
To appear in Communications in Mathematical Physics

Partition function zeros at first-order phase transitions:
A general analysis

M. Biskup1, C. Borgs2, J.T. Chayes2, L.J. Kleinwaks3, R. Kotecký4
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Abstract: We present a general, rigorous theory of partition function zeros for lat-
tice spin models depending on one complex parameter. First, we formulate a set of
natural assumptions which are verified for a large class of spin models in a compan-
ion paper [5]. Under these assumptions, we derive equations whose solutions give the
location of the zeros of the partition function with periodic boundary conditions, up to
an error which we prove is (generically) exponentially small in the linear size of the
system. For asymptotically large systems, the zeros concentrate on phase boundaries
which are simple curves ending in multiple points. For models with an Ising-like plus-
minus symmetry, we also establish a local version of the Lee-Yang Circle Theorem.
This result allows us to control situations when in one region of the complex plane the
zeros lie precisely on the unit circle, while in the complement of this region the zeros
concentrate on less symmetric curves.
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1. Introduction

1.1. Motivation. One of the cornerstones of equilibrium statistical mechanics is the
notion that macroscopic systems undergo phase transitions as the external parameters
change. A mathematical description of phase transitions was given by Gibbs [17] who
characterized a phase transition as a point of non-analyticity in thermodynamic func-
tions, e.g., the pressure. This definition was originally somewhat puzzling since actual
physical systems are finite, and therefore their thermodynamic functions are manifestly
real-analytic. A solution to this contradiction came in two seminal papers by Yang and
Lee [25, 42], where it was argued that non-analyticities develop in physical quantities
because, as the system passes to the thermodynamic limit, complex singularities of
the pressure pinch the physical (i.e., real) domain of the system parameters. Since the
pressure is proportional to the logarithm of the partition function, these singularities
correspond exactly to the zeros of the partition function.

In their second paper [25], Lee and Yang demonstrated the validity of their theory in
a particular example of the Ising model in a complex magnetic fieldh. Using an induc-
tion argument, they proved the celebrated Lee-Yang Circle Theorem which states that,
in this model, the complex-eh zeros of the partition function on any finite graph with
free boundary conditions lie on the unit circle. The subject has been further pursued by a
number of authors in the following fifty years. Generalizations of the Lee-Yang theorem
have been developed [26, 31, 32, 35] and extensions to other complex parameters have
been derived (for instance, the Fisher zeros [14] in the complex temperature plane and
the zeros of theq-state Potts model in the complex-q plane [40,41]). Numerous papers
have appeared studying the partition function zeros using various techniques including
computer simulations [10, 20, 22], approximate analyses [21, 24, 29] and exact solu-
tions of 1D and 2D lattice systems [8,9,12,18,27,28,38,39]. However, in spite of this
progress, it seems fair to say that much of the original Lee-Yang program—namely,
to learn about the transitions in physical systems by studying the zeros of partition
functions—had remained unfulfilled.

In [2], we outlined a general program, based on Pirogov-Sinai theory [6,33,34,43],
to determine the partition function zeros for a large class of lattice models depending
on one complex parameterz. The present paper, and its companion [5], give the math-
ematical details of that program. Our results apply to a host of systems with first-order
phase transitions; among others, they can be applied to field-driven transitions in many
low-temperature spin systems as well as temperature-driven transitions—for instance,
the order-disorder transition in theq-state Potts model with largeq or the confinement
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Higgs transition in lattice gauge theories. We consider lattice models with a finite num-
ber of equilibrium states that satisfy several general assumptions (formulated in detail
below). The validity of the assumptions follows whenever a model can be analyzed us-
ing a convergent contour expansion based on Pirogov-Sinai theory, even in the complex
domain. In the present work, we study only models with periodic boundary conditions,
although—with some technically involved modifications—our techniques should allow
us to treat also other boundary conditions.

Under our general assumptions, we derive a set of model-specific equations; the
solutions of these equations yield the locations of the partition function zeros, up to
rigorously controlled errors which are typically exponentially small in the linear size of
the system. It turns out that, as the system size tends to infinity, the partition function
zeros concentrate on the union of a countable number of simple smooth curves in the
complexz-plane. Another outcome of our analysis is a local version of the Lee-Yang
Circle Theorem. Whereas the global theorem says that, for models with the full Ising
interaction, all partition function zeros lie on the unit circle, our local theorem says that
if the model has an Ising-like symmetry in a restricted region of the complexz-plane,
the corresponding portion of the zeros lies on a piece of the unit circle. In particular,
there are natural examples (see the discussion of the Blume-Capel model in [2]) where
only some of the partition function zeros lie on the unit circle, and others lie on less
symmetric curves. Our proof indicates that it is just the Ising plus-minus symmetry
(and a natural non-degeneracy condition) that makes the Lee-Yang theorem true, which
is a fact not entirely apparent in the original derivations of this result.

In addition to being of interest for the foundations of statistical mechanics, our re-
sults can often be useful on a practical level—even when the parameters of the model
are such that we cannot rigorously verify all of our assumptions. We have found that
our equations seem to give accurate locations of finite-volume partition function zeros
for system sizes well beyond what can be currently achieved using, e.g., computer-
assisted evaluations of these partition functions (see [2] for the example of the three
dimensional 25-state Potts model on 1000 sites). Our techniques are also capable of
handling situations with more than one complex parameter in the system. However, the
actual analysis of the manifolds of partition function zeros may be technically rather
involved. Finally, we remark that, in one respect, our program falls short of the ultimate
goal of the original Lee-Young program—namely, to describe the phase structure of
any statistical-mechanical system directly on the basis of its partition function zeros.
Instead, we show that both the location of the partition function zeros and the phase
structure are consequences of an even more fundamental property: the ability to rep-
resent the partition function as a sum of terms corresponding to different metastable
phases. This representation is described in the next section.

1.2. Basic ideas.Here we will discuss the main ideas of our program, its technical diffi-
culties and our assumptions in more detail. We consider spin models onZd, with d ≥ 2,
whose interaction depends on a complex parameterz. Our program is based on the fact
that, for a large class of such models, the partition functionZper

L in a box of sideL and
with periodic boundary conditions can be written as

Zper
L (z) =

r∑
m=1

qme− fm(z)Ld
+ O(e−constLe− f (z)Ld

). (1.1)
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Hereq1, . . . ,qr are positive integers describing the degeneracies of the phases 1, . . . , r ,
the quantitiesf1, . . . , fr are smooth (but not in general analytic) complex functions of
the parameterz which play the role ofmetastable free energiesof the corresponding
phases, andf (z) = min1≤m≤r Refm(z). The real version of the formula (1.1) was
instrumental for the theory of finite-size scaling near first-order phase transitions [7];
the original derivation goes back to [6].

It follows immediately from (1.1) that, asymptotically asL tends to infinity,Zper
L =

0 requires that Refm(z) = Refm̃(z) = f (z) for at least two distinct indicesm andm̃.
(Indeed, otherwise the sum in (1.1) would be dominated by a single, non-vanishing
term.) Therefore, asymptotically, all zeros ofZper

L concentrate on the set

G =
{
z: there existm 6= m̃ with Refm(z) = Refm̃(z) = f (z)

}
. (1.2)

Our first concern is the topological structure ofG . Let us call a point where Refm(z) =

f (z) for at least three differentm amultiple point; the pointsz ∈ G that are not multiple
points are calledpoints of two-phase coexistence. Under suitable assumptions on the
functions f1, . . . , fr , we show thatG is a countable union of non-intersecting simple
smooth curves that begin and end at multiple points. Moreover, there are only a finite
number of multiple points inside any compact subset ofC. See Theorem 2.1 for details.

The relative interior of each curve comprisingG consists entirely of the points of
two-phase coexistence, i.e., we have Refm(z) = Refm̃(z) = f (z) for exactly two
indicesm andm̃. In particular, the sum in (1.1) is dominated by two terms. Supposing
for a moment that we can neglect all the remaining contributions, we would have

Zper
L (z) = qme− fm(z)Ld

+ qm̃e− fm̃(z)Ld
, (1.3)

and the zeros ofZper
L would be determined by the equations

Refm(z) = Refm̃(z)+ L−d log(qm/qm̃)

Im fm(z) = Im fm̃(z)+ (2`+ 1)πL−d,
(1.4)

where` is an integer. The presence of additional terms of course makes the actual zeros
only approximate solutions to (1.4); the main technical problem is to give a reasonable
estimate of the distance between the solutions of (1.4) and the zeros ofZper

L . In a neigh-
borhood of multiple points, the situation is even more complicated because there the
equations (1.4) will not be even approximately correct.

It turns out that the above heuristic argument cannot possibly be converted into a
rigorous proof without making serious adjustments to the initial formula (1.1). This is
a consequence of subtle analytic properties of the functionsfm. For typical physical
systems, the metastable free energyfm is known to be analytic only in the interior of
the region

Sm =
{
z: Refm(z) = f (z)

}
. (1.5)

On the boundary ofSm, one expects—and in some cases proves [15,19]—the existence
of essential singularities. Thus (1.1) describes an approximation of an analytic function,
the functionZper

L , by a sum of non-analytic functions, with singularities appearing pre-
cisely in the region where we expect to find the zeros ofZper

L ! It is easy to construct
examples where an arbitrarily small non-analytic perturbation of a complex polynomial
with a degenerate zeroproduces extraneous roots. This would not be an issue along the
two-phase coexistence lines, where the roots ofZper

L turn out to be non-degenerate, but
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we would not be able to say much about the roots near the multiple points. In short, we
need an approximation that respects the analytic structure of our model.

Fortunately, we do not need to look far to get the desirable analytic counterpart of
(1.1). In fact, it suffices to modify slightly the derivation of the original formula. For
the benefit of the reader, we will recall the main steps of this derivation: First we use
a contour representation of the model—the class of models we consider is character-
ized by the property of having such a contour reformulation—to rewrite the partition
function as a sum over the collections of contours. Then we divide the configurations
contributing toZper

L into r + 1 categories: Those in which all contours are of diameter
smaller than, say,L/3 and in which the dominant phase ism, wherem = 1, . . . , r , and
those not falling into the preceding categories. LetZ(L)m be the partial partition function
obtained by summing the contributions corresponding to the configurations in them-th
category, see Fig. 1. It turns out that the error term is still uniformly bounded as in (1.1),
so we have

Zper
L (z) =

r∑
m=1

Z(L)m (z)+ O(e−constLe− f (z)Ld
), (1.6)

but now the functionsZ(L)m (z) are analytic, and non-zero in a small neighborhood
of Sm. (However, the size of the neighborhood shrinks withL → ∞, and one of
the challenges of using the formula (1.6) is to cope with this restriction of analyticity.)
Moreover, writing

Z(L)m (z) = qme− f (L)m (z)Ld
(1.7)

and using the contour representation, the functionsf (L)m can be expressed by means
of convergent cluster expansions [11, 23]. In particular, they can be shown to converge
quickly to the functionsfm asL → ∞.

In this paper, we carry out the analysis of the partition function zeros starting from
the representation (1.6). In particular, we formulate minimal conditions (see Assump-
tions A and B in Sect. 2) on the functionsf (L)m and the error terms that allow us to
analyze the roots ofZper

L in great detail. The actual construction of the functionsf (L)m
and the proof that they satisfy the required conditions is presented in [3, 4] for theq-
state Potts model with one complex external field andq sufficiently large, and in [5] for
a general class lattice models with finite number of equilibrium states.

1.3. Discussion of assumptions and results.Here we will describe our main assump-
tions and indicate how they feed into the proofs of our main theorems. For consistency
with the previous sections, we will keep using the functionsfm and f (L)m even though
the assumptions will actually be stated in terms of the associated exponential variables

ζm(z) = e− fm(z) and ζ (L)m (z) = e− f (L)m (z). (1.8)

The first set of assumptions (Assumption A, see Sect. 2.1) concerns the infinite-volume
quantitiesfm, and is important for the description of the set of coexistence pointsG . The
functions fm are taken to be twice differentiable in the variablesx = Rez andy = Imz,
and analytic in the interior of the setSm. If, in addition, f (z) = minm Refm is uni-
formly bounded from above, good control of the two-phase coexistence curves is ob-
tained by assuming that, for any distinctm andm̃, the difference of the first derivatives
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Fig. 1. Schematic examples of configurations, along with their associated contours, which contribute to dif-
ferent terms in the decomposition in (1.6). Here we have a spin model withr = 3 equilibrium phases denoted
by +, − and 0. The configuration on the left has all contours smaller than the cutoff—which we set toL/3

whereL is the side of the box—and will thus contribute toZ(L)
+

because+ is the external phase for all
external contours. The configuration on the right has long contours and will be assigned to the error term.

of fm and fm̃ is uniformly bounded from below onSm ∩ Sm̃. Finally, in order to dis-
cuss multiple coexistence points, we need an additional non-degeneracy assumption on
the derivatives of the functionsfm for the coexisting phases. Given these assumptions,
we are able to give a very precise characterization of the topology of the coexistence
setG , see Theorem 2.1.

The second set of assumptions (Assumption B, see Sect. 2.2) is crucial for our re-
sults on the partition function zeros, and is formulated in terms of the functionsf (L)m .
These will be taken to be analytic with a uniform upper bound on the firstr derivatives
in an order-(1/L) neighborhood of the setsSm. In this neighborhood,f (L)m is also as-
sumed to be exponentially close tofm, with a lower bound on the difference of the first
derivatives for any pairf (L)m and f (L)m̃ in the intersection of the corresponding order-
(1/L) neighborhoods. Finally, we need a bound on the error term and its derivatives in
an approximation of the form (1.6) where the sum runs only over the dominating terms,
i.e., thosem for which z lies in the order-(1/L) neighborhood ofSm.

Combining Assumptions A and B, we are able to prove several statements on the
location of the partition function zeros. We will start by covering the set of available
z-values by sets with a given number of stable (or “almost stable”) phases. The cov-
ering involves three scale functions,ωL , γL andρL which give rise to three classes of
sets: the region where one phase is decisively dominating the others (more precisely,
the complement of anL−dωL -neighborhood of the setG ), a γL -neighborhood of sets
with two stable phases, excluding aγL -neighborhood of multiple points, and theρL -
neighborhoods of multiple points. As is shown in Proposition 2.6, for a suitable choice
of sequencesωL , γL , andρL , these three sets cover all possibilities.

In each part of the cover, we will control the zeros by a different method. The re-
sults of our analysis can be summarized as follows: First, there are no zeros ofZper

L
outside anL−dωL -neighborhood of the setG . This claim, together with a statement
on the maximal possible degeneracy of zeros, is the content of Theorem 2.2. The next
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theorem, Theorem 2.3, states that in aγL -neighborhood of the two-phase coexistence
points, excluding a neighborhood of multiple points, the zeros ofZper

L are exponen-
tially close to the solutions of (1.4). In particular, this implies that the zeros are spaced
in intervals of order-L−d along the two-phase coexistence curves with the asymptotic
density expressed in terms of the difference of the derivatives of the corresponding free
energies—a result known in a special case already to Yang and Lee [42]; see Proposi-
tion 2.4. The control of the zeros in the vicinity of multiple points is more difficult and
the results are less detailed. Specifically, in theρL -neighborhood of a multiple point
with q coexisting phases, the zeros ofZper

L are shown to be located within aL−d−d/q

neighborhood of the solutions of an explicitly specified equation.

We finish our discussion with a remark concerning the positions of zeros of complex
functions of the form:

ZN(z) =

r∑
m=1

αm(z)ζm(z)
N, (1.9)

whereα1, . . . , αr andζ1, . . . , ζr are analytic functions ofz. Here there is a general theo-
rem, due to Beraha, Kahane and Weiss [1] (generalized recently by Sokal [41]), that the
set of zeros ofZN asymptotically concentrates on the set ofz such that eitherαm(z) = 0
and|ζm(z)| = maxk |ζk(z)| for somem = 1, . . . , r or |ζm(z)| = |ζn(z)| = maxk |ζk(z)|
for two distinct indicesm andn. The present paper provides a substantial extension of
this result to situations when analyticity ofζm(z) can be guaranteed only in a shrinking
neighborhood of the sets wherem is the “dominant” index. In addition, we also provide
detailed control of the rate of convergence.

2. Main results

2.1. Complex phase diagram.We begin by abstracting the assumptions on the meta-
stable free energies of the contour model and showing what kind of complex phase
diagram they can yield. Throughout the paper, we will assume that a domainO ⊂ C
and a positive integerr are given, and useR to denote the setR = {1, . . . , r }. For
eachz ∈ O, we letx = Rez andy = Imz and define, as usual,

∂z =
1
2

(
∂
∂x − i ∂∂y

)
and ∂z̄ =

1
2

(
∂
∂x + i ∂∂y

)
. (2.1)

Assumption A. There exists a constantα > 0 and, for eachm ∈ R, a function
ζm : O → C, such that the following conditions are satisfied:

(1) The quantityζ(z) = maxm∈R |ζm(z)| is uniformly positive inO, i.e., we have
infz∈O ζ(z) > 0.

(2) Each functionζm, viewed as a function of two real variablesx = Rez and y =

Imz, is twice continuously differentiable onO and it satisfies the Cauchy-Riemann
equations∂z̄ζm(z) = 0 for all z ∈ Sm, where

Sm =
{
z ∈ O : |ζm(z)| = ζ(z)

}
. (2.2)

In particular,ζm is analytic on the interior ofSm.
(3) For any pair of distinct indicesm,n ∈ R and anyz ∈ Sm ∩ Sn we have∣∣∣∣∂zζm(z)

ζm(z)
−
∂zζn(z)

ζn(z)

∣∣∣∣≥ α. (2.3)
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(4) If Q ⊂ R is such that|Q| ≥ 3, then for anyz ∈
⋂

m∈QSm,

vm(z) =
∂zζm(z)

ζm(z)
, m ∈ Q, (2.4)

are the vertices of a strictly convex polygon inC ' R2.

Remark 1.In (1), we assumed uniform positivity in order to simplify some of our later
arguments. However, uniformity inO can easily be replaced by uniformity on compact
sets. Note that Assumptions A3–4 are invariant with respect to conformal transforma-
tions ofO because the functions involved in (2.3) and (2.4) satisfy the Cauchy-Riemann
conditions. Also note that, by Assumption A3, the length of each side of the polygon
from Assumption A4 is at leastα; cf Fig. 3.

The indicesm ∈ R will be often referred to asphases. We call a phasem stableat z
if z ∈ Sm, i.e., if |ζm(z)| = ζ(z). For eachz ∈ O we define

Q(z) =
{
m ∈ R : |ζm(z)| = ζ(z)

}
(2.5)

to be the set of phasesstable at z. If m,n ∈ Q(z), then we say that the phasesm andn
coexist at z. The phase diagram is determined by theset of coexistence points:

G =

⋃
m,n∈R : m6=n

G (m,n) with G (m,n) = Sm ∩ Sn. (2.6)

If |ζm(z)| = ζ(z) for at least three distinctm ∈ R, we call suchz ∈ O amultiple point.
In the following, the phrasesimple arcdenotes the image of(0,1) under a continu-

ous and injective map whilesimple closed curvedenotes a corresponding image of the
unit circle {z ∈ C : |z| = 1}. A curve will be calledsmoothif it can be parametrized
using twice continuously differentiable functions.

Our main result concerning the topology ofG is then as follows.

Theorem 2.1.Suppose that Assumption A holds and letD ⊂ O be a compact set.
Then there exists a finite set of open discsD1,D2, . . . ,D` ⊂ O coveringD , such that
for each k = 1, . . . , `, the setAk = G ∩ Dk satisfies exactly one of the following
properties:

(1) Ak = ∅.
(2) Ak is a smooth simple arc with both endpoints on∂Dk. Exactly two distinct phases

coexist along the arc constitutingAk.
(3) Ak contains a single multiple point zk with sk = |Q(zk)| ≥ 3 coexisting phases,

andAk \ {zk} is a collection of sk smooth, non-intersecting, simple arcs connect-
ing zk to ∂Dk. Each pair of distinct curves fromAk \ {zk} intersects at a positive
angle at zk. Exactly two distinct phases coexist along each component ofAk\{zk}.

In particular, G =
⋃

C ∈C C , whereC is a finite or countably-infinite collection of
smooth simple closed curves and simple arcs which intersect each other only at the
endpoints.

Theorem 2.1 is proved in Sect. 3.2. Further discussion is provided in Sect. 2.4.
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1

2

3

(a)

1,2

2,3
1,3

(b)

1,2,3

(c)

Fig. 2. An illustration of the setsUε(Q) in the vicinity of a multiple point. The thick lines indicate the
visible portion of the set of coexistence pointsG . Three phases, here labeled 1, 2 and 3, are stable at the
multiple point. In (a), the three shaded domains represent the setsUε({1}), Uε({2}) andUε({3}), with the
label indicated by the number in the box. Similarly, in (b) the three regions represent the setsUε({1,2}),
Uε({2,3}) andUε({1,3}). Finally, (c) contains only one shaded region, representing the setUε({1,2,3}).
The various regionsUε(Q) generously overlap so that their union covers the entire box.

2.2. Partition function zeros.Next we will discuss our assumptions and results con-
cerning the zeros of the partition function. We assume that the functionsZper

L : O → C,
playing the role of the partition function in a box of sideL with periodic boundary con-
ditions, are defined for each integerL, or, more generally, for anyL ∈ L, whereL ⊂ N
is a fixed infinite set. Given anym ∈ R andε > 0, we useSε(m) to denote the region
where the phasem is “almost stable,”

Sε(m) =
{
z ∈ O : |ζm(z)| > e−εζ(z)

}
. (2.7)

For anyQ ⊂ R, we also introduce the region where all phases fromQ are “almost
stable” while the remaining ones are not,

Uε(Q) =

⋂
m∈Q

Sε(m) \

⋃
n∈Qc

Sε/2(n), (2.8)

with the bar denoting the set closure. Notice that the functionζm is non-vanishing
on Sε(m) and that

⋃
Q⊂RUε(Q) = O, see Fig. 2. Note also thatUε(∅) = ∅, so

we may assume thatQ 6= ∅ for the rest of this paper.

Assumption B. There exist constantsκ, τ ∈ (0,∞) and, for eachm ∈ R, a positive
integerqm and a functionζ (L)m : Sκ/L(m) → C such that for anyL ∈ L the following
is true:

(1) The functionZper
L is analytic inO.

(2) Eachζ (L)m is non-vanishing and analytic inSκ/L(m). Furthermore,∣∣∣∣log
ζ
(L)
m (z)

ζm(z)

∣∣∣∣ ≤ e−τ L (2.9)
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and ∣∣∣∣∂z log
ζ
(L)
m (z)

ζm(z)

∣∣∣∣ +

∣∣∣∣∂z̄ log
ζ
(L)
m (z)

ζm(z)

∣∣∣∣ ≤ e−τ L (2.10)

for all m ∈ R and allz ∈ Sκ/L(m). (Here “log” denotes the principal branch of
the complex logarithm.)

(3) There exist constants̃α > 0, M < ∞ and L̃0 < ∞ such that for anyL ≥ L̃0 we
have ∣∣∣∣∂`zζ (L)m (z)

ζ
(L)
m (z)

∣∣∣∣ ≤ M, (2.11)

wheneverm ∈ R, ` = 1, . . . , r , andz ∈ Sκ/L(m). In addition,∣∣∣∣∂zζ
(L)
m (z)

ζ
(L)
m (z)

−
∂zζ

(L)
n (z)

ζ
(L)
n (z)

∣∣∣∣≥ α̃ (2.12)

wheneverm,n ∈ R are distinct andz ∈ Sκ/L(m) ∩ Sκ/L(n).
(4) There exist constantsC` < ∞, ` = 0,1, . . . , r + 1, such that for anyQ ⊂ R, the

difference

ΞQ,L(z) = Zper
L (z)−

∑
m∈Q

qm
[
ζ (L)m (z)

]Ld

(2.13)

satisfies the bound∣∣∣∂`zΞQ,L(z)∣∣∣ ≤ C`L
d(`+1)ζ(z)L

d
( ∑

m∈R
qm

)
e−τ L , (2.14)

for all ` = 0,1, . . . , r + 1, uniformly inz ∈ Uκ/L(Q).

Remark 2.In applications,qm will represent the degeneracy of the phasem; thus we
have taken it to be a positive integer. However, our arguments would go through even
if we assumed only that allqm’s are real and positive. It is also worth noting that
in many physical models the partition function is not directly of the form required
by Assumption B; but it can be brought into this form by extracting a multiplicative
“fudge” factor F(z)L

d
, whereF(z) 6= 0 in the region of interest. For instance, in the

Ising model withz related to the complex external fieldh by z = eh we will have to
takeF(z) = z−1/2 to make the partition function analytic in the neighborhood ofz = 0.

Our first theorem in this section states that the zeros ofZper
L (z) are concentrated

in a narrow strip along the phase boundaries. In addition, their maximal degeneracy
near the multiple points of the phase diagram can be evaluated. In accord with the
standard terminology, we will call a pointz0 a k-times degenerate rootof an analytic
function h(z) if h(z) = g(z)(z − z0)

k for someg(z) that is finite and non-zero in a
neighborhood ofz0. Recalling the definition (2.8) of the setUε(Q), we introduce the
shorthand

Gε =

⋃
m6=n

(
Sε/2(n) ∩ Sε/2(m)

)
= O \

⋃
m∈R

Uε

(
{m}

)
. (2.15)

An easy way to check the second equality in (2.15) is by noting thatO \ Uε({m}) can
be written as the union

⋃
n:n6=m Sε/2(n). Then we have the following result.
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Theorem 2.2.Suppose that Assumptions A1-3 and B hold and letκ > 0 be as in As-
sumption B. Let(ωL) be a sequence of positive numbers such thatωL → ∞. Then there
exists a constant L0 < ∞ such that for L≥ L0 all roots of Zper

L lie in GL−dωL
and are

at most|R| − 1 times degenerate. For eachQ ⊂ R, the roots of Zper
L in Uκ/L(Q) are

at most|Q| − 1 times degenerate.

In other words, asL → ∞, the zeros ofZper
L asymptotically concentrate on the set

of coexistence pointsG . Notice that we explicitly donot require Assumption A4 to
hold; see Sect. 2.4 for further discussion. Theorem 2.2 is proved in Sect. 4.1.

Our next theorem deals with the zeros ofZper
L in the regions where at most two

phases fromR are “almost stable.” It turns out that we have a much better control on
the location of zeros in regions that are sufficiently far from multiple points. To quantify
the meaning of “sufficiently far,” we letγL be a sequence of positive numbers (to be
specified below) and, for anyQ ⊂ R with |Q| = 2 and anyL ≥ 0, letδL : UγL

(Q) →

(0,∞) be a function defined by

δL(z) =

{
e−τ L , if z ∈ UγL

(Q) ∩ U2κ/L(Q),
Lde−

1
2γL Ld

, otherwise.
(2.16)

(Clearly,δL(z) depends on the index setQ. However, this set will always be clear from
the context and so we will not make it notationally explicit.) Finally, givenε > 0 and
z ∈ O, let Dε(z) denote the open disc of radiusε centered atz.

The exact control of the roots in two-phase regions is then as follows.

Theorem 2.3.Suppose that Assumptions A and B hold and let�?L be the set of all zeros
of the function Zper

L (z) in O, including multiplicity. If m,n ∈ R are distinct indices,
letQ = {m,n}, and let�L(Q) be the set of the solutions of the system of equations

q1/Ld

m |ζm(z)| = q1/Ld

n |ζn(z)|, (2.17)

Ld Arg
(
ζm(z)/ζn(z)

)
= π mod 2π. (2.18)

LetγL be such that

lim inf
L→∞

LdγL

log L
> 4d and lim sup

L→∞

Ld−1γL < 2τ, (2.19)

and letδL : UγL
(Q) → (0,∞) be as defined in (2.16). Then there exist finite positive

constants B, C, D, and L0 such that for anyQ ⊂ R with |Q| = 2 and any L≥ L0
we have:

(1) For all z ∈ G ∩ UγL
(Q) with DDL−d(z) ⊂ O, the discDDL−d(z) contains at least

one root from�?L .
(2) For all z ∈ �?L ∩ UγL

(Q) with DCδL (z)(z) ⊂ O, the discDCδL (z)(z) contains
exactly one point from�L(Q).

(3) For all z ∈ �L(Q) ∩ UγL
(Q) with DCδL (z)(z) ⊂ O, the discDCδL (z)(z) contains

exactly one root from�?L .
(4) Any two distinct roots of Zper

L in the set{z ∈ UγL
(Q) : DBL−d(z) ⊂ O} are at

least BL−d apart.
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Note that the first limit in (2.19) ensures thatLdδL(z) → 0 asL → ∞ throughout
UγL

(Q) (for anyQ ⊂ R with |Q| = 2). ThusδL(z) is much smaller than the distance
of the “neighboring” roots of (2.17–2.18). Theorem 2.3 is proved in Sect. 4.2.

Theorem 2.3 allows us to describe the asymptotic density of the roots ofZper
L along

the arcs of the complex phase diagram. Letm,n ∈ R be distinct and letG (m,n) be as
in (2.6). For eachε > 0 and eachz ∈ G (m,n), let ρ(L ,ε)m,n (z) be defined by

ρ(L ,ε)m,n (z) =
1

2εLd

∣∣�?L ∩ Dε(z)
∣∣, (2.20)

where |�?L ∩ Dε(z)| is the number of roots ofZper
L in Dε(z) including multiplicity.

SinceG (m,n) is a union of simple arcs and closed curves, and since the roots of (2.17-
2.18) are spaced withinO(L−d) from each other,ρ(L ,ε)m,n (z) has the natural interpretation
of the approximateline density of zerosof Zper

L alongG (m,n). As can be expected from

Theorem 2.3, the approximate densityρ(L ,ε)m,n (z) tends to an explicitly computable limit.

Proposition 2.4.Let m,n ∈ R be distinct and letρ(L ,ε)m,n (z) be as in (2.20). Then the
limit

ρm,n(z) = lim
ε↓0

lim
L→∞

ρ(L ,ε)m,n (z) (2.21)

exists for all z∈ G (m,n) such that|Q(z)| = 2, and

ρm,n(z) =
1

2π

∣∣∣∣∂zζm(z)

ζm(z)
−
∂zζn(z)

ζn(z)

∣∣∣∣. (2.22)

Remark 3.Note that, on the basis of Assumption A3, we have thatρm,n(z) ≥ α/(2π).
In particular, the density of zeros is always positive. This is directly related to the fact
that all pointsz ∈ G will exhibit a first-order phase transition (defined in an appropriate
sense, once Imz 6= 0 or Rez< 0)—hence the title of the paper. The observation that the
(positive) density of zeros and the order of the transition are closely related goes back
to [42].

In order to complete the description of the roots ofZper
L , we also need to cover

the regions with more than two “almost stable” phases. This is done in the following
theorem.

Theorem 2.5.Suppose that Assumptions A and B are satisfied. Let zM be a multiple
point and letQ = Q(zM) with q = |Q| ≥ 3. For each m∈ Q, let

φm(L) = Ld Arg ζm(zM) (mod 2π) and vm =
∂zζm(zM)

ζm(zM)
. (2.23)

Consider the set�L(Q) of all solutions of the equation∑
m∈Q

qm eiφm(L)+Ld(z−zM)vm = 0, (2.24)

including multiplicity, and let(ρL) be a sequence of positive numbers such that

lim
L→∞

LdρL = ∞ but lim
L→∞

Ld−d/(2q)ρL = 0. (2.25)
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Defineρ′

L = ρL + L−d(1+1/q). Then there exists a constant L0 < ∞ and, for any L≥

L0, an open, connected and simply connected setU satisfyingDρL (zM) ⊂ U ⊂

Dρ′
L
(zM) such that the zeros in�∩ U are in one-to-one correspondence with the solu-

tions in�(Q)∩U and the corresponding points are not farther apart than L−d(1+1/q).

Theorem 2.5 is proved in Sect. 4.4. Sect. 2.4 contains a discussion of the role of
Assumption A4 in this theorem; some information will also be provided concerning the
actual form of the solutions of (2.24).

To finish the exposition of our results, we will need to show that the results of The-
orems 2.2, 2.3 and 2.5 can be patched together to provide complete control of the roots
of Zper

L , at least in any compact subset ofO. This is done in the following claim, the
proof of which essentially relies only on Assumption A and compactness arguments:

Proposition 2.6.Suppose that Assumption A holds and letωL , γL andρL be sequences
of positive numbers such thatωL ≤ γL Ld, γL → 0, andρL → 0. For each compact
setD ⊂ O, there exist constantsχ = χ(D) > 0 and L0 = L0(D) < ∞ such that, if
ρL ≥ χγL , we have

GL−dωL
∩ D ⊂

⋃
Q⊂R
|Q|=2

UγL
(Q) ∪

⋃
zM∈D

|Q(zM)|≥3

DρL (zM) (2.26)

for any L ≥ L0.

Note that in (2.26) we consider only that portion ofD in GL−dωL
, since by The-

orem 2.2 the roots ofZper
L are contained in this set. Note also that the conditions we

impose on the sequencesωL , γL andρL in Theorems 2.1, 2.3 and 2.5 and Proposi-
tion 2.6 are not very restrictive. In particular, it is very easy to verify the existence
of these sequences. (For example, one can take bothγL andρL to be proportional to
L−d log L with suitable prefactors and then letωL = LdγL .)

2.3. Local Lee-Yang theorem.As our last result, we state a generalized version of the
classic Lee-Yang Circle Theorem [25], the proof of which is based entirely on the exact
symmetries of the model.

Theorem 2.7.Suppose that Assumptions A and B hold. Let+ and− be two selected
indices fromR and let U be an open set with compact closureD ⊂ O such that
U ∩{z: |z| = 1} 6= ∅. Assume thatD is invariant under circle inversion z7→ 1/z∗, and

(1) Zper
L (z) = Zper

L (1/z∗)∗,
(2) ζ+(z) = ζ−(1/z∗)∗ and q+ = q−

hold for all z ∈ D and all L ∈ L. Then there exists a constant L0 such that the following
holds for all L ≥ L0: If the intersection ofD with the set of coexistence pointsG is
connected and if+ and− are the only stable phases inD , then all zeros inD lie on the
unit circle, and the number of zeros on any segment ofD ∩ {z: |z| = 1} is proportional
to Ld as L → ∞.

Condition (2) is the rigorous formulation of the statement that the+ and− phases
are related byz ↔ 1/z∗ (or h ↔ −h, whenz = eh) symmetry. Condition (1) then
stipulates that this symmetry is actually respected by the remaining phases and, in par-
ticular, byZper

L itself.
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Remark 4.As discussed in Remark 2, in order to satisfy Assumption B it may be nec-
essary to extract a multiplicative “fudge” factor from the partition function, perform
the analysis of partition function zeros in various restricted regions inC and patch the
results appropriately. A similar manipulation may be required in order to apply Theo-
rem 2.7.

Here are the main steps of the proof of Theorem 2.7: First we show that the phase
diagram inD falls exactly on the unit circle, i.e.,

D ∩ G = {z ∈ D : |z| = 1}. (2.27)

This fact is essentially an immediate consequence of the symmetry between “+” and
“−.” A priori one would then expect that the zeros are close to, but not necessarily on,
the unit circle. However, the symmetry ofZper

L combined with the fact that distinct zeros
are at leastBL−d apart is not compatible with the existence of zeros away from the unit
circle. Indeed, ifz is a root ofZper

L , it is bound to be within a distanceO(e−τ L) of the
unit circle. If, in addition,|z| 6= 1, then thez ↔ 1/z∗ symmetry implies that 1/z∗ is also
a root ofZper

L , again withinO(e−τ L) of the unit circle. But then the distance betweenz
and 1/z∗ is of the ordere−τ L which is forbidden by claim (4) of Theorem 2.3.

This argument is made precise in the following proof.

Proof of Theorem 2.7.We start with the proof of (2.27). Let us suppose thatD ⊂ O and
Q(z) ⊂ {+,−} for all z ∈ D . Invoking the continuity ofζ± and condition (2) above,
we haveQ(z) = {+,−} for all z ∈ D ∩ {z: |z| = 1} and thusD ∩ {z: |z| = 1} ⊂ G .
Assume now thatG ∩ D \ {z: |z| = 1} 6= ∅. By the fact thatG ∩ D is connected and
the assumption thatU ∩ {z: |z| = 1} 6= ∅, we can find a pathzt ∈ G ∩ D , t ∈ [−1,1],
such thatzt ∈ D ∩ {z: |z| = 1} if t ≤ 0 andzt ∈ G ∩ D \ {z: |z| = 1} if t > 0. Since
Q(z0) = {+,−}, we know that there is a discDε(z0) ⊂ O that contains no multiple
points. Applying Theorem 2.1 to this disc, we conclude that there is an open discD with
z0 ∈ D ⊂ Dε(z0), such thatG ∩ D is a simple curve which ends at∂D. However, using
condition (2) above, we note that as withzt , also the curvet 7→ 1/z∗

t lies in G ∩ D ,
contradicting the fact thatG ∩ D is a simple curve. This completes the proof of (2.27).

Next, we will show that for anyz0 ∈ D ∩{z: |z| = 1}, and anyδ > 0, there exists an
open discDε(z0) ⊂ O such that the setG ∩ Dε(z0) is a smooth curve with the property
that for anyz ∈ Dε(z0) with |z| 6= 1, the line connectingz and 1/z∗ intersects the curve
G ∩ Dε(z0) exactly once, and at an angle that lies betweenπ/2 − δ andπ/2 + δ. If z0
lies in the interior ofD , this statement (withδ = 0) follows trivially from (2.27). Ifz0
is a boundary point ofD , we first choose a sufficiently small discD 3 z0 so thatD ⊂ O
and, for all points inD, only the phases+ and− are stable. Then we use Theorem 2.3
and (2.27) to infer thatε can be chosen small enough to guarantee the above statement
about intersection angles.

Furthermore, we claim that givenz0 ∈ D ∩ {z: |z| = 1} and ε > 0 such that
D3ε(z0) ⊂ O andQ(z) ⊂ {+,−} for all z ∈ D3ε(z0), one can chooseL sufficiently
large so that

D2ε(z0) ∩ GL−dωL
⊂ UγL

({+,−}) ∩ U2κ/L({+,−}). (2.28)

To prove this, let us first note that, forγL ≤ 2κ/L, the right hand side can be rewritten as

UγL
({+,−}) \

⋃
m6=−,+

Sκ/L(m). (2.29)
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Next, by the compactness ofD2ε(z0) and the fact that nom ∈ R different from± is
stable anywhere inD3ε(z0), we can chooseL0 so large thatSκ/L(m) ∩ D2ε(z0) = ∅

for all L ≥ L0 and allm 6= ±. Using the closure ofD2ε(z0) in place of the setD in
(2.26), we get (2.28).

We are now ready to prove that for anyz0 ∈ D ∩ {z: |z| = 1}, there exist constants
ε > 0 andL0 such that all roots ofZper

L in Dε(z0)∩ D lie on the unit circle. To this end,
let us first assume thatε has been chosen small enough to guarantee that(1−ε)−1 < 1+

2ε, D3ε(z0) ⊂ O,Q(z) ⊂ {+,−} for all z ∈ D3ε(z0), andG ∩D3ε(z0) is a smooth curve
with the above property about the intersections angles, with, say,δ = π/4. Assume
further thatL is chosen so that (2.28) holds andε > max(CδL(z0), BL−d), whereC
andB are the constants from Theorem 2.3.

Let z ∈ Dε(z0) ∩ D be a root ofZper
L . If L is so large that Theorem 2.2 applies, we

havez ∈ GL−dωL
and thusδL(z) = e−τ L in view of (2.28). By Theorem 2.3, there exists

a solutionz̃ to (2.17–2.18) that lies in aCδL(z)-neighborhood ofz, implying thatz has
distance less thanCδL(z) from D2ε(z0) ∩ G . (Here we need thatq+ = q− to conclude
that z̃ ∈ G .) Suppose now that|z| 6= 1. Then the condition (1) above implies thatz′

=

(z∗)−1 is adistinctroot of Zper
L in D . Moreover, ifε is so small that(1−ε)−1 < 1+2ε,

thenz′
∈ GL−dωL

∩ D2ε(z0) andδL(z′) also equalse−τ L , implying thatz′ has distance
less thanCδL(z) from D3ε(z0)∩ G . Since bothz andz′ have distance less thanCδL(z)
from D3ε(z0) ∩ G , and the curveD3ε(z0) ∩ G intersects the line throughz andz′ in an
angle that is nearπ/2, we conclude that|z− z′

| ≤ 2
√

2Ce−τ L which for L sufficiently
large contradicts the last claim of Theorem 2.3. Hence,z must have been on the unit
circle after all.

The rest of the argument is based on compactness. The setD ∩ {z: |z| = 1} is
compact, and can thus be covered by a finite number of such discs. Picking one such
cover, letD ′ be the complement of these disc inD . Then the setD ′ is a finite distance
away fromG and thusD ′

∩ GL−dωL
= ∅ for L sufficiently large. From here it follows

that for some finiteL0 < ∞ (which has to exceed the maximum of the corresponding
quantity for the discs that constitute the covering ofD ∩ {z: |z| = 1}), all roots ofZper

L
in U lie on the unit circle. ut

2.4. Discussion.We finish with a brief discussion of the results stated in the previ-
ous three sections. We will also mention the role of (and possible exceptions to) our
assumptions, as well as extensions to more general situations.

We begin with the results on the complex phase diagram. Theorem 2.1 describes the
situation in the generic cases when Assumptions A1-A4 hold. We note that Assump-
tion A3 is crucial for the fact that the setG is a collection ofcurves. A consequence
of this is also that the zeros ofZper

L asymptotically concentrate on curves—exceptions
to this “rule” are known, see, e.g., [36]. Assumption A4 prevents the phase coexistence
curves from merging in a tangential fashion and, as a result of that, guarantees that
multiple points do not proliferate throughoutO. Unfortunately, in several models of in-
terest (e.g., the Potts and Blume-Capel model) Assumption A4 happens to be violated
at somez̃ for one or two “critical” values of the model parameters. In such cases, the
regionO has to be restricted to the complement of some neighborhood ofz̃ and, inside
the neighborhood, the claim has to be verified using a refined and often model-specific
analysis. (It often suffices to show that the phase coexistence curves meeting atz̃ have
different curvatures, which amounts to a statement about the second derivatives of the
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Fig. 3. An illustration of the situation around a quadruple point. Herev∗1, . . . , v
∗
4 are the complex conjugates

of the quantities from (2.4) andq1 = q2 = q3 < q4. (The quadruple point lies at the common tail point of the
vectorsv∗1, . . . , v

∗
4.) The dashed lines indicate the asymptotes of the “strings” of zeros sufficiently far—on

the scaleL−d—from the quadruple point. Note the lateral shift of these lines due to the fact thatq4 > q1,q3.
The picture seems to suggest that, on the scaleL−d, the quadruple point splits into two triple points.

functions logζm(z).) Examples of such analysis have appeared in [2] for the Blume-
Capel model and in [4] for the Potts model in a complex external field.

Next we will look at the results of Theorems 2.2 and 2.3. The fact that the roots
of Zper

L are only finitely degenerate is again independent of Assumption A4. (This is of
some relevance in view of the aforementioned exceptions to this assumption.) The fact
that, in the cases when allqm’s are the same, the zeros shift only by an exponentially
small amount away from the two-phase coexistence lines is a direct consequence of our
choice of the boundary conditions. Indeed, the factore−τ L in (2.16) can be traced to the
similar factors in (2.9) and (2.14). For strong (e.g., fixed-spin) boundary conditions, we
expect the corresponding terms in (2.9) and (2.14) to be replaced by 1/L. In particular,
in these cases, the lateral shift of the partition function zeros away from the phase-
coexistence lines should be of the order 1/L. See [44] for some results on this problem.

Finally, let us examine the situation around multiple points in some detail. Theo-
rem 2.5 can be given the following geometrical interpretation: LetzM be a multiple
point. Introducing the parametrizationz = (z − zM)Ld, we effectively zoom in on the
scaleL−d, where the zeros ofZper

L are well approximated by the roots of the linearized
problem (2.24) withQ = Q(zM). Let us plot the complex conjugatesv∗

m of the loga-
rithmic derivativesvm (see (2.23)),m ∈ Q, as vectors inR2. By Assumption A4, the
vectorsv∗

m are the endpoints of a convex set inC ' R2. Let v∗

1, . . . , v
∗
q be the ordering

ofQ in the counterclockwise direction, see Fig. 3. Noting that the real part Re(vmz) can
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be written in terms of the dot product, Re(vmz) = v∗
m · z, (2.24) can be recast as∑

m∈Q(zM)

qm eiφ′
m(L)+v

∗
m·z

= 0, (2.30)

whereφ′
m(L) = φm(L)+ Im(vmz).

On the basis of (2.30), it is easy to verify the following facts: Letz = |z|ê, with ê
a unit vector inC. An inspection of (2.30) shows that, for|z| � 1, the roots of (2.30)
will concentrate along the “directions” for which the projection ofê on at least twov∗

n’s
is the same. Invoking the convexity assumption (Assumption A4), this can only happen
whenv∗

n · ê = v∗

n+1 · ê for somen. In such cases, the contributions of the terms with
indicesm 6= n,n+1 in (2.30) are negligible—at least once|z| � 1—and the zeros will
thus asymptotically lie along the half-lines given in the parametric form by

z = z(t) =
v∗

n − v∗

n+1

|vn − vn+1|
2

log
(qn+1

qn

)
+ it (v∗

n − v∗

n+1), t ∈ [0,∞). (2.31)

Clearly, the latter is a line perpendicular to the(n,n + 1)-st side of the convex set with
verticesv∗

1, . . . , v
∗
q, which is shifted (away from the origin) along the corresponding

side by a factor proportional to log(qn+1/qn), see Fig. 3.
Sufficiently far away fromzM (on the scaleL−d), the zeros resume the pattern es-

tablished around the two-phase coexistence curves. In particular, the zeros are asymp-
totically equally spaced but their overall shift along the asymptote is determined by the
factor φm(L)—which we note depends very sensitively onL. Computer simulations
show that, at least in generic cases, this pattern will persists all the way down to the
multiple point. Thus, even on the “microscopic” level, the zeros seem to form a “phase
diagram.” However, due to the lateral shifts caused byqm+1 6= qm, a “macroscopic”
quadruple point may resolve into two “microscopic” triple points, and similarly for
higher-order multiple points.

3. Characterization of phase diagrams

The goal of this section is to give the proof of Theorem 2.1. We begin by proving a series
of auxiliary lemmas whose purpose is to elevate the pointwise Assumptions A3-A4 into
statements extending over a small neighborhood of each coexistence point.

3.1. Auxiliary claims.Recall the definitions ofSm, Q(z) and vm(z), in (2.2), (2.5)
and (2.23), respectively. The first lemma gives a limiting characterization of stability of
phases around coexistence points.

Lemma 3.1.Let Assumption A1–A2 hold and letz̄ ∈ O be such that|Q(z̄)| ≥ 2.
Let (zk) be a sequence of numbers zk ∈ O such that zk → z̄ but zk 6= z̄ for all k.
Suppose that

eiθ
= lim

k→∞

zk − z̄

|zk − z̄|
(3.1)

exists and let m∈ Q(z̄). If zk ∈ Sm for infinitely many k≥ 1, then

Re(eiθvm) ≥ Re(eiθvn) for all n ∈ Q(z̄), (3.2)
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wherevn = vn(z̄). Conversely, if the inequality in (3.2) fails for at least one n∈ Q(z̄),
then there is anε > 0 such that

Wε,θ (z̄) =

{
z ∈ O : |z − z̄| < ε, z 6= z̄,

∣∣ z−z̄
|z−z̄| − eiθ

∣∣ < ε
}

(3.3)

has empty intersection withSm, i.e.,Sm ∩ Wε,θ (z̄) = ∅. In particular, zk 6∈ Sm for k
large enough.

Remark 5.In the following, it will be useful to recall some simple facts about complex
functions. Let f , g andh be functionsC → C and let∂z and∂z̄ be as in (2.1). If f
satisfies∂z̄ f (z0) = 0 (i.e., Cauchy-Riemann conditions), then all directional derivatives
of f at z0 = x0 + iy0 can be expressed using one complex numberA = ∂z f (x0 + iy0),
i.e., we have

f (x0 + ε cosϕ + iy0 + iε sinϕ)− f (x0 + iy0) = εAeiϕ
+ o(ε), ε ↓ 0, (3.4)

holds for everyϕ ∈ [−π, π). Moreover, ifg is differentiable with respect tox andy at
z0 = x0 + iy0 andh satisfies∂z̄h(z′) = 0 at z′

= g(z0), then the chain rule holds for
z 7→ h(g(z)) at z = z0. In particular,∂zh(g(z0)) = (∂zh)(g(z0))∂zg(z0).

Proof of Lemma 3.1.Let m ∈ Q(z̄) be fixed. Wheneverzk ∈ Sm, we have

log
∣∣ζm(zk)

∣∣ − log
∣∣ζm(z̄)∣∣ ≥ log

∣∣ζn(zk)
∣∣ − log

∣∣ζn(z̄)∣∣, n ∈ Q(z̄), (3.5)

because|ζm(z̄)| = |ζn(z̄)|, by our assumption thatm,n ∈ Q(z̄). Using the notation

Fm,n(z) =
ζm(z)

ζn(z)
(3.6)

for n ∈ Q(z̄) (which is well defined and non-zero in a neighborhood ofz̄), the inequality
(3.5) becomes

log
∣∣Fm,n(zk)

∣∣ − log
∣∣Fm,n(z̄)

∣∣ ≥ 0, n ∈ Q(z̄). (3.7)

Note that the complex derivative∂zFm,n(z̄) exists for alln ∈ Q(z̄). Our task is then to
prove that

Re
(
eiθ ∂z̄Fm,n(z̄)

Fm,n(z̄)

)
≥ 0, n ∈ Q(z̄). (3.8)

Fix n ∈ Q(z̄). Viewing z 7→ Fm,n(z) as a function of two real variablesx = Rez and
y = Imz, we can expand log|Fm,n(z)| into a Taylor series around the pointz̄ to get

log
∣∣Fm,n(zk)

∣∣ − log
∣∣Fm,n(z̄)

∣∣ = Re

(
(zk − z̄)

∂zFm,n(z̄)

Fm,n(z̄)

)
+ O(|zk − z̄|2). (3.9)

To derive (3.9) we recalled thatFm,n is at least twice continuously differentiable (hence
the error bound) and then applied the identity

∂ log |Fm,n(z̄)|

∂x
1xk +

∂ log |Fm,n(z̄)|

∂y
1yk = Re

(
(zk − z̄)

∂zFm,n(z̄)

Fm,n(z̄)

)
, (3.10)

where1xk = Re(zk − z̄) and1yk = Im(zk − z̄). (To derive (3.10), we just have to
apply the chain rule to the functionsz 7→ log Fm,n(z). See Remark 5 for a discussion
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of this point.) Using thatzk → z̄, the inequality (3.8) and hence also (3.2) now follows
by combining (3.9) with (3.5), dividing by|zk − z̄| and taking the limitk → ∞.

If, on the contrary, the inequality (3.2) is violated for somen ∈ Q(z̄), then (3.8)
fails to hold as well and hence (3.7) and (3.5), withzk replaced byz, must be wrong for
z ∈ Wε,θ (z̄) wheneverε is small enough. Butm ∈ Q(z̄) implies that|ζm(z̄)| = |ζn(z̄)|
and thus|ζm(z)| < |ζn(z)| for all z ∈ Wε,θ (z̄), proving thatSm ∩ Wε,θ (z̄) = ∅. By
(3.1) and the fact thatzk → z̄, we havezk ∈ Wε,θ (z̄) and hencezk 6∈ Sm for all k large
enough. ut

Lemma 3.1 directly implies the following corollary.

Corollary 3.2. Let Assumption A1–A2 hold and let m,n ∈ R be distinct. Let(zk) be
a sequence of numbers zk ∈ Sm ∩ Sn such that zk → z̄ ∈ O but zk 6= z̄ for all k.
Suppose that the limit (3.1) exists and equals eiθ . ThenRe(eiθvm) = Re(eiθvn).

Proof.Follows immediately applying (3.2) twice.ut

The next lemma will ensure that multiple points do not cluster and that the coexis-
tence lines always intersect at positive angles.

Lemma 3.3.Suppose that Assumption A holds and letz̄ ∈ O. Suppose there are two
sequences(zk) and(z′

k) of numbers fromO such that|zk − z̄| = |z′

k − z̄| 6= 0 for all k
and zk, z′

k → z̄ as k → ∞. Let a,b, c ∈ R and suppose that zk ∈ Sa ∩ Sb and
z′

k ∈ Sa ∩ Sc for all k. Suppose the limit (3.1) exists for both sequences and let eiθ

and eiθ
′

be the corresponding limiting values.

(1) If a,b, c are distinct, then eiθ 6= eiθ ′

.
(2) If a 6= b = c and zk 6= z′

k for infinitely many k, then|Q(z̄)| = 2 and eiθ = −eiθ ′

.

Remark 6.The conclusions of part (2) have a very natural interpretation. Indeed, in
this case,̄z is a point on a two-phase coexistence line (whose existence we have not
established yet) andzk andz′

k are the (eventually unique) intersections of this line with
a circle of radius|zk − z̄| = |z′

k − z̄| aroundz̄. As the radius of this circle decreases,
the intersectionszk andz′

k approach̄z from “opposite” sides, which explains why we

should expect to haveeiθ
= −eiθ ′

.

Proof of Lemma 3.3.Throughout the proof, we setvm = vm(z̄). We begin by prov-
ing (1). Assume thata,b, c ∈ R are distinct and suppose thateiθ

= eiθ ′

. Note that,
sinceQ(z̄) ⊃ {a,b, c}, the pointz̄ is a multiple point. Corollary 3.2 then implies that

Re(eiθva) = Re(eiθvb) = Re(eiθvc), (3.11)

and henceva, vb andvc lie on a straight line inC. But thenva, vb andvc cannot simulta-
neously be vertices of a strictly convex polygon, in contradiction with Assumption A4.

In order to prove part (2), leta 6= b = c, suppose without loss of generality that
zk 6= z′

k for all k. If eiθ
6= ±eiθ ′

, then Corollary 3.2 implies that Re(eiθ (va − vb)) =

0 = Re(eiθ ′

(va − vb)) and henceva = vb, in contradiction with Assumption A3. Next
we will rule out the possibility thateiθ

= eiθ ′

, regardless of how many phases are stable
at z̄. Let G(z) = ζa(z)/ζb(z) and note that|G(zk)| = 1 = |G(z′

k)| for all k. Applying
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Taylor’s theorem (analogously to the derivation of (3.9)), dividing by|zk − z′

k| and
passing to the limitk → ∞, we derive

lim
k→∞

Re

(
zk − z′

k

|zk − z′

k|

∂zG(zk)

G(zk)

)
= 0. (3.12)

The second ratio on the left-hand side tends tova − vb. As for the first ratio, an easy
computation reveals that, since|zk − z̄| = |z′

k − z̄| 6= 0, we have

zk − z′

k

|zk − z′

k|
= iei 1

2 (θk+θ
′
k)

sin((θk − θ ′

k)/2)

| sin((θk − θ ′

k)/2)|
, (3.13)

where

eiθk =
zk − z̄

|zk − z̄|
and eiθ ′

k =
z′

k − z̄

|z′

k − z̄|
. (3.14)

By our assumptions, we haveeiθk → eiθ andeiθ ′
k → eiθ ′

ask → ∞. Suppose now that
eiθ

= eiθ ′

. Then, choosing a subsequence if necessary, the left-hand side of (3.13) tends
to a definite sign times ieiθ . Inserting this into (3.12) and using Corollary 3.2, in addition
to Re(eiθ (va−vb)) = 0, we now get that also Re(ieiθ (va−vb)) = Im(eiθ (va−vb)) = 0.
Consequently,va = vb, again contradicting Assumption A3.

To finish the proof of the claim (2), it remains to rule out the possibility thateiθ ′

=

−eiθ in the case when̄z is a multiple point. Letn ∈ Q(z̄) be another phase stable atz̄,
i.e.,n 6= a,b. By Lemma 3.1, we have

Re
(
eiθ (vm − vn)

)
≥ 0 and Re

(
eiθ ′

(vm − vn)
)

≥ 0, m = a,b. (3.15)

But theneiθ ′

= −eiθ would imply that Re(eiθva) = Re(eiθvn) = Re(eiθvb), in contra-
diction with Assumption A4. Therefore,|Q(z̄)| < 3, as claimed. ut

Corollary 3.4. Suppose that Assumption A holds and letz̄ ∈ O be a multiple point.
Then there exists a constantδ > 0 such that|Q(z)| ≤ 2 for all z ∈ {z′

∈ O : 0 <
|z′

− z̄| < δ}. In particular, each multiple point inO is isolated.

Proof.Supposēz ∈ O is a non-isolated multiple point. Then there is a sequencezk ∈ O
such thatzk → z̄ and, without loss of generality,Q(zk) = Q0 with |Q0| ≥ 3, zk 6= z̄
for all k, and such that the limit (3.1) exists. Taking for(z′

k) the identical sequence,

z′

k = zk, we geteiθ
= eiθ ′

in contradiction to Lemma 3.3(1). Therefore, every multiple
point inO is isolated. ut

Our last auxiliary claim concerns the connectivity of sets ofθ such that (3.2) holds.
As will be seen in the proof of Lemma 3.6, this will be crucial for characterizing the
topology of the phase diagram in small neighborhoods of multiple points.

Lemma 3.5.Suppose that Assumption A holds and letz̄ ∈ O be a multiple point. For
m ∈ Q(z̄), let vm = vm(z̄). Then, for each m∈ Q(z̄), the set

Im =
{
eiθ : θ ∈ [0,2π), Re(eiθvm) > Re(eiθvn), n ∈ Q(z̄) \ {m}

}
(3.16)

is connected and open as a subset of{z ∈ O : |z| = 1}. In particular, if eiθ is such that

Re(eiθvm) = max
n∈Q(z̄)r{m}

Re(eiθvn), (3.17)

then eiθ is one of the two boundary points of Im.
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Proof.By Assumption A4, the numbersvm, m ∈ Q(z̄), are the vertices of a strictly con-
vex polygonP in C. Let s = |Q(z̄)| and let(v1, . . . , vs) be an ordering of the vertices
of P in the counterclockwise direction. Form = 1, . . . , s define1vm = vm − vm−1,
where we takev0 = vs. Note that, by strict convexity ofP, the argumentsθm of 1vm,
i.e., numbersθm such that1vm = |1vm|eiθm, are such that the vectorseiθ1, . . . ,eiθs

are ordered counterclockwise, with the angle betweeneiθm andeiθm+1 lying strictly be-
tween 0 andπ for all m = 1, . . . s (again, we identifym = 1 andm = s + 1).
In other words, for eachm, the anglesθ1 . . . , θs can be chosen in such a way that
θm < θm+1 < · · · < θm+s, with 0 < θm+k − θm+k−1 < π , k = 1, . . . , s. (Again, we
identifiedm + k with m + k − s wheneverm + k > s).

Using Jm to denote the setJm =
{
ie−iϑ : ϑ ∈ (θm, θm+1)

}
, we claim thatIm = Jm

for all m = 1, . . . , s. First, let us show thatJm ⊂ Im. Let thusϑ ∈ (θm, θm+1) and
observe that

Re(ie−iϑ1vm) = |1vm| sin(ϑ − θm) > 0, (3.18)

becauseθm < ϑ < θm+1 < θm + π . Similarly,

Re(ie−iϑ1vm+1) = |1vm+1| sin(ϑ − θm+1) < 0, (3.19)

becauseθm+1 − π < θm < ϑ < θm+1. Consequently, Re(ie−iϑvm) > Re(ie−iϑvn)
holds for bothn = m + 1 andn = m − 1.

It remains to show that Re(ie−iϑvm) > Re(ie−iϑvn) is true also for all remaining
n ∈ Q(z̄). Let n ∈ Q(z̄) \ {m,m ± 1}. We will separately analyze the cases with
θn − θm ∈ (0, π ] and θn − θm ∈ (−π,0). Suppose first thatθn − θm ∈ (0, π ]. This
allows us to writen = m + k for somek ∈ {2, . . . , s − 1} and estimate

Re(ie−iϑ (vn − vm)) =

k∑
j =1

Re(ie−iϑ1vm+ j )

=

k∑
j =1

|1vm+ j | sin(ϑ − θm+ j ) < 0. (3.20)

The inequality holds since, in light ofϑ < θm+1 < · · · < θm+k ≤ θ + π , each sine is
negative except perhaps for the last one which is allowed to be zero. On the other hand,
if θn − θm ∈ (−π,0), we writen = m − k instead, for somek ∈ {2, . . . , s − 1}, and
estimate

Re(ie−iϑ (vm − vn)) =

0∑
j =−k+1

Re(ie−iϑ1vm+ j )

=

0∑
j =−k+1

|1vm+ j | sin(ϑ − θm+ j ) > 0. (3.21)

Here we invoked the inequalitiesϑ − π < θm−k < · · · < θm < ϑ to show that each
sine on the right-hand side is strictly positive.

As a consequence of the previous estimates, we conclude thatJm ⊂ Im for all
m = 1, . . . , s. However, the union of allJm’s covers the unit circle with the exception
of s points and, since the setsIm are open and disjoint, we must haveIm = Jm for
all m ∈ Q(z̄). Then, necessarily,Im is connected and open. Now the left-hand side of
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(3.17) is strictly greater than the right-hand side foreiθ
∈ Im, and strictly smaller than

the right-hand side foreiθ in the interior of the complement ofIm. By continuity of both
sides, (3.17) can hold only on the boundary ofIm. ut

3.2. Proof of Theorem 2.1.Having all the necessary tools ready, we can start prov-
ing Theorem 2.1. First we will apply Lemma 3.5 to characterize the situation around
multiple points.

Lemma 3.6.Suppose that Assumption A holds and letz̄ ∈ O be a multiple point. For
δ > 0, let

I (δ)m =
{
z ∈ O : |z − z̄| = δ, Q(z) 3 m

}
. (3.22)

Then the following is true onceδ is sufficiently small:

(1) For each m∈ Q(z̄), the set I(δ)m is connected and has a non-empty interior.
(2) I (δ)m = ∅ whenever m/∈ Q(z̄).
(3) For distinct m and n, the sets I(δ)m and I(δ)n intersect in at most one point.

Proof. The fact thatI (δ)m = ∅ for m /∈ Q(z̄) onceδ > 0 is sufficiently small is a
direct consequence of the continuity of the functionsζm andζ . Indeed, if there were a
sequence of pointszk tending toz̄ such that a phasem were stable at eachzk, thenm
would be also stable atz̄.

We will proceed by proving that, asδ ↓ 0, each setI (δ)m , m ∈ Q(z̄), will eventually
have a non-empty interior. Letm ∈ Q(z̄). Observe that, by Lemma 3.5, there is a
valueeiθ (namely, a number fromIm) such that Re(eiθvm) > Re(eiθvn) for all n ∈

Q(z̄)\{m}. But then the second part of Lemma 3.1 guarantees the existence of anε > 0
such thatQ(z) = {m} for all z ∈ Wε,θ (z̄)—see (3.3). In particular, the intersection
Wε,θ (z̄)∩{z: |z−z̄| = δ}, which is non-empty and (relatively) open forδ < ε, is a subset
of I (δ)m . It follows that the setI (δ)m has a nonempty interior onceδ is sufficiently small.

Next we will prove that eachI (δ)m , m ∈ Q(z̄), is eventually connected. Suppose that
there exist a phasea ∈ Q(z̄) and a sequenceδk ↓ 0 such that all setsI (δk)a arenot
connected. Then, using the fact thatI (δk)a has nonempty interior and thus cannot consist
of just two separated points, we conclude that the phasea coexists with some other
phase at at least three distinct points on each circle{z: |z − z̄| = δk}. Explicitly, there
exist (not necessarily distinct) indicesb( j )

k ∈ Q(z̄) \ {a} and points(z( j )
k ), j = 1,2,3,

with |z( j )
k − z̄| = δk andz( j )

k 6= z(`)k for j 6= `, such thata,b( j )
k ∈ Q(z( j )

k ). Moreover,

(choosing subsequences if needed) we can assume thatb( j )
k = b( j ) for someb( j )

∈

Q(z̄)\ {a} independent ofk. Resorting again to subsequences, we also may assume that
the limits in (3.1) exist for all three sequences.

Let us useeiθ j to denote the corresponding limits for the three sequences. First we
claim that the numberseiθ j , j = 1,2,3, are necessarily all distinct. Indeed, suppose
two of theeiθ j ’s are the same and letb andc be the phases coexisting witha along
the corresponding sequences. Then Lemma 3.3(1) forcesb = c, which contradicts
both conclusions of Lemma 3.3(2). Therefore, all threeeiθ j must be different. Applying
now Corollary 3.2 and Lemma 3.1, we get Re(eiθ j va) = maxn∈Q(z̄)\{a} Re(eiθ j vn) for
j = 1,2,3. According to Lemma 3.5, all three distinct numberseiθ j , j = 1,2,3, are
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endpoints ofIa, which is not possible sinceIa is a connected subset of the unit circle.
Thus, we can conclude thatI (δ)a must be connected onceδ > 0 is sufficiently small.

To finish the proof, we need to show thatI (δ)a ∩ I (δ)b contains at most one point for
anya 6= b. First note that we just ruled out the possibility that this intersection contains
threedistinct points for a sequence ofδ’s tending to zero. (Indeed, thena would coexist
with b along three distinct sequences, which would in turn imply thata andb coexists
along three distinct directions, in contradiction with Lemma 3.5.) Suppose now that
I (δ)a ∩ I (δ)b contains two distinct points. Since bothI (δ)a and I (δ)b are connected with

open interior, this would mean thatI (δ)a and I (δ)b cover the entire circle of radiusδ.

Once again, applying the fact that twoI (δ)m have at most two points in common, we then
must haveI (δ)c = ∅ for all c 6= a,b. But Q(z̄) contains at least three phases which
necessitates thatI (δ)m 6= ∅ for at least three distinctm. HenceI (δ)a ∩ I (δ)b cannot contain
more than one point. ut

Next we will give a local characterization of two-phase coexistence lines.

Lemma 3.7.Suppose that Assumption A holds and let m,n ∈ R be distinct. Let z∈ O
be such that z∈ Sm ∩ Sn andQ(z′) ⊂ {m,n} for z′

∈ Dδ(z). Then there exist
numbersδ′ ∈ (0, δ), t1 < 0, t2 > 0, and an twice continuously differentiable function
γz : (t1, t2) → Dδ′(z) such that

(1) γz(0) = z.
(2) |ζm(γz(t))| = |ζn(γz(t))| = ζ(γz(t)), t ∈ (t1, t2).
(3) limt↓t1 γz(t), limt↑t2 γz(t) ∈ ∂Dδ′(z).

The curve t 7→ γz(t) is unique up to reparametrization. Moreover, the setDδ′(z) \

γz(t1, t2) has two connected components and m is the only stable phase in one of the
components while n is the only stable phase in the other.

Proof.We begin by observing that by Assumption A3, the function

φm,n(x, y) = log |ζm(x + iy)| − log |ζn(x + iy)| = Re logFm,n(x + iy), (3.23)

has at least one of the derivatives∂xφm,n, ∂yφm,n non-vanishing atx + iy = z. By
continuity, there exists a constantη > 0 such that one of the derivatives is uniformly
bounded away from zero for allz′

= u + iv ∈ Dη(z). Sincez = x + iy ∈ Sm ∩

Sn, we haveφm,n(x, y) = 0. By the implicit function theorem, there exist num-
bers t ′0, t ′1, x0, x1, y0 and y1 such thatt ′0 < 0 < t ′1, x0 < x < x1, y0 < y <
y1 and (x0, x1) × (y0, y1) ⊂ Dη(z), and twice continuously differentiable functions
u : (t ′0, t

′

1) → (x0, x1) andv : (t ′0, t
′

1) → (y0, y1) such that

φm,n
(
u(t), v(t)

)
= 0, t ∈ (t ′0, t

′

1), (3.24)

and
u(0) = x, and v(0) = y. (3.25)

Moreover, since the second derivatives ofφm,n are continuous inO and therefore
bounded inDη(z), standard theorems on uniqueness of the solutions of ODEs guarantee
that the solution to (3.24) and (3.25) is unique up to reparametrization. The construction
of γz is now finished by pickingδ′ so small thatDδ′(z) ⊂ (x0, x1) × (y0, y1), and tak-
ing t0 andt1 to be the first backward and forward time, respectively, when(u(t), v(t))
leavesDδ′(z).
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The fact thatDδ′(z) \ γz(t1, t2) splits into two components is a consequence of the
construction ofγz. Moreover,γz is a (zero-)level curve of functionφm,n which has a
non-zero gradient. Hence,φm,n < 0 on one component ofDδ′(z) \ γz(t1, t2), while
φm,n > 0 on the other. Recalling the assumption thatQ(z′) ⊂ {m,n} for z′ in a neigh-
borhood ofz, the claim follows. ut

Now we can finally give the proof of Theorem 2.1.

Proof of Theorem 2.1.Let M denote the set of all multiple points inO, i.e., let

M =
{
z ∈ O : |Q(z)| ≥ 3

}
. (3.26)

By Corollary 3.4, we know thatM is relatively closed inO and so the setO ′
= O \M

is open. Moreover, the setG ∩ O ′ consists solely of points where exactly two phases
coexist. Lemma 3.7 then shows that for eachz ∈ G ∩ O ′, there exists a discDδ′(z) and
a unique, smoothγz in Dδ′(z) passing throughz such thatQ(z′) = Q(z) for all z′ on
the curveγz. Let γ̃z be a maximal extension of the curveγz in O ′. We claim that̃γz is
either a closed curve or an arc with both endpoints on∂O ′. Indeed, ifγ̃z were open with
an end-point̃z ∈ O ′, thenQ(z̃) ⊃ Q(z), by continuity of functionsζm. But z̃ ∈ O ′

and so|Q(z̃)| ≤ 2, which implies thatQ(z̃) = Q(z). By Lemma 3.7, there exists a
non-trivial curveγz̃ along which the two phases fromQ(z̃) coexist in a neighborhood
of z̃. But thenγz̃ ∪ γ̃z would be a non-trivial extension ofγ̃z, in contradiction with the
maximality of γ̃z. Thus we can conclude thatz̃ ∈ ∂O ′.

Let C denote the set of maximal extensions of the curves{γz : z ∈ G ∩O ′
}. LetD ⊂

O be a compact set and note that Corollary 3.4 implies thatD ∩M is finite. Letδ0 be so
small that, for eachzM ∈ M ∩D , we haveDδ0(zM) ⊂ O, Dδ0(zM)∩M = {zM} and the
statements in Lemma 3.6 hold true forδ ≤ δ0. Let δ ∈ (0, δ0]. We claim that if a curve
C ∈ C intersects the discDδ(zM) for azM ∈ M ∩D , then the restrictionC ∩Dδ(zM) is
a simple curve connectingzM to ∂Dδ(zM). Indeed, each curveC ∈ C terminates either
on ∂O or onM . If C “enters”Dδ(zM) and does not hitzM , our assumptions aboutδ0
imply thatC “leaves”Dδ(zM) through the boundary. But Lemma 3.7 ensures that one
of the phases coexisting alongC dominates in a small neighborhood on the “left” ofC ,
while the other dominates in a small neighborhood on the “right” ofC . The only way
this can be made consistent with the connectivity of the setsI (δ)m in Lemma 3.6 is by
assuming thatI (δ)m 6= ∅ only for the twom’s coexisting alongC . But that still contradicts
Lemma 3.6, by whichI (δ)m 6= ∅ for at leastthreedistinctm. Thus, once a curveC ∈ C
intersectsDδ(zM), it must terminate atzM .

Let D0 = D \
⋃

z∈M Dδ0(z) and let1 : D0 → [0,∞) be a function given by

1(z) = inf
{
δ′ ∈ (0, δ0) : Dδ′(z) ⊂ O, Dδ′(z) ∩

⋃
C ∈C C is disconnected

}
. (3.27)

We claim that1 is bounded from below by a positive constant. Indeed,1 is clearly con-
tinuous and, sinceD0 is compact,1 attains its minimum at somez ∈ D0. If 1(z) = 0,
thenz is a limit point of

⋃
C ∈C C and thusz ∈ C for someC ∈ C. Moreover, for

infinitely manyδ′ ∈ (0, δ0), the circle∂Dδ′(z) intersects the set
⋃

C ∈C C in at least
three different points. Indeed, the curveC 3 z provides two intersections; the third
intersection is obtained by adjusting the radiusδ′ so thatDδ′(z) ∩

⋃
C ∈C is discon-

nected. Thus, we are (again) able to construct three sequences(zk), (z′

k) and(z′′

k) such
that, without loss of generality,zk, z′

k, z
′′

k ∈ Sa ∩ Sb for some distincta,b ∈ R (only
two phases can exist in sufficiently small neighborhoods of points inD0), |zk − z̄| =
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|z′

k − z̄| = |z′′

k − z̄| → 0, but zk 6= z′

k 6= z′′

k 6= zk for all k. However, this contra-
dicts Lemma 3.3, because its part (2) cannot hold simultaneously for all three pairs of
sequences(zk, z′

k), (z
′

k, z
′′

k) and(zk, z′′

k).
Now we are ready to define the set of pointsz1, . . . , z`. Let ε be the minimum of

the function1 in D0 and letδ = min(δ0, ε). Consider the following collections of open
finite discs:

S1 =
{
Dδ(z) : z ∈ M ∩ D

}
,

S2 =
{
Dδ(z) : z ∈ D ∩

⋃
C ∈C C , dist(z,

⋃
D∈S1

D) > 2
3δ

}
,

S3 =
{
Dδ(z) : z ∈ D, dist(z,

⋃
D∈S1∪S2

D) > 2
3δ

}
.

(3.28)

It is easy to check that the union of these discs coversD . Let S = S1 ∪ S2 ∪ S3. By
compactness ofD , we can choose a finite collectionS′

⊂ S still coveringD . It remains
to show that the setsA = G ∩D for D ∈ S′ will have the desired properties. LetD ∈ S′

and letz be the center ofD. If D ∈ S3, thenG ∩ D = ∅. Indeed, ifz′ is a coexistence
point, thenDδ(z′) ∈ S1 ∪ S2 and thus dist(z, z′) > δ +

2
3δ and hencez′

6∈ D. Next,
if D ∈ S2, thenz ∈ G and, by the definition ofδ0 andε, the discD contains no multiple
point and intersectsG only in one component. This component is necessarily part of
one of the curvesC ∈ C. Finally, if D ∈ S1, thenz is a multiple point and, relying on
our previous reasoning, several curvesC ∈ C connectz to the boundary ofD. Since
Lemma 3.6 implies the existence of exactly|Q(z)| coexistence points on∂D, there are
exactly |Q(z)| such curves. The proof is finished by noting that every multiple point
appears as the center of some discD ∈ S′, because that is how the collections (3.28)
were constructed. ut

4. Partition function zeros

The goal of this section is to prove Theorems 2.2-2.5. The principal tool which en-
ables us to control the distance between the roots ofZper

L and the solutions of equations
(2.17–2.18) or (2.24) is Rouché’s Theorem (see e.g. [16]). For reader’s convenience, we
transcribe the corresponding statement here:

Theorem 4.1 (Rouch́e’s Theorem).Let D ⊂ C be a bounded domain with piecewise
smooth boundary∂D . Let f and g be analytic onD ∪ ∂D . If |g(z)| < | f (z)| for all z ∈

∂D , then f and f+ g have the same number of zeros inD , counting multiplicities.

More details on the use of this theorem and the corresponding bounds are stated in
Sect. 4.2 for the case of two-phase coexistence and in Sect. 4.4 for the case of multiple
phase coexistence.

Root degeneracy will be controlled using a link between the non-degeneracy condi-
tions from Assumption B and certain Vandermonde determinants; cf Sect. 4.1. Through-
out this section, we will use the shorthand

Sε(Q) =

⋂
m∈Q

Sε(m) (4.1)

to denote the set of pointsz ∈ O where all phases from a non-emptyQ ⊂ R are “almost
stable” (as quantified byε > 0).



26 Biskup et al

4.1. Root degeneracy.In this section we will prove Theorem 2.2. We begin with a
claim about the Vandermonde matrix defined in terms of the functions

bm(z) =
∂zζ

(L)
m (z)

ζ
(L)
m (z)

, z ∈ Sκ/L(m), (4.2)

where the dependence ofbm on L has been suppressed in the notation. Let us fix a
non-emptyQ ⊂ R and letq = |Q|. For eachz ∈ Sκ/L(Q), we introduce theq × q
Vandermonde matrixM(z) with elements

M`,m(z) = bm(z)
`, m ∈ Q, ` = 0,1, . . . ,q − 1. (4.3)

Let ‖M‖ denote thè 2(Q)-norm ofM (again without making theQ-dependence of this
norm notationally explicit). Explicitly,‖M‖

2 is defined by the supremum

‖M‖
2

= sup

{q−1∑
`=0

∣∣∣ ∑
m∈Q

M`,mŵm

∣∣∣2 :
∑
m∈Q

|ŵm|
2

= 1

}
, (4.4)

where(ŵm) is a|Q|-dimensional complex vector.
Throughout the rest of this section, the symbol‖ · ‖ will refer to the (vector or

matrix) `2-norm as specified above. The only exceptions are the`p-norms‖q‖1, ‖q‖2
and‖q‖∞ of ther -tuple(qm)m∈R, which are defined in the usual way.

Lemma 4.2.Suppose that Assumption B3 holds and letL̃0 be as in Assumption B3. For
eachQ ⊂ R, there exists a constant K= K (Q) < ∞ such that∥∥M−1(z)

∥∥ ≤ K , for all z ∈ Sκ/L(Q) and L ≥ L̃0. (4.5)

In particular, M(z) is invertible for all z∈ Sκ/L(Q) and L ≥ L̃0.

Proof. Let Q ⊂ R and q = |Q|. Let us choose a pointz ∈ Sκ/L(Q) and letM
and bm, m ∈ Q, be the quantitiesM(z) and bm(z), m ∈ Q. First we note that,
sinceM is a Vandermonde matrix, its determinant can be explicitly computed: detM =∏

m<n(bn − bm), where “<” denotes a complete order onQ. In particular, Assump-
tion B3 implies that|detM| ≥ α̃q(q−1)/2 > 0 onceL ≥ L̃0.

To estimate the matrix norm ofM−1, let λ1, . . . , λq be the eigenvalues of the Her-
mitian matrixM M+ and note thatλ` > 0 for all ` = 1, . . . ,q by our lower bound
on |detM|. Now, ‖M+

‖
2 is equal to the spectral radius of the operatorM M+, and

‖M−1
‖

2 is equal to the spectral radius of the operator(M M+)−1. By the well-known
properties of the norm we thus have

‖M‖
2

= ‖M+
‖

2
= max

1≤`≤q
λ`, (4.6)

while
‖M−1

‖
2

= max
1≤`≤q

λ−1
` . (4.7)

Now |detM|
2

= detM M+
= λ1 . . . λq and a simple algebraic argument gives us that

‖M−1
‖ ≤

‖M‖
q−1

|detM|
. (4.8)
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Using the lower bound on|detM|, this implies that‖M−1
‖ ≤ α̃−q q−1

2 ‖M‖
q−1. The

claim then follows by invoking the uniform boundedness of the matrix elements ofM
(see the upper bound from Assumption B3), which implies that‖M‖ and hence also
‖M−1

‖ is uniformly bounded from above throughoutSκ/L(Q). ut

Now we are ready to prove Theorem 2.2. To make the reading easier, let us note that
for Q = {m}, the expression (2.8) definingUε(Q) can be simplified to

Uε({m}) =
{
z ∈ O : |ζn(z)| < e−ε/2

|ζ(z)| for all n 6= m
}
, (4.9)

a fact already mentioned right after (2.8).

Proof of Theorem 2.2.Let m ∈ R. Since the setsUκ/L(Q),Q ⊂ R, coverO, it suffices
to prove thatZper

L 6= 0 in UL−dωL
({m}) ∩ Uκ/L(Q) for eachQ ⊂ R. In fact, since

z ∈ UL−dωL
({m}) implies thatm is stable,|ζm(z)| = ζ(z), we may assume without loss

of generality thatm ∈ Q, because otherwiseUL−dωL
({m}) ∩ Uκ/L(Q) = ∅. Thus, let

m ∈ Q ⊂ R and fix a pointz ∈ UL−dωL
({m})∩Uκ/L(Q). By Assumption B4, we have

the bound

∣∣Zper
L (z)

∣∣ ≥ ζ(z)L
d
(

qm

∣∣∣ζ (L)m (z)

ζ(z)

∣∣∣Ld

−

∑
n∈Qr{m}

qn

∣∣∣ζ (L)n (z)

ζ(z)

∣∣∣Ld

− C0Ld
‖q‖1e−τ L

)
. (4.10)

Sincez ∈ UL−dωL
({m}), we have|ζn(z)| < ζ(z)e−

1
2 L−dωL for n 6= m. In conjunction

with Assumption B2, this implies

∣∣∣ζ (L)n (z)

ζ(z)

∣∣∣Ld

≤ eLde−τ L
e−

1
2ωL , n 6= m. (4.11)

On the other hand, we also have

∣∣∣ζ (L)m (z)

ζ(z)

∣∣∣Ld

≥ e−Lde−τ L
, (4.12)

where we used that|ζm(z)| = ζ(z). SinceωL → ∞, (4.11–4.12) show that the right-
hand side (4.10) is dominated by the term with indexm, which is bounded away from
zero uniformly inL. Consequently,Zper

L 6= 0 throughoutUL−dωL
({m}) ∩ Uκ/L(Q),

providedL is sufficiently large.
Next we will prove the claim about the degeneracy of the roots. Let us fixQ ⊂ R

and let, as before,q = |Q|. Suppose thatL ≥ L̃0 and letz ∈ Uκ/L(Q) be a root ofZper
L

that is at leastq-times degenerate. SinceZper
L is analytic in a neighborhood ofz, we

have
∂`zZper

L (z) = 0, ` = 0,1, . . . ,q − 1. (4.13)

It will be convenient to introduceq-dimensional vectorsx = x(z) andy = y(z) such
that (4.13) can be expressed as

M(z)x = y, (4.14)
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with M(z) given by (4.2) and (4.3). Indeed, letx = x(z) be the vector with components

xm = qm

(ζ (L)m (z)

ζ(z)

)Ld

, m ∈ Q. (4.15)

Similarly, lety = y(z) be the vector with componentsy0, . . . , yq−1, where

y` = L−d`ζ(z)−Ld
∂`zΞQ,L(z)

−

∑
m∈Q

qm ζ(z)
−Ld

{
L−d`∂`z

[
ζ (L)m (z)

]Ld

− bm(z)
`
[
ζ (L)m (z)

]Ld}
.

(4.16)

Recalling the definitionΞQ,L(z) from (2.13), it is easily seen that (4.14) is equivalent
to (4.13).

We will now produce appropriate bounds on the`2(Q)-norms‖y‖ and‖x‖ which
hold uniformly inz ∈ Uκ/L(Q), and show that (4.14) contradicts Lemma 4.2. To esti-
mate‖y‖, we first note that there is a constantA < ∞, independent ofL, such that, for
all ` = 0, . . . ,q − 1 and allz ∈ Uκ/L(Q),∣∣∣L−d`∂`z

[
ζ (L)m (z)

]Ld

− bm(z)
`
[
ζ (L)m (z)

]Ld ∣∣∣ ≤ AL−dζ(z)L
d
. (4.17)

Here the leading order term fromL−d`∂`z[ζ
(L)
m (z)]Ld

is exactly canceled by the term

bm(z)`[ζ
(L)
m (z)]Ld

, and the remaining terms can be bounded using (2.11). Invoking
(4.17) in (4.16) and applying (2.14), we get

‖y‖ ≤ A‖q‖1
√

qL−d
+

(
max

0≤`≤q−1
C`

)
‖q‖1

√
qLde−τ L , (4.18)

where the factor
√

q comes from the conversion of`∞-type bounds (4.17) into a bound
on the`2-norm‖y‖. On the other hand, by (2.9) andqm ≥ 1 we immediately have

‖x‖ ≥ e−e−τ L
. (4.19)

But ‖x‖ ≤ ‖M−1(z)‖ ‖y‖, so onceL is sufficiently large, this contradicts the upper
bound‖M−1(z)‖ ≤ K implied by Lemma 4.2. Therefore, the root atz cannot be more
than(q − 1)-times degenerate after all.ut

4.2. Two-phase coexistence.Here we will prove Theorem 2.3 on the location of parti-
tion function zeros in the range of parameterz where only two phases fromR prevail.
Throughout this section we will assume that Assumptions A and B are satisfied and
useκ andτ to denote the constants from Assumption B. We will also useδL(z) for the
function defined in (2.16).

The proof of Theorem 2.3 is based directly on three technical lemmas, namely,
Lemma 4.3–4.5 below, whose proofs are deferred to Sect. 5.2. The general strategy
is as follows: First, by Lemma 4.3, we will know that the solutions to (2.17–2.18)
are within anO(e−τ L)-neighborhood from the solutions of similar equations, where
the functionsζm get replaced by their analytic counterpartsζ (L)m . Focusing on specific
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indicesm and n, we will write these analytic versions of (2.17–2.18) asf (z) = 0,
where f is the function defined by

f (z) = qmζ
(L)
m (z)L

d
+ qnζ

(L)
n (z)L

d
, z ∈ Sκ/L({m,n}). (4.20)

The crux of the proof of Theorem 2.3 is then to show that the solutions off (z) = 0 are
located within an appropriate distance from the zeros ofZper

L (z). This will be achieved
by invoking Rouch́e’s Theorem for the functionsf and f + g, whereg is defined by

g(z) = Zper
L (z)− f (z), z ∈ Sκ/L({m,n}). (4.21)

To apply Rouch́e’s Theorem, we will need that|g(z)| < | f (z)| on boundaries of certain
discs inSκ/L({m,n}); this assumption will be verified by combining Lemma 4.4 (a
lower bound on| f (z)|) with Lemma 4.5 (an upper bound on|g(z)|). The argument
is then finished by applying Lemma 4.3 once again to conclude that any two distinct
solutions of the equations (2.17–2.18), and thus also any two distinct roots ofZper

L ,
are farther than a uniformly-positive constant timesL−d. The actual proof follows a
slightly different path than indicated here in order to address certain technical details.

We begin by stating the aforementioned technical lemmas. The first lemma provides
the necessary control over the distance between the solutions of (2.17–2.18) and those
of the equationf (z) = 0. The functionf is analytic and it thus makes sense to consider
the multiplicity of the solutions. For that reason we will prefer to talk about the roots of
the function f .

Lemma 4.3.There exist finite, positive constants B1, B2, C̃1 and L1, satisfying the
bounds B1 < B2 andC̃1e−τ L < B1L−d whenever L≥ L1, such that for all L≥ L1,
all s ≤ (B1 + B2)L−d and all z0 ∈ Sκ/(2L)({m,n}) with Ds(z0) ⊂ O, the discDs(z0)
is a subset ofSκ/L({m,n}) and the following statements hold:

(1) If s ≤ B1L−d, then discDs(z0) contains at most one solution of the equations
(2.17–2.18) and at most one root of function f , which is therefore non-degenerate.

(2) If s ≥ C̃1e−τ L and if z0 is a solution of the equations (2.17–2.18), thenDs(z0)
contains at least one root of f .

(3) If s ≥ C̃1e−τ L and if z0 is a root of the function f , thenDs(z0) contains at least
one solution of the equations (2.17–2.18).

(4) If s = B2L−d and if both m and n are stable at z0, thenDs(z0) contains at least
one solution of the equations (2.17–2.18).

The next two lemmas state bounds on| f (z)| and|g(z)| that will be needed to apply
Rouch́e’s Theorem. First we state a lower bound on| f (z)|:

Lemma 4.4.There exist finite, positive constantsc̃2 andC̃2 obeyingc̃2 ≤ C̃2 and, for
anyC̃ ≥ C̃2 and any sequence(εL) of positive numbers satisfying

lim
L→∞

LdεL = 0, (4.22)

there exists a constant L2 < ∞ such that for all L≥ L2 the following is true: If z0 is a
point inSκ/(4L)({m,n}) ∩ (Sm ∪ Sn) andDC̃εL

(z0) ⊂ O, then there exists a number

s(z0) ∈ {c̃2εL , C̃2εL} such thatDs(z0)(z0) ⊂ Sκ/(2L)({m,n}) and

lim inf
s↑s(z0)

inf
z: |z−z0|=s

| f (z)| > εL Ldζ(z0)
Ld
. (4.23)

Moreover, if f has a root inDc̃2εL (z0), then s(z0) can be chosen as s(z0) = C̃εL .
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The reasons why we write a limit in (4.23) will be seen in the proof of Theorem 2.3.
At this point let us just say that we need to use Lemma 4.4 for the maximal choice
s(z0) = C̃εL in the cases when we know thatDC̃εL

(z0) ⊂ O but do not know the same

about the closure ofDC̃εL
(z0). In light of continuity ofz 7→ | f (z)|, onces(z0) < C̃εL ,

the limit is totally superfluous.

Now we proceed to state a corresponding upper bound on|g(z)|:

Lemma 4.5.There exists a constant A3 ∈ (0,∞) and, for each C∈ (0,∞) and any
sequenceγL obeying the assumptions (2.19), there exists a number L3 < ∞ such that

sup
z: |z−z0|<CδL (z0)

|g(z)| ≤ A3δL(z0)L
dζ(z0)

Ld
(4.24)

holds for any L≥ L3 and any z0 ∈ UγL
with DCδL (z0)(z0) ⊂ O.

With Lemmas 4.4–4.5 in hand, the proof of Theorem 2.3 is rather straightforward.

Proof of Theorem 2.3.Let m andn be distinct indices fromR and let us abbreviate
UγL

= UγL
({m,n}) andSε = Sε({m,n}). Let f (z) andg(z) be the functions from

(4.20–4.21). LetB1, B2, C̃1, c̃2, C̃2 and A3 be the constants whose existence is guar-
anteed by Lemmas 4.3-4.5 and letL1 be as in Lemma 4.3. SinceA3 appears on the
right-hand side of an upper bound, without loss of generality we can assume that

c̃2A3 ≥ C̃1. (4.25)

Further, let us choose the constantsC andD such that

C = C̃1 + C̃2A3, and D = B1 + B2. (4.26)

Next, let L2 be the constant for which Lemma 4.4 holds for bothC̃ = C̃2 andC̃ =

C/A3 and for bothεL = A3e−τ L and εL = A3Lde−
1
2γL Ld

. Finally, let L3 be the
constant for which Lemma 4.5 holds withC as defined above.

The statement of Theorem 2.3 involves two additional constants chosen as follows:
First, a constantB for which we pick a number from(0, 2

√
3

B1) (e.g, B1/3 will do).

Second, a constantL0 which we choose such thatL0 ≥ max{L1, L2, L3} and that the
bounds

γL ≤
κ

4L
, e−τ L

≤ Lde−
1
2γL Ld

, C Lde−
1
2γL Ld

+C̃1e−τ L
≤

√
3 − 1

2
BL−d (4.27)

hold true for allL ≥ L0. Fix L ≥ L0 and consider the set

U =
{
z0 ∈ UγL

: DCδL (z0)(z0) ⊂ O
}
. (4.28)

Notice that our choice ofL0 guarantees thatU ⊂ UγL
⊂ Sκ/(4L) ∩ (Sm ∪ Sn), while

the fact thatC̃ ≤ C/A3 for both choices ofC̃ above ensures that for anyz0 ∈ U ,
the discDC̃ A3δ(z0)

(z0) is contained inO. These observations verify the assumptions of

Lemma 4.4—withεL = A3δL(z0) andC̃ equal to eitherC̃2 or C/A3—as well as of
Lemma 4.5, for anyz0 ∈ U .

First, we will attend to the proof of claim (2). Letz0 ∈ �?L ∩ U be a root of
Zper

L = f + g. Lemma 4.4 withC̃ = C̃2 andεL = A3δL(z0) and Lemma 4.5 then
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imply the existence of a radiuss(z0) with s(z0) ≤ C̃2εL = C̃2A3δL(z0) < CδL(z0)
such that ∣∣ f (z)

∣∣ > ∣∣g(z)∣∣, z ∈ ∂Ds(z0) (4.29)

holds for s = s(z0). (Note that here the limit in (4.23) can be omitted.) Hence, by
Rouch́e’s Theorem,f and f + g have an equal number of roots inDs(z0)(z0), including
multiplicity. In particular, the functionf has a rootz1 in Ds(z0)(z0)which by Lemma 4.4
lies also inSκ/(2L). Sinces(z0) + C̃1e−τ L

≤ CδL(z0) by the definition ofC and the
second bound in (4.27), we may use Lemma 4.3(3) to infer that the equations (2.17–
2.18) have a solutionz ∈ DC̃1e−τ L (z1) ⊂ DCδL (z0)(z0). Moreover, (4.27) implies that

CδL(z0) ≤ B1L−d so by Lemma 4.3(1) there is only one such solution in the entire
discDCδL (z0)(z0).

Next, we will prove claim (3). Letz0 ∈ �L(Q) ∩ U be a solution to the equations
(2.17–2.18). By Lemma 4.3(2), there exists a rootz1 ∈ DC̃1e−τ L (z0) ⊂ DCδL (z0)(z0)

of the function f . Lemma 4.3(1) then shows thatz1 is in fact the only root off in
DCδL (z0)(z0). Applying Lemma 4.4 for the pointz0 and the choicesεL = A3δL(z0) and
C̃ = C/A3 in conjunction with Lemma 4.5, there exists a radiuss(z0) such that (4.29)
holds true for anys < s(z0) sufficiently nears(z0). Moreover, by the bound (4.25) we
know thatz1 ∈ DC̃1e−τ L (z0) ⊂ Dc̃2εL (z0) is a root of f within distancec̃2εL from z0,
and so the last clause of Lemma 4.4 allows us to chooses(z0) = CδL(z0). Let s0 <
s(z0) be such that (4.29) holds fors ∈ (s0, s(z0)) and pick ans ∈ (s0, s(z0)). Rouch́e’s
Theorem for the discsDs(z0) and the fact thatf has only one root inDCδL (z0)(z0)

imply the existence of a unique zeroz of f (z) + g(z) = Zper
L (z) in Ds(z0). The proof

is finished by taking the limits ↑ CδL(z0).
Further, we will pass to claim (4). Letz1 andz2 be two distinct roots ofZper

L in UγL
such that bothDBL−d(z1) ⊂ O andDBL−d(z2) ⊂ O are satisfied. We will suppose
that |z1 − z2| < BL−d and derive a contradiction. Letz =

1
2(z1 + z2) be the middle

point of the segment betweenz1 andz2. Since|z1 − z2| < BL−d, a simple geometrical

argument shows that the disc of radiuss =

√
3

2 BL−d centered atz is entirely contained
in DBL−d(z1) ∪ DBL−d(z2) ⊂ O. Next, by Lemmas 4.4-4.5, there exist two rootsz′

1
and z′

2 of f such thatz′

1 ∈ DCδ(z1)(z1) and z′

2 ∈ DCδ(z2)(z2). (We may have that
z1 = z2, in which casez1 = z2 would be a degenerate root off .) Now our assumptions
on B andL0 imply that

√
3

2
BL−d

≥
B

2
L−d

+ CδL(z1) ≥ |z − z1| + |z1 − z′

1| ≥ |z − z′

1|, (4.30)

and similarly forz′

2. Consequently, bothz′

1 and z′

2 lie in Ds(z). But this contradicts

Lemma 4.3 and the bound
√

3
2 B < B1, implying thatDs(z0) contains at most one non-

degenerate root off .
Finally, we will prove claim (1). Letz0 ∈ G ∩ UγL

(Q) with DDL−d(z) ⊂ O. Ac-
cording to Lemma 4.3(4), the discDB2L−d(z) contains at least one one solutionz1 of
the equations (2.17–2.18). Checking thatB2L−d

+ CδL(z1) ≤ (B2 + B1)L−d in view
of (4.27) and the definition ofB, we know thatDCδ(z1)(z1) ⊂ O and we can use already
proven claim (3) to get the existence of a root ofZper

L in DCδL (z1)(z1), which is a subset
of DDL−d(z0). ut

This concludes the proof of Theorem 2.3 subject to the validity of Lemmas 4.3-4.5.
The proofs of these lemmas have been deferred to Sect. 5.2.
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4.3. Proof of Proposition 2.4.Fix distinct indicesm,n ∈ R. Our strategy is to first
prove the claim for the density of the solutions of the equations (2.17–2.18),

ρ̃(L ,ε)m,n (z) =
1

2εLd

∣∣�L({m,n}) ∩ Dε(z)
∣∣, (4.31)

and then to argue that the densityρ(L ,ε)m,n yields the same limit.
Let z0 ∈ G ({m,n}) \ M , whereM is the set of all multiple points. By Theo-

rem 2.1 and Assumptions A1-A2, there exists anε > 0 such that, throughout the disc
Dε = Dε(z0) ⊂ O, we haveQ(z) ⊂ {m,n} and the the functionFm,n(z) = ζm(z)/ζn(z)
is twice continuously differentiable and nonvanishing. Clearly, all solutions of the equa-
tions (2.17–2.18) inDε must lie in the set

G (L)
=

{
z ∈ Dε : |Fm,n(z)| = (qn/qm)

1/Ld}
. (4.32)

Denoting the setG ({m,n}∩Dε by G (∞), we now claim that for sufficiently smallε, the
setsG (∞) andG (L) can be viewed as differentiable parametric curvesγ : (t−, t+) → Dε
andγ(L) : (t (L)− , t (L)+ ) → Dε for which

(1) t (L)− → t− andt (L)+ → t+
(2) γ(L) → γ uniformly on∈ (t−, t+)
(3) v̂L → v̂ uniformly on(t−, t+)

hold true asL → ∞. Herev̂L(t) =
d
dt γ

(L)(t) andv̂(t) =
d
dt γ(t) denote the tangent vec-

tors toγ(L) andγ, respectively.
We will construct both curves as solutions to the differential equation

dz(t)

dt
= i

∂zφm,n(z(t))

|∂zφm,n(z(t))|
(4.33)

with φm,n(z) = log |Fm,n(z)| (note that forε small enough, the right hand side is a well
defined, continuously differentiable function ofz(t) ∈ Dε by Assumptions A1-A2 and
the fact that|∂zφm,n(z0)| ≥ α/2 according to Assumption A3). In order to define the
curvesγ(L)(·) andγ(·)we will choose a suitable starting point att = 0. Forγ(·), this will
just be the pointz0, while for γ(L)(·) we will choose a pointz(L)0 ∈ Dε which obeys the

conditionsφm,n(z
(L)
0 ) = ηL and|z0 − z(L)0 | ≤ 3α−1ηL , whereηL = L−d log(qn/qm).

To construct the pointz(L)0 ∈ Dε , we use again the smoothness ofφm,n. Namely, by
Assumption A1-2, the functionφm,n(x+ iy) = log |Fm,n(x+ iy)| is twice continuously
differentiable onDε if ε is sufficiently small, and by Assumption A3 we either have
|∂φm,n(x + iy)/∂x| ≥ α/3, or |∂φm,n(x + iy)/∂y| ≥ α/3. Assuming, without loss
of generality, that|∂φm,n(x + iy)/∂y| ≥ α/3 on all of Dε , we then definez(L)0 to be

the unique point for which Rez(L)0 = Rez0 andφm,n(z
(L)
0 ) = ηL . By the assumption

|∂φm,n(x + iy)/∂y| ≥ α/3, we then have|z0 − z(L)0 | ≤ 3α−1ηL , as desired.

Having chosenz(L)0 , the desired curvesγ(L) : (t (L)− , t (L)+ ) → Dε andγ : (t−, t+) →

Dε are obtained as the solutions of the equation (4.33) with initial conditionγ(L)(0) =

z(L)0 and γ(0) = z0, respectively. Heret (L)− , t (L)+ , t−, and t+ are determined by the

condition thatt (L)− and t− are the largest valuest < 0 for which γ(L)(t) ∈ ∂Dε and

γ(t) ∈ ∂Dε , respectively, andt (L)+ and t+ are the smallest valuest > 0 for which
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γ(L)(t) ∈ ∂Dε andγ(t) ∈ ∂Dε , respectively. Since the right-hand side of (4.33) has
modulus one, both curves are parametrized by the arc-length. Moreover, decreasingε
if necessary, the functionsγ(L) can be extended to allt ∈ (t−, t+). To see that the
limits in (1-3) above hold, we just refer to the Lipschitz continuity of the right hand
side of (4.33) and the fact that, by definition,|γ(L)(0)− γ(0)| = O(L−d). Let K be the
Lipschitz constant of the right-hand side of (4.33) in a neighborhood containingγ(L)(t)
for all t ∈ (t−, t+). Choosingε so small that botht+ − t− andt (L)+ − t (L)− are less than,
say, 1/(2K ), integrating (4.33) and invoking the Lipschitz continuity, we get

sup
t−<t<t+

|γ(L)(t)− γ(t)| ≤ |γ(L)(0)− γ(0)| +
1
2 sup

t−<t<t+
|γ(L)(t)− γ(t)|. (4.34)

This shows thatγ(L)(t) → γ(t) uniformly in t ∈ (t−, t+). Using Lipschitz continuity
once more, we get a similar bound on the derivatives. But then also the arc-lengths
corresponding toγ(L) must converge to the arc-length ofγ, which shows that also
t (L)+ → t+ andt (L)− → t−.

Consider now the curveγ(t). Given that|Fm,n(z)| is constant alongγ, we have

d Arg Fm,n(γ(t))

dt
=

1

i

d logFm,n(γ(t))

dt
= −i∂z log Fm,n(z)

∣∣
z=γ(t)v̂(t). (4.35)

Referring to Assumption A3 and the fact that|v̂(t)| = 1, we find that the modulus of the
left-hand side is bounded below byα. Using continuity of the derivativeddt Arg Fm,n in

Dε , we observe that one of the two alternatives occurs on all the interval(t (L)− , t (L)+ ):

either
d Arg Fm,n(γ

(L)(t))

dt
≥
α

2
or

d Arg Fm,n(γ
(L)(t))

dt
≤ −

α

2
, (4.36)

providedε is sufficiently small. By Lemma 4.3, the discDε contains a finite number
k = 2εLdρ̃

(L ,ε)
m,n (z0) of solutions of the equations (2.17) and (2.18) which in the present

notation read

|Fm,n(z)| =

( qn

qm

)1/Ld

, (4.37)

Ld Arg Fm,n(z) = π mod 2π. (4.38)

Assuming, without loss of generality, that the former alternative in (4.36) takes place,
and ordering all the solutions consecutively along the curveγ(L), i.e., lettingz1 =

γ(L)(t1),. . . ,zk = γ(L)(tk) wheret (L)− ≤ t1 < · · · < tk ≤ t (L)+ , we have

Arg Fm,n(z j +1)− Arg Fm,n(z j ) = 2πL−d (4.39)

for any j = 1, . . . , k − 1, as well as

Arg Fm,n(z1)− Arg Fm,n(z−) ≤ 2πL−d (4.40)

and
Arg Fm,n(z+)− Arg Fm,n(zk) ≤ 2πL−d. (4.41)
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In view of the first equality in (4.35) rephrased forγ(L), the left hand side of (4.39) can
be rewritten as

Arg Fm,n(z j +1)− Arg Fm,n(z j ) =

∫ t j +1

t j

∣∣∣d logFm,n(γ
(L)(t))

dt

∣∣∣dt (4.42)

and thus ∣∣∣∣∫ t (L)+

t (L)−

∣∣∣d logFm,n(γ
(L)(t))

dt

∣∣∣dt − 2kπL−d
∣∣∣∣ ≤ 2πL−d. (4.43)

Let us divide the whole expression byLd and take the limitL → ∞. Nowγ(L) converge
to γ along with their first derivatives, uniformly int ∈ (t−, t+), and the limitst (L)± con-
verge tot±. The Bounded Convergence Theorem then shows that the integral in (4.43)
converges to a corresponding integral overγ. Recalling thatρ̃(L ,ε)m,n (z0) = k/(2εLd), we
thus get

lim
L→∞

ρ̃(L ,ε)m,n (z0) =
1

4πε

∫ t+

t−

∣∣∣d logFm,n(γ0(t))

dt

∣∣∣dt

=
1

4πε

∫
γ0

∣∣∂z log Fm,n(z)
∣∣|dz|

(4.44)

where the last integral denotes the integration with respect to the arc length. Taking into
account the Lipschitz continuity of|∂z log Fm,n(z)|, the last integral in (4.44) can be
approximated by

(∣∣∂z log Fm,n(z0)
∣∣ + O(ε)

)
|γ|. By the smoothness of the curveγ, we

estimate its length by|γ| = 2ε
(
1 + O(ε)

)
, so that

lim
ε↓0

lim
L→∞

ρ̃(L ,ε)m,n (z0) =
1

2π

∣∣∂z log Fm,n(z0)
∣∣ =

1

2π

∣∣∣∂zζm(z0)

ζm(z0)
−
∂zζn(z0)

ζn(z0)

∣∣∣. (4.45)

To finish the proof, we need to show thatρ(L ,ε)m,n (z0) will converge to the same limit.
According to Theorem 2.3, we have∣∣|�∗

L ∩ Dε(z)| − |�L({m,n}) ∩ Dε(z)|
∣∣ ≤ 2 (4.46)

for all z ∈ G (m,n) such that|Q(z)| = 2 andε sufficiently small. Hence∣∣ρ(L ,ε)m,n (z)− ρ̃(L ,ε)m,n (z)
∣∣ ≤

1

εLd
, (4.47)

and the claim of the proposition follows by (4.45).ut

4.4. Multiple phase coexistence.In this section we will prove Theorem 2.5, which
deals with the zeros ofZper

L in the vicinity of multiple points. LetzM ∈ O be a multiple
point and letQ = Q(zM). For eachm ∈ Q, let φm(L) andvm be as in (2.23). Define
the functions

f̃ (z) =

∑
m∈Q

qm eiφm(L)+vm(z−zM)Ld
, (4.48)

g̃(z) = Zper
L (z)ζ(zM)

−Ld
− f (z), (4.49)
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and
ξ(z) = exp

{
max
m∈Q

Re(vm(z − zM))
}
. (4.50)

As in the case of two-phase coexistence, the proof uses Rouché’s Theorem for the
functions f̃ and f̃ + g̃. For this we will need a lower bound on| f̃ | and an upper
bound on|g̃|.

Lemma 4.6.Suppose Assumptions A and B hold. GivenQ ⊂ R with |Q| ≥ 3 and
abbreviating q= |Q| and RL = L−d(1+1/q), let (εL) be a sequence of positive numbers
such that

lim
L→∞

L2dεL = ∞ but lim
L→∞

L2d−d/qεL = 0. (4.51)

Then there is a constant L5 < ∞ such that for any z0 ∈ C and any L ≥ L5 there
exists s(z0) ∈ [RL/q, RL ] for which the bound

inf
z: |z−z0|=s(z0)

∣∣ f (z)
∣∣ > LdεL ξ(z0)

Ld
(4.52)

holds.

Lemma 4.7.Let zM ∈ O be a multiple point, letQ = Q(zM), q = |Q|, and RL =

L−d(1+1/q). There exists a constant A6 ∈ (0,∞) and, for each sequence(ρL) of posi-
tive numbers obeying (2.25), a number L6 < ∞ such that if L≥ L6 thenDρ′

L
(zM) ⊂

Uκ/L(Q), whereρ′

L = ρL + RL . Furthermore, we have

sup
z: |z−z0|≤RL

∣∣g̃(z)∣∣ ≤ A6ρ
2
L Ldξ(z0)

Ld
(4.53)

whenever z0 ∈ DρL (zM).

With these two lemmas we can proceed directly to the proof of Theorem 2.5.

Proof of Theorem 2.5.The proof is close in spirit to the proof of Theorem 2.3. LetzM
be a multiple point and letQ = Q(zM). Consider a sequence(ρL) of positive num-
bers such that (2.25) holds. ChoosingεL = A6ρ

2
L , where A6 is the constant from

Lemma 4.7, we note that the conditions (4.51) are satisfied due to our conditions onρL
from (2.25). We will then prove Theorem 2.5 withL0 = max{L5, L6}, whereL5 and
L6 are the constants from Lemma 4.6 and 4.7, respectively. The proof again boils down
to a straightforward application of Rouché’s Theorem.

Indeed, letL ≥ L0 and note that by Lemmas 4.6 and 4.7, for eachz0 ∈ DρL (zM)
there is ans(z0) ∈ [RL/q, RL ] such that onDs(z0)(z0), we have∣∣ f̃ (z)

∣∣ > ∣∣g̃(z)∣∣. (4.54)

Consider the set of these discsDs(z0)(z0)—one for everyz0 ∈ DρL (zM). These discs
cover the closure ofDρL (zM), so we can choose a finite subcoverS. Next we note that
(4.54) implies that neither̃f nor f̃ + g̃ have more than finitely many zeros inDρL (zM)
(otherwise, one of these functions would be identically zero). Without loss of generality,
we can thus assume that the discs centered at the zeros off̃ and f̃ + g̃ in DρL (zM) are
included inS. DefiningU =

⋃
D∈S D, we clearly haveDρL (zM) ⊂ U ⊂ Dρ′

L
(zM).

Let now K be the set of all components ofU \
⋃

D∈S ∂D. Let K ∈ K be one
such component. By (4.54) we know that| f̃ (z)| > |g̃(z)| on the boundary ofK and
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Rouch́e’s Theorem then guarantees thatf̃ has as many zeros inK as f̃ + g̃, provided
we count multiplicity correctly. Moreover, both functions̃f or f̃ + g̃ have no zeros on⋃

D∈S ∂D. Since f̃ (z)+g̃(z) = Zper
L (z)ζ(zM)

−Ld
andζ(zM)

−Ld
> 0, the zeros off̃ +g̃

are exactly those ofZper
L . The above construction ofU andS then directly implies the

desired correspondence of the zeros. Namely, in eachK ∈ K, both f̃ and Zper
L have

the same (finite) number of zeros, which can therefore be assigned to each other. Now
f̃ andZper

L have no zeros inU \
⋃

K ∈K K , so choosing one such assignment in each
K ∈ K extends into a one-to-one assignment of�?L ∩ U and�L(Q)∩ U . Moreover,
if z ∈ �?L ∩ K and z̃ ∈ �L(Q) ∩ K for someK ∈ K (which is required ifz and
z̃ are the corresponding roots), thenz belongs to the disc̃D ∈ S centered at̃z and z̃
belongs to the discD ∈ S centered atz. Consequently,z andz̃ are not farther apart than
RL = L−d(1+1/q). This completes the proof.ut

4.5. Proof of Proposition 2.6.Assuming thatL−dωL ≤ γL , it clearly suffices to ascer-
tain that ⋃

Q : |Q|≥3

SγL
(Q) ∩ D ⊂

⋃
zM∈D∩M

DρL (zM). (4.55)

To this end let us first observe that continuity of the functionsζm implies

lim
L→∞

SγL
(Q) =

⋂
m∈Q

Sm (4.56)

sinceγL → 0. The setD ∩ M is finite according to Theorem 2.1. Hence, there exists
a constantδ0 > 0 and, for eachδ ∈ (0, δ0], a constantL0 = L0(δ), such that the discs
Dδ(zM), zM ∈ D ∩ M , are mutually disjoint,

Q(z) ⊂ Q(zM) whenever z ∈ Dδ(zM), (4.57)

and ⋃
Q : |Q|≥3

SγL
(Q) ∩ D ⊂

⋃
zM∈D∩M

Dδ(zM) (4.58)

whenever 0< δ ≤ δ0 andL ≥ L0(δ). It is therefore enough to show that there exist
constantsχ > 0 andδ ∈ (0, δ0) such that for any multiple pointzM ∈ D , we have

Dδ(zM) ∩ SγL
(Q(zM)) ⊂ DρL (zM) (4.59)

onceρL ≥ χγL andL ≥ L0(δ).
We will prove (4.59) in two steps: First we will show that there is a constantχ > 0

such that for any multiple pointzM , any z 6= zM , and anyn ∈ Q(zM), there exists
m ∈ Q(zM) for which

Re
[
(z − zM)(vn(zM)− vm(zM))

]
≥ 2χ |z − zM |, (4.60)

and then we will show that (4.60) implies (4.59). To prove (4.60), we first refer to the
fact that we are dealing with a finite number of strictly convex polygons with vertices
{vk(zM) : k ∈ Q(zM)} according to Assumption A4 and thus, givenz andn, the label
m can be always chosen so that the angle between the complex numbersz − zM and
vn(zM) − vm(zM) is not smaller than a given fixed value. Combining this fact with the
lower bound from Assumption A3, we get (4.60).
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We are left with the proof of (4.59). Let us thus consider a multiple pointzM ∈ D
with Q(zM) = Q, and a pointz ∈ Dδ(zM) \ DρL (zM). We will have to show that there
exists anm ∈ Q with z /∈ SγL

(m). Recalling thatQ(z′) ⊂ Q for all z′
∈ Dδ(zM), let

n ∈ Q be such that|ζn(z)| = ζ(z). Choosingm ∈ Q(zM) so that (4.60) is satisfied
and using, as in the proof of Lemma 3.1,Fn,m(z) to denote the functionFn,m(z) =

ζn(z)/ζm(z), we apply, as in (3.9), the Taylor expansion to log|Fn,m(z)| to get

log |Fn,m(z)| = Re
[
(z − zM)(vn(zM)− vm(zM))

]
+ O(|z − zM |

2)

≥ χ |z − zM | ≥ χρL . (4.61)

Here we also used that|Fn,m(zM)| = 1 and assumed thatδ was chosen small enough to
guarantee that the error term is smaller thanχ |z − zM |. As a result, we get

|ζm(z)| ≤ e−χρL ζ(z) ≤ e−γL ζ(z) (4.62)

implying thatz 6∈ SγL
(m). Thus, the inclusion (4.59) is verified and (4.55) follows.ut

5. Technical lemmas

The goal of this section is to provide the proofs of Lemmas 4.3-4.7. We will begin with
some preparatory statements concerning Lipschitz continuity of theζm andζ .

5.1. Lipschitz properties of the functionslog |ζm| and logζ . In this section, we prove
two auxiliary lemmas needed for the proofs of our main theorems. For anyz1, z2 ∈ C,
we will use [z1, z2] to denote the closed segment

[z1, z2]=
{
tz1 + (1 − t)z2 : t ∈ [0,1]

}
. (5.1)

The following Lipschitz bounds are (more or less) a direct consequence of formulas
(2.9) and (2.11) in Assumption B.

Lemma 5.1.Suppose Assumptions A and B hold and letκ, τ , and M be as in Assump-
tion B. Let m∈ R, and let z1, z2 ∈ Sκ/L(m) be such that[z1, z2]⊂ Sκ/L(m). Then∣∣∣ζm(z1)

ζm(z2)

∣∣∣ ≤ e2e−τ L
+M |z1−z2|. (5.2)

Moreover, for all z1, z2 ∈ O such that[z1, z2]⊂ O, we have

ζ(z1)

ζ(z2)
≤ eM |z1−z2|. (5.3)

Remark 7.Sincez 7→ |ζm(z)| are all twice continuously differentiable and hence Lip-
schitz throughoutO, so is their maximumz 7→ ζ(z). The reason why we provide a
(rather demanding) proof of (5.3) is that we need this bound to hold uniformly through-
outO and the constantM from Assumption B(3) to appear explicitly on the right-hand
side. The first part of the lemma underlines what is hard about the second part: On the
basis of Assumption B, the uniform Lipchitz bound in (5.2) can be guaranteed only in
the region wherem is “almost stable.”
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Proof of Lemma 5.1.Let [z1, z2]⊂ Sκ/L(m). The bound (5.2) is directly proved by
combining (2.9) with the estimate∣∣log |ζ (L)m (z1)| − log |ζ (L)m (z2)|

∣∣ ≤ M |z1 − z2|, (5.4)

implied by (2.11). Indeed, introducingϕ(t) = ζ
(L)
m (z1 + t (z2 − z1)), we have∣∣∣ d

dt
log |ϕ(t)|

∣∣∣ =

∣∣∣ 1

ϕ(t)

d|ϕ(t)|

dt

∣∣∣ ≤

∣∣∣ 1

ϕ(t)

∣∣∣∣∣∣dϕ(t)

dt

∣∣∣ ≤ M |z2 − z1| (5.5)

implying (5.4). By passing to the limitL → ∞, we conclude that∣∣logζ(z1)− logζ(z2)
∣∣ ≤ M |z1 − z2| (5.6)

holds provided [z1, z2]⊂ Sm.
To prove (5.3), letz1, z2 ∈ O with [z1, z2]⊂ O. If the segment [z1, z2] intersects the

coexistence setG only in a finite number of points, then (5.3) is an easy consequence
of (5.6). However, this may not always be the case and hence we need a more general
argument. Note that continuity of both sides requires us to prove (5.3) only for a dense
set of pointsz1 andz2. This and the fact that each compact subset ofO contains only a
finite number of multiple points fromM = {z ∈ O : |Q(z)| ≥ 3} permit us to assume
that z1, z2 /∈ G and that the segment [z1, z2] does not contain a multiple point, i.e.,
[z1, z2]∩M = ∅.

Suppose now that the bound (5.3) fails. We claim that then there exist a pointx̄ ∈

[z1, z2], with x̄ 6= z1, z2, and two sequences(xn) and(yn) of points from [z1, x̄]∩G
and [x̄, z2]∩G , respectively, such that the following holds:

(1) xn 6= yn for all n and limn→∞ xn = limn→∞ yn = x̄.
(2) There exists a numberM ′ > M such that∣∣∣log

ζ(xn)

ζ(yn)

∣∣∣ > M ′
|xn − yn| (5.7)

for all n.

The proof of these facts will be simplified by introducing theLipschitz ratio, which for
any pair of distinct numbersx, y ∈ [z1, z2] is defined by the formula

R(x, y) =
| logζ(x)− logζ(y)|

|x − y|
. (5.8)

The significance of this quantity stems from its behavior under subdivisions of the in-
terval. Namely, ifx andy are distinct points andz ∈ (x, y), then we have

R(x, y) ≤ max
{
R(x, z), R(z, y)

}
, (5.9)

with the inequality being strict unlessR(x, z) = R(z, y).
To prove the existence of sequences satisfying (1) and (2) above, we need a few

observations: First, we note thatM ′
= R(z1, z2) > M from our assumption that (5.3)

fails. Second, wheneverx, y ∈ [z1, z2] are such thatR(x, y) > M , then (5.6) implies
the existence ofx′, y′

∈ [x, y] such thatx′, y′
∈ G andR(x′, y′) ≥ R(x, y). Indeed, we

choosex′ to be the nearest point tox from the closed set [x, y]∩G , and similarly fory′.
The fact that the Lipschitz ratio increases in the process is a direct consequence of (5.9).
Finally, if distinct x, y ∈ [z1, z2]∩G satisfy R(x, y) > M , then there exists a pair of
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distinct pointsx′, y′
∈ [x, y]∩G such that|x′

−y′
| ≤

1
2|x−y| andR(x′, y′) ≥ R(x, y).

To prove this we use (5.9) withz =
1
2(x + y) to choose the one of the segments [x, z]

or [z, y] that has the Lipschitz ratio not smaller thanR(x, y) and then use the preceding
observation on the chosen segment.

Equipped with these observations, we are ready to prove the existence of the desired
sequences. Starting with the second observation above applied forx = z1 andy = z2,
we getx1, x2 ∈ [z1, z2]∩G such thatR(x1, x2) > M ′. Notice thatx1 6= z1 andx2 6= z2
sincez1, z2 /∈ G . Next, whenever the pairxn, yn is chosen, we use the third observation
to construct the pairxn+1, yn+1 ∈ [xn, yn]∩G of points such that|xn+1 − yn+1| ≤
1
2|xn − yn| andR(xn+1, yn+1) ≥ R(xn, yn) ≥ M ′. Clearly, the sequences(xn) and(yn)
converge to a common limit̄x ∈ [x1, y1], which is distinct fromz1 andz2.

We will now show that (5.7) still leads to a contradiction with (5.3). First we note
that the pointx̄, being a limit of points fromG \ M , is a two-phase coexistence point
and so Theorem 2.1(2) applies in a discDε(x̄) for ε > 0 sufficiently small. Hence,
there is a unique smooth coexistence curveC connectingx̄ to the boundary ofDε(x̄)
and, since(xn) and(yn) eventually lie onC , its tangent vector at̄x is colinear with the
segment [z1, z2]. Since inDε(x̄), the coexistence curve is at least twice continuously
differentiable, the tangent vector toC has a bounded derivative throughoutDε(x̄). As a
consequence, in the discDδ(x̄)with δ ≤ ε, the curveC will not divert from the segment
[z1, z2] by more thanCδ2, whereC = C(ε) < ∞.

Now we are ready to derive the anticipated contradiction: Fixn and letδn be the
maximum of|xn − x̄| and |yn − x̄|. Let ê be a unit vector orthogonal to the segment
[z1, z2] and consider the shifted pointsx′

n = xn + 2Cδ2
nê andy′

n = yn + 2Cδ2
nê. Then

we can write
ζ(xn)

ζ(yn)
=
ζ(xn)

ζ(x′
n)

ζ(x′
n)

ζ(y′
n)

ζ(y′
n)

ζ(yn)
. (5.10)

Assuming thatn is sufficiently large to ensure thatδn
√

1 + 4C2δ2
n ≤ ε, the segment

[x′
n, y′

n] lies in Dε(x̄) entirely on one “side” ofC and is thus contained inSm for
somem ∈ R. On the other hand, given the bounded derivative of the tangent vector
to C , each segment [xn, x′

n] and [yn, y′
n] intersects the curveC exactly once, which in

light of xn, yn ∈ G happens at the endpoint. This means that also [xn, x′
n]⊂ Sm and

[yn, y′
n]⊂ Sm for the samem. Consequently, all three ratios can be estimated using

(5.3), yielding

R(xn, yn) ≤ M
|xn − x′

n| + |x′
n − y′

n| + |y′
n − yn|

|xn − yn|
≤ M + 4MCδn, (5.11)

where we used that|x′
n − y′

n| = |xn − yn| and |xn − yn| ≥ δn. But δn → 0 with
n → ∞ and thus the ratioR(xn, yn) is eventually strictly less thanM ′, in contradiction
with (5.7). Hence, (5.3) must have been true after all.ut

The previous lemma will be particularly useful in terms of the following corollary.

Corollary 5.2. Suppose that Assumptions A and B hold and let0 < κ̃ ≤ κ, whereκ is
the constant from Assumption B. Then there exist constants c< ∞ and L4 < ∞ such
that the following is true for all L≥ L4 and all s≤ c/L:

(1) For m ∈ R and z∈ Sκ̃/(2L)(m) with Ds(z) ⊂ O, we have

Ds(z) ⊂ Sκ̃/L(m). (5.12)
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(2) For z ∈ O with Ds(z) ⊂ O, the set

Q′
=

{
m ∈ R : Ds(z) ⊂ Sκ̃/L(m)

}
(5.13)

in non-empty and
Ds(z) ⊂ Uκ̃/L(Q′). (5.14)

(3) For γL ≤ κ̃/(2L), Q ⊂ R and z ∈ UγL
(Q) ∩ U2κ̃/L(Q) with Ds(z) ⊂ O, we

have
Ds(z) ⊂ Uκ̃/L(Q). (5.15)

Proof. Let M be as in Assumption B. We then choosec > 0 sufficiently small and
L4 < ∞ sufficiently large to ensure that forL ≥ L4 we have

κ̃

8M
−

1

M
Le−τ L

≥ 2c. (5.16)

First, we will show that the claims (1), (2), and (3) above reduce to the following
statement valid for eachm ∈ R: If z, z′ are complex numbers such that the bound
|z − z′

| ≤ 2c/L, the inclusion [z, z′) ⊂ O, andz ∈ O \ Sκ̃/L(m) hold, then also

[z, z′) ⊂ O \ Sκ̃/(2L)(m). (5.17)

We proceed with the proof of (1-3) given this claim; the inclusion (5.17) will be estab-
lished at the end of this proof.

Ad (1): Let z ∈ Sκ̃/(2L) with Ds(z) ⊂ O and assume that (5.12) fails. Then there exist
somez′

∈ O \ Sκ̃/L(m) with |z − z′
| < s and [z, z′]⊂ O. But by (5.17), this implies

[z′, z) ∩ Sκ̃/(2L)(m) = ∅, which means that [z′, z]∩Sκ̃/(2L)(m) = ∅. This contradicts
the fact thatz ∈ Sκ̃/(2L)(m).

Ad (2): Let z ∈ O with Ds(z) ⊂ O. By the definition of stable phases, there is at least
onem ∈ R such thatz ∈ Sm ⊂ Sκ̃/(2L)(m). Combined with (5.12), this proves that the
setQ′ is non-empty. To prove (5.14), it remains to show thatDs(z) ⊂ O \ Sκ̃/(2L)(m)
wheneverm /∈ Q′. By the definition ofQ′, m /∈ Q′ implies that there exists az′

∈

Ds(z) such thatz′
∈ O \ Sκ̃/L(m). Consider an arbitraryz′′

∈ ∂Ds(z). For such a
z′′, we have that|z′

− z′′
| ≤ 2c/L and [z′, z′′) ⊂ O, so by (5.17), we conclude that

[z′, z′′) ⊂ O \ Sκ̃/(2L)(m). Since this is true for allz′′
∈ ∂Ds(z), we get the desired

statementDs(z) ⊂ O \ Sκ̃/(2L)(m).

Ad (3): Let Q ⊂ R, z ∈ UγL
(Q) ∩ U2κ̃/L(Q) and Ds(z) ⊂ O. If m ∈ Q, then

z ∈ SγL
(m) ⊂ Sκ̃/(2L)(m) by the definition ofUγL

(Q) and the condition thatγL ≤

κ̃/(2L). With the help of (5.12), this implies thatDs(z) ⊂ Sκ̃/L(m) for all m ∈ Q.
Recalling the definition ofUκ̃/L(Q), we are left with the proof thatDs(z) ⊂ O \

Sκ̃/(2L)(m) wheneverm /∈ Q. But if m /∈ Q, thenz ∈ O \ Sκ̃/L(m) because we
assumed thatz ∈ U2κ̃/L(Q). By (5.17) we conclude that [z, z′) ⊂ O \ Sκ̃/(2L)(m)
wheneverz′

∈ ∂Ds(z), which provesDs(z) ⊂ O \ Sκ̃/(2L)(m).

We are left with the proof of (5.17), which will be done by contradiction. Assume
thus thatm ∈ R and letz, z′ be two points such that|z − z′

| ≤ 2c/L, [z, z′) ⊂ O and
z ∈ O \ Sκ̃/L(m) hold, while (5.17) fails to hold, so that [z, z′) ∩ Sκ̃/(2L)(m) 6= ∅.
Let z1 ∈ [z, z′)∩ Sκ̃/(2L)(m). Since [z, z′) ⊂ O, we have in particular that [z1, z]⊂ O.
Let z2 be defined as the nearest point toz1 on the linear segment [z1, z] such that
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z2 6∈ S3κ̃/(4L)(m). By continuity of the functionsζk, we have [z1, z2]⊂ Sκ̃/L(m) ⊂

Sκ/L(m) so that the bounds in Lemma 5.1 are at our disposal. Putting (5.2–5.3) to-
gether, we have ∣∣∣ζm(z1)

ζ(z1)

∣∣∣ ∣∣∣ ζ(z2)

ζm(z2)

∣∣∣ ≤ e2e−τ L
+2M |z1−z2|. (5.18)

Now, sincez1 ∈ Sκ̃/(2L)(m) andz2 6∈ S3κ̃/(4L)(m), we can infer that the left-hand side
is larger thaneκ̃/(4L). Hence, we must have

|z1 − z2| ≥
κ

8M L
−

1

M
e−τ L

≥
2c

L
, (5.19)

where the last inequality is a consequence of (5.16). Nowz1, z2 ∈ [z, z′) implies |z1 −

z2| < |z − z′
|, which contradicts the assumption that|z − z′

| ≤ 2c/L and thus proves
(5.17). ut

5.2. Proofs of Lemmas 4.3-4.5.Here we will establish the three technical lemmas on
which the proof of Theorem 2.3 was based. Throughout this section, we fix distinct
m,n ∈ R and introduce the abbreviationsSε = Sε({m,n}) andUε = Uε({m,n}).
We will also let f andg be the functions defined in (4.20–4.21).

First we will need to establish a few standard facts concerning the local inversion of
analytic maps and its behavior under perturbations by continuous functions. The proof
is based on Brouwer’s Fixed Point Theorem, see e.g. [30, Chapter 2].

Lemma 5.3.Let z0 ∈ C, ε > 0, and letφ : Dε(z0) → C be an analytic map for which

|φ′(z0)|
−1

∣∣φ′(z)− φ′(z0)
∣∣ ≤

1

2
(5.20)

holds for all z ∈ Dε(z0). Let δ ≤ ε|φ′(z0)|/2. Then, for everyw ∈ Dδ(φ(z0)), there
exists a unique point z∈ Dε(z0) such thatφ(z) = w.

In addition, letη ∈ [0, δ/2) and letθ : Dε(z0) → C be a continuous map satisfying

|θ(z)| ≤ η, z ∈ Dε(z0). (5.21)

Then for each z∈ Dε(z0) with φ(z) ∈ Dη(φ(z0)) there exists a point z′ ∈ Dε(z0) such
that

φ(z′)+ θ(z′) = φ(z). (5.22)

Moreover,|z′
− z| ≤ 2η|φ′(z0)|

−1.

Proof.Following standard proofs of the theorem about local inversion of differentiable
maps (see, e.g., [13], Sect. 3.1.1), we seek the inverse ofw as a fixed point of the (ana-
lytic) function z 7→ ψ(z) = z + φ′(z0)

−1(w − φ(z)). The condition (5.20) guarantees
thatz 7→ ψ(z) is a contraction onDε(z0). Indeed, for everyz ∈ Dε(z0) we have

|ψ ′(z)| =
∣∣1 − φ′(z0)

−1φ′(z)
∣∣ ≤ |φ′(z0)|

−1
∣∣φ′(z)− φ′(z0)

∣∣ ≤
1
2, (5.23)

which implies that|ψ(z)−ψ(z′)| ≤
1
2|z− z′

| for all z, z′
∈ Dε(z0). The actual solution

toφ(z) = w is obtained as the limitz = limn→∞ zn of iterationszn+1 = ψ(zn) starting
atz0. In view of the above estimates, we have|zn+1−zn| ≤

1
2|zn −zn−1| and, summing
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overn, we get|zn − z0| ≤ 2|z1 − z0| ≤ 2|φ′(z0)|
−1

|w−φ(z0)|. Since|w−φ(z0)| < δ,
we have thatzn as well as its limit belongs toDε(z0).

Next we shall attend to the second part of the claim. The above argument allows
us to define the left inverse ofφ as the functionφ−1 : Dδ(φ(z0)) → Dε(z0) such that
φ−1(w) is the unique valuez ∈ Dε(z0) for which φ(z) = w. Let η ∈ [0, δ/2) and let
z ∈ Dε(z0) be such thatφ(z) ∈ Dη(φ(z0)). Consider the function9 : Dδ(φ(z0)) → C
defined by

9(w) = φ(z)− θ(φ−1(w)). (5.24)

By our choice ofz and (5.21), we have|9(w)| ≤ 2η for anyw ∈ Dδ(φ(z0)). Thus,9
maps the closed discD2η(φ(z0)) into itself and, in light of continuity of9, Brouwer’s
Theorem implies that9 has a fixed pointw′ in D2η(φ(z0)). From the relation9(w′) =

w′ we then easily show that (5.22) holds forz′
= φ−1(w′). To control the distance be-

tweenz andz′, we just note that the above Lipschitz bound onψ allows us to conclude
that |z′

− z| ≤ 2|φ′(z0)|
−1

|φ(z′) − φ(z)|. Applying (5.22) and (5.21), the right-hand
side is bounded by 2η|φ(z0)|

−1. ut

Now we are ready to start proving Lemmas 4.3-4.5. The first claim to prove concerns
the relation of the solutions of (2.17–2.18) and the roots of the functionf defined in
(4.20).

Proof of Lemma 4.3.Let α̃, M andτ be the constants from Assumption B. Letc andL4
be the constants from Corollary 5.2 withκ̃ = κ. The proof will be carried out for the
constantsB1, C̃1 andL1 chosen as follows: We let

B1 =
1

4M
, B2 =

16+ 4| log(qn/qm)|

α̃
and C̃1 =

10

α̃
, (5.25)

and assume thatL1 is so large thatL1 ≥ L4 and for allL ≥ L1, we haveC̃1e−τ L <
B1L−d and the bounds:

(B1 + B2)L
−d

≤
c

L
≤

1

4M
, 2e−τ L

+
κ

L
≤

1

4
, (5.26)

2

α̃
(M + M2)(B1 + B2)L

−d
≤

1

2
, (5.27)

and also
2e−τ L

+ 2M B1L−d
≤ L−d, α̃ > 2

√
2e−τ L , (5.28)

πL−d
+ 2e−τ L < 4L−d and C̃1e−τ L

≤
1
2 B2L−d. (5.29)

Let us fix a valueL ≥ L1 and choose a pointz0 ∈ Sκ/(2L) and a numbers ≤ (B1 +

B2)L−d such thatDs(z0) ⊂ O. Corollary 5.2(1) combined with the first bound in (5.26)
implies thatDs(z0) ⊂ Sκ/L .

We will apply Lemma 5.3 for suitable choices ofφ andθ defined in terms of the
functionsFm,n : Ds(z0) → C andF (L)m,n : Ds(z0) → C defined by

Fm,n(z) =
ζm(z)

ζn(z)
and F (L)m,n(z) =

ζ
(L)
m (z)

ζ
(L)
n (z)

. (5.30)

We will want to defineφ(z) as the logarithm ofF (L)m,n(z), andθ(z) as the logarithm of
the ratioF (L)m,n(z)/Fm,n(z), but in order to do so, we will have to specify the branch of
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the complex logarithm we are using. To this end, we will first analyze the image of the
functionsF (L)m,n(z) andF (L)m,n(z)/Fm,n(z).

According to Assumption B2, for anyz ∈ Ds(z0) ⊂ Sκ/L , we have|F (L)m,n(z)| ∈

(2/3,3/2) in view of the second bound in (5.26) with the observation that1
4 < log 3

2. A

simple calculation and the bound (2.11) show that ArgF (L)m,n(z) and ArgF (L)m,n(z0) differ
by less than 2M(B1 + B2)L−d

≤
1
2. Indeed, the difference ArgF (L)m,n(z)−Arg F (L)m,n(z0)

is expressed in terms of the integral of∂zF (L)m,n/F (L)m,n along any path inDs(z0) connect-
ing z0 andz. The latter logarithmic derivative is bounded uniformly by 2M throughout
Ds(z0). Consequently,z 7→ F (L)m,n(z) mapsDs(z0) into the open set of complex num-
bers {ρeiω : ρ ∈ (2

3,
3
2), |ω − ω0| <

1
2}, whereω0 = Arg Fm,n(z0). The function

z 7→ F (L)m,n(z)/Fm,n(z), on the other hand, mapsDs(z0) into the open set of complex
numbers{ρeiω : ρ ∈ (2

3,
3
2), |ω| < 1

4}, as can be easily inferred from Assumption B2
and the second bound in (5.26). Given these observations, we choose the branch of the
complex logarithm with cut along the ray{re−iω0/2 : r > 0}, and define

φ(z) = log F (L)m,n(z) (5.31)

and

θ(z) = log
F (L)m,n(z)

Fm,n(z)
. (5.32)

Having defined the functionsφ and θ , we note that, by Assumptions A and B,φ is
analytic while θ is twice continuously differentiable throughoutDs(z0). Moreover,
these functions are directly related to the equationsf (z) = 0 and (2.17–2.18). In-
deed, f (z) = 0 holds for somez ∈ Ds(z0) if and only if F (L)m,n(z) is an Ld-th root
of −(qn/qm), i.e.,φ(z) = (log(qn/qm) + iπ(2k + 1))L−d for some integerk. Simi-
larly, z ∈ Ds(z0) is a solution of (2.17–2.18) if and only ifφ(z) + θ(z) is of the form
(log(qn/qm) + iπ(2k + 1))L−d for some integerk. Furthermore, these functions obey
the bounds

α̃ ≤ |φ′(z)| ≤ 2M, |φ′(z)− φ′(z0)| ≤ 2(M + M2)(B1 + B2)L
−d, (5.33)

and
|θ(z)| ≤ 2e−τ L , |θ(z)− θ(z′)| ≤ 2

√
2e−τ L

|z − z′
| (5.34)

for all z, z′
∈ Ds(z0). Here the first three bounds are obvious consequences of Assump-

tion B, while the third follows from Assumption B by observing that the derivative
matrix Dθ(z) is bounded in norm by 2

√
2 times the right hand side of (2.10). Note that,

in light of (5.26–5.27), these bounds directly verify the assumptions (5.20) and (5.21)
of Lemma 5.3 forη = 2e−τ L and anyε ≤ s. We proceed by applying Lemma 5.3 with
different choices ofε to give the proof of (2-4) of Lemma 4.3, while part (1) turns out
to be a direct consequence of the bounds (5.33–5.34).

Indeed, let us first show that fors ≤ B1L−d the discDs(z0) contains at most one
solution to (2.17–2.18) and at most one root of the equationf (z) = 0. We will prove
both statements by contradiction. Starting with the solutions to (2.17–2.18), let us thus
assume thatz1, z2 ∈ Ds(z0) are two distinct solutions to the equations (2.17–2.18).
Settingw1 = φ(z1) + θ(z1) andw2 = φ(z2) + θ(z2) this means thatw1 − w2 is
an integer multiple of 2π iL−d. However, the bounds (5.33) and (5.34) combined with
the first bound in (5.28) guarantee that|w1 − w2| ≤ 4e−τ L

+ 4M B1L−d
≤ 2L−d
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and thusw1 = w2. But then the bound|φ(z1) − φ(z2)| ≥ α̃|z1 − z2| implies that
|θ(z1)− θ(z2)| ≥ α̃|z1 − z2|, which, in view of the second bound in (5.28), contradicts
the second bound in (5.34). Hence, we must have hadz1 = z2 in the first place. Turning
to the equationf (z) = 0, let us now assume thatz1 andz2 are two different roots of this
equation. Settingw1 = φ(z1) andw2 = φ(z2), we again havew1 = w2, this time by
the first bound in (5.33) and the very definition ofB1, which implies that 4M B1 = 1.
But once we havew1 = w2, we must havez1 = z2 since|φ(z1)− φ(z2)| ≥ α̃|z1 − z2|

by our lower bound onφ′(z), implying that there exists at most onez ∈ Ds(z0) that
solves the equationf (z) = 0. If such a solutionz exists, Assumption B immediately
implies that f ′(z) 6= 0, and soz is a non-degenerate root off .

Next, we will show that within aC̃1e−τ L -neighborhood of each solutionz0 of the
equations (2.17–2.18) there is a root off . Indeed, letε = C̃1e−τ L andδ = 5e−τ L . By
the first bound in (5.33) and our choice ofC̃1, we then haveδ ≤ ε|φ′(z0)|/2, so the first
part of Lemma 5.3 is at our disposal. Sincez0 is assumed to be a solution to (2.17–2.18),
we have thatφ(z0) + θ(z0) is of the form(log(qn/qm) + iπ(2k + 1))L−d, wherek is
an integer. In light of the bound|θ(z0)| ≤ 2e−τ L , the discDδ(φ(z0)) contains the point
w = φ(z0)+ θ(z0). By the first part of Lemma 5.3, there exists a pointz ∈ Dε(z0) such
thatφ(z) = w, implying thatz is a root of f .

As a third step we will prove that ifz0 is a root of f , then there exists a solution
to (2.17–2.18) inDC̃1e−τ L (z0). By the relation betweenf andφ we now know that

φ(z0) is of the form(log(qn/qm) + iπ(2k + 1))L−d for some integerk. We again set
ε = C̃1e−τ L andδ = 5e−τ L . Choosingη = 2e−τ L and noting that 2η < δ, we apply
the second part of Lemma 5.3 to conclude that there must be a pointz′

∈ Dε(z0) such
thatφ(z′)+ θ(z′) = φ(z0) = (log(qn/qm)+ iπ(2k + 1))L−d, which means thatz′ is a
solution to (2.17–2.18).

Finally, we will show that ifz0 ∈ Sm ∩ Sn, then there exists a solution to (2.17–
2.18) in the discDB2L−d(z0). To this end, we first note thatz0 ∈ Sm ∩ Sn implies that
φ(z0)+θ(z0) is purely imaginary. Combined with the first bound in (5.34) we conclude
that within a distance of at most(| log(qm/qn)| + π)L−d

+ 2e−τ L from φ(z0), there
exists a point of the formw = (log(qn/qm)+ iπ(2k + 1))L−d for some integerk. We
now setε = B2L−d/2 andδ = (| log(qm/qn)|+4)L−d. By the first condition in (5.29),
we then have|φ(z0)−w| < δ, while the first bound in (5.33) together with the definition
of B2 implies thatδ ≤ ε|φ′(z0)|/2. We therefore can use the first part of Lemma 5.3
to conclude that there must be a pointz′

∈ Dε(z0) such thatφ(z′) = w, implying that
z′ is a root of f (z′) = 0. Finally, by the already proven statement (3) of the lemma,
there must be a solution of the equations (2.17–2.18) within a distance strictly less than
C̃1e−τ from z′. Sinceε+ C̃1e−τ

≤ B2L−d by the second condition in (5.29), this gives
the desired solution of the equations (2.17–2.18) in the discDB2L−d(z0). ut

Next we will prove Lemma 4.4 which provides a lower bound onf (z) on the bound-
ary of certain discs.

Proof of Lemma 4.4.Let α̃ and M be as in Assumption B3, let̃κ = κ/2, and letc
andL4 be the constants from Corollary 5.2. We will prove the claim with

c̃2 = (2eM‖q‖∞)
−1 and C̃2 = max{c̃2,22eα̃−1

} (5.35)

and, givenC̃ ≥ C̃2, with L2 defined by the condition thatL2 ≥ L4 and

C̃εL ≤ c/L , Lde−τ L
≤ 1, eC̃ M LdεL ≤ 2 (5.36)
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and
2e(M + M2)‖q‖∞C̃2LdεL ≤ 1 (5.37)

hold wheneverL ≥ L2.
Fix L ≥ L2 and choose a pointz0 ∈ Sκ/(4L) ∩ (Sm ∪ Sn) with DC̃εL

(z0) ⊂ O.

Let s < C̃εL and note that by (5.36) we haves < c/L. Applying Corollary 5.2(1) to
the discDs(z0) we find thatDs(z0) ⊂ Sκ/(2L) ⊂ Sκ/L . In particular, the bounds
of Assumption B are at our disposal wheneverz ∈ DC̃εL

(z0). The proof will pro-
ceed by considering two separate cases depending (roughly) on whether| f (z0)| is
“small” or “large.” We will first address the latter situations. Let us therefore sup-
pose that| f (z0)| > 4LdεL ζ(z0)

Ld
. In this case, we will show that (4.23) holds with

s(z0) = c̃2εL . (Note thats(z0) ≤ C̃2εL ≤ C̃εL by our definition ofC̃2.) A crucial part
of the proof consists of the derivation of an appropriate estimate on the derivative off .
Let s< C̃εL and letz be such that|z − z0| ≤ s. Recalling the definition (4.2) ofbm(z)
and using Assumptions B2-B3, the second and third bound in (5.36) and the fact that
one of the values|ζm(z0)| and|ζn(z0)| must be equal toζ(z0), we have

| f ′(z)
∣∣ = Ld

∣∣∣qmbm(z)ζ
(L)
m (z)L

d
+ qnbn(z)ζ

(L)
n (z)L

d
∣∣∣

≤ Ld
[
qmM |ζm(z0)|

Ld
+ qnM |ζn(z0)|

Ld
]
eM |z−z0|Ld

+Lde−τ L

≤ 4eM‖q‖∞Ldζ(z0)
Ld

(5.38)

wheneverz ∈ Sκ/L . As argued above,z ∈ DC̃εL
(z0) implies that [z0, z]⊂ Sκ/L , so by

the Fundamental Theorem of Calculus we have∣∣ f (z)
∣∣ ≥

∣∣ f (z0)
∣∣ − 4eM‖q‖∞Ldζ(z0)

Ld
s ≥ 4Ld ζ(z)L

d
(
εL −

s

2c̃2

)
(5.39)

for all z ∈ Ds(z0). The bound (4.23) now follows by lettings ↑ c̃2εL .
Next we will address the cases with| f (z0)| ≤ 4LdεLζ(z0)

Ld
. Let s < C̃εL and

pick z such that|z − z0| = s. This point belongs to the discDC̃εL
(z0) which we recall

is a subset ofSκ/L . The second-order expansion formula

f (z) = f (z0)+ f ′(z0)(z − z0)+ (z − z0)
2
∫ 1

0
dt

∫ t

0
dt̃ f ′′

(
t̃ z + (1 − t̃)z0

)
(5.40)

then yields the estimate∣∣ f (z)
∣∣ ≥

∣∣ f (z0)+ (z − z0) f ′(z0)
∣∣ − K̃

(
C̃εL

)2
L2dζ(z0)

Ld
(5.41)

where

K̃ =
1

2
ζ(z0)

−Ld
L−2d sup

{
| f ′′(z)| : z ∈ U , |z − z0| < C̃εL

}
. (5.42)

Proceeding as in the bound (5.38), we easily get

K̃ ≤ 2e‖q‖∞

[
M2(1 − L−d)+ M L−d]

, (5.43)

which implies that̃K ≤ 2e‖q‖∞[M2
+ M ].
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It remains to estimate the absolute value on the right-hand side of (5.41). Abbreviat-
ing bm = bm(z0) andbn = bn(z0), we can write

f ′(z0) = Ld(
bmqmζ

(L)
m (z0)

Ld
+ bnqnζ

(L)
n (z0)

Ld)
= Ld(bm − bn)qmζ

(L)
m (z0)

Ld
+ bnLd f (z0).

(5.44)

Without loss of generality, let us suppose that|ζm(z0)| ≥ |ζn(z0)| and, consequently,
|ζm(z0)| = ζ(z0), becausez0 ∈ Sm ∪ Sn. Applying Assumption B3 together with the
assumed upper bound on| f (z0)|, we get∣∣(z − z0) f ′(z0)+ f (z0)

∣∣ ≥
(
α̃qmse−Lde−τ L

− 4εL (1 + sLd M)
)
Ldζ(z0)

Ld
, (5.45)

where we recalled that|z− z0| = s. Sinces ≤ C̃εL , the third inequality in (5.36) gives
thatsLd M ≤ C̃ M LdεL < 1. Let nows be so large thats ≥

1
2C̃εL . Using this bound

in the first term in (5.45) and using the second inequality in (5.36) we thus get∣∣(z − z0) f ′(z0)+ f (z0)
∣∣ ≥

(1
2α̃C̃2e−1

− 8
)
LdεLζ(z0)

Ld
≥ 3LdεLζ(z0)

Ld
. (5.46)

Moreover, using the above bound oñK and the inequality in (5.37), the last term on
the right-hand side of (5.41) can be shown not to exceedLdεLζ(z0)

Ld
. Putting (5.41)

and (5.46) together with these estimates, we have| f (z)| ≥ 2LdεLζ(z0)
Ld

for all z ∈

DC̃εL
(z0) such thats = |z − z0| satisfies1

2C̃εL ≤ s < C̃εL . The proof is finished by

takings ↑ C̃εL .
The last statement of the lemma is an immediate consequence of the fact that when-

ever the above procedure pickss(z0) = c̃2εL and c̃2 < C̃, then the argument (5.38–
5.39) implies the stronger bound

inf
z: |z−z0|<s(z0)

| f (z)| ≥ 2LdεLζ(z0)
Ld
. (5.47)

Now, if f has a root inDc̃2εL (z0), then this bound shows that we could not have chosen
s(z0) = c̃2εL . Therefore,s(z0) must be equal to the other possible value, i.e., we must
haves(z0) = C̃εL . ut

Proof of Lemma 4.5.We will prove (4.24) withA3 = 2C0‖q‖1, whereC0 is as in (2.14)
for ` = 0. Let L̃0 andM be as in Assumption B and letL4 andc be as in Corollary 5.2.
Let C ∈ (0,∞) and let us chooseL3 ≥ max{L4, L̃0} in such a way that

max
{
Ce−τ L ,C Lde−

1
2 LdγL

}
≤

c

L
, MC Lde−τ L

≤ log 2, (5.48)

1

2
LdγL + MC L2de−

1
2 LdγL ≤ τ L , (5.49)

and

γL ≤
κ

2L
and MC L2de−

1
2 LdγL + Lde−τ L

≤ 2d log L + logC0 (5.50)

hold for all L ≥ L3.
We will treat separately the casesz0 ∈ UγL

∩ U2κ/L(z0) andz0 ∈ UγL
\ U2κ/L(z0).

Let us first consider the former case, so thatδL(z0) = e−τ L . The first condition in
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(5.48), the fact thatDCδL (z0)(z0) ⊂ O andγL ≤ κ/(2L) therefore allow us to use Corol-
lary 5.2(3), from which we conclude thatDCδL (z0)(z0) ⊂ UγL

. Forz ∈ DCδL (z0)(z0) we
may thus apply thè = 0 version of (2.14) to the functiong(z) = Ξ{m,n},L(z). Com-
bined with the bound (5.3), the second condition in (5.48) and our definition ofA3 this
immediately gives the desired bound (4.24).

Next we will attend to the cases whenz0 lies in UγL
\ U2κ/L , so thatδL(z0) =

Lde−
1
2 LdγL . Let us defineQ′ as in (5.13) withs = CδL(z0), i.e.,

Q′
=

{
k ∈ R : DCδL (z0) ⊂ Sκ/L(k)

}
. (5.51)

By Corollary 5.2(2), the setQ′ is non-empty andDCδL (z0)(z0) ⊂ Uκ/L(Q′). Let z ∈

DCδL (z0)(z0) and let us estimateg(z). We will proceed analogously to the preceding
case; the only difference is that this time we have

g(z) = ΞQ′,L(z)+ h(z), (5.52)

where the extra termh(z) is given by

h(z) =

∑
k∈Q′r{m,n}

qk
[
ζ
(L)
k (z)

]Ld

. (5.53)

Now |ΞQ′,L(z)| is estimated as before: Using thatz ∈ Uκ/L(Q′), the bounds (2.14) and

(5.3) immediately yield that|ΞQ′,L(z)| ≤ C0‖q‖1LdδL(z0)ζ(z0)
Ld

. (Here we used that

the termeM LdCδL (z0)e−τ L is bounded bye−
1
2 LdγL ≤ δL(z0) as follows from (5.49).)

Therefore, we just need to produce an appropriate bound on|h(z)|. To that end, we
note that, since [z0, z]⊂ Uκ/L(Q′) and |z − z0| ≤ CδL(z0), we have from (5.4) and
Assumption B2 that∣∣ζ (L)k (z)

∣∣Ld

≤
∣∣ζ (L)k (z0)

∣∣Ld

eMC LdδL (z0) ≤
∣∣ζk(z0)

∣∣Ld

eMC LdδL (z0)+Lde−τ L
(5.54)

wheneverk ∈ Q′. Sincez0 ∈ UγL
, which implies|ζ

(L)
k (z)| ≤ ζ(z0)e−γL/2 whenever

k /∈ {m,n}, we thus have∣∣ζ (L)k (z)
∣∣Ld

≤ eMC LdδL (z0)+Lde−τ L
e−

1
2γL Ld

ζ(z0)
Ld

(5.55)

for everyk ∈ Q′
\ {m,n}. Using the last bound in (5.50), we conclude that|h(z)| is

bounded byC0‖q‖1LdδL(z0)ζ(z0)
Ld

. From here (4.24) follows. ut

5.3. Proof of Lemmas 4.6 and 4.7.Here we will establish the two technical lemmas
on which the proof of Theorem 2.5 was based. Throughout this section we will assume
that a multiple pointzM ∈ O is fixed and thatQ = Q(zM). We will also usef̃ , g̃ andξ
to denote the functions defined in (4.48–4.50).

Lemma 4.6 is an analogue of Lemma 4.4 from Sect. 4.2 the corresponding proofs
are also analogous. Namely, the proof of Lemma 4.4 was based on the observation that
either | f (z)| was itself large in a neighborhood ofz0, or it was small, in which case
we knew that| f ′(z)| was large. In Lemma 4.6, the functioñf (z) is more complicated;
however, a convenient reformulation in terms of Vandermonde matrices allows us to
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conclude that at least one among its first(q − 1) derivatives is large. This is enough to
push the argument through.

Proof of Lemma 4.6.Abbreviatingq = |Q| and usingA(q) = 2q3q(q+1)/2q!
√

q and
the constantsK = K (Q) and L̃0 from Lemma 4.2 andM from Assumption B, let
ε = 1/(3K ) andL5 ≥ L̃0 be such that

eM Ld RL ≤ 2, 2‖q‖1Mq
≤ L2dεL and A(q)L2d−d/qεL ≤ ε/

√
q (5.56)

for all L ≥ L5. A choice ofL5 yielding (5.56) is possible in view of (4.51).
Choosingz0 ∈ C, we useF(z) to denote the functionF(z) = f̃ (z)ξ(z0)

−Ld
. First,

we claim that if (4.52) fails to hold for someL ≥ L5, then we have∣∣F (`)(z0)
∣∣ ≤

ε
√

q
Ld`, ` = 0, . . . ,q − 1. (5.57)

Indeed, let us observe that, if (4.52) fails to hold, then there must exist a collection of
pointszk, with k = 1, . . . ,q, such that

|zk − z0| =
k
q RL and

∣∣F(zk)
∣∣ ≤ LdεL , (5.58)

for all k = 1, . . . ,q. Further, notice that, for|z − z0| ≤ RL , we have the bound∣∣evm(z−zM)Ld
ξ(z0)

−Ld ∣∣ ≤ eRe(vm(z−z0))Ld
≤ eM Ld RL , m ∈ Q, (5.59)

implying |F (q)(z)| ≤ 2
∑

m∈Q qm |vm|
qLdq in view of the first condition in (5.56).

In particular, we have|F (q)(z)|Rq
L ≤ 2‖q‖1MqL−d for all z in the RL -neighborhood

of z0. With help of the second condition in (5.56), Taylor’s theorem yields

∣∣∣q−1∑
`=0

F (`)(z0)

`!
(zk − z0)

`
∣∣∣ ≤ 2LdεL , k = 1, . . . ,q. (5.60)

Now we will write (5.60) in vector notation and use our previous estimates on Van-
dermonde matrices to derive (5.57). Letx = (x0, x1, . . . , xq−1) be the vector with
components

x` = R`L
F (`)(z0)

`!

( zk − z0

|zk − z0|

)`
, ` = 0,1, . . . ,q − 1, (5.61)

and letN = (Nk,`) be theq × q-matrix with elementsNk,` = |zk − z0|
`R−`

L = (k/q)`.
The bound (5.60) then implies that the vectorNx has each component bounded by
2LdεL and so‖Nx‖ ≤ 2

√
qLdεL . On the other hand, sinceN is a Vandermonde ma-

trix, the norm of its inverse can be estimated as in (4.8). Namely, using the inequali-
ties| detN| ≥ q−q(q−1)/2 and‖N‖ ≤ q, we get

‖N−1
‖ ≤

‖N‖
q−1

| detN|
≤ qq(q−1)/2+q(q−1). (5.62)

But then‖x‖ ≤ ‖N−1
‖‖Nx‖ ≤ q3q(q−1)/22

√
qLdεL implying

L−d`
|F (`)(z0)| ≤ `!(Ld RL)

−`
‖x‖ ≤ A(q)L2d−d/qεL , (5.63)
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where we used thatLd(Ld RL)
−` is maximal for` = q − 1, in which case it equals

L2d−d/q. With the help of the last condition in (5.56), the claim (5.57) follows for
all L ≥ L5.

Having proved (5.57), we will now invoke the properties of Vandermonde matrices
once again to show that (5.57) contradicts Lemma 4.2. Lety be theq-dimensional
vector with components

ym = qmeiφm(L)+vm(z−zM)Ld
ξ(z0)

−Ld
, m ∈ Q. (5.64)

Let O = (O`,m) be theq × q matrix with matrix elementsO`,m = v`m. (Here` takes
values between 0 andq − 1, whilem ∈ Q.) Recalling the definition ofF(z), the bound
(5.57) can be rewritten as|[Oy]`| ≤ ε/

√
q. It therefore implies that

‖Oy‖ ≤ ε. (5.65)

The matrixO corresponds to theL → ∞ limit of the matrix M in (4.3) evaluated
at zM . In particular, sincezM ∈ Sκ/L(m) for all L and allm ∈ Q(zM) and in view
of the second bound in Assumption B2, the bound (4.5) applies toO as well. Having
thus‖O−1

‖ ≤ K with the constantK from Lemma 4.2, we can conclude that

‖y‖ ≤ ‖O−1
‖‖Oy‖ ≤ K‖Oy‖ ≤ K ε ≤

1

3
(5.66)

using our choiceε = 1/(3K ). On the other hand, letm be an index for which the
maximum in the definition ofξ(z0) is attained. Then we have∣∣evm(z−zM)Ld

ξ(z0)
−Ld ∣∣ = eRe(vm(z−z0))Ld

≥ e−M Ld RL ≥
1

2
, m ∈ Q, (5.67)

according to the first condition in (5.56). Moreover,qm ≥ 1 and thus‖y‖ ≥
1
2 in

contradiction to (5.66). Thus, (4.52) must hold for somes(z0) ∈ [RL/q, RL ] once L
exceedsL5. ut

Lemma 4.7 is also quite similar to the corresponding statement (Lemma 4.5) from
two-phase coexistence.

Proof of Lemma 4.7.We will prove the Lemma forA6 = 2e(C0 + 3)(M + M2)‖q‖1,
whereM andC0 are the constants from Assumption B.

Let c and L4 be the constants from Corollary 5.2 forκ̃ = κ. SincezM ∈ O is a
multiple point withQ(zM) = Q, we clearly have thatzM ∈ Uε(Q) wheneverε is small
enough. SinceO is open, we also have thatDs(zM) ⊂ O whenevers is sufficiently
small. As a consequence, there is a constantL̃6 = L̃6(zM) such thatzM ∈ U2κ/L(Q) ∩
Uκ/2L(Q) andDc/L(zM) ⊂ O wheneverL ≥ L̃6. Using Corollary 5.2, we reach the
conclusion thatDs(zM) ⊂ Uκ/L(Q) wheneverL ≥ max{L̃6, L4} ands ≤ c/L. We
now chooseL6 ≥ max{L̃6, L4} in such a way that

ρ′

L ≤ c/L , ρ′

L ≤ 2ρL , (1 + 2ρL)e
−τ L

≤ (M + M2)ρ2
L ,

4(M + M2)ρ2
L Ld

≤ 1, eM Ld RL ≤ 2
(5.68)

wheneverL ≥ L6. By the above conclusion and the first condition in (5.68), we then
haveDρ′

L
(zM) ⊂ Uκ/L(Q) wheneverL ≥ L6.



50 Biskup et al

To prove (4.53), let us recall the definition ofΞQ,L(z) in formula (2.13) from As-

sumption B4. Then we can writẽg(z) asΞQ,L(z)ζ(zM)
−Ld

+ h(z), where

h(z) =

∑
m∈Q

qm

[(ζ (L)m (z)

ζ(zM)

)Ld

− eiφm(L)+vm(z−zM)Ld
]
. (5.69)

Our goal is to show that bothΞQ,L(z)ζ(zM)
−Ld

andh(z) satisfy a bound of the type
(4.53).

We will begin with the bound onh(z). First we recall the definition ofφm(L) to
write (ζ (L)m (z)

ζ(zM)

)Ld

=

( ζ
(L)
m (z)

ζ
(L)
m (zM)

)Ld(ζ (L)m (zM)

ζm(zM)

)Ld

eiφm(L). (5.70)

The first term on the right-hand side is to the leading order equal toebm(z−zM)Ld
, which

is approximately equal toevm(z−zM)Ld
. To control the difference between these two

terms, and to estimate the deviations from the leading order behavior, we combine the
bound (2.10) with the second-order Taylor formula and (2.11) to show that, for allz ∈

Dρ′
L
(zM) and allm ∈ Q,

∣∣log
(
ζ (L)m (z)/ζ (L)m (zM)

)
− vm(z − zM)

∣∣ ≤ e−τ Lρ′

L +
1

2
(M + M2)(ρ′

L)
2, (5.71)

where we have chosen the principal branch of the complex logarithm. Combining this
estimate with the second and third condition in (5.68) and the bound (2.9) from As-
sumption B2, we get∣∣Ld log

(
ζ (L)m (z)/ζ (L)(zM)

)
− vm(z − zM)L

d
− iφm(L)

∣∣ ≤ 3(M + M2)ρ2
L Ld. (5.72)

Using the fourth condition in (5.68) and the fact that|ew−1| ≤ e|w| whenever|w| ≤ 1,
we get ∣∣h(z)∣∣ ≤ 3e(M + M2)‖q‖1 Ldρ2

Lξ(z)
Ld
. (5.73)

Now ξ(z)L
d

≤ ξ(z0)
Ld

eM Ld RL ≤ 2ξ(z0)
Ld

by the fifth condition in (5.68), so we fi-
nally have the bound|h(z)| ≤ Aξ(z0)

Ld
Ldρ2

L , with A given byA = 6e(M + M2)‖q‖1.

It remains to prove a corresponding bound forΞQ,L(z)ζ(zM)
−Ld

. First we recall
our previous observation thatDρ′

L
(zM) ⊂ Uκ/L(Q), so we have Assumption B4 at our

disposal. Then (2.14) yields

∣∣ΞQ,L(z)ζ(zM)
−Ld ∣∣ ≤ C0Ld

‖q‖1e−τ L
[ ζ(z)
ζ(zM)

]Ld

, z ∈ Dρ′
L
(zM). (5.74)

Also, by the definition ofUκ/L(Q), we have thatζ(z) = minm∈Q |ζm(z)| wheneverz ∈

Dρ′
L
(zM). For z ∈ Dρ′

L
(zM), we can therefore find a indexm ∈ Q such that|ζm(z)| =

ζ(z). With the help of (5.3) and the bound (2.9) from Assumption B, we thus get

[ ζ(z)
ζ(zM)

]Ld

≤

∣∣∣ζm(z0)

ζ(zM)

∣∣∣Ld ∣∣∣ ζm(z)
ζm(z0)

∣∣∣Ld

≤

∣∣∣ζ (L)m (z0)

ζ(zM)

∣∣∣Ld

eM RL Ld
eLde−τ

. (5.75)
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Combined with the estimate (5.72) forz = z0, and the last three conditions in (5.68),
this gives[ ζ(z)

ζ(zM)

]Ld

≤ eM RL Ld
eLde−τ

e3(M+M2)ρ2
L Ld
ξ(z0)

Ld
≤ 2eξ(z0)

Ld
. (5.76)

Using the third condition in (5.68) one last time, we can bound the right-hand side (5.74)
by 2eC0‖q‖1(M + M2)Ldρ2

Lξ(z0)
Ld

. Combined with the above bound on|h(z)|, this
finally proves (4.53). ut

Acknowledgement.The authors would like to thank A. Sokal for his interest in this work, R. Shrock for
bringing the references [8, 9, 28, 29, 38, 39] to our attention, and A. van Enter for pointing out the refer-
ence [36]. M.B. and R.K. would like to acknowledge the hospitality of Microsoft Research in Redmond,
where large parts of this work were carried out. The research of R.K. was partly supported by the grants
GAČR 201/00/1149, 201/03/0478, and MSM 110000001. The authors also wish to thank anonymous refer-
ees for helpful suggestions concerning the presentation.

References

1. S. Beraha, J. Kahane and N.J. Weiss,Limits of zeroes of recursively defined families of polynomials, In
G.-C. Rota (ed.),Studies in Foundations and Combinatorics(Advances in Mathematics Supplementary
Studies, Vol. 1), pp. 213–232. Academic Press, New York, 1978.

2. M. Biskup, C. Borgs, J.T. Chayes, L.J. Kleinwaks, and R. Kotecký, General theory of Lee-Yang zeros in
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