig. 3. Anillustration of the situation around a quadruple point. Hefe. . . , v} are the complex conjugates
of the quantities from (2.4) argh = g = g3 < 04. (The quadruple point lies at the common tail point of the
vectorsoj, ..., v}.) The dashed lines indicate the asymptotes of the “strings” of zeros sufficiently far—on

the scald.~9—from the quadruple point. Note the lateral shift of these lines due to the fadithans, gs.
The picture seems to suggest that, on the scar, the guadruple point splits into two triple points.

functions log'm(z).) Examples of such analysis have appeared in [2] for the Blume-
Capel model and in [4] for the Potts model in a complex external field.

Next we will look at the results of Theorems 2.2 and 2.3. The fact that the roots
of Zfer are only finitely degenerate is again independent of Assumption A4. (This is of
some relevance in view of the aforementioned exceptions to this assumption.) The fact
that, in the cases when ajly’s are the same, the zeros shift only by an exponentially
small amount away from the two-phase coexistence lines is a direct consequence of our
choice of the boundary conditions. Indeed, the faetdi- in (2.16) can be traced to the
similar factors in (2.9) and (2.14). For strong (e.qg., fixed-spin) boundary conditions, we
expect the corresponding terms in (2.9) and (2.14) to be replacegdlbyrd particular,
in these cases, the lateral shift of the partition function zeros away from the phase-
coexistence lines should be of the ordgét 1See [44] for some results on this problem.

Finally, let us examine the situation around multiple points in some detail. Theo-
rem 2.5 can be given the following geometrical interpretation: Zyetbe a multiple
point. Introducing the parametrizatign= (z — zw)L9, we effectively zoom in on the
scaleL ~9, where the zeros a2 are well approximated by the roots of the linearized
problem (2.24) withQ = Q(zv). Let us plot the complex conjugated, of the loga-
rithmic derivativesom, (see (2.23))m e Q, as vectors irR?. By Assumption A4, the
vectorsy,y, are the endpoints of a convex setln= R2. Leto], ..., g be the ordering
of Q in the counterclockwise direction, see Fig. 3. Noting that the real p&n,3ecan
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be written in terms of the dot product, B&3) = oy, - 3, (2.24) can be recast as

> gmenBFns =, (2.30)
meQ(zm)

wheregp, (L) = ¢m(L) + IM(om3).
On the basis of (2.30), it is easy to verify the following facts: et |3]&, with&
a unit vector inC. An inspection of (2.30) shows that, fgg] > 1, the roots of (2.30)
will concentrate along the “directions” for which the projectioréasn at least two,;’s
is the same. Invoking the convexity assumption (Assumption A4), this can only happen
wheno} - & = v, - & for somen. In such cases, the contributions of the terms with
indicesm # n, n+ 1 in (2.30) are negligible—at least ongé>> 1—and the zeros will
thus asymptotically lie along the half-lines given in the parametric form by

_ _ U;Tk - D:H—l (qn"rl) : * ok
3=13@1 o — onra 2 log . +it(vy —vpyq),  te[0,00). (2.31)
Clearly, the latter is a line perpendicular to tfme n + 1)-st side of the convex set with
verticesoy, ..., vq, Which is shifted (away from the origin) along the corresponding
side by a factor proportional to 16g.+1/0n), see Fig. 3.

Sufficiently far away fronzy (on the scald. %), the zeros resume the pattern es-
tablished around the two-phase coexistence curves. In particular, the zeros are asymp-
totically equally spaced but their overall shift along the asymptote is determined by the
factor om(L)—which we note depends very sensitively bn Computer simulations
show that, at least in generic cases, this pattern will persists all the way down to the
multiple point. Thus, even on the “microscopic” level, the zeros seem to form a “phase
diagram.” However, due to the lateral shifts causedjy1 # gm, a “macroscopic”
quadruple point may resolve into two “microscopic” triple points, and similarly for
higher-order multiple points.

3. Characterization of phase diagrams

The goal of this section is to give the proof of Theorem 2.1. We begin by proving a series
of auxiliary lemmas whose purpose is to elevate the pointwise Assumptions A3-A4 into
statements extending over a small neighborhood of each coexistence point.

3.1. Auxiliary claims.Recall the definitions of/y, Q(z) andovm(2), in (2.2), (2.5)
and (2.23), respectively. The first lemma gives a limiting characterization of stability of
phases around coexistence points.

Lemma 3.1.Let Assumption A1-A2 hold and [ete & be such thaiQ(2)| > 2.
Let (z«) be a sequence of numbers 2 & such that g — z but z # z for all k.
Suppose that .
d = lim X2
k—oo |Zx — Z|

(3.1)
exists and let ne Q(2). If zx € Sy, for infinitely many k> 1, then

Re(e’vm) = Re(€’s) foralln e Q(2), (32
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wherevn, = vp(2). Conversely, if the inequality in (3.2) fails for at least one r2(2),
then there is ar > 0 such that

Wep(2) = [ZE O |lz—12 <€, 2# 2,

=2 _ 0| < e} (3.3)

|z—2|

has empty intersection witt, i.e.,.%m N #¢ 0(Z) = @. In particular, z & #m for k
large enough.

Remark 5In the following, it will be useful to recall some simple facts about complex
functions. Letf, g andh be functionsC — C and letd, ando; be as in (2.1). Iff
satisfied; f (zg) = 0 (i.e., Cauchy-Riemann conditions), then all directional derivatives
of f atzg = xp + 1yp can be expressed using one complex nun#ber 6 f (Xg + iyo),

i.e., we have

f(Xo + € cOSp + iyo + ie sing) — f(Xo+iyp) = cAd? + o(e), €10, (3.4

holds for every € [—x, 7). Moreover, ifg is differentiable with respect o andy at
Zo = Xp + iyp andh satisfiesozh(Z) = 0 atZ = g(zp), then the chain rule holds for
z— h(g(2)) atz = zo. In particular,o;h(g(z0)) = (6:h)(9(20))529(20).

Proof of Lemma 3.1Let m € Q(2) be fixed. Whenevex, € ., we have
log|¢m(ze)| — 10g|¢m(2)| > log|cn(z)| — log|cn(2)], ne QQ2, (3.5)
becausém(2)| = |¢n(2)], by our assumption tham, n € Q(2). Using the notation

{m(2
&in(2)

forn € Q(2) (which is well defined and non-zero in a neighborhoo@)pthe inequality
(3.5) becomes

Fmn(2) =

(3.6)

log|Fim,n(z0)| = 10| Fmn(2)| = O, ne Q2. 3.7)

Note that the complex derivativi Fm n(2) exists for alln € Q(Z). Our task is then to
prove that

Re(e! %) >0, neQ®. 3.8)

Fix n € Q(2). Viewing z = Fmn n(2) as a function of two real variables= Rez and
y = Imz, we can expand lod=m n(2)| into a Taylor series around the pointo get
Fm,n(2)

To derive (3.9) we recalled th&y, , is at least twice continuously differentiable (hence
the error bound) and then applied the identity

log| Fm,n(z¢)| — l0g|Fm,n(2)| = Re((zk —-2) ) +0(z-2%. (3.9)

2109|Fna@)1 . 210gIFmn (I
ox oy

9zFmn(2)
Fm.n(2)

where Axx = Re(zx — 2) and Ayk = Im(z — 2). (To derive (3.10), we just have to
apply the chain rule to the functiorzs— log Fmn n(2). See Remark 5 for a discussion

Yk = Re((zk -2 ), (3.10)
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of this point.) Using thazy — Zz, the inequality (3.8) and hence also (3.2) now follows
by combining (3.9) with (3.5), dividing byzx — 2| and taking the limik — oc.

If, on the contrary, the inequality (3.2) is violated for some= Q(2), then (3.8)
fails to hold as well and hence (3.7) and (3.5), witlreplaced by, must be wrong for
z € W¢,9(2) whenevere is small enough. Buin € Q(2) implies that|¢m(2)| = [th(2)]
and thuslcm(z)| < |tn(2)| for all z € #¢ 4(2), proving that¥m N #c9(2) = §. By
(3.1) and the fact thafk — z, we havezs € #¢ ¢(2) and hencey ¢ .#m for all k large
enough. O

Lemma 3.1 directly implies the following corollary.

Corollary 3.2. Let Assumption A1-A2 hold and let me R be distinct. Let(z«) be
a sequence of numberg 2 .n N %, such that g — z € & but % # z for all k.
Suppose that the limit (3.1) exists and equéis BhenRe(€?vrm) = Re(€/vp).

Proof. Follows immediately applying (3.2) twice.O

The next lemma will ensure that multiple points do not cluster and that the coexis-
tence lines always intersect at positive angles.

Lemma 3.3.Suppose that Assumption A holds andzlet ¢. Suppose there are two
sequencegzy) and(z,) of numbers front’ such thatjz, — z| = |z — z| # Ofor all k
and %,z — Zask— oo. Letab,c € R and suppose thatxze .73 N %, and

7, € SN .7 for all k. Suppose the limit (3.1) exists for both sequences and’let e

and &' be the corresponding limiting values.

(1) If a, b, c are distinct, then'é = €?". ' '
(2) Ifa # b = c and % # z, for infinitely many k, thenQ(2)| = 2 and &’ = —€?".

Remark 6 The conclusions of part (2) have a very natural interpretation. Indeed, in
this casez is a point on a two-phase coexistence line (whose existence we have not
established yet) anzk andz, are the (eventually unique) intersections of this line with

a circle of radiugz — z| = |z — z| aroundz. As the radius of this circle decreases,
the intersectiongg andz, approactz from “opposite” sides, which explains why we

should expect to hawe? = —e?’,

Proof of Lemma 3.3Throughout the proof, we set, = vm(Z). We begin by prov-

ing (1). Assume thak, b,c € R are distinct and suppose theéf = 7. Note that,
sinceQ(2) D {a, b, c}, the pointz is a multiple point. Corollary 3.2 then implies that

Re(€?va) = Re(€%0p) = Re(€/0¢), (3.11)

and henceg, vp ando¢ lie on a straight line irC. But thenw,, vp ando cannot simulta-

neously be vertices of a strictly convex polygon, in contradiction with Assumption A4.
In order to prove part (2), led # b = ¢, suppose without loss of generality that

z # z, for all k. If €  +€?, then Corollary 3.2 implies that R&’ (va — vp)) =

0= Re(e"" (va — vp)) and hencey = vp, in contradiction with Assumption A3. Next

we will rule out the possibility thag’? = g’ regardless of how many phases are stable

atz. Let G(2) = ¢a(2)/(n(2) and note thajG(z)| = 1 = |G(z)| for all k. Applying
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Taylor's theorem (analogously to the derivation of (3.9)), dividing|ay— z| and
passing to the limik — oo, we derive

Zx — 7, 9;G(z)
lim =0. 12
Loo (Izk—Z’kl G(z) 0 (312)

The second ratio on the left-hand side tends46- vp. As for the first ratio, an easy
computation reveals that, sinf& — z| = |z, — z| # 0, we have

% — 7 _ iei%(ek‘*‘@ﬁ) Sin((6k — 6,)/2)

= - , 3.13

1z« — Z| I sin((6k — 6,)/2)] (319
where L
; x—2Z 0/ z —Z

elgk = k—_ a.nd elgk = % (314)
|zx — 2| 1z, — 2|

By our assumptions, we hae¥« — &? ande«c — & ask — co. Suppose now that
e’ = &’ Then, choosing a subsequence if necessary, the left-hand side of (3.13) tends
to a definite sign time=¥’. Inserting this into (3. 12) and using Corollary 3.2, in addltlon
to Re€? (va—vp)) = 0, we now get that also Ri&? (va—vp)) = IM(€? (va—op)) =
Consequentlyys = vp, again contradicting Assumption A3.
To finish the proof of the claim (2), it remains to rule out the possibility #fat=
—&? in the case whei is a multiple point. Len € Q(2) be another phase stablezat
i.e.,n # a, b. By Lemma 3.1, we have

Re(€’om—vn) 20 and Rée”(om—ovp) 20, m=ab  (315)

But thene”’ = —&? would imply that R¢e?vg) = Re(é?0,) = Re(€vp), in contra-
diction with Assumption A4. ThereforéQ(2)| < 3, as claimed. O

Corollary 3.4. Suppose that Assumption A holds andZet ¢ be a multiple point.
Then there exists a constafit> 0 such that|Q(z)|] < 2forallz € {Z € 0:0 <
|Z — Z| < 6}. In particular, each multiple point i@ is isolated.

Proof. Suppose& € ¢ is a hon-isolated multiple point. Then there is a sequepee &
such thatzy — z and, without loss of generality(z) = Qo with |Qp| > 3,2k # Z
for all k, and such that the limit (3.1) exists. Taking f@,) the identical sequence,

z, = z, we gete? = & in contradiction to Lemma 3.3(1). Therefore, every multiple
pointin & is isolated. O

Our last auxiliary claim concerns the connectivity of set§ sfich that (3.2) holds.
As will be seen in the proof of Lemma 3.6, this will be crucial for characterizing the
topology of the phase diagram in small neighborhoods of multiple points.

Lemma 3.5.Suppose that Assumption A holds andzlet & be a multiple point. For
m e Q(2), letoy = vm(2). Then, for each ne Q(2), the set

Im = {€: 0 € [0, 27), Re(€”vm) > Re(€?vn), n € Q(2) \ {m}} (3.16)
is connected and open as a subsef &' |z| = 1}. In particular, if €’ is such that
Re€’vm)= max ReE’on), (3.17)

neQ(2)~{m}

then & is one of the two boundary points gf.|



Partition function zeros at first-order phase transitions 21

Proof.By Assumption A4, the numberg,, m € Q(2), are the vertices of a strictly con-
vex polygonZZ in C. Lets = |Q(2)| and let(v1, .. ., vs) be an ordering of the vertices
of &2 in the counterclockwise direction. For= 1, ..., s defineAom = vm — om-1,
where we takeg = vs. Note that, by strict convexny o@ the argumentéy, of Avp,
i.e., number®ny, such thatAvm = |Aom|€, are such that the vectoe¥™, . . ., e
are ordered counterclockwise, with the angle betwe&nandem+1 lying strlctly be-
tween 0 andr for all m = 1,...s (again, we identifym = 1 andm = s + 1).

In other words, for eaclm, the anglee.ﬁ)l...,é?s can be chosen in such a way that
Om < Ony1 < -+ < Omas, With O < Omak — Omik—-1 < w, k= 1,...,s. (Again, we
identifiedm + k with m 4+ k — swhenevem + k > s).

Using Jn to denote the selyn = {ie ™"’ : ¥ € (6, Om+1)}, we claim thatly = I
forallm = 1,...,s. First, let us show thali, C Iy Let thusd € (6m, Omy1) and
observe that _

Re(ie™™ Avm) = |Avm| Sin(¥ — 6m) > 0, (3.18)

becaus@mn < ¥ < Oms1 < Om + . Similarly,
Re(ie™ Avmi1) = |Aomya] SINW — Omya) < O, (3.19)

becaus@mni1 — 7 < Om < ¥ < Ome1. Consequently, Ree o) > Re(ie o)
holds for botm =m+ 1 andn =m— 1. _

It remains to show that Re~?vy,) > Re(ie ?0y) is true also for all remaining
ne Q®2.Letn € 9(2 \ {m, m < 1}. We will separately analyze the cases with
6nh — 6m € (0, 7] and b, — Om € (—=x, 0). Suppose first that, — 0, € (0, z]. This
allows us to writen = m + k for somek € {2, ..., s — 1} and estimate

k
Re(ie™"” (on —vom)) = >_Re(ie™ Avmyj)

j=1
k
= > |Avmyj|SINW — by j) < O. (3.20)
j=1

The inequality holds since, in light &f < Ony1 < -+ < Onyk < 0 + &, each sine is
negative except perhaps for the last one which is allowed to be zero. On the other hand,
if 0h — O € (—=x, 0), we writen = m — k instead, for somé& € {2,...,s — 1}, and
estimate

0
Re(ie™ (om —on)) = > Relie™ Avmy))
j=—k+1
0
= D |AvomgjlSin® —Omyj) > 0. (3.21)
j=—k+1

Here we invoked the inequalities — 7 < Om—k < --- < 6y < 9 to show that each
sine on the right-hand side is strictly positive.

As a consequence of the previous estimates, we concludelthat |, for all
m=1,...,s. However, the union of alll;’'s covers the unit circle with the exception
of s points and, since the selg, are open and disjoint, we must halyg = Jy, for
allm € 9(2). Then, necessarily;, is connected and open. Now the left-hand side of
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(3.17) is strictly greater than the right-hand sidedre |, and strictly smaller than
the right-hand side fo# in the interior of the complement df,. By continuity of both
sides, (3.17) can hold only on the boundarygf 0O

3.2. Proof of Theorem 2.1Having all the necessary tools ready, we can start prov-
ing Theorem 2.1. First we will apply Lemma 3.5 to characterize the situation around
multiple points.

Lemma 3.6.Suppose that Assumption A holds andzlet & be a multiple point. For
0> 0, let )
19 ={ze 0:12—2 =46, Qz) > m}. (3.22)

Then the following is true oncgis sufficiently small:

(1) For each me Q(2), the set ,ﬁf) is connected and has a non-empty interior.
(2) I(()) @ whenever n¢ Q(2).
(3) For distinct m and n, the seté?i and I(‘” intersect in at most one point.

Proof. The fact thatl,%") = g form ¢ Q(2) onced > O is sufficiently small is a
direct consequence of the continuity of the functighsand¢ . Indeed, if there were a
sequence of pointg tending toz such that a phasa were stable at eactx, thenm
would be also stable at

We will proceed by proving that, asJ, 0, each setrﬁq‘s), m e Q(2), will eventually
have a non-empty interior. Leh € Q(Z). Observe that, by Lemma 3.5, there is a
value€’ (namely, a number fronhy,) such that R&?v) > Re(€’vy) for all n e
Q(2)\ {m}. But then the second part of Lemma 3.1 guarantees the existence of &n
such thatQ(z) = {m} for all z € #¢ »(z)—see (3.3). In particular, the intersection
Weo(2)N{z: |z—2| = J}, which is non-empty and (relatively) open ik e, is a subset
of I,@. It follows that the setr(,f) has a nonempty interior ondas sulfficiently small.

Next we will prove that eath,(T?) m € Q(2), is eventually connected. Suppose that
there exist a phasa € Q(2) and a sequencé | O such that all set$(é") are not
connected. Then, using the fact thlé‘;t‘) has nonempty interior and thus cannot consist

of just two separated points, we conclude that the plaaseexists with some other
phase at at least three distinct points on each cl{zléz — z| = dg}. Epr|C|tIy, there

exist (not necessarily distinct) |nd|cb§) € Q2 \ {a} and pomts(zk ),j =123,
with |z|((” — 7] =& andzf(’) + 7 for j +# ¢, such tham, bli” € Q(zl((”). Moreover,

(choosing subsequences if needed) we can assumbfjﬁat: b for somebt) ¢
9(2)\ {a} independent ok. Resorting again to subsequences, we also may assume that
the limits in (3.1) exist for all three sequences.

Let us useg’i to denote the corresponding limits for the three sequences. First we
claim that the numberg?’i, j = 1,2, 3, are necessarily all distinct. Indeed, suppose
two of the€’’s are the same and létandc be the phases coexisting withalong
the corresponding sequences. Then Lemma 3.3(1) fdrces c, which contradicts
both conclusions of Lemma 3.3(2). Therefore, all treemust be different. Applylng
now Corollary 3.2 and Lemma 3.1, we get(Eé va) = MAXcQ(2)\(a} Re(@’ivy) for

j = 1,2,3. According to Lemma 3.5, all three distinct numbefs, j = 1, 2, 3, are
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endpoints ofl, which is not possible sinck, is a connected subset of the unit circle.
Thus, we can conclude thbf) must be connected onde> 0 is sufficiently small.

To finish the proof, we need to show théf) N Iéé) contains at most one point for
anya # b. First note that we just ruled out the possibility that this intersection contains
threedistinct points for a sequence @é tending to zero. (Indeed, thenwould coexist
with b along three distinct sequences, which would in turn imply ghahdb coexists
along three distinct directions, in contradiction with Lemma 3.5.) Suppose now that
Ié‘s) N Iéé) contains two distinct points. Since botﬁd) and Iéd) are connected with
open interior, this would mean tha” and Iéé) cover the entire circle of radiu&
Once again, applying the fact that m/,&” have at most two points in common, we then
must havelc(‘;) = @ for all ¢ # a, b. But Q(2) contains at least three phases which

necessitates thaﬁ?) # ¢ for at least three distineh. Hencelf) N Ié‘j) cannot contain
more than one point. O

Next we will give a local characterization of two-phase coexistence lines.

Lemma 3.7.Suppose that Assumption A holds and lebma R be distinct. Let =z &

be such that ze ., N %, and Q(Z) c {m,n} for Z € Dg(2). Then there exist
numbersy’ € (0,0), t1 < 0, t > 0, and an twice continuously differentiable function
v, (t1,t2) = Dy (2) such that

1) y,(0) = z.
(2) 1Em(72O)] = [En (72 (D)) = ¢ (7(1), t € (t1, t2).
(3) limgyt, y,(1), limiqe, y,(t) € 3Dy (2).

The curve t— y,(t) is unique up to reparametrization. Moreover, the Bgt(z) \
y,(t1, t2) has two connected components and m is the only stable phase in one of the
components while n is the only stable phase in the other.

Proof. We begin by observing that by Assumption A3, the function
Pmn(X, y) =log|cm(X +iy)l —log|tn(X +iy)| = RelogFma(x +iy),  (3.23)

has at least one of the derivativégpm n, Oy¢m,n NON-vanishing ak + iy = z. By
continuity, there exists a constapt> 0 such that one of the derivatives is uniformly
bounded away from zero for afl = u +iv € D,(2). Sincez = x +iy € SmN
“n, we havegmn(x,y) = 0. By the implicit function theorem, there exist num-
bersty, t;, Xo, X1, Yo andy; such thatt) < 0 < t], Xo < X < X, Yo < Y <
y1 and (Xo, X1) x (Yo, Y1) C ID,(2), and twice continuously differentiable functions
u: (tp, t1) = (Xo, X1) andv: (tg, t1) — (Yo, y1) such that

Pmn(u(t), v(t)) =0, t e (), t)), (3.24)

and
u@® =x, and »(0)=vy. (3.25)

Moreover, since the second derivativesdpf, are continuous i and therefore
bounded i, (z), standard theorems on uniqueness of the solutions of ODEs guarantee
that the solution to (3.24) and (3.25) is unique up to reparametrization. The construction
of y, is now finished by picking’ so small thaDs(z) C (Xo, X1) X (Yo, Y1), and tak-

ing to andt; to be the first backward and forward time, respectively, whgh), (1))
leavedDy (2).
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The fact thalDy (2) \ y,(t1, t2) splits into two components is a consequence of the
construction ofy,. Moreover,y, is a (zero-)level curve of functiopm n which has a
non-zero gradient. Henceémnn < 0 on one component dby (z) \ y,(t1, t2), while
¢m.n > 0 on the other. Recalling the assumption t@4t") c {m, n} for Z' in a neigh-
borhood ofz, the claim follows. O

Now we can finally give the proof of Theorem 2.1.
Proof of Theorem 2.1et .# denote the set of all multiple points @, i.e., let

M ={ze0:1Q2)] > 3}. (3.26)

By Corollary 3.4, we know that is relatively closed i and so the set” = '\ .#
is open. Moreover, the sét N ¢’ consists solely of points where exactly two phases
coexist. Lemma 3.7 then shows that for each¥ N ¢”, there exists a disBy (z) and
a unique, smooth, in Dy (z) passing througlz such thatQ(z') = Q(z) for all Z on
the curvey,. Let y, be a maximal extension of the curygin &’. We claim thaty, is
either a closed curve or an arc with both endpointd6h Indeed, ify, were open with
an end-poinZ € ¢”, thenQ(2) > Q(2), by continuity of functiongm,. Butz € ¢’
and s0|Q(2)| < 2, which implies thatQ(2) = Q(z). By Lemma 3.7, there exists a
non-trivial curveys along which the two phases fro®(z) coexist in a neighborhood
of Z. But theny; U 7, would be a non-trivial extension ¢f,, in contradiction with the
maximality of%,. Thus we can conclude thate 60”.

Let € denote the set of maximal extensions of the cufyesze ¥Nd&’'}. Let 2 C
¢ be a compact set and note that Corollary 3.4 implies#at# is finite. Letdp be so
small that, for eaclay € #Z N2, we havéDs,(zvm) C &, Ds,(zm)N.A4 = {zm} and the
statements in Lemma 3.6 hold true bk dp. Letd € (0, dg]. We claim that if a curve
€ e Cintersects the disBs(zy) forazy € .# N 2, then the restrictio® NDs(zy) is
a simple curve connectingy to 6Ds(zv). Indeed, each curve e € terminates either
onod oron.Z. If € “enters”Ds(zy) and does not hity, our assumptions aboud
imply that% “leaves”Ds(zm) through the boundary. But Lemma 3.7 ensures that one
of the phases coexisting aloffgdominates in a small neighborhood on the “left"@f
while the other dominates in a small neighborhood on the “right¥ofThe only way

this can be made consistent with the connectivity of the Isfé{s'n Lemma 3.6 is by
assuming thaltrgf) # @ only for the twom'’s coexisting alongs’. But that still contradicts

Lemma 3.6, by which,ﬁf) # @ for at leastthreedistinctm. Thus, once a curve € C
intersectdgs(zv), it must terminate aty.
LetZo = 2\ Uze.y Dsy(2) and letA: 29 — [0, oo) be a function given by

A(z) =inf{6' € (0,60): Dy (2) C O, Dy(2) N Ugee € is disconnectefl  (3.27)

We claim thatA is bounded from below by a positive constant. Indekdk clearly con-
tinuous and, sinc&y is compactA attains its minimum at sonee %. If A(z) = 0,
thenz is a limit point of | J,.e ¢ and thusz € ¢ for some% e €. Moreover, for
infinitely manyd’ € (0, do), the circledDy (2) intersects the sdt),.e ¢ in at least
three different points. Indeed, the cur¢é > z provides two intersections; the third
intersection is obtained by adjusting the raddiso thatDy (z) N (Jgce is discon-
nected. Thus, we are (again) able to construct three sequéemge&, ) and(z;) such
that, without loss of generalityk, 7, z; € 3 N ., for some distince, b € R (only
two phases can exist in sufficiently small neighborhoods of pointgin |zx — z| =
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|z, — 2| =1z — 2| — O, butzx # 7z # z; # z for all k. However, this contra-
dicts Lemma 3.3, because its part (2) cannot hold simultaneously for all three pairs of
sequence&z, z,), (., z;) and(z, z).

Now we are ready to define the set of poimts. .., z,. Let ¢ be the minimum of
the functionA in 2 and lets = min(dy, ¢). Consider the following collections of open
finite discs:

81={Ds(2): ze A N D},
$2={Ds(2): z€ 2N Ugee . distz, Upes, D) > 30}, (3.28)
83 ={Ds(2): z€ 2, dist(z, Upes,s,D) > 59}-

It is easy to check that the union of these discs cogerset § = 81 U 82 U 83. By
compactness a¥, we can choose a finite collectiéh c § still coveringZ. It remains

to show that the sets’ = ¥ ND for D e § will have the desired properties. LBte 8’

and letz be the center o). If D e 83, then N D = @. Indeed, ifZ is a coexistence
point, thenDs(Z) € 81 U 82 and thus didiz, Z) > 6 + %5 and hence’ ¢ D. Next,

if D € 82, thenz € 4 and, by the definition afp ande, the discD contains no multiple
point and intersect® only in one component. This component is necessarily part of
one of the curve®” € C. Finally, if D € 81, thenz is a multiple point and, relying on
our previous reasoning, several curn#ss € connectz to the boundary o). Since
Lemma 3.6 implies the existence of exadif¥(z)| coexistence points oD, there are
exactly |Q(z)| such curves. The proof is finished by noting that every multiple point
appears as the center of some dise 8, because that is how the collections (3.28)
were constructed. O

4. Partition function zeros

The goal of this section is to prove Theorems 2.2-2.5. The principal tool which en-
ables us to control the distance between the roo&8fand the solutions of equations
(2.17-2.18) or (2.24) is Rouéls Theorem (see e.g. [16]). For reader’s convenience, we
transcribe the corresponding statement here:

Theorem 4.1 (Roucle’s Theorem).Let 2 c C be a bounded domain with piecewise
smooth boundargZ. Let f and g be analytic o Uo2. If |g(2)| < | f(z)| forallz €
09, then f and f+ g have the same number of zeroZZincounting multiplicities.

More details on the use of this theorem and the corresponding bounds are stated in
Sect. 4.2 for the case of two-phase coexistence and in Sect. 4.4 for the case of multiple
phase coexistence.

Root degeneracy will be controlled using a link between the non-degeneracy condi-
tions from Assumption B and certain Vandermonde determinants; cf Sect. 4.1. Through-
out this section, we will use the shorthand

F(Q) = ] He(m) (4.2)
meQ

to denote the set of pointse & where all phases from a non-em@yc R are “almost
stable” (as quantified by > 0).
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4.1. Root degeneracyin this section we will prove Theorem 2.2. We begin with a
claim about the Vandermonde matrix defined in terms of the functions

02007 (2)
@

where the dependence bf, on L has been suppressed in the notation. Let us fix a
non-emptyQ c R and letq = |Q|. For eaclz € .7, (Q), we introduce the| x q
Vandermonde matri¥(z) with elements

bn(z) = ze S (m), 4.2)

My.m(2) = bm(2)’, meQ, £=0,1,...,q—1. (4.3)

Let | M| denote the?(Q)-norm of M (again without making th@-dependence of this
norm notationally explicit). Explicitly||M||? is defined by the supremum

q-1
||M||2=sup[z\2 Mg,mv”vm(zz D> Wmf® = 1], (4.4)

=0 meQ meQ

where(Wp,) is a|Q|-dimensional complex vector.

Throughout the rest of this section, the symijol || will refer to the (vector or
matrix) £2-norm as specified above. The only exceptions are Baeorms||q||1, ||qll2
and||qll Of ther -tuple (qm)mer, Which are defined in the usual way.

Lemma 4.2. Suppose that Assumption B3 holds andlgbe as in Assumption B3. For
eachQ c R, there exists a constant Kk K (Q) < oo such that

IM™(@)| < K, forallze /. (Q)and L > Lo. (4.5)
In particular, M(z) is invertible for all ze %, (Q) and L > Lo.

Proof. Let © c R andq = |Q|. Let us choose a poirt € %, (Q) and letM
and by, m e Q, be the quantitieM(z) and bp(2), m € Q. First we note that,
sinceM is a Vandermonde matrix, its determinant can be explicitly computeddet
[Tm<n(bn — bm), where “<” denotes a complete order @d. In particular, Assump-
tion B3 implies thajdetM| > @9@-/2 > 0 onceL > Lo.

To estimate the matrix norm &fl~1, let 14, ..., Aq be the eigenvalues of the Her-
mitian matrixM M* and note thati, > O forall¢ = 1,..., g by our lower bound
on |detM]. Now, |[M™ |2 is equal to the spectral radius of the operdiit, and
IM~1|12 is equal to the spectral radius of the operaidrM*)~1. By the well-known
properties of the norm we thus have

IMJI2 = [M*]2 = max e, (4.6)

1<t<q

while - .
M™ = max i, . 4.7
IMTH® = max 2; 4.7)

Now |detM|? = detM Mt = A1 ... Lq and a simple algebraic argument gives us that

M|9-1
vty < M

M. (4.8)
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Using the lower bound ofdetM], this implies that|M~1|| < a-9% ||M||q 1 The
claim then follows by invoking the uniform boundedness of the matrix elememﬁ of
(see the upper bound from Assumption B3), which implies fidf and hence also
[M~1| is uniformly bounded from above throughatt., (Q). O

Now we are ready to prove Theorem 2.2. To make the reading easier, let us note that
for @ = {m}, the expression (2.8) definirgy. (Q) can be simplified to

U(im) = {z € O |tn(2)| < €/?|7(2)| forall n # m}, (4.9)

a fact already mentioned right after (2.8).

Proof of Theorem 2.2.etm € R. Since the set%, . (Q), Q C R, coverd, it suffices
to prove thatz{™ # 0 in % -a,, ((M}) N %L (Q) for eachQ c R. In fact, since
Z € U -4, ({M}) implies thatmis stable]¢m(2)| = ¢(2), we may assume without loss
of generality that € Q, because otherwisg -a,, ({m}) N %, (Q) = 0. Thus, let
m e Q C R and fix a poinz € % -a,, ({M}) N %L (Q). By Assumption B4, we have
the bound

(L) d

per Ld {m (2|t
1207 2 ¢ (qm '@ ’
(L)(Z)

(@

w22 - cotdlae ). @ao)
neQ\{m}

Sincez € % -4, ({M}), we haveltn(2)] < ((z)e_%L_d”L for n # m. In conjunction
with Assumption B2, this implies

(L) d
CC(Z()Z) ‘L <ettezon, pam, (4.11)

On the other hand, we also have

52(’2()2) ‘Ld > et

where we used thatm(z)| = ¢(2). Sincew — oo, (4.11-4.12) show that the right-
hand side (4.10) is dominated by the term with mdemNhlch is bounded away from
zero uniformly inL. ConsequentlyZ®" # 0 throughoutZ -a,, ({m}) N %L (Q),
providedL is sufficiently large.

Next we will prove the claim about the degeneracy of the roots. Let ug@ fix R
per

and let, as beforey = |Q|. Suppose that > Lo and letz e ./ (Q) be aroot ofZ

that is at leasy-times degenerate. Sin&®' is analytic in a neighborhood af we
have

, (4.12)

¢z"2z =0, ¢=0,1,...,9-1. (4.13)
z-L

It will be convenient to introducg-dimensional vectorg = x(z) andy = y(z) such
that (4.13) can be expressed as

M(2)x =, (4.14)
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with M(z) given by (4.2) and (4.3). Indeed, bet= X(2) be the vector with components

(L) d
o (im (@t
= m( "o ) ., meoQ. (4.15)
Similarly, lety = y(z) be the vector with componenys, . . ., yq_1, where

ye =L %@ olE0 (2

= > @ UYL @] - @ [ @] ). @10
meQ

Recalling the definitiorE'g | (z) from (2.13), it is easily seen that (4.14) is equivalent
to (4.13).

We will now produce appropriate bounds on ##€Q)-norms|ly|| and ||x|| which
hold uniformly inz € %, (Q), and show that (4.14) contradicts Lemma 4.2. To esti-
mate|ly||, we first note that there is a constaht< oo, independent ok, such that, for
all¢=0,...,9g—1andallze %L(9Q),
¥

L @] @ (@] < AL @)

Here the leading order term fromn=9¢¢[¢{") (2)]* is exactly canceled by the term

bm(z)"[(,ﬂ‘)(z)]Ld, and the remaining terms can be bounded using (2.11). Invoking
(4.17) in (4.16) and applying (2.14), we get

Iyl < Alglli/GL™@ + ( max C/)lalli/gLle ", (4.18)
0<f<q-1

where the factog/q comes from the conversion 6f°-type bounds (4.17) into a bound
on the¢2-norm ||y||. On the other hand, by (2.9) angh > 1 we immediately have

x| > e (4.19)

But [x|| < IM~1@)| llyll, so onceL is sufficiently large, this contradicts the upper
bound|M~1(z)| < K implied by Lemma 4.2. Therefore, the rootzatannot be more
than(q — 1)-times degenerate after allo

4.2. Two-phase coexistencelere we will prove Theorem 2.3 on the location of parti-
tion function zeros in the range of parametevhere only two phases frofR prevail.
Throughout this section we will assume that Assumptions A and B are satisfied and
usex andr to denote the constants from Assumption B. We will alsodige) for the
function defined in (2.16).

The proof of Theorem 2.3 is based directly on three technical lemmas, namely,
Lemma 4.3-4.5 below, whose proofs are deferred to Sect. 5.2. The general strategy
is as follows: First, by Lemma 4.3, we will know that the solutions to (2.17-2.18)
are within anO(e~*!)-neighborhood from the solutions of similar equations, where
the functions, get replaced by their analytic counterpa;r&é). Focusing on specific
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indicesm and n, we will write these analytic versions of (2.17-2.18) &&) = 0,
wheref is the function defined by

f@ =P @ + 0P @Y, ze S mny). (4.20)

The crux of the proof of Theorem 2.3 is then to show that the solutiof§nf= 0 are
located within an appropriate distance from the zerozfc?f(z). This will be achieved
by invoking Rouck’s Theorem for the function$ and f + g, whereg is defined by

9@ = 202 - f(2), ze S (m,n)). (4.21)

To apply Rouck’s Theorem, we will need th#g)(z)| < | f (z)] on boundaries of certain
discs in.%,L ({m, n}); this assumption will be verified by combining Lemma 4.4 (a
lower bound on| f (z)|) with Lemma 4.5 (an upper bound ¢g(z)|). The argument
is then finished by applying Lemma 4.3 once again to conclude that any two distinct
solutions of the equations (2.17-2.18), and thus also any two distinct ro@8-of
are farther than a uniformly-positive constant tintes®. The actual proof follows a
slightly different path than indicated here in order to address certain technical details.
We begin by stating the aforementioned technical lemmas. The first lemma provides
the necessary control over the distance between the solutions of (2.17-2.18) and those
of the equationf (z) = 0. The functionf is analytic and it thus makes sense to consider
the multiplicity of the solutions. For that reason we will prefer to talk about the roots of
the functionf.

Lemma 4.3.There exist finite, positive constants, B,, C; and Ly, satisfying the
bounds B < B, andCie~*t < B;L~9 whenever L> L1, such that for all L> Ly,
alls < (B + BZ)L‘d and all z € %L ({m, n}) with Ds(z9) C &, the disdDs(zp)
is a subset of, ;. ({m, n}) and the following statements hold:
(1) If s < B1L~9, then discDs(zp) contains at most one solution of the equations
(2.17-2.18) and at most one root of function f, which is therefore non-degenerate.
(2) If s > C1e77t and if ) is a solution of the equations (2.17-2.18), tH&g(zo)
contains at least one root of f.
(3) If s > C1e 7L and if  is a root of the function f, theBs(z9) contains at least
one solution of the equations (2.17-2.18).
4)Ifs= B,L 9 and if both m and n are stable ag,zhenDs(zg) contains at least
one solution of the equations (2.17-2.18).

The next two lemmas state bounds|driz)| and|g(z)| that will be needed to apply
Roucle’s Theorem. First we state a lower bound|616z)|:

Lemma 4.4. There exist finite, positive constaritsand C; obeyingé; < C; and, for
anyC > C, and any sequendg ) of positive numbers satisfying

lim L% =0, (4.22)
L—oo

there exists a constant;L< oo such that for all L> L the following is true: If gis a
point in /@y ({m, n}) N (Sm U ) and]D)éEL(zo) C 0, then there exists a number

S(29) € {CreL, Czﬂ_} such thaﬂl)s(zo) (20) C yx/(ZL) ({m, n}) and

iminf  inf  [f(@)] > el L% (z0)"". (4.23)
sts(z) z: lz-zol=s

Moreover, if f has a root ifg,, (Z0), then gzg) can be chosen ag®) = CeL.
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The reasons why we write a limit in (4.23) will be seen in the proof of Theorem 2.3.
At this point let us just say that we need to use Lemma 4.4 for the maximal choice

s(z9) = CeL in the cases when we know tlﬂgq(zo) C ¢ but do not know the same
about the closure (ﬂ)éq (2p). In light of continuity ofz — | f ()|, onces(zp) < Ce,
the limit is totally superfluous.

Now we proceed to state a corresponding upper bourid@|:

Lemma 4.5.There exists a constantzAe (0, co) and, for each Ce (0, co) and any
sequence| obeying the assumptions (2.19), there exists a numbet bo such that

sup  19(2)] < AsdL (zo)L % (z0)"" (4.24)
z: |z—20| <CéL (20)

holds for any L> Lz and any g € %, with D¢, (z)(20) C 0.

With Lemmas 4.4-4.5 in hand, the proof of Theorem 2.3 is rather straightforward.

Proof of Theorem 2.3.et m andn be distinct indices froniR and let us abbreviate
Uy, = U, ({m,n}) and.7, = Z({m,n}). Let f(z) andg(z) be the functions from

(4.20-4.21). LeBy, By, C4, &, C» and A3 be the constants whose existence is guar-
anteed by Lemmas 4.3-4.5 and let be as in Lemma 4.3. Sinc&sz appears on the
right-hand side of an upper bound, without loss of generality we can assume that

& Az > Cy. (4.25)
Further, let us choose the consta@tand D such that
C=C1+CyA;3, and D= B;+ B, (4.26)

Next, letL, be the constant for which Lemma 4.4 holds for b&h= C, andC =
C/As and for bothe, = Age"l ande, = AgL%3"tL". Finally, let L3 be the
constant for which Lemma 4.5 holds withas defined above.

The statement of Theorem 2.3 involves two additional constants chosen as follows:
First, a constanB for which we pick a number frong0, %Bl) (e.g, B1/3 will do).
Second, a constamiy which we choose such thap > max{L1, L», L3} and that the
bounds

K 1 d _1,1d X
YL < I e_TL < Lde_ZVLL , CLde 2/LL +C]_e

hold true for allL > Lg. Fix L > Lg and consider the set

1
ng‘/_ BL™Y (4.27)

U = {Zo € @/;,L : Desy (z9)(20) C ﬁ}. (4.28)

Notice that our choice df o guarantees tha’ C %, C -7 @4L) N (YmU Fn), while
the fact thatC < C/Asz for both choices ofC above ensures that for amy € %,
the discD¢ Ped(z0) (zp) is contained inY. These observations verify the assumptions of

Lemma 4.4—withe, = Azd (z0) andC equal to eithelC, or C/Az—as well as of
Lemma 4.5, for anyg € % .
First, we will attend to the proof of claim (2). Lely € Qf N % be a root of

zP® = f + g. Lemma 4.4 withC = C;, ande| = Agdi (z0) and Lemma 4.5 then
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imply the existence of a radiugzg) with s(zg) < Coel = CoAsdL (z0) < CdyL(z0)
such that
|f(@|> |92, z € dDs(20) (4.29)

holds fors = s(zp). (Note that here the limit in (4.23) can be omitted.) Hence, by
Roucte’s Theoremf and f + g have an equal number of rootsli ) (zo), including
multiplicity. In particular, the functiorf has a root; in Ds,) (zo) which by Lemma 4.4

lies also in.% (L. Sinces(zog) + C1e77L < Cd (z0) by the definition ofC and the
second bound in (4.27), we may use Lemma 4.3(3) to infer that the equations (2.17—
2.18) have a solutioa e Déle—rt(zl) C Dcs, (z9)(20). Moreover, (4.27) implies that

CdL(z0) < B1L~9 so by Lemma 4.3(1) there is only one such solution in the entire
diSCchL (20) (Zo).

Next, we will prove claim (3). Lekzp € Q| (Q) N % be a solution to the equations
(2.17-2.18). By Lemma 4.3(2), there exists a rppte }D)éle,ﬂ(zo) C Dcsy (z)(20)
of the function f. Lemma 4.3(1) then shows that is in fact the only root off in
Dcs, (z9)(20). Applying Lemma 4.4 for the poirdy and the choices, = AzdL (zo) and
C = C/Agz in conjunction with Lemma 4.5, there exists a radi(z) such that (4.29)
holds true for any < s(zp) sufficiently nears(zp). Moreover, by the bound (4.25) we
know thatz; e Dcle—rL(Zo) C Dg,e, (20) is a root of f within distancetze| from zo,
and so the last clause of Lemma 4.4 allows us to che@@gg = Cd (z9). Letsy <
s(zp) be such that (4.29) holds fere (9, s(zp)) and pick ars € (9, S(zp)). Roucle’s
Theorem for the disc®s(zp) and the fact thatf has only one root icg, (zy)(20)
imply the existence of a unique zezaf f(z) + g(z) = Z{*(2) in Ds(z0). The proof
is finished by taking the limis T Cdy (o).

Further, we will pass to claim (4). Lei andz, be two distinct roots oZ{*" in %,
such that botiDg  -4(z1) € ¢ andDg, -4(z2) C & are satisfied. We will suppose
that|zy — zp| < BL~9 and derive a contradiction. Let= %(zl + 22) be the middle
point of the segment between andz,. Since|z; — 22| < B L9 a simple geometrical

argument shows that the disc of radais: */75 BL~9 centered az is entirely contained
in D -a(z1) UDg -a(z2) C €. Next, by Lemmas 4.4-4.5, there exist two roajs

andz, o_f f s_uch thatz; € Dcgz)(z1) andz, € Dz, (z2). (We may have _that
71 = 7, in which case = z, would be a degenerate root 6f) Now our assumptions
on B andLg imply that

3 B
%BL-d > 5L+ CoL@) 2 12—zl +la -2l 2 2 7], (4.30)

and similarly forz,. Consequently, botla; andz, lie in Ds(z). But this contradicts

Lemma 4.3 and the bourvé3 B < Bs, implying thatDs(zg) contains at most one non-
degenerate root of .

Finally, we will prove claim (1). Letzp € ¢ N %, (Q) with D, -4(2) C 0. Ac-
cording to Lemma 4.3(4), the dideg,, -4(2) contains at least one one solutizpof
the equations (2.17—2.18). Checking tBat. ~9 + Cd| (1) < (B2 + B1)L =% in view
of (4.27) and the definition dB, we know thatDcs(;,)(z1) C ¢ and we can use already
proven claim (3) to get the existence of a rooTZcﬁler in D¢, (z;)(22), which is a subset
of DDL—d (ZO) O

This concludes the proof of Theorem 2.3 subject to the validity of Lemmas 4.3-4.5.
The proofs of these lemmas have been deferred to Sect. 5.2.
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4.3. Proof of Proposition 2.4Fix distinct indicesm, n € R. Our strategy is to first
prove the claim for the density of the solutions of the equations (2.17-2.18),

1

il (@) = 51

Pm,n

|QL({m, n}) ND¢(2)], (4.31)

and then to argue that the dens@&ﬁé) yields the same limit.

Letzg € Y({m,n}) \ .#, where.# is the set of all multiple points. By Theo-
rem 2.1 and Assumptions A1-A2, there existsecan 0 such that, throughout the disc
D, = De(z9) C 0, we haveQ(z) C {m, n} and the the functioftm n(2) = {m(2)/tn(2)
is twice continuously differentiable and nonvanishing. Clearly, all solutions of the equa-
tions (2.17-2.18) i), must lie in the set

9O = {z €D |Fmn(@] = (/am)""}. (4.32)

Denoting the se¥({m, n}ND, by %>, we now claim that for sufficiently smadl the
sets7(*) and¥ (L) can be viewed as differentiable parametric cunveé_, t,) — D,

andy®: ), t{") - D, for which

@ tP > t_andt!V >ty
(2) y\© — y uniformly one (t_, t;)
(3) VL — v uniformly on(t—, ty)
hold true ad. — oo. Heredy (t) = 3y (t) andi(t) = $(t) denote the tangent vec-

tors toy() andy, respectively.
We will construct both curves as solutions to the differential equation

dz(t) i Oz¢m,n(2(1))
dt |02m,n(z(1))]
with ¢m.n(z) = log|Fm,n(2)| (note that fore small enough, the right hand side is a well
defined, continuously differentiable functionzt) € D, by Assumptions A1-A2 and
the fact thatd,¢m.n(z0)| > a/2 according to Assumption A3). In order to define the
curvesy(M) (-) andy(-) we will choose a suitable starting pointat 0. Fory(-), this will
just be the poinkg, while for y(1) () we will choose a poinzg‘) € D, which obeys the
conditions¢mn(zy”) = n1 and|zo — 2| < 3a~1yL, wheren, = L= 10g(an/tm).
To construct the poinzé") € D¢, we use again the smoothness¢gf ,. Namely, by
Assumption A1-2, the functioghm n(x +iy) = log|Fm n(X+iy)| is twice continuously
differentiable onD, if € is sufficiently small, and by Assumption A3 we either have
[0pmn(X + 1Y) /oX| > a/3, or [6pmn(X + iY)/3y| > a/3. Assuming, without loss
of generality, thaldgm n(x + iy)/dy| > «/3 on all of D, we then define(()L) to be
the unique point for which I%éL) = Rezg andgzﬁm,n(z(()L)) = nL. By the assumption
|ogmn(X + 1Y) /3yl > /3, we then havézy — z3”| < 3¢~1y, as desired.
Having choserz)”, the desired curveg™: ™), t!") - D, andy: (t_,t;) —
D, are obtained as the solutions of the equation (4.33) with initial condjtior{0) =
zg‘) and y(0) = zp, respectively. Here ™, tJ(r"), t_, andt, are determined by the

condition thatt™) andt_ are the largest valuds < 0 for which y1)(t) e oD, and
y(t) € oD, respectively, andfr") andt, are the smallest valugs > 0 for which

(4.33)
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y(t) e oD, andy(t) e oD, respectively. Since the right-hand side of (4.33) has
modulus one, both curves are parametrized by the arc-length. Moreover, deceeasing
if necessary, the functiong™) can be extended to all € (t_,t;). To see that the
limits in (1-3) above hold, we just refer to the Lipschitz contlnwdy of the right hand
side of (4.33) and the fact that, by definitign{") (0) — (0)| = O(L~%). LetK be the
Lipschitz constant of the right-hand side of (4.33) in a neighborhood contagffin@)
forallt e (t-,t}). Choosings so small that botlh, —t_ andt(+") —t are less than,
say, ¥/ (2K), integrating (4.33) and invoking the Lipschitz continuity, we get

sup M) =y < V0 - (0] + 3 sup yO® -y (4.34)

_<t<ty o <t<ty

This shows thap(") (t) — y(t) uniformly int e (t_, t;). Using Lipschitz continuity
once more, we get a similar bound on the derivatives. But then also the arc-lengths
corresponding toy() must converge to the arc-length ¢f which shows that also
9 - t, andt™™ - t_.
Consider now the curvg(t). Given thati Fm n(2)| is constant along, we have

dArg Fmn(@®) _ 1 dlogFm, n(y(®) _
dt i dt

—i0z10g Fmn(2)|,_ 0 V(. (4.35)

Referring to Assumption A3 and the fact thaft)| = 1, we find that the modulus of the
left-hand side is bounded below by Using continuity of the derivativg{- Arg Fmnin

D., we observe that one of the two alternatives occurs on all the intef_\'75,| tfr")):
dArg Fm,n(V(L)(t))

either >
dt -

dArg Fm,n(}’(L)(t)) ¢

4.
it . (4.36)

N R

providede is sufficiently small. By Lemma 4.3, the digg. contains a finite number

k=2¢ Ldpr(nLne)(Zo) of solutions of the equations (2.17) and (2.18) which in the present
notation read

On \ /L
Fun@1=(0)" - (437)
Ld Arg Fmn(z) = = mod 2r. (4.38)

Assuming, without loss of generality, that the former alternative in (4.36) takes place,
and ordering all the solutions consecutively along the cufVe, i.e., lettingzy =

yO ), ..,z = yO ) wheret™ <t < - <t <t!V, we have

Arg Fmn(Zj+1) — Arg Fmn(zj) = 2z L9 (4.39)
foranyj=1,...,k—1,aswellas
Arg F.n(z1) — Arg Fnn(z-) < 2z L~ (4.40)

and
Arg Fmnn(zy) — Arg Fn(z) < 2z L9, (4.41)
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In view of the first equality in (4.35) rephrased fdt), the left hand side of (4.39) can
be rewritten as

dlog Fm,n(}’(L)(t))

tj+1
ArQ Finn(Zj11) — Arg Finn(z)) = /t o ‘dt (4.42)
j
and thus
'|dlogFmn(r-) 1) ’dt okr L9 < 27 L—d (4.43)
(L dt - ' '

Let us divide the whole expression h{ and take the limit. — co. Now y(") converge

to y along with their first derivatives, uniformly ine (t_, t;), and the I|m|tst( ) con-
verge tot.. The Bounded Convergence Theorem then shows that the mtegral in (4.43)

converges to a corresponding integral oyeRecalling tha;o(L ‘)(zo) =k/(2¢L9), we

thus get
1 [
im0 z0) = /
4re

dlog Fm,n(yo(t))
dt

ot
(4.44)
= 4—/ |az|09 Fm,n(z)||dz|
T € 70

where the last integral denotes the integration with respect to the arc length. Taking into
account the Lipschitz continuity db;log Fmn(2)[, the last integral in (4.44) can be
approximated by(| 0, log Fmn(z0)| + O(e))lyl By the smoothness of the curygewe
estimate its length byy| = 2¢(1+ O(e)), so that

asz(ZO) 6zé‘n (20)

4.45
{m(20) (n(20) (4-43)

I|m I|m p(L 9 (20) = —|6z|09 Fm.n(20)| =

To finish the proof, we need to show tlﬁ{fn )(zo) will converge to the same limit.
According to Theorem 2.3, we have

1Q] NDe(2)| — 1QL({m, n}) NDe(2)]] < 2 (4.46)

for all z € ¥ (m, n) such tha{Q(z)| = 2 ande sufficiently small. Hence

P9 (@) = s ()| < (4.47)

eLd’

and the claim of the proposition follows by (4.45)a

4.4, Multiple phase coeX|stencm this section we will prove Theorem 2.5, which
deals with the zeros ci[ "in the vicinity of multiple points. Lezy € & be a multiple
point and letQ = Q(ZM) For eachm € Q, let (L) andoy, be as in (2.23). Define
the functions
fN(Z) — Z qm ei¢m(L)+')m(Z_ZM)Ld’ (448)
meQ

3@ = 2@ @)™ - f (), (4.49)
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and
E(2) = exp{manRe(um(z —zw)}. (4.50)
me

As in the case oj two-phase coexistence, the proof uses Iét.w&:heorem for the
functions f and f + §. For this we will need a lower bound drf| and an upper
bound on|§|.

Lemma 4.6.Suppose Assumptions A and B hold. Gigenc R with |Q| > 3 and
abbreviating g= |Q| and R. = L~9(+1/9) et (¢, ) be a sequence of positive numbers
such that
lim L%, =00 but lim L24-9/9¢ =0 (4.51)
L—oo L—>oo
Then there is a constantsL< oo such that for any g € C and any L > Ls there
exists $zo) € [RL/q, R_] for which the bound

inf @) > L% &z (4.52)
2! |z—2zp|=s(20)

holds.

Lemma4.7.Let 2y € ¢ be a multiple point, leQ = Q(zw),q = |Ql,and R =
L~9+1/a) There exists a constantgAe (0, o) and, for each sequendg, ) of posi-
tive numbers obeying (2.25), a numbey k oo such thatif L> Lg then]D)p/L (zm) C

UL (Q), wherep| = p_ + R_. Furthermore, we have

~ d
sup  [§(2)| < Aep?LYE(zo)" (4.53)
Z: |z—29|<RL

wheneverge D, (zw).

With these two lemmas we can proceed directly to the proof of Theorem 2.5.

Proof of Theorem 2.5The proof is close in spirit to the proof of Theorem 2.3. kgt
be a multiple point and le@ = Q(zv). Consider a sequendg, ) of positive hum-
bers such that (2.25) holds. Choosiag = AGpE, where Ag is the constant from
Lemma 4.7, we note that the conditions (4.51) are satisfied due to our conditipns on
from (2.25). We will then prove Theorem 2.5 witlhy = max{Ls, Lg}, wherelLs and
L are the constants from Lemma 4.6 and 4.7, respectively. The proof again boils down
to a straightforward application of Rougs Theorem.

Indeed, letL > Lo and note that by Lemmas 4.6 and 4.7, for eagle D, (zu)
there is ars(zp) € [RL/0, RL] such that oriDs(z,)(Z0), we have

|f(@] > |§(2)]. (4.54)

Consider the set of these disBg;, (zo)—one for everyzg € D, (zv). These discs
cover the closure db, (zw), so we can choose a finite subco$eiNext we note that

(4.54) implies that neithef nor f 4 § have more than finitely many zeroslin, (zv)
(otherwise, one of these functions would be identically zero). Without loss of generality,
we can thus assume that the discs centered at the zefoaru f + § in D, (zw) are
included in§. Defining% = Jp.g D, we clearly havéd, (zv) c % C Dy (zm).

Let now X be the set of all components @ \ (Jp.soD. Let #° € X be one
such component. By (4.54) we know tHdt(z)| > |§(z)| on the boundary of#” and
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Roucte’s Theorem then guarantees tlahas as many zeros itt” as f + §, provided

we count multiplicity correctly. Moreover, both functiorisor f + § have no zeros on
Upes @D. Sincef (2)+6(2) = Z"(2)¢ (zw)~-* and¢ (zm) =" > 0, the zeros of +§

are exactly those oZ’Eer. The above construction & ands$ then directly implies the
desired correspondence of the zeros. Namely, in eéck X, both f and 2P have
the same (finite) number of zeros, which can therefore be assigned to each other. Now
f and 2 have no zeros i/ \ |J_ i ¥ , SO choosing one such assignment in each
2 € X extends into a one-to-one assignmen@pfn 77 andQ (Q) N % . Moreover,

if ze Qf N2 andz € Q(Q) N % for some.z” e X (which is required ifz and

7 are the corresponding roots), themelongs to the dis® e $ centered ag andz
belongs to the dis® e § centered at. Consequentlyz andz are not farther apart than
R. = L~9@+Y/9 This completes the proof.0

4.5. Proof of Proposition 2.6Assuming thal. ~9w < y, it clearly suffices to ascer-
tain that

U #@nzc | Dyw. (4.55)
Q:1QI23 meInNM
To this end let us first observe that continuity of the functighsmplies
lim .7, (Q) = N Sm (4.56)
meQ

sincey. — 0. The setZ N .# is finite according to Theorem 2.1. Hence, there exists
a constanty > 0 and, for eacld € (0, dg], a constant. o = Lo(d), such that the discs
Ds(zm), Zv € 2 N 4, are mutually disjoint,

Q(2) Cc Q(zm) whenever  z e Ds(zm), (4.57)
and
U #@n2c (J Dsaw) (4.58)
Q:Q|=3 medINMH

whenever 0< ¢ < dg andL > Lo(d). It is therefore enough to show that there exist
constantge > 0 andds € (0, dp) such that for any multiple poirdy € 2, we have

Ds(zm) N7 (L(zm)) C Dy (zm) (4.59)

oncepL > yy_ andL > Lo(9).

We will prove (4.59) in two steps: First we will show that there is a constant 0
such that for any multiple poirty, anyz # zy, and anyn € Q(zv), there exists
m € Q(zv) for which

Re[(z— zm) (on(zm) — vm(zm)) ] > 2x12 — zml, (4.60)

and then we will show that (4.60) implies (4.59). To prove (4.60), we first refer to the
fact that we are dealing with a finite number of strictly convex polygons with vertices
{vk(zm): k € Q(zm)} according to Assumption A4 and thus, giverandn, the label

m can be always chosen so that the angle between the complex numbegg and
on(zvm) — vm(zm) is not smaller than a given fixed value. Combining this fact with the
lower bound from Assumption A3, we get (4.60).
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We are left with the proof of (4.59). Let us thus consider a multiple painte 2
with Q(zv) = Q, and a poiniz € Ds(zv) \ D, (zm). We will have to show that there
exists aim e Q with z ¢ .7, (m). Recalling thatQ(z) c Q for all Z € Ds(zw), let
n € Q be such thaith(2)] = ¢(2). Choosingm € Q(zy) so that (4.60) is satisfied
and using, as in the proof of Lemma 3Hy m(z) to denote the functiofrn m(z) =
n(2)/cm(2), we apply, as in (3.9), the Taylor expansion to [Bgm(z)| to get

log|Fn,m(2)| = Re[(z — zm)(vn(zm) — om(zw))] + Oz — zm[?)
> xlz—2zml > xpL. (4.61)

Here we also used thiEn m(zm)| = 1 and assumed thétwas chosen small enough to
guarantee that the error term is smaller thdmn — zy|. As a result, we get

Ikm(@)] < €71 ¢(2) < €77 ¢ (2) (4.62)
implying thatz ¢ ., (m). Thus, the inclusion (4.59) is verified and (4.55) followsa

5. Technical lemmas

The goal of this section is to provide the proofs of Lemmas 4.3-4.7. We will begin with
some preparatory statements concerning Lipschitz continuity gfttadc .

5.1. Lipschitz properties of the functioltgy |¢m| andlog¢. In this section, we prove
two auxiliary lemmas needed for the proofs of our main theorems. Foraay € C,
we will use [z1, z2] to denote the closed segment

(21, 2= {tzs + (1 - t)zp: t € [0, 1]}. (5.1)

The following Lipschitz bounds are (more or less) a direct consequence of formulas
(2.9) and (2.11) in Assumption B.

Lemma 5.1.Suppose Assumptions A and B hold and|et, and M be as in Assump-
tion B. Let me R, and let 4, 2, € %, (M) be such thafz;, z]C %, (m). Then

fm(zl) o2& Ly Mizi—29]
. 5.2
(m(ZZ) (5:2)

Moreover, for all Z, z; € & such thafzy, zo]c &, we have

C(Zl) eMlzi—2a|

(Zz) B

Remark 7Sincez — |¢n(2)| are all twice continuously differentiable and hence Lip-
schitz throughout, so is their maximunz — ((z). The reason why we provide a
(rather demanding) proof of (5.3) is that we need this bound to hold uniformly through-
out ¢ and the constaril from Assumption B(3) to appear explicitly on the right-hand
side. The first part of the lemma underlines what is hard about the second part: On the
basis of Assumption B, the uniform Lipchitz bound in (5.2) can be guaranteed only in
the region wheren is “almost stable.”

(5.3)
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Proof of Lemma 5.1l et [z, zo]C 7/ (M). The bound (5.2) is directly proved by
combining (2.9) with the estimate

log ey ()]~ loglei ()] < Miz1 - zal, (5.4)

implied by (2.11). Indeed, introducingt) = ,%L)(zl + t(z2 — z1)), we have

| Sloglo (]| = Wlt)d"‘;?)' ‘(o(t)Hd(p(t)

implying (5.4). By passing to the limlt — oo, we conclude that

M|z2 — z1] (5-5)

|log¢(z1) —log¢(z2)| < Mz1 — 23 (5.6)

holds provided#;, z2]C Sm.

To prove (5.3), lez1, zo € & with [z, zo]C 0. If the segmentZ;, z,] intersects the
coexistence se¥ only in a finite number of points, then (5.3) is an easy consequence
of (5.6). However, this may not always be the case and hence we need a more general
argument. Note that continuity of both sides requires us to prove (5.3) only for a dense
set of pointsz; andz,. This and the fact that each compact subset @bntains only a
finite number of multiple points from# = {z € ¢': |Q(2)| > 3} permit us to assume
thatz;,z, ¢ ¢ and that the segmenty|, zo] does not contain a multiple point, i.e.,

[z1, Z2]N = 0.

Suppose now that the bound (5.3) fails. We claim that then there exist aXpeint
[21, 2], with X # z3, 5, and two sequenceSyn) and (y,) of points from g, X]N¥Y
and [X, z2]N¥, respectively, such that the following holds:

(1) Xn # yn forallnand lim_ o Xp = liMp— 00 Yn = X.
(2) There exists a numbéi’ > M such that

¢ (Xn)

> M/|Xn — ynl (5.7)
(Yn)

‘Iog

for all n.

The proof of these facts will be simplified by introducing thipschitz ratiqg which for
any pair of distinct numbers, y € [z1, 2] is defined by the formula
|log ¢ (x) —log ¢ (y)]

Ix =yl '

The significance of this quantity stems from its behavior under subdivisions of the in-
terval. Namely, ifx andy are distinct points and € (x, y), then we have

R(x,y) =

(5.8)

R(x,y) < maq{R(x, 2), R(z, y)}, (5.9)

with the inequality being strict unled’(x, z) = R(z, y).

To prove the existence of sequences satisfying (1) and (2) above, we need a few
observations: First, we note thit’ = R(z3, z) > M from our assumption that (5.3)
fails. Second, whenevex, y € [z1, 2] are such thaR(x, y) > M, then (5.6) implies
the existence af’, y’ € [x, y] such thax’, y’ € 4 andR(X’, ¥') > R(X, y). Indeed, we
choosex’ to be the nearest point tofrom the closed setq, y|N¥, and similarly fory’.
The fact that the Lipschitz ratio increases in the process is a direct consequence of (5.9).
Finally, if distinctx, y € [z1, 22]N¥ satisfy R(X, y) > M, then there exists a pair of
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distinct pointsx’, y' € [x, y]N¥ such thatx’ —y’| < %|x—y| andR(X’, ¥) > R(x, y).
To prove this we use (5.9) with= %(x + y) to choose the one of the segmentsF]

or [z, y] that has the Lipschitz ratio not smaller thR(x, y) and then use the preceding
observation on the chosen segment.

Equipped with these observations, we are ready to prove the existence of the desired
sequences. Starting with the second observation above applirdsar; andy = 2o,
we getxi, X2 € [z1, z2]N¥ such thatR(x1, x2) > M’. Notice thatx; # z1 andx, # 2,
sincezy, zo ¢ 4. Next, whenever the pai, Yy, is chosen, we use the third observation
to construct the paikpi1, Ynr1 € [Xn, Yn]N¥ of points such thatxn11 — Ynt1| <
51%0 = Ynl andR(Xn41, Yn+1) > R(Xn, Yn) > M. Clearly, the sequencesn) and(yn)
converge to a common limi € [x1, y1], which is distinct fromz; andz.

We will now show that (5.7) still leads to a contradiction with (5.3). First we note
that the pointk, being a limit of points fron¥ \ .#, is a two-phase coexistence point
and so Theorem 2.1(2) applies in a diBg(X) for € > 0 sufficiently small. Hence,
there is a uniqgue smooth coexistence cugveonnectingx to the boundary ob, (X)
and, sincgXxp) and(y,) eventually lie oré, its tangent vector & is colinear with the
segment 41, zo]. Since inD¢(X), the coexistence curve is at least twice continuously
differentiable, the tangent vector ¥ has a bounded derivative through@ut(x). As a
consequence, in the difig (X) with 6 < ¢, the curves’ will not divert from the segment
[z1, z2] by more tharCé?, whereC = C(e) < oo.

Now we are ready to derive the anticipated contradiction:rFand letd, be the
maximum of|x, — X| and|y, — X|. Let & be a unit vector orthogonal to the segment
[21, z2] and consider the shifted poink§ = x, 4+ 2Cd2& andy), = yn + 2Cd2e. Then
we can write

C(%n) () (X)) C(¥R)

cyn) ) YR Cyn)

Assuming than is sufficiently large to ensure that,/1+ 4C252 < e, the segment

[xh, Y] lies in De(X) entirely on one “side” ofg and is thus contained vy, for
somem e R. On the other hand, given the bounded derivative of the tangent vector
to ¢, each segmenky, x;] and [yn, y;,] intersects the curv&” exactly once, which in
light of xn, Yo € ¢ happens at the endpoint. This means that atgox{,]Cc -m and

[yn, Yi]C m for the samem. Consequently, all three ratios can be estimated using
(5.3), yielding

(5.10)

IXn — Xpl 4 1X3 = Yol + 1Yn — Ynl
[Xn — Ynl

R(Xn, Yn) < M < M +4MCé, (5.11)

where we used thgk,, — ¥;| = [Xn — Yl and|Xn — Yn| > Jn. Butdy — 0O with
n — oo and thus the rati®(x,, yn) is eventually strictly less thakl’, in contradiction
with (5.7). Hence, (5.3) must have been true after ati.

The previous lemma will be particularly useful in terms of the following corollary.

Corollary 5.2. Suppose that Assumptions A and B hold an@letx < x, wherex is
the constant from Assumption B. Then there exist constaatee and Ly < oo such
that the following is true for all L> Ly and all s< c/L:

(1) Forme R and ze %% 21y (m) with Ds(2) C &, we have
Ds(2) € A%/ (M). (5.12)
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(2) For ze 0 withDs(z) C 0, the set

Q' ={me R:Ds(z) C S, (M} (5.13)
in non-empty and
Ds(2) € %:/L(Q). (5.14)
(@) Fory. <«/(2L), Q c Rand ze %, (Q) N %y, (Q) with Ds(2) C O, we
have
Ds(2) C %/ (Q). (5.15)

Proof. Let M be as in Assumption B. We then choose> 0 sufficiently small and
L4 < oo sufficiently large to ensure that for > L4 we have

K 1

— — —Le"t > 2c 5.16

8M M - ( )
First, we will show that the claims (1), (2), and (3) above reduce to the following
statement valid for eacln € R: If z,Z are complex numbers such that the bound
|lz—Z| < 2c/L, theinclusion{, Z') ¢ 0, andz € &'\ /%, (m) hold, then also

[Z, Z’) co \ y,;/(ZL)(m). (5.17)

We proceed with the proof of (1-3) given this claim; the inclusion (5.17) will be estab-
lished at the end of this proof.
Ad (1):Letz € .%%oL) With Ds(2) C ¢ and assume that (5.12) fails. Then there exist
somez € 0\ S, (m) with |z —Z/| < sand [z, Z]c &. But by (5.17), this implies
[Z,2) N % 2Ly (M) = @, which means thaiz], Z]N.%% 2L, (M) = @. This contradicts
the fact thatz € .%% /21y (m).
Ad (2):Letz € ¢ with Ds(z) C ©. By the definition of stable phases, there is at least
onem € R suchthat € ., C %% /(o) (mM). Combined with (5.12), this proves that the
setQ’ is non-empty. To prove (5.14), it remains to show tha€z) c &'\ % L) (M)
wheneverm ¢ Q’. By the definition ofQ’, m ¢ Q' implies that there exists 2 €
Ds(z) such thatz’ € &\ #;,(m). Consider an arbitrarg” € dDs(z). For such a
Z’, we have thatzZ — 2’| < 2¢c/L and [Z,Z") c 0, so by (5.17), we conclude that
[Z,2") € O\ F%@Ly(m). Since this is true for alt” e dDs(z), we get the desired
statemenis(z) C O\ %Ly (M).
Ad 3):LetQ Cc R,z € %, (Q) N %y (Q) andDs(z) c 0. I1f m e Q, then
z e /) (M) C F%@L)(m) by the definition of7%, (Q) and the condition that, <
#/(2L). With the help of (5.12), this implies thdts(z) ¢ %, (m) forall m € Q.
Recalling the definition of#;, (Q), we are left with the proof thabs(z) c &'\
Z%/2Ly(M) wheneverm ¢ Q. Butif m ¢ Q, thenz € &'\ /%, (m) because we
assumed that € %y, (Q). By (5.17) we conclude thaz[Z') c 0\ %@Ly (M)
wheneverz' € dDs(z), which proveds(z) C &'\ % L) (M).

We are left with the proof of (5.17), which will be done by contradiction. Assume
thus thatm € R and letz, Z be two points such thaz — Z| < 2¢c/L, [z, Z) c ¢ and
ze 0\ Y% L(m) hold, while (5.17) fails to hold, so thaz[z') N % L) (M) # 0.
Letz; € [z, Z') N.7%,oL)(M). Since k, Z') C &, we have in particular thar{, Zlc 0.
Let z, be defined as the nearest pointzpon the linear segmentzq, z] such that
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2y € S3z/4L)(M). By continuity of the functiongk, we have f1, 2] %/, (m) C
Z/L(m) so that the bounds in Lemma 5.1 are at our disposal. Putting (5.2-5.3) to-
gether, we have

‘Cm(zl)‘ ‘ {(22) < e?e " +eMIz—2p| (5.18)
¢(z1) gm(z2)
Now, sincez; € %% oLy (M) andzz & .73z 4Ly (M), we can infer that the left-hand side
is larger thare®/L) Hence, we must have

7 — 2| > K le—rL>2C

72 =8ML M -

where the last inequality is a consequence of (5.16). Row, € [z, Z) implies|z; —
22| < |z — Z|, which contradicts the assumption that- Z/| < 2c/L and thus proves
(5.17). o

(5.19)

5.2. Proofs of Lemmas 4.3-4.%5lere we will establish the three technical lemmas on
which the proof of Theorem 2.3 was based. Throughout this section, we fix distinct
m, n € R and introduce the abbreviationg, = .7.({m,n}) and%, = Z.({m, n}).
We will also let f andg be the functions defined in (4.20—-4.21).

First we will need to establish a few standard facts concerning the local inversion of
analytic maps and its behavior under perturbations by continuous functions. The proof
is based on Brouwer's Fixed Point Theorem, see e.g. [30, Chapter 2].

Lemmab5.3.Letz € C, ¢ > 0, and let¢: D.(zg) — C be an analytic map for which

1
¢/ (20)| 7| ¢ (2) — ¢/ (20)| < > (5.20)

holds for all ze D¢ (zp). Letd < €|¢'(z0)|/2. Then, for everyw € Ds(p(z0)), there
exists a unique point D, (zp) such that)(2) = w.
In addition, lety € [0, 6/2) and letd: D.(zg) — C be a continuous map satisfying

82| < 1, Z € D¢ (20). (5.22)

Then for each = D, (z0) with ¢ (2) € D, (¢(20)) there exists a point’ze D¢ (o) such
that

$(2) +0(2) = ¢(2). (5.22)
Moreover,|Z — z| < 25|¢/(z0)| L.

Proof. Following standard proofs of the theorem about local inversion of differentiable
maps (see, e.g., [13], Sect. 3.1.1), we seek the invergeasfa fixed point of the (ana-
lytic) functionz — y(2) = z + ¢'(20) "1 (w — ¢(2)). The condition (5.20) guarantees
thatz — w(2) is a contraction o), (zp). Indeed, for every € D¢ (zp) we have

W' ()] = |1 - ¢'(20) "2 ()| < 16/ (20)|7Y¢'(2) — ¢/ (20)] < 3, (5.23)

which implies thaty (2) — v (Z)]| < %|z— Z|forall z, Z € D.(zp). The actual solution
to ¢ (z) = w is obtained as the limit = lim,_, o, z, Of iterationsz,1 = w(z,) starting
atzgp. In view of the above estimates, we hdgg, 1 —z,| < %|zn —Zp—1| and, summing
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overn, we get|zn — 20| < 2|21 — 20| < 2|¢/(20)| ™ w — $(20)|. Sincelw — ¢ (20)| < 6,
we have thar, as well as its limit belongs t®, (zp).

Next we shall attend to the second part of the claim. The above argument allows
us to define the left inverse gf as the functiors—1: Ds(¢(20)) — De(Z0) such that
¢~ 1(w) is the unique valug € D,(zo) for which ¢(2) = w. Lety € [0, J/2) and let
z € D¢ (20) be such tha (z) € D, (¢(20)). Consider the functio’’ : Ds(¢(20)) = C
defined by

¥ (w) = ¢(2) = 0(¢™ (w)). (5.24)
By our choice ofz and (5.21), we havgP (w)| < 27 for anyw € Ds(¢(20)). Thus,¥
maps the closed did;, (¢ (2p)) into itself and, in light of continuity off’, Brouwer’s
Theorem implies tha¥ has a fixed poini’ in D2, (¢ (Z0)). From the relation¥ (v’) =
w’ we then easily show that (5.22) holds #@r= ¢~1(»’). To control the distance be-
tweenz andz, we just note that the above Lipschitz boundwmllows us to conclude
that|Z — z| < 2|¢'(20)|" ¢ (Z) — ¢(2)|. Applying (5.22) and (5.21), the right-hand
side is bounded by¢(z0)|~t. O

Now we are ready to start proving Lemmas 4.3-4.5. The first claim to prove concerns

the relation of the solutions of (2.17—-2.18) and the roots of the fundtialefined in
(4.20).
Proof of Lemma 4.3.eta, M andr be the constants from Assumption B. losindL 4
be the constants from Corollary 5.2 with= «. The proof will be carried out for the
constantsB;, C; andL ; chosen as follows: We let

i B, — 16+ 4/ log(gn/qm)|
am’ 2T a

~ 10
By = and Cy = —, (5.25)
a

and assume that; is so large that.; > L4 and for allL > L1, we haveCie 7L <
B;L~9 and the bounds:

(o] 1 K 1
Bi+By)L 9< < -—— 2Ly <= 5.26
(B1+ Bp) TS s (5.26)
~(M+M?)(B1+Bp)L ™" < 2, (5.27)
and also
2"ty oMBiL 9 < LY, G > 2v2e77h, (5.28)
L7942t <4179 and Ciemh < 1B,L7Y. (5.29)

Let us fix a valueL > L and choose a poirty € .%/oL) and a numbes < (B +
B2)L~9 such thaids(zg) c . Corollary 5.2(1) combined with the first bound in (5.26)
implies thatDs(zg) C /L.

We will apply Lemma 5.3 for suitable choices ¢fandé defined in terms of the
functionsFm.n: Ds(zo) — C andFit): Ds(zo) — C defined by

{m(2) (L) Crg_)(z)
an == d an == . 530
D=1 A Fma® & @ 630

We will want to definep (z) as the logarithm oFrﬂjr),(z), andd(z) as the logarithm of
the ratio Féq'jr)](z)/Fm,n(z), but in order to do so, we will have to specify the branch of
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the complex logarithm we are using. To this end, we will first analyze the image of the
functions Fn(qu), (z) and Fr%L% (2)/Fmn(2).

According to Assumption B2, for any € Ds(zg) C /L, We have] F,%'j%(z)| IS
(2/3, 3/2) in view of the second bound in (5.26) with the observation thatlog 3. A

simple calculation and the bound (2.11) show that F-\[:b%(z) and ArgF,%,)1 (zp) differ

by less than ®1(B1 + Bz)L‘d < % Indeed, the difference Ar‘g,%% (2) — Arg F,%'j%(zo)

is expressed in terms of the integralagF,%r), /Fr%r)] along any path ifs(zg) connect-

ing zo andz. The latter logarithmic derivative is bounded uniformly byl Zhroughout

Ds(zg). Consequentlyz — F,ﬂjr)](z) mapsDs(zp) into the open set of complex num-
bers{p€”: p € (3,3),l0 — wol < 1}, wherewy = Arg Fmn(20). The function

Z- Fé{%(z)/Fm,n(z), on the other hand, maji3s(zp) into the open set of complex
numbers{p€®: p e (3, 3), |o| < 1}, as can be easily inferred from Assumption B2

and the second bound in (5.26). Given these observations, we choose the branch of the
complex logarithm with cut along the rgge~®0/2: r > 0}, and define

$(2) = log F{(2) (5.31)
and L
_ Fm.n(2)
6(2) = log Fn(@) (5.32)

Having defined the functiong andé, we note that, by Assumptions A and B8,is
analytic while@ is twice continuously differentiable througholi(zg). Moreover,
these functions are directly related to the equatiés) = 0 and (2.17-2.18). In-
deed, f (z) = 0 holds for some € Ds(zp) if and only if F,%%(z) is an L9-th root
of —(gn/Am), i-e.,¢(2) = (109(an/gm) + iz (2k + 1))L~9 for some integek. Simi-
larly, z € Ds(zp) is a solution of (2.17—2.18) if and only §#(z) + 6(z) is of the form
(109(0n/0m) + iz (2k + 1))L~9 for some integek. Furthermore, these functions obey
the bounds

@<l @ <2M, |¢'@—¢(20) <2(M+M?)(B1+B)L™Y,  (5.33)

and
16(2)| < 2e77", 10(2) — 0(2)| < 2v/2e" Lz — 7| (5.34)

forall z, Z € Ds(zp). Here the first three bounds are obvious consequences of Assump-
tion B, while the third follows from Assumption B by observing that the derivative
matrix DA(z) is bounded in norm by22 times the right hand side of (2.10). Note that,
in light of (5.26-5.27), these bounds directly verify the assumptions (5.20) and (5.21)
of Lemma 5.3 for; = 2e~*L and anye < s. We proceed by applying Lemma 5.3 with
different choices ot to give the proof of (2-4) of Lemma 4.3, while part (1) turns out
to be a direct consequence of the bounds (5.33-5.34).

Indeed, let us first show that far < B;L~9 the discDs(zp) contains at most one
solution to (2.17-2.18) and at most one root of the equafiGr) = 0. We will prove
both statements by contradiction. Starting with the solutions to (2.17-2.18), let us thus
assume thaty, z2 € Ds(zp) are two distinct solutions to the equations (2.17-2.18).
Settingw1 = ¢(z1) + 0(z1) andwy = ¢(z2) + 6(z2) this means thatv; — w> is
an integer multiple of 2iL 9. However, the bounds (5.33) and (5.34) combined with
the first bound in (5.28) guarantee that; — wy| < 4e~ 'L + 4MB;L~9 < 2L—d
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and thuswi = w». But then the boundp(z1) — ¢(z2)| > alzi — 2| implies that
|6(z1) — 6(z2)| > a|z1 — 22|, which, in view of the second bound in (5.28), contradicts
the second bound in (5.34). Hence, we must havezhad z, in the first place. Turning
to the equatiorf (z) = 0, let us now assume that andz; are two different roots of this
equation. Settingr:s = ¢(z1) andwz = ¢(z2), we again havevr; = wo, this time by
the first bound in (5.33) and the very definition Bf, which implies that MB; = 1.
But once we haver; = wa, we must have; = z since|¢ (z1) — ¢(22)| > alz1 — 22|
by our lower bound or’(z), implying that there exists at most ogec Ds(zp) that
solves the equatioffi(z) = 0. If such a solutiore exists, Assumption B immediately
implies thatf’(z) # 0, and s is a non-degenerate root 6f

Next, we will show that within &C;e~7t-neighborhood of each solutiany of the
equations (2.17-2.18) there is a rootfofindeed, let = C1e L ands = 5e~*L. By
the first bound in (5.33) and our choice®f, we then havé < ¢|¢’(z9)|/2, so the first
part of Lemma 5.3 is at our disposal. Sirsggs assumed to be a solution to (2.17-2.18),
we have thatp(z0) + 0(zo) is of the form(log(an/gm) + iz (2k + 1))L~9, wherek is
an integer. In light of the bounid(zo)| < 2e~7L, the disdDs(¢ (20)) contains the point
w = ¢(20) +60(2p). By the first part of Lemma 5.3, there exists a pdirt D, (zp) such
that¢ (z) = w, implying thatz is a root of f.

As a third step we will prove that ifg is a root of f, then there exists a solution
to (2.17-2.18) inDéle_,L(zo). By the relation betweerf and ¢ we now know that

#(20) is of the form(log(qn/0m) + iz (2k 4+ 1))L~9 for some integek. We again set
e = Cie7 7L ands = 5e~*L. Choosingy = 2e~7L and noting that 2 < &, we apply
the second part of Lemma 5.3 to conclude that there must be azdainD, (zp) such
that¢ (Z) + 0(Z) = ¢(20) = (109(Gn/qm) + iz (2k + 1))L~9, which means that is a
solution to (2.17-2.18).

Finally, we will show that ifzg € .¥m N %, then there exists a solution to (2.17—-
2.18) in the disdD)Bszd (20). To this end, we first note thap € ./, N, implies that
¢ (20) +6(20) is purely imaginary. Combined with the first bound in (5.34) we conclude
that within a distance of at mostlog(gm/an)| + 7)L~9 4 2e~7L from ¢ (zo), there
exists a point of the forrv = (log(gn/gm) + iz (2k + 1))L~9 for some integek. We
now sete = BoL~9/2 andd = (| log(qm/qn)|+4)L 9. By the first condition in (5.29),
we then havéy (zp) —w| < J, while the first bound in (5.33) together with the definition
of By implies thatd < ¢|¢’(z0)|/2. We therefore can use the first part of Lemma 5.3
to conclude that there must be a pathte D, (zp) such thaip(Z') = w, implying that
Z is a root of f (Z) = 0. Finally, by the already proven statement (3) of the lemma,
there must be a solution of the equations (2.17-2.18) within a distance strictly less than
Cie7* from Z. Sincee + C1e~7 < B,L~9 by the second condition in (5.29), this gives
the desired solution of the equations (2.17-2.18) in theldligg -a(zo). O

Next we will prove Lemma 4.4 which provides a lower boundfqz) on the bound-
ary of certain discs.

Proof of Lemma 4.4Let @ and M be as in Assumption B3, lét = «/2, and letc
andL 4 be the constants from Corollary 5.2. We will prove the claim with

& = (2eM|gll)™ and  Cp = maxéy, 22ea "1} (5.35)

and, giverﬁ > C,, with L defined by the condition that, > L4 and

GeL <c/L, Ll <1, ML <9 (5.36)
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and
2e(M 4+ M?)||qlloC?L% < 1 (5.37)

hold whenevet. > L.

Fix L > L and choose a poirty € %/4L) N (Fm U ) with DCEL(ZO) c 0.
Lets < Ce_ and note that by (5.36) we hage< c/L. Applying Corollary 5.2(1) to
the discDs(zp) we find thatDs(zo) € F/@L) C F/L. In particular, the bounds
of Assumption B are at our disposal whenevek Déq (zg). The proof will pro-
ceed by considering two separate cases depending (roughly) on whétlag)| is
“small” or “large.” We will first address the latter situations. Let us therefore sup-
pose thaf f (zg)| > 4L% ((zo)'-d. In this case, we will show that (4.23) holds with
s(zp) = E2¢L. (Note thats(zg) < Coei. < Cey by our definition ofC,.) A crucial part
of the proof consists of the derivation of an appropriate estimate on the derivative of
Lets < Ce, and letz be such thalz — zg| < s. Recalling the definition (4.2) dim(2)
and using Assumptions B2-B3, the second and third bound in (5.36) and the fact that
one of the valuefn(zo)| and|cn(zo)| must be equal tg(zp), we have

@] = L anbne @ + b2V )
Ld I:qu |CI’TI(ZO)|Ld _I_ qu M |Cn (ZO)lLd]eM |Z—Z()||_d+Lde_TL (538)

d
< 4eM|qlleo L9 (z0)"

wheneverz e .%,,. . As argued above, e ]D)CSL(Zo) implies that o, Z]C #/L, SO by
the Fundamental Theorem of Calculus we have

IA

1@ = | @0)] — deMlallcL (@) 's > 4L e @ (e - 5)  (5:39)

for all z € Ds(zp). The bound (4.23) now follows by lettirg T Ce .

Next we will address the cases with(zo)| < 4L%_ ¢ (zo)'". Lets < Ce, and
pick z such thaiz — zg| = s. This point belongs to the di@éEL (zo) which we recall

is a subset 0f;,._. The second-order expansion formula

1 t
f(2) = f(z0) + f'(20)(z—20) + (z— 20)2/ dt/ di f”(fz+ (1-1)z0) (5.40)
0 0
then yields the estimate

1f@)] = |f(20) + - 20)F'(20)| - K (Cer)’ LB (20" (5.41)
where
K = %g(zo)"-dL_Zd sup{|f”"(@)|:ze %, |z— 20| < CeL}. (5.42)

Proceeding as in the bound (5.38), we easily get
K < 2ellqllcc[M?(1 - L™%) + ML™], (5.43)

which implies thatk < 2e]|qleo[M2 + M].
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It remains to estimate the absolute value on the right-hand side of (5.41). Abbreviat-
ing by = bm(zp) andby, = bp(zg), we can write
d d
f'(20) = LY (bmam&iE) (20)"" + baaniiP (z0)-)
d
= L9(bm — b)Y (zo) + bnL9 f (20).

Without loss of generality, let us suppose that(zo)| > |¢h(20)| and, consequently,
[cm(20)| = ¢ (20), becauseg € .m U . Applying Assumption B3 together with the
assumed upper bound ¢h(zp)|, we get

(5.44)

|(2—20)t'(20) + f(20)] > (aGmse™ " — 4eL (1+SLIM) L% (20", (5.45)

where we reca}IIed thaz — z9| = s. Sinces < Ce , the third ingquality in (5.36) gives
thatsLIM < CML%_ < 1. Let nows be so large that > 3Ce . Using this bound
in the first term in (5.45) and using the second inequality in (5.36) we thus get

(2—20) f'(z0) + f(20)| > (2aCoe™ — 8) L% ¢(20)™ > 3LYe ¢ (20)". (5.46)

Moreover, using the above bound ghand the inequality in (5.37), the last term on
the right-hand side of (5.41) can be shown not to exde‘éd_{(zo)'-d Putting (5.41)
and (5.46) together with these estimates, we hdve)| > 2Lde|_§(zo)'- forall z €
Dg,, (20) such thats = |z — zg| SatISerSZCEL < s < Ce_. The proof is finished by
takings 7 Cel .
The last statement of the lemma is an immediate consequence of the fact that when-

ever the above procedure pick&g) = &e, andé < C, then the argument (5.38—
5.39) implies the stronger bound

inf ()] > 2L% c(z0)"". (5.47)
23 |z—2p| <s(20)

Now, if f has a root ig,, (o), then this bound shows that we could not have chosen
s(zg) = égeL.:I'herefores(zo) must be equal to the other possible value, i.e., we must
haves(zg) = Ce.. O

Proof of Lemma 4.8Ne will prove (4.24) withAz = 2Co||q|l1, whereCqp is as in (2.14)
for ¢ = 0. LetLg andM be as in Assumption B gnd lety andc be as in Corollary 5.2.
LetC € (0, o0) and let us choosks > max{L4, Lo} in such a way that

C
max{Ce "L, CL9e 2L} < I MCL% ! <log2, (5.48)
1
SLhL+MmC L2e=3L% < 7|, (5.49)

and
p < i and MCLZe 3L 4 19—t < 2dlogL +logCo  (5.50)

hold forallL > Ls.
We will treat separately the casegse %, N %2/ (20) andzp € %, \ U2/ (20)-
Let us first consider the former case, so thiafzg) = e~*‘. The first condition in
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(5.48), the fact thaDc, (5 (20) C € andy, < x/(2L) therefore allow us to use Corol-
lary 5.2(3), from which we conclude thBlcs, (zy)(20) C %, . Forz € Dcs, (z)(20) We
may thus apply thé = 0 version of (2.14) to the functiog(z) = Z{m.n,L(2). Com-
bined with the bound (5.3), the second condition in (5.48) and our definitidy tiis
immediately gives the desired bound (4.24).

Next we will attend to the cases whep lies in %, \ %L, SO thatd (z0) =

Lde=3L°7L. Let us defined’ as in (5.13) withs = Cd( (z0), i.€.,
Q/ = {k eR: DC5L(ZO) C yK/L(k)}. (5.51)

By Corollary 5.2(2), the seQ’ is non-empty andcs, (z)(20) C %L (Q'). Letz €
Dcs, (z9)(20) and let us estimatg(z). We will proceed analogously to the preceding
case; the only difference is that this time we have

02 = 0.2 +h(@), (5.52)

where the extra term(z) is given by

o= > ald’ o). (5.53)

ke Q' ~{m,n}

Now |Z¢ | (2)| is estimated as before: Using thea¢ %, (Q'), the bounds (2.14) and
(5.3) immediately yield that= o' | (2)| < Collqll1L%dL (zo)((zo)'-d. (Here we used that

the termeMLCoL@)g=7L js hounded by 2-""L < § (z0) as follows from (5.49).)

Therefore, we just need to produce an appropriate bourjd(@h. To that end, we
note that, sincez, Zlc %, (Q') and|z — zg| < CoL(z0), we have from (5.4) and
Assumption B2 that

Ld Ld ds Ld ds da—7L
6”@ < | @) MR < [z | MO @I (5.54)

wheneveik e Q'. Sincezp € %, , which implies|§|f")(z)| < ¢(20)e77L/? whenever
k ¢ {m, n}, we thus have

d —T
|QEL)(Z)|L Serv|0|_d§L(zo)+Lde Le—%nl-dg(zo)'-d (5.55)

for everyk € @'\ {m, n}. Using the last bound in (5.50), we conclude thatz)| is
bounded byCol|q|l1L %5, (zo)((zo)Ld. From here (4.24) follows. O

5.3. Proof of Lemmas 4.6 and 4.Here we will establish the two technical lemmas

on which the proof of Theorem 2.5 was based. Throughout this section we will assume
that a multiple poiny € ¢ is fixed and thaQ = Q(zv). We will also usef , § and¢

to denote the functions defined in (4.48—4.50).

Lemma 4.6 is an analogue of Lemma 4.4 from Sect. 4.2 the corresponding proofs
are also analogous. Namely, the proof of Lemma 4.4 was based on the observation that
either| f (z)| was itself large in a neighborhood &, or it was small, in which case
we knew thai f/(z)| was large. In Lemma 4.6, the functidi(z) is more complicated;
however, a convenient reformulation in terms of Vandermonde matrices allows us to
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conclude that at least one among its fiigt— 1) derivatives is large. This is enough to
push the argument through.

Proof of Lemma 4.6Abbreviatingg = |Q| and usingA(q) = 2¢%1@+Y/2q1 /g and

the constantK = K(Q) and Lo from Lemma 4.2 andM from Assumption B, let
€ = 1/(3K) andLs > Lg be such that

MR <2, 2IqiMY < L% and A@LZ Y <€/ (5.56)

forall L > Ls. A choice ofLs yielding (5.56) is possible in view of (4.51).

Choosingzg € C, we useF (z) to denote the functiof (z) = fN(z)f(zo)"-d. First,
we claim that if (4.52) fails to hold for somle > L5, then we have

[FO(z0)| < %Ld", £=0,...,9-1 (5.57)

Indeed, let us observe that, if (4.52) fails to hold, then there must exist a collection of
pointsz, withk =1, ..., q, such that

|z« — 20l = §RL and |F(zo)| < L%y, (5.58)
forallk =1,...,q. Further, notice that, foz — zg| < R_, we have the bound
’enm(z—zM)Ldé(ZO)—Ld’ < eRe(um(z—zo))Ld <eM Ld RL’ me O, (5.59)

implying [F@(2)] < 23°,.0 0mlom|L99 in view of the first condition in (5.56).
In particular, we haveF @ (z)|R}' < 2|lglsMIL~ for all z in the R_-neighborhood
of zy. With help of the second condition in (5.56), Taylor’'s theorem yields

FO
‘Z (ZO) -2 <2L%,, k=1,....q (5.60)

Now we will write (5.60) in vector notation and use our previous estimates on Van-
dermonde matrices to derive (5.57). bet= (Xo, X1, ..., Xq—1) be the vector with
components

F(")(Zo)( z— 29 )f

X(:Rf
Lo Yz -1z

£=0,1,...,q—1, (5.61)

and letN = (N ) be theq x g-matrix with element®y , = |z — 2o R[f = (k/9)".

The bound (5.60) then implies that the veciix has each component bounded by
2L9%, and so||Nx| < ZﬁLdeL. On the other hand, sindg is a Vandermonde ma-
trix, the norm of its inverse can be estimated as in (4.8). Namely, using the inequali-
ties| detN| > q~9@-D/2 and|N| < g, we get

o NI q@-1/24a@-1)
-ty < I (5.62)

But then|x|| < IN"3|||Nx|| < g®@-D/22 /gLY% implying

L9 FO(zg)] < £/(LIRL) YYIx|| < A(q)L2~V¢, (5.63)
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where we used thdtd(L9R, )¢ is maximal for¢ = q — 1, in which case it equals
L2d-d/a_with the help of the last condition in (5.56), the claim (5.57) follows for
allL > Ls.

Having proved (5.57), we will now invoke the properties of Vandermonde matrices
once again to show that (5.57) contradicts Lemma 4.2.yi be theq-dimensional
vector with components

Ym = OmePm(L+mE 2z~ me Q. (5.64)

Let O = (Oy,m) be theq x g matrix with matrix element®, m = vf,. (Here¢ takes
values between 0 argl— 1, whilem € Q.) Recalling the definition oF (z), the bound
(5.57) can be rewritten dg0y],| < €/,/9. It therefore implies that

10yl < e. (5.65)

The matrixQ corresponds to theé — oo limit of the matrix M in (4.3) evaluated
at zy. In particular, sincezy e 7, (m) for all L and allm € Q(zv) and in view
of the second bound in Assumption B2, the bound (4.5) appli€® &s well. Having
thus||0~1|| < K with the constanK from Lemma 4.2, we can conclude that

- 1
Iyl < 107H10y] < K[|Oy|l < Ke < 3 (5.66)

using our choicee = 1/(3K). On the other hand, lah be an index for which the
maximum in the definition of (zp) is attained. Then we have

@@L (7)Y | = @Rz 20ILY 5 g MLIR. > % meQ, (5.67)

according to the first condition in (5.56). Moreover, > 1 and thus|y| > % in
contradiction to (5.66). Thus, (4.52) must hold for sosi®) € [R./q, R.] oncelL

exceedds. O

Lemma 4.7 is also quite similar to the corresponding statement (Lemma 4.5) from
two-phase coexistence.

Proof of Lemma 4.7We will prove the Lemma foag = 2e(Co + 3)(M + M?)|iql|1,
whereM andCy are the constants from Assumption B.

Let c and L4 be the constants from Corollary 5.2 fér= . Sincezy € 0is a
multiple point withQ(zy) = 9, we clearly have thatyy € % (Q) whenevek is small
enough. Since& is open, we also have thlits(zy) C ¢ whenevers is sufficiently
small. As a consequence, there is a consitant [6(ZM) such thatzy € %2, (Q) N
U2 (Q) andD¢/(zm) C € wheneverl > Ls. Using Corollary 5.2, we reach the
conclusion thaiDs(zv) C %L (Q) wheneverlL > max{Le, L4} ands < c/L. We
now choosd_g > maxLg, L4} in such a way that

pl<c/L,  pl<2p,  (A+2p)e"t < (M4 M?)p2,

(5.68)
4M +M?)p2Ld <1, eMUR <2

wheneverl > Lg. By the above conclusion and the first condition in (5.68), we then
haveID),,/L (zm) C %L (Q) wheneverl > L.
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To prove (4.53), let us recall the definition &fg | () in formula (2.13) from As-
sumption B4. Then we can writz) asZg | (z)g(zM)—Ld + h(z), where

(L) d
_ @D\ _ (D) +omz—zm) L8
h(Z)—nngm[( ((ZM)) gomL)+ . (5.69)

Our goal is to show that botEQ,L(z)cj(zM)"-d andh(z) satisfy a bound of the type
(4.53).

We will begin with the bound o (z). First we recall the definition opm(L) to
write

r%L)( d rng)( d (L)( o
(Fean) :(ciLRz?))L (Cm(ziAM))) . (5.70)

The first term on the right-hand side is to the leading order equent&=2wL" which

is approximately equal te’m(Z-2L" To control the difference between these two
terms, and to estimate the deviations from the leading order behavior, we combine the
bound (2.10) with the second-order Taylor formula and (2.11) to show that, forall

D/’L (zw) and allm € Q,

log(cM @) /P (zm)) — om(z—zw)| < €77 p + = (M + M3 ()3 (5.71)

where we have chosen the principal branch of the complex logarithm. Combining this
estimate with the second and third condition in (5.68) and the bound (2.9) from As-
sumption B2, we get

L% 10g(c 2/ (2w)) — vm(z — 2n)L? —igm(L)| < 3(M + M?)pZLY. (5.72)

Using the fourth condition in (5.68) and the fact theit — 1| < e|w| whenevelw| < 1,
we get

h@)| < 3e(M + M?)[qlls L4p2e@) " (5.73)

Now &(2)-! < &(zg)- eMLIRe < 2{(20)'- by the fifth condition in (5.68), so we fi-
nally have the bounth(z)| < AZ(z0)“* L9p2, with A given by A = 6e(M + M?)||q]l1.

It remains to prove a corresponding bound EQ’L(Z)((ZM)_Ld. First we recall
our previous observation that, (zw) C %L (Q), so we have Assumption B4 at our
disposal. Then (2.14) yields

(@ ]L”
Clamyd 7
Also, by the definition ofZ ;. (Q), we have that (z) = minmeg [¢m(2)| wheneverz e

D/JL (zw). Forz e DPL (zm), we can therefore find a inder € Q such thaim(2)| =
£(2). With the help of (5.3) and the bound (2.9) from Assumption B, we thus get

_Ld .
2o @c@n ™| = CoLlqlie™ | zeDy (@), (5.74)

Ld

{m(2 L

[LZ)]L" _|¢ém(z0) (5.75)

. - o) (20) ‘LdeM RLLY gLde™
¢ (zm) ¢ (zm)

¢ (zm)
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Combined with the estimate (5.72) far= zy, and the last three conditions in (5.68),
this gives

[ 4t ]Ld < eMRLLYgLIET GBM+MAPELY (51 L  pgr(79)L° (5.76)
{(zm)

Using the third condition in (5.68) one last time, we can bound the right-hand side (5.74)

by 2eGllqll1(M + MZ)Ldpff(zo)Ld. Combined with the above bound ¢m(z)|, this
finally proves (4.53). O
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