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Quenched invariance principle for simple
random walk on percolation clusters

Abstract. We consider the simple random walk on the (unique) infinite cluster of super-
critical bond percolation irZd with d > 2. We prove that, for almost every percolation
configuration, the path distribution of the walk converges weakly to that of non-degenerate,
isotropic Brownian motion. Our analysis is based on the consideration of a harmonic de-
formation of the infinite cluster on which the random walk becomes a square-integrable
martingale. The size of the deformation, expressed by the so called corrector, is estimated
by means of ergodicity arguments.

1. Introduction
1.1. Motivation and model

Consider supercritical bond-percolation®h d > 2, and the simple random walk

on the (unique) infinite cluster. In [38] Sidoravicius and Sznitman asked the fol-
lowing question: Is it true that for a.e. configuration in which the origin belongs to
the infinite cluster, the random walk started at the origin exits the infinite symmet-
ric slab{(x1, ..., Xg): |X4] < N} through the “top” side with probability tending

to I, asN — oo? Sidoravicius and Sznitman managed to answer their question
affirmatively in dimensionsl > 4 but dimensionsl = 2, 3 remained open. In this
paper we extend the desired conclusion talat 2. As in [38], we will do so by
proving a quenched invariance principle for the paths of the walk.

Random walk on percolation clusters is only one of many instances of “sta-
tistical mechanics in random media” that have been recently considered by physi-
cists and mathematicians. Other pertinent examples include, e.g., various diluted
spin systems, random copolymers [40], spin glasses [10, 41], random-graph mod-
els [9], etc. From this general perspective, the present problem is interesting for at
least two reasons: First, a good handle on simple random walk on a given graph
is often a prerequisite for the understanding of more complicated processes, e.g.,
self-avoiding walk or loop-erased random walk. Second, information about the
scaling properties of simple random walk on percolation cluster can, in principle,
reveal some new important facts about the structure of the infinite cluster and/or
its harmonic properties.
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Let us begin developing the mathematical layout of the problemZFebe
the d-dimensional hypercubic lattice and By be the set of nearest neighbor
edges. We will use to denote a generic edgg, y) to denote the edge betwern
andy, ande to denote the edges from the origin to its nearest neighbor£2 et
{0, 1}]Rd be the space of all percolation configurations= (wp)pcpd- Herewp = 1
indicates that the edd®is occupied andyp = O implies that it is vacant. Le® be
the Borels-algebra orQ—defined using the product topology—and Iebe an
i.i.d. measure such tha@(wp = 1) = pfor all b € By. If X «=> oo denotes the
event that the site belongs to an infinite self-avoiding path using only occupied
bonds inw, we write €, = o (w) for the set

o) = {x € Z9: x %5 o0}, (1.1)

By Burton-Keane’s uniqueness theorem [12], the infinite cluster is unique and so
%~ IS connected witfP-probability one.

For eachx € Z9, let 7x: Q — Q be the “shift byx” defined by (txw)p =
wx+p. Note thatP is tx-invariant for allx e 74, Let pc = pc(d) denote the
percolation threshold of® defined as the infimum of aip’s for which P(0 e
%) > 0. LetQo = {0 € ¥} and, forp > pc, define the measuiiey by

Po(A) = P(AIQo), Ac Z. (1.2)

We will useEq to denote expectation with respectitg.

For each configuratiom € Qo, let (Xn)n>0 be the simple random walk on
%~ () started at the origin. Explicitly(Xn)n>0 is a Markov chain with state
spaceZd, whose distributiorP ,, is defined by the transition probabilities

1
PO,a)(Xn_i_l =X + e|Xn = X) = % l{we:l} OTx, |e| = 1, (13)
and 1
Po.o(Xns1 = X|Xn = X) = %j_l 5 Loe=0) 07, (14)

with the initial condition
Po,»(Xo=0) =1. (1.5)

Thus, at each unit of time, the walk picks a neighbor at random and if the corre-
sponding edge is occupied, the walk moves to this neighbor. If the edge is vacant,
the move is suppressed.

1.2. Main results

Our main result is that foPg-almost everyw € Qg, the linear interpolation of
(Xn), properly scaled, converges weakly to Brownian motion. For eVetry O,

let (C[0, T], #7) be the space of continuous functiofis [0, T]— R equipped
with theo-algebra#1 of Borel sets relative to the supremum topology. The precise
statement is now as follows:
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Theorem 1.1.Letd > 2, p > pc(d) and letw € Qq. Let (Xn)n>0 be the random
walk with law R, and let

- 1

Bn(t) = %(XLth + (tn = 1tn))(Xjtnj+1 — Xitn))), t>0. (1.6)
Then for all T > 0 and for Pp-almost everyo, the law of(Bn(t): 0 < t < T)
on (C[0, T], #7) converges weakly to the law of an isotropic Brownian motion
(Bt: 0 < t < T) whose diffusion constant, B: E(|B1|%) > 0, depends only on
the percolation parameter p and the dimension d.

The Markov chain(Xn)n>0 represents only one of two natural ways to define
a simple random walk on the supercritical percolation cluster. Another possibility
is that, at each unit of time, the walk moves to a site chosen uniformly at random
from the accessibleneighbors, i.e., the walk takes no pauses. In order to define
this process, lefTk)k>0 be the sequence of stopping times that mark the moments
when the walk(X,)n>0 made a move. ExplicitlyJp = 0 and

Tht1 = inf{k > Tp: Xk # Xk—1}, n>0. a.7)

Using these stopping times—which &Pg,-almost surely finite for alv € Qo—
we define a new Markov chaitX},)n>0 by

X, = X1, n>0. (1.8)

Itis easy to see th&iX|,)n>0 has the desired distribution. Indeed, the walk starts at
the origin and its transition probabilities are given by

L{we=1} 07x
e le|=1 Liwg=1 oty

Po.o (X, = X+ €|X], =x) = le| = 1. (1.9
A simple modification of the arguments leading to Theorem 1.1 allows us to es-
tablish a functional central limit theorem for this random walk as well:

Theorem 1.2.Lletd > 2, p > pc(d) and letw € Q. Let()g])nzo be the ran-
dom walk defined fromiX,)n>0 as described ir{1.8) and let B} (t) be the linear
interpolation of (X} )o<k<n defined by(1.6) with (Xk) replaced by(X;). Then
for all T > 0 and for Pp-almost everyw, the law 0f(|§r’1(t): 0<t<T

on (C[0, T], #7) converges weakly to the law of an isotropic Brownian motion
(By: 0 <t < T) whose diffusion constant,’B= E(|By|%) > 0, depends only on
the percolation parameter p and the dimension d.

De Gennes [17], who introduced the problem of random walk on percolation
cluster to the physics community, thinks of the walk as the motion of “an ant in a
labyrinth.” From this perspective, the “lazy” wallX) corresponds to a “blind”
ant, while the “agile” walk(X},) represents a “myopic” ant. While the character of
the scaling limit of the two “ants” is the same, there seems to be some distinction
in the rate the scaling limit is approached, cf [22] and references therein. As we
will see in the proof, the diffusion constarilsand D’ are related vidD’ = D®?,
where®~1 is the expected degree of the origin normalized 8y (6.23).
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There is actually yet another way how to “put” simple random walléty) and
that is to use continuous time. Here the corresponding result follows by combining
the CLT for the “lazy” walk with an appropriate Renewal Theorem for exponential
waiting times.

1.3. Discussion and related work

The subject of random walk in random environment has a long history; we refer
to, e.g., [10, 42] for recent overviews of (certain parts of) this field. On general
grounds, each random-media problem comes in two distinct flagoesnched
corresponding to the situations discussed above where the walk is distributed ac-
cording to arw-dependent measui®, ,, andannealedin which the path distri-
bution of the walk is taken from the averaged meashre> Eq(Po,,(A)). Under
suitable ergodicity assumptions, the annealed problem typically corresponds to the
guenched problem averaged over the starting point. Yet the distinction is clear: In
the annealed setting the slab-exit problem from Sect. 1.1 is trivial by the sym-
metries of the averaged measure, while its answarpsiori very environment-
sensitive in the quenched measure.

An annealed version of our theorems was proved in the 1980s by Dedtasi
al [13, 14], based on earlier results of Kozlov [28], Kipnis and Varadhan [27] and
others in the context of random walk in a field of random conductances. (The re-
sults of [13, 14] were primarily two-dimensional but, with the help of [3], they
apply to alld > 2; cf [38].) A number of proofs of quenched invariance princi-
ples have appeared in recent years for the cases where an annealed principle was
already known. The most relevant paper is that of Sidoravicius and Sznitman [38]
which established Theorem 1.2 for random walk among random conductances in
alld > 1 and, using a very different method, also for random walk on percolation
ind > 4. (Thus our main theorem is new only th= 2,3.) Thed > 4 proof
is based on the fact that two independent random walk paths will intersect only
very little—something hard to generalize do= 2, 3. As this paper shows, the
argument for random conductances is somewhat more flexible.

Another paper of relevance is that of Rassoul-Agha and &a&jmen [37] where
a quenched invariance principle was establisheddfacted random walks in
(space-time) random environments. The directed setting offers the possibility to
use independence more efficiently—every time step the walk enters a new environ-
ment—>but the price to pay for this is the lack of reversibility. The directed nature of
the environment also permits consideration of distributions with a drift for which
a CLT is not even expected to generally hold in the undirected setting; see [6, 39]
for an example of “pathologies” that may arise.

Finally, there have been been a number of results dealing with harmonic prop-
erties of the simple random walk on percolation clusters. Grimmett, Kesten and
Zhang [20] proved via “electrostatic techniques” that this random walk is transient
ind > 3; extensions concerning the existence of various “energy flows” appeared
in [1, 24, 26, 29, 33]. A great amount of effort has been spent on deriving esti-
mates on the heat-kernel—i.e., the probability that the walk is at a particular site
aftern steps. The first such bounds were obtained by Heicklen and Hoffman [23].
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Fig. 1. A portion of the infinite clustefé, = %oo(w) before (left) and after (right) the
harmonic deformatiox — X + y (X, w). Herep = 0.75 is already so large that all but

a few sites in the entire block belong #@.. Upon the deformation, all “holes” (i.e., dual
connected components) get considerably stretched and rounded while the “dangling ends
collapse onto the rest of the structure.

Later Mathieu and Remy [31] realized that the right way to approach heat-kernel
estimates was through harmonic function theory of the infinite cluster and thus sig-
nificantly improved the results of [23]. Finally, Barlow [3] obtained, using again
harmonic function theory, Gaussian upper and lower bounds for the heat kernel.
We refer to [3] for further references concerning this area of research.

Note At the time a preprint version of this paper was first circulated, we learned
that Mathieu and Piatnitski had announced a proof of the same result (albeit in
continuous-time setting). Their proof, which has in the meantime been posted [30],
is close in spirit to that of Theorem 1.1 of [38]; the main tools are Poiicequal-

ities, heat-kernel estimates and homogenization theory.

1.4. Outline

Let us outline the main steps of our proof of Theorems 1.1 and 1.2. The princi-
pal idea—which permeates in various disguises throughout the work of Papan-
icolau and Varadhan [35], Kozlov [28], Kipnis and Varadhan [27], De Masi
al [13, 14], Sidoravicius and Sznitman [38] and others—is to consider an embed-
ding of 6 (w) into the Euclidean space that makes the corresponding simple ran-
dom walk a martingale. Formally, this is achieved by findindkdrvalued discrete
harmonic function org,, with a linear growth at infinity. The distance between
the natural position of a site € %, and its counterpart in thisarmonic embed-
dingis expressed in terms of the so-callgatrector y (x, w) which is a principal
object of study in this paper. See Fig. 1 for an illustration.

It is clear that the corrector can be defined in any finite volume by solving an
appropriate discrete Dirichlet problem (this is how Fig. 1 was drawn); the diffi-
cult part is to define the corrector in infinite volume while maintaining the natural
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(distributional) invariance with respect to shifts of the underlying lattice. Actually,
there is an alternative, probabilistic definition of the corrector,

x (X, 0) = nleOO(Ex,w(Xn) — Eo,u(Xn)). (1.10)

However, the only proof we presently have for the existence of such a limit is by
following, rather closely, the constructions from Sect. 2.3.

Once we have the corrector under control, the proof splits into two parts:
(1) proving that the martingale—i.e., the walk on the deformed graph—converges
to Brownian motion and (2) proving that the deformation of the path caused by the
change of embedding is negligible. The latter part (which is the principal contri-
bution of this work) amounts to a sublinear bound on the corregfat w) as a
function of x. Here, somewhat unexpectedly, our level of control is considerably
better ind = 2 than ind > 3. In particular, our proof ird = 2 avoids using
any of the recent sophisticated discrete-harmonic analyses but, to hartite all
uniformly, we need to invoke the main result of Barlow [3]. The proof is actually
carried out along these lines only for the setting in Theorem 1.1; Theorem 1.2
follows by noting that the time scales of both walks are comparable.

Here is a summary of the rest of this paper: In Sect. 2 we introduce the afore-
mentioned corrector and prove some of its basic properties. Sect. 3 collects the
needed facts about ergodic properties of the Markov chain “on environments.”
Both sections are based on previously known material; proofs have been included
to make the paper self-contained. The novel parts of the proof—sublinear bounds
on the corrector—appear in Sects. 4-5. The actual proofs of our main theorems
are carried out in Sect. 6. The Appendix (Sects. A and B) contains the proof of an
upper bound for the transition probabilities of our random walk, further discussion
and some conjectures.

2. Corrector—construction and harmonicity

In this section we will define and study the aforementioned corrector which is the
basic instrument of our proofs. The main idea is to consider the Markov chain
“on environments” (Sect. 2.1). The relevant properties of the corrector are listed in
Theorem 2.2 (Sect. 2.2); the proofs are based on spectral calculus (see Sect. 2.3).

2.1. Markov chain “on environments”

As is well known, cf Kipnis and Varadhan [27], the Markov ch&Xn)n>o in
(1.3-1.5) induces a Markov chain @y, which can be interpreted as the trajec-
tory of “environments viewed from the perspective of the walk.” The transition
probabilities of this chain are given by the keri@@l Qo x % — [0, 1],

1
Qw, A) = 2d Z (Liwe=1) Lirewe A} + Liwe=0} LiweAy)- (2.1)

e: le|=1

Our basic observations about the induced Markov chain are as follows:
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Fig. 2. The harmonic deformation of a percolation configuration in the symmetric slab
{(x1, X2) € Z2: |x5| < N}. The star denotes the new position of the origin which in the
undeformed configuration was right in the center. The relative vertical shift of the origin cor-
responds to the deviation &, (top hit before bottomfrom one half. The figure also has

an interesting electrostatic interpretation: If the bottom and top bars are set to poteftials
and+1, respectively, then the site witteformedcoordinategxs, x2) has potentiako/N.

Lemma 2.1.For every bounded measurable €2 — R and every e withe| = 1,
Eo(f © 7e Live=1)) = Eo(f Lw_e=1y), (2.2)

where—e is the bond that is opposite to e. As a consequdhcis, reversible and,
in particular, stationary for Markov kernel Q.

Proof. First we will prove (2.2). Neglecting the normalization BYO € 4,), we
need that

E(f o te L{0ets) Lwe=11) = E(f Ljoez) Liw_e=1y)- (2.3)

This will follow from 1;,.=1; = 1j0_=1} o7e @and the fact that, ofwe = 1} we
havelioey,) = lioe%,) oTe. INdeed, these observations imply

fo Te 1{06%&} 1{we:1} = (f 1{06%00} 1{6079:1}) O Te (24)

and (2.3) then follows by the shift invariancel®f
From (2.2) we deduce that for any bounded, measurglie Q — R,

Eo(f(QQ) = Eo(9(Q1)). (2.5)
whereQf: Q — R is the function
1
(QNH©@) = 55 e_%_l(l{we:l} f(re) + Le=o) f(@).  (26)

Indeed, splitting the last sum into two terms, the second part reproduces exactly on
both sides of (2.5). For the first part we apply (2.2) and note that averaging over
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allows us to neglect the negative sign in froneafn the right-hand side. But (2.5)
is the definition of reversibility and, settingf = 1 and noting thaQ1 = 1, we
also get the stationarity dfy. O

Lemma 2.1 underlines our main reason to work primarily with the “lazy” walk.
For the “agile” walk, to get a stationary law on environments, one has to vikgigh
by the degree of the origin—a factor that would drag through the entire derivation.

2.2. Kipnis-Varadhan construction

Next we will adapt the construction of Kipnis and Varadhan [27] to the present
situation. LetL? = L2(Q, &, Pg) be the space of all Borel-measurable, square
integrable functions of2. Abusing the notation slightly, we will use.2” both for
R-valued functions as well a&%-valued functions. We equip? with the inner
product(f, g) = Eo(fg)—with “ fg” interpreted as the dot product df andg
when these functions are vector-valued. (gbe the operator defined by (2.6).
Note that, when applied to a vector-valued functiQmacts like a scalar, i.e., inde-
pendently on each component.

From (2.5) we know

(f, Qg = (Qf,9) (2.7)
and soQ is symmetric. An explicit calculation gives us
1
|(f: Qf)| S % Z {‘(fﬂ 1{a)e=l} f OTE)|+(fn 1{cue=0} f)}
e: le|=1
1 ) Yy
< 24 Z {|(f, Liwe=1) D) ?|(f, Lio_e=) )| 2+ (f, Ljne=o) f)}
e: lel=1
1
<25 2 (R Ly D+ (L Lieoy D} = (1.1
e: le[=1
(2.8)

and so||Qll 2 < 1. In particular,Q is self-adjoint and sp&Q) c [—1, 1].
LetV: Q — RY be the local drift at the origin, i.e.,

1
Vi) = o5 > el (2.9)

e: lel=1

(We will only be interested iV (w) for o € Qp, but that is of no consequence
here.) Clearly, sinc¥ is bounded, we haé e L2. For eache > 0, lety,: Q —
RY be the solution of

Q+e—Qu.=V. (2.10)
Since 1— Q is a non-negative operatay, is well-defined andy, € L? for all
¢ > 0. The following theorem is the core of the whole theory:

Theorem 2.2.There is a functiory : Z9 x Qg — RY such that for every x Z9,
Ielir:% 1{)(6({00}(1//6 O Tx — V/E) = X(Xs ')9 in L2- (211)

Moreover, the following properties hold:
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(1) (Shift invariance) FolPg-almost everys € Qo,

X(X’ w) - X(y; CD) = X(X -y, T)/(Cu)) (212)

holds for all X, y € € (w).
(2) (Harmonicity) ForPg-almost everys € Qo, the function

X x(X, ) + X (2.13)

is harmonic with respect to the transition probabilities (1.3—-1.4).
(3) (Square integrability) There exists a constankCxo such that

[0x(x + e ) — x (X, Nixet) Liwe=1) 07x |, < C (2.14)
is true for all x € Z9 and all e with|e| = 1.

The rest of this section is spent on proving Theorem 2.2. The proof is based
on spectral calculus and it closely follows the corresponding arguments from [27].
Alternative constructions invoke projection arguments, cf [30, 34].

2.3. Spectral calculations

Let uv denote the spectral measure®f L2 — L2 associated with functiol,
i.e., for every bounded, continuods [—1, 1]— R, we have

1
1(13().),uv(d/1). (2.15)

(V. D(QV) = /

(Since Q acts as a scalayy is the sum of the “usual” spectral measures for
the Cartesian components ¥f) In the integral we used that, since sp@¢ e
[—1, 1], the measureuy is supported entirely in41, 1]. The first observation,
made already by Kipnis and Varadhan, is stated as follows:

Lemma 2.3.

S
/—1 1= /lﬂv(d/l) < 00. (2.16)

Proof. With some caution concerning the infinite cluster, the proof is a combi-
nation of arguments right before Theorem 1.3 of [27] and those in the proof of
Theorem 4.1 of [27]. Lef e L? be a bounded real-valued function and note that,
by Lemma 2.1 and the symmetry of the sums,

1
> eo(f Ljue=1)) = 3 > eEo((f — f o7e) Line=1y)- (2.17)

e: le[=1 e: lel=1
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Hence, for ever € RY we get

11
(f,a:-V) =52 > (e a)Eo((f — f o1e) Ljne=))

2
e: le=1
1,1 :
<5(5 X @ aF@e=1)" (2.18)
e: lel=1
1 s
x (E > Eo((f —fore)zl{wezl})) .

e: le[=1

The first term on the right-hand side equals a constant tjajes/hile Lemma 2.1
allows us to rewrite the second term into

> Eo((f — f o 7e)® Lme=11)
e: lel=1

1
=25 2, Bo(f(f = fore)lipey) =2(f,A-Qf). (219

e: lel=1

2d

We thus get that there exists a const@gt< oo such that for all bounded € L2,

I(f.a-V)| < Colal(f, (1— Q) f)"2. (2.20)

Applying (2.20) for f of the form f = a - ¥(Q)V, summinga over coordi-
nate vectors ifR% and invoking (2.15), we find that for every bounded continuous
¥:[-1,1]— RandC = Cov/d,

1,
] / W () (dA) sc( / (1—/1)‘P(/1)2ﬂv(d/1)) . (2.21)

Substituting® (1) = Ye) A ﬁ for ¥ and noting thatl — 1) ¥.(1) < 1, we get

Y,
/ YDy () < c( / v, (z)ﬂv«u)) (2.22)

and so
/ W, (v (di) < C2. (2.23)

The Monotone Convergence Theorem now implies

/ 1 ! —av(d2) =sup [ We(uy(d2) < C? < oo, (2.24)
- e>0

proving the desired claim.o

Using spectral calculus we will now prove:
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Lemma 2.4.Let y. be as defined i(2.10) Then
lim 2=0. 2.25
EI¢0€” velly ( )

Moreover, for e withe| = 1 let G¥’
all x € Z9 and all e with|e| = 1,
lim |G&Y o7y — GE? o1y |, =0 (2.26)

€1,6200

= Lioez..} Liwe=1) (We © Te — w¢). Then for

Proof. The main ideas are again taken more or less directly from the proof of
Theorem 1.3 in [27]; some caution is necessary regarding the containment in the
infinite cluster in the proof of (2.26). By the definition pf,

1
elyel? = /_ AT, (2.27)

The integrand is dominated bp_ll—) and tends to zero as| O for every/ in the
support ofuy . Then (2.25) follows by the Dominated Convergence Theorem.
The second part of the claim is proved similarly: First we get rid of:the

dependence by noting that, due to the fact fhgf o1x # 0 enforcex € €, the
translation invariance df implies

|GE 0 7 — GE? 0 14|, < | GEY — GE2)|,. (2.28)

Next we square the right-hand side and average over blising thatGe # 0 also
enforceswe = 1 and applying (2.17), we thus get

1
5 2 1647 =G5 =2(vaq = ve (1= Qe = ve)).  (2.29)

e: l[el=1
Now we calculate
(Ver — Ve 1= Qe — Ver))

/1 (e1— €2)%(1—2)
1A+ —D2(L+e—2)

S uv (d2). (2.30)

The integrand is again bounded l?%j for all €1, ¢2 > 0, and it tends to zero
asey, €2 | 0. The claim follows by the Dominated Convergence Theorem.

Now we are ready to prove Theorem 2.2:

Proof of Theorem 2.2.et Gg) o 1x be as in Lemma 2.4. Using (2.26) we know
that G o 7 converges in.2 ase | 0. We denoteGy x1e = lim, o GY o 1.
SinceGg) o 7x is a gradient field 0r¥,, we haveGy xte(®) + Gxiex(@) = 0
and, more generaII)EEZO Gxe.xi1 = 0 whenever(Xo, ..., Xn) is a closed loop
0N %. Thus, we may define

n—-1
def
2 (X, 0) T Gy (@), (2.31)
k=0
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where(xg, X1, ..., Xpn) iS a nearest-neighbor path éf,(w) connectingxg = 0
to x, = x. By the above “loop” conditions, the definition is independent of this
path for almost everyp € {x € € }. The shiftinvariance (2.12) now follows from
this definition andSy x+e = Go.e © 7x-

In light of shift invariance, to prove the harmonicity 8f— x + y (X, w) it
suffices to show that, almost surely,

1
o5 2 20 =@ )] L=y = V. (2.32)
e: le[=1
Sincey (e, -) — x (0, -) = Go,e, the left hand side is the | O limit of
1
>d Z [we — we o Te] Ljwe=1} = (1 — Q)ye. (2.33)
e: lej=1

The definition ofy, tells us tha(l— Q)yw,. = —ew + V. From here we get (2.32)
by recalling that . () tends to zero in.2.

To prove the square integrability in part (3) we note that, by the construction
of the corrector,

[x(x+e )= x(X, )] Lxetn) Liwe=1) 0Tx = Gx x+e (2.34)

BuUt Gy xe is the L2-limit of L2-functionsGY o 7, whoseL 2-norm is bounded
by that of G, Hence (2.14) follows Witle = mae. lei=1 1Goell2. O

3. Ergodic-theory input

Here we will establish some basic claims whose common feature is the use of
ergodic theory. Modulo some care for the containment in the infinite cluster, all of
these results are quite standard and their proofs (cf Sect. 3.2) may be skipped on
a first reading. Readers interested only in the principal conclusions of this section
should focus their attention on Theorems 3.1 and 3.2.

3.1. Statements

Ouir first result concerns the convergence of ergodic averages for the Markov chain
on environments. The claim that will suffice for our later needs is as follows:

Theorem 3.1.Let f € LY(Q, £, Pg). Then forPg-almost allw € Q,

n—oo

1 n-1
lim = > forx (@) =Eo(f), Po,,-almost surely (3.1)
k=0

Similarly, if f: Qx Q — Ris measurable witlto(Eg | f (@, 7x,®)|) < oo, then

' 1 n-1
n|I_>mOO - ;) f(rx @, Tx,10) = ]ETo(Eo,w( f(w, Txla)))) (3.2)

for Pp-almost allw and R ,-almost all trajectories of Xk)kso.
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The next principal result of this section will be the ergodicity of the “induced
shift” on Qg. To define this concept, letbe a vector withe| = 1 and, for every
w € Q, let
N(w) = min{k > 0: ke e Co(w)}. (3.3)

By Birkhoff's Ergodic Theorem we know thgk > 0: ke € %} has posi-
tive density inN and son(w) < oo almost surely. Therefore we can define the
mapoe: Qo — Qo by

oe(®) = Tn(w)e . (3.4)

We calloe theinduced shift Then we claim:

Theorem 3.2.For every e withle] = 1, the induced shifte: Qo — Qg is Po-
preserving and ergodic with respectlfg.

Both theorems will follow once we establish of ergodicity of the Markov chain
on environments (see Proposition 3.5). For finite-state (irreducible) Markov chains
the proof of ergodicity is a standard textbook material (cf [36, page 51]), but our
state space is somewhat large and so alternative arguments are necessary. Since
we could not find appropriate versions of all needed claims in the literature, we
include complete proofs.

3.2. Proofs

We begin by Theorem 3.2 which will follow from a more general statement,
Lemma 3.3, below. LetX, 2, ) be a probability space, and I&: X — X

be invertible, measure preserving and ergodic with respect k@t A € 2" be of
positive measure, and define A — N U {oo} by

n(x) = min{k > 0: T¥(x) € A}. (3.5)

The Poincaé Recurrence Theorem (cf [36, Sect. 2.3]) tells us tha) < oo
almost surely. Therefore we can define, up to a set of measure zero, the map
S: A— Aby

S(x) = T"®(x), x e A (3.6)

Then we have:

Lemma 3.3.S is measure preserving and ergodic with respegttA). It is also
almost surely invertible with respect to the same measure.

Proof. (1) Sis measure preserving: Fpr> 1, letAj = {x € A: n(x) = j}. Then
the Aj’s are disjoint ang (A \ Uj >1Aj) = 0. First we show that

i 4] = SA)NSA)=10. (3.7)

To do this, we use the fact that is invertible. Indeed, ik € S(Aj) N S(Aj)
for1 <i < j,thenx = T'(y) = T!(2) for somey,z € A with n(y) =i
andn(z) = j. But the fact thafl is invertible implies thaty = T1=¥(z), which
meansn(z) < j —i < j, acontradiction. To see th&is measure preserving, we
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note that the restriction dbto A; is T!, which is measure preserving. Hen&,
is measure preserving ok and, by (3.7), on the disjoint unic@j -1 Aj as well.

(2) Sis almost surely invertibleS~1({x}) N {Sis well defined is a one-point
set by the fact that is itself invertible.

(3) Sis ergodic: LetB € 2 be suchthaB C Aand 0< u(B) < u(A).
Assume thaB is S-invariant. ThenS"(x) ¢ A\ B forallx € B and alln > 1.
This means that for every € B and evenk > 1 such thaff¥(x) € A, we have
TK(x) ¢ A\ B. If follows thatC = J,-, TK(B) is (almost-surely)T -invariant
andu(C) € (0, 1), a contradiction with the ergodicity af. 0

Proof of Theorem 3.20e know that the shift. is invertible, measure preserving
and ergodic with respect 8. By Lemma 3.3 the induced shifte: Qo — Qg
is Po-preserving, almost-surely invertible and ergodic with respeByto O

In the present circumstances, Theorem 3.2 has one important consequence:
Lemma 3.4.Let B € &4 be a subset g such that for almost alb € B,
Po,w(tx, € B) = 1. (3.8)

Then B is a zero-one event undgy.

Proof. The Markov property and (3.8) imply tha® ,(rx,0 € B) = 1 for

all n > 1 andPp-almost everyw € B. We claim thatse(w) € B for Pp-almost
everyw € B. Indeed, letw € B be such thatx,w € B foralln > 1, Py,-
almost surely. Len(w) be as in (3.3) and note that we havéo)e € 4. By

the uniqueness of the infinite cluster, there is a path of finite length connecting 0
andn(w)e. If ¢ is the length of this path, we haw ,(X; = n(w)e) > 0. This
means thate(w) = m@w)e(®w) € B, i.e., B is almost surelye-invariant. By the
ergodicity of the induced shifB is a zero-one event.O

Our next goal will be to prove that the Markov chain on environments is er-
godic. LetX = Q% and define2” to be the product-algebra ont; 2 = #%Z.
The spaceY’ is a space of two-sided sequendes , w_1, wg, w1, . .. )—the tra-
jectories of the Markov chain on environments. (Note that the index @man
index in the sequence which is unrelated to the value of the configuration at a
point.) Letx be the measure ofi, 2°) such that for anyd € #2"+1,

,u((a)_n, ...,0n) € B)
= /B ]P)O(da)_n)Q(a)_n, dC()_n+1) e Q(C()n_]_, dCL)n), (39)

where Q is the Markov kernel defined in (2.1). (Sin@® is preserved byQ,
these finite-dimensional measures are consistentiapsists and is unique by
Kolmogorov’s Theorem.) Clearly(rx, (w))k>0 has the same law ifig(Po,,(-))
as(wo, w1,...) hasinu. LetT: X — X be the shift defined byT w)n, = wpt1.
ThenT is measure preserving.

Proposition 3.5.T is ergodic with respect tp.
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Proof.Let E, denote expectation with respectitoPick A C & thatis measurable
andT -invariant. We need to show that

1(A) € {0, 1}. (3.10)

Let f: Q — R be defined ad (wp) = E, (1A |wo). First we claim thatf = 15
almost surely. Indeed, sinc& is T-invariant, there exis\; € o(wk: k > 0)
and A_ € o(wk: k < 0) such thatA and A.. differ only by null sets from one
another. (This follows by approximation @& by finite-dimensional events and
using theT -invariance ofA.) Now conditional orwg, the eventA, is independent
of o (wk : k < 0) and so levy’s Martingale Convergence Theorem gives us

E.(Lalwo) = E4 (LA, l@wo) = B, (LA, |@wo, 01, ..., ®_n)
(3.11)
= Eu(Qa_lwo, 0-1,...,0-n) — 1o =1a,

with all equalities validu-almost surely.
Next let B c Q be defined byB = {wg: f(wp) = 1}. Clearly, B is %-
measurable and, since thg-marginal of is Po,

u(A) = E,(f) =Po(B). (3.12)
Hence, to prove (3.10), we need to show that
Po(B) € {0, 1}. (3.13)

But A is T-invariant and so, up to sets of measure zerayife B thenw; € B.
This means thaB satisfies condition (3.8) of Lemma 3.4 and so (3.13) holds.

Now we can finally prove Theorem 3.1:

Proof of Theorem 3.1Recall that(zx, (w))ks0 has the same law ifig(Po,(-))
as(wg, w1, ...) hasinu. Hence, ifg(..., w_1, wg, w1, ...) = f(wg) then

1 D 1S
Lo L D, 41 k
nlmm - kio forx, = nIme o kiogo T". (3.14)

The latter limit exists by Birkhoff’'s Ergodic Theorem and (by Proposition 3.5)
equalsg, (g) = Eo( f) almost surely. The second part is proved analogousty.

4. Sublinearity along coordinate directions

Equipped with the tools from the previous two sections, we can start addressing
the main problem of our proof: the sublinearity of the corrector. Here we will prove
the corresponding claim along the coordinate directior&in

Fix ewith |e| = 1 and letn(w) be as defined in (3.3). Define a sequenggv)
inductively byn; (w) = n(w) andny41(w) = nk(oe(w)). The numbersng), which
are well-defined and finite on a set of flth-measure, represent the successive
“arrivals” of ¢ to the positive part of the coordinate axis in directo.et y be
the corrector defined in Theorem 2.2. The main goal of this section is to prove the
following theorem:
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Theorem 4.1.For Pg-almost allo € Qg,

i Z(k@e o)
k— o0 k

0. (4.1)

The proof is based on the following facts about the momenjs(of (w)e, w):

Proposition 4.2. Abbreviateve = ve(w) = N1(w)e. Then

(1) Eo(lx (ve, ))I) < oo.
(2) Eo(x (ve, -)) = 0.

The proof of this proposition will in turn be based on a bound on the tails of
the length of the shortest path connecting the origingtdNe begin by showing
that|ve| has exponential tails:

Lemma 4.3.For each p> pc there exists a constant& a(p) > 0 such that for
all e with |e| = 1,
Po(lvel > n) < e™@", n>1 4.2)

Proof. The proof uses a different argumentdn= 2 andd > 3. Ind > 3, we will

use the fact that the slab-percolation threshold coincides pgtlas was proved

by Grimmett and Marstrand [21]. Indeed, given> pc, let K > 1 be so large
thatZd—1x {1, ..., K} contains an infinite cluster almost surely. By the uniqueness
of the percolation cluster ii9, this slab-cluster is almost surely a subsetf.

Our bound in (4.2) is derived as follows: L&l be the event that at least one of
the sites in{je: j = 1,..., K} is contained in the infinite connected component
inZ9=1 x {1,..., K}. Then{|vel > Kn}N{0 € Gxo} C MN;<n teke(A). Since the
eventsrke(A), £ =1, ..., n, are independent, lettingx = P(Ak) we have

P(joel > KN, 0€ Gx) < (1—px)", n>1 (4.3)

From here (4.2) follows by choosirggappropriately.

In dimensiond = 2, we will instead use a duality argument. L&} be the
box{1,...,n} x {1,...,n}. On{Jve] > N} N {0 € %}, None of the boundary
sites{je: | = 1,...,n} are in%. So either at least one of these sites is in a
finite component of size larger thanor there exists a dual crossing 4f, in the
direction ofe. By the exponential decay of truncated connectivities (Theorem 8.18
of Grimmett [19]) and dual connectivities (Theorem 6.75 of Grimmett [19]), the
probability of each of these events decays exponentially witho

Our next lemma provides the requisite tail bound for the length of the shortest
path between the origin ang:

Lemma4.4.Let L = L(w) be the length of the shortest occupied path fldm
to ve. Then there exist a constant € co and a> 0 such that for every = 1,

Po(L > n) < Ce™@", (4.4)



Simple random walk on percolation clusters 17

Proof.Let d, (0, x) be the length of the shortest path from &tim configurationo.
Picke > 0 such thatn is an integer. Then

{L > n} C {Jvel > en} U | J{du(0.ke) > n; 0. kee G} (4.5)
k=1

In light of Lemma 4.3, the claim will follow once we show that the probability
of all events in the giant union on the right-hand side is boundedBY evith
somea’ > 0 (independently oK).

We will use the following large-deviation result from Theorem 1.1 of Antal
and Pisztora [2]: There exist constaaty < oo such that

P(d(0, X) > plx|) < e (4.6)

once|x| is sufficiently large. Unfortunately, we cannot use this bound in (4.5) di-
rectly, becauske can be arbitrarily close to 0 (iéf° distance orz9). To circum-
vent this problem, letoe be the site—-mesuch thain = min{m’ > en: —mee
b0} and letAy y = {du(X,Y) = V2, X, Y € € }. Then, on{d, (0, x) > n}, ei-
ther |we| > 2¢n or at least one site “between*2¢ne and —ene is connected

to either O orke by a path longer thafi/,. Since on{|we| > 2en} we must
have|v_e 0 6™g| > en for at least onen = 1, ... en, we have

{d.,(0,ke) > n; 0, ke e €0}
en

C (U JTe({|U—e| > En}) U U (AO,—t’eU Ake—(e))~ 4.7)

m=1 en<{<2en

Now all events in the first giant union have the same probability, which is expo-
nentially small by Lemma 4.3. As to the second union, by (4.6) we know that

Po(Ag,—¢e) < €% < gN (4.8)

whenevek is so small thatdp < 1, and a similar bound holds f@\e —e as well
(except that here we need/ < 1). The various unions then contribute a linear
factor inn, which is absorbed into the exponential omcis sufficiently large. O

It is possible that a proper merge of the arguments in the previous two proofs
might yield the same result without relying on Antal and Pisztora’s bound (4.6).
(Indeed, the main other “external” ingredient of our proofs is Grimmett and Mar-
strand’s paper [21] which lies at the core of [2] as well.) However, we find the
argument using (4.6) conceptually cleaner and so we are content with the present,
even though not necessarily optimal, proof.

Next we state a trivial, but interesting technical lemma:

Lemma4.5.Let p > 1andr € [1, p). Suppose that X Xo, ... are random
variables such thasuqzl [ Xjllp < oo and let N be a random variable taking
values in positive integers such thateé\LS for some s satisfying

1+1/p
1-7/p

(4.9)
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ThenX [, Xj e L". Explicitly,

N
1], = ctsuprxqto) (i), (4.10)
i1 2

where C is a finite constant depending only on p, r and s.

Proof. Let us defingy € (1, o0) by /p + Yq = 1. From the Hlder inequality and
the uniform bound orf X; || , we get

‘Zx,‘ _ZE<’ZXJ‘ 1ne n})

n>1

<2H2x, H P(N =n)e (4.12)
n>1 j=1
(sup||X,||p Zn P(N = n)"a.

n>1

Under the assumption that hass moments, we get

> " P(N=n) Ya < (Zn“—/q)”/r) E(Ns)) (4.12)

n>1 n>1

by invoking the Hblder inequality one more time. The first term on the right-hand
side is finite wheneves obeys the bound (4.9).0

Proof of Proposition 4.2Let y (X, w) be the corrector. By Theorem 2.2, on the
set{X € oo}, x (X, ) isan L2-limit of functions y¢ (X, -) = we otx — we, ase | 0.

To prove thaty (ve, -) € L1, recall the notatiorGf;) from Lemma 2.4 and let—as
in Lemma 4.4—t = L(w) be the length of the shortest path from Qto Then

reeo) < D> D |G¥ ory(w)]. (4.13)

X! |X|eo<L(w) €e: |e|=1

But Theorem 2.2 ensures thaG o r¢llz < [|GE|l2 < C for all x ande
and alle > 0, while the number of terms in the sum does not excdéd) =
2d(2L(w) + 1)9. By Lemma 4.4,N has all moments and so, by Lemma 4.5,
SUR- 0 llxe (e, )y < oo forallr e [1,2). In particular,y (ve, -) € L.

In order to prove part (2), we first note that a uniform boundLdanorm
of yc(ve,-) for somer > 1 implies that the family{ y. (ve, -)}¢=0 iS uniformly
integrable. Sincec (ve, -) — x (ve, -) in probability, y. (ve, -) = x(ve,-) IN L1
and it thus suffices to prove

Eo(xe(ve, ) =0, €>0. (4.14)

This is implied by Theorem 3.2 and the fagt(ve, -) = we o 0e — we With w,
absolutely integrable. O
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Proof of Theorem 4.1Let f (w) = y(n1(w)e, w), and letoe be the induced shift
in the direction ofe. Then we can write

T
N

1 (Nk(@)e, 0) =D foal(w). (4.15)
0

~
Il

By Proposition 4.2 we havé € L' andEq(f) = 0. Since Theorem 3.2 ensures
thatoe is Po-preserving and ergodic, the claim follows from Birkhoff’s Ergodic
Theorem. O

5. Sublinearity everywhere

Here we will prove the principal technical estimates of this work. The level of con-
trol is different ind = 2 andd > 3, so we treat these cases separately. (Notwith-
standing, thel > 3 proof applies ird = 2 as well.)

5.1. Sublinearity in two dimensions
We begin with an estimate of the corrector in large boxe®%n

Theorem 5.1.Let d = 2 and lety be the corrector defined in Theorem 2.2. Then
for Po-almost everyn € Q,

. X,
lim  max 1z, @) =0. (5.1)
N—>00 xeo(@) N
[X|loo<n

The proof will be based on the following concept:

Definition 5.2. Given K > 0 ande > 0, we say that a site x Z9 is K, e-good
(or justgoog in configurationw € Q if X € o0 (w) and

|X(y,a))_)((x:w)| < K+E|X_y| (52)

holds for every ye % (w) of the form y= (e, wheref € Z and e is a unit
coordinate vector. We will usék . = % . (w) to denote the set of k-good sites
in configurationw.

On the basis of Theorem 4.1 it is clear that for each 0 there exists & < oo
such that théo(0 € % ) > 0. Our first goal is to estimate the size of the largest
interval free of good points in blocks-n, n] on the coordinate axes:

Lemma 5.3.Let e be one of the principal lattice vectorsZ® and, givere > 0,
let K be so large thaPp(0 € %) > 0. Foralln > 1landw € Q,lety < --- <
yr be the ordered set of all integers frdmn, n] such that ye € % (). Let

An(w) = ,- max (yj — Yj-1)- (5.3)
(If no such y exists, we defingn(w) = 00.) Then
A
lim =2 =0,  P-almost surely (5.4)

n—oo N
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o(n)

Fig. 3. Aniillustration of the main idea of the proof of Theorem 5.1. Here a square ofiside
is intersected by a gri@ of good lines‘emanating” from the good points on tixeandy
axes. The crosses represent the points on these lines which#e illong the good lines
the corrector grows slower than linear and so anywher& @ublinearity holds. For the
part of ¢ that is not onG, the maximum principle fox — X + y (X, w) lets us bound the
corrector by the values on the parts of the grid that surround it, modulo factors obdnjer

Proof. SinceP is e invariant andre is ergodic, we have

lim
nboon-4+1

n
> Lioewi.) ote = PO € % o) (5.5)
k=0

P-almost surely. A similar statement applies to the limit> —oco. But if Ap/n
does not tend to zero, at least one of these limits would not exist.

Proof of Theorem 5.1Fix ¢ € (0, 1) and letKg be such thaP(0 € % ) > 0
forall K > Kq (we are using thak . increases withK). Let Qg C Qo be the set
of configurations such that the conclusion of Lemma 5.3 applies fonbatidy-
axes, and that shift-invariance (2.12) holds fonall in the infinite cluster. We
will show that for everyo € Qf the limsup in (5.1) is less thare @lmost surely.

Let e; ande, denote the coordinate vectorsiA. Fix w € Q7 and adjusK >
Ko so that 0e % . (This is possible by the definition &®j.) Then we de-
fine (xk)kez to be the increasing two-sided sequence of all integers suchyiat
exhausts alK, e-good points on the;-axis, i.e.,

Xke1 € Yk e (w), keZ. (5.6)

If An be the maximal gap between consecutiys that lie in [-n, n], cf (5.3), we
defineni(w) be the least integer such tha/n < € for all n > ny(w). Similarly
we identify a two-sided increasing sequen®g)ncz of integers exhausting the
sites such that

W& € Yk (@), ke, (5.7)
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and letna(w) be the quantity correspondingg(w) in this case.
Let ng = max{ny, n2}. We claim that for alh > ng(w),

max |y (X, )| < 2K + 6¢n. (5.8)
XEG oo (@)
[X|loo<n

To prove this, let us consider the gfid= G(w) of good lines
{xx&1 + Ne: n e Z}, k ez, (5.9

and

{ney + yke2: n e Z}, k ez, (5.10)

see Fig. 3. As a first step we will use the harmonicityxof> x + y (X, w) to
deal withx € € \ G. Indeed, any such is enclosed between two horizontal and
two vertical grid lines and every path @fy, connectingx to “infinity” necessarily
intersects one of these lines at a point which is alsé.in Applying the maximum
(and minimum) principle for harmonic functions we get

max X, )| < 2en+ max X, w)|. 5.11
nax [ (x. o) max | (x, o) (5.11)
[Xloo<n [Xloo<2n

Here we used that the enclosing lines are not more ffan < 2en < n apart
and, in particular, they all intersect the blockgn, 2n] x[—2n, 2n].

To estimate the maximum on the grid, we pick, say, a horizontal grid line
with y-coordinateyx and note that, by (2.12), for everye %, on this line,

X (X, @) = x(Yk€2, @) = x (X — Yk€2, Ty,e®). (5.12)
By (5.7) and the fact that — yk& € €0 (7ye,) We have
% (X, ) — x(Yk€2, ®)| < K + 2en (5.13)

wheneverx is such thaix|., < 2n. Applying the same argument to the vertical

line through the origin, and replaced byyke, we get
|x (X, )| < 2K + 4en (5.14)

for everyx € % N G with [X|sc < 2n. Combining this with (5.11), the esti-
mate (5.8) and the whole claim are finally proveds

Interestingly, a variant of the above strategy for controlling the corrector in
d = 2 has independently been developed by Chris Hoffman [25] to control the
geodesics in the first-passage percolatio.én
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5.2. Three and higher dimensions
Ind > 3 we have the following weaker version of Theorem 5.1:

Theorem 5.4.Let d > 3. Then for alle > 0 andPg-almost allw,

1
limsup——— 1 —0 5 15
n—>oop(2n + 1)d 2 {lx (x,0)|>€n} ( )
XEBG oo ()
[X|<n

Here we fix the dimensiod and run an induction over-dimensional sections
of thed-dimensional boXx € Z9: |x| < n}. Specifically, for eachh = 1, ..., d,
let A}, be thev-dimensional box

Ap={kier+ - +ke:keZ |kl<nvi=1.., v} (5.16)

The induction eventually gives (5.15) for= d thus proving the theorem.

Since it is not advantageous to assume that#l,,, we will carry out the proof
for differencef the form y (x, w) — x (y, ) with X, y € 4. For eachw € Q,
we thus consider the (upper) density

ov(w) = IJ% limsup inf

1 - . (5.17
Moo yetow)nAd 1AL] 2 Uirco-ryorzea - (6:17)

XEG oo (w)NAY,

Note that the infimum is taken only over sites in one-dimensional &pxOur
goal is to show by induction that, = 0 almost surely foralb = 1,...,d. The
induction step is encapsulated into the following lemma:

Lemma5.5.Letl < v < d. If p, = O, P-almost surely, then alsp, ;1 = O,
P-almost surely.

Before we start the formal proof, let us discuss its main idea: Suppose that
0, = 0 for somev < d, P-almost surely. Pick > 0. Then forP-almost everyw
and all sufficiently largen, there exists a set of sites C Ay, N % such that

(A} M%) \ A] < €lA] (5.18)

and
‘X(Xa w)_){(yaw)’ <e€n, X,y e A. (519)

Moreover,n sufficiently large,A could be picked so that N A} # @ and, assum-
ing K > 1, the nonK, e-good sites could be pitched out with little loss of density
to achieve even

A C Y e. (5.20)

(All these claims are direct consequences of the Pointwise Ergodic Theorem and
the fact thatP(0 € % ) converges to the density @f, asK — oo.)
As a result of this construction we have

%z, 0) — x(X,®)| < K +en (5.21)



Simple random walk on percolation clusters 23
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Fig. 4. The main idea underlying the proof of Theorem 5.4. The figure on the left represents

ann x n square in a two-dimensional planeZr; the crosses now stand fgoodsites; cf
Definition 5.2. Herd. is chosen so th&tl — d)-fraction of all vertical lines find a good point

on the intersection with one of tHe horizontal linesn is assumed so large that every pair

of these lines has two good points “above” each other. Any two good poiaitsly in the

square are connected by broken-line path that uses at most 4 good points in between. The
dashed lines indicate the vertical pieces of one such path. The figure on the right indicates
how this is used to control the difference of the corrector at two general pomits ¢

inann x n x n cube inZ3—with obvious extensions to adl > 3.

foranyx € A and anyz € A,”ﬁl N %~ Of the formx + je, ;1. Thus, ifr,s €
oo N A,”ﬁl are of the latter form;, = x + je,+1 ands = y + ke, 1—see Fig. 4
for an illustration—then (5.21) implies

Invoking the “induction hypothesis” (5.19), the right-hand side is less thar-2
3en, implying a bound of the type (5.19) but one-dimension higher.

Unfortunately, the above is not sufficient to prove (5.19) for all but a vanishing
fraction of all sites inA’*1. The reason is that thes ands's for which (5.22)
holds need to be of the form+ je, 1 for somex € A N%. But ¥ will occupy
only aboutP,, = P(0 € %) fraction of all sites inA},, and so this argument does
not permit us to control more than fraction ab&yt of A;” N Cxo.

To fix this problem, we will have to work with a “stack” of translates/of at
the same time. (These correspond to the stack of horizontal lines on the left of of
Fig. 4.) Explicitly, consider the collection ofboxes

AQj = Tiea (Ap), i=1,...,L. (5.23)
HerelL is a deterministic number chosen so that, for a giwenO0, the set
Ao={xeAp:3je{0,...,L -1}, x+ jey41 € Ay j NCoo} (5.24)

is so large that
|Aol > (1= 9)|AR (5.25)
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oncen is sufficiently large. These choices ensure (fiat 6)-fraction of A}, is now
“covered” which by repeating the above argument gives us control,avet) for
nearly the same fraction of all sitess A1 N €.

Proof of Lemma 5.9.etv < d and suppose that, = 0, P-almost surely. Fix
with 0 < 0 < %Pozo and letL be as defined above. Choase 0 so that

1
Le+d <3 P2. (5.26)

For a fixed but largek, andP-almost everys andn exceeding amw-dependent
quantity, for eachj = 1,...,L, we can findAj c Aj; N % satisfying the
properties (5.18-5.20)—with, replaced byAgjj. GivenAq,..., AL, let A be
the set of sites imﬁ,Jrl N %~ Whose projection onto the linear subspdte=
{kie1+-- -+ k&, : ki € Z} belongs to the corresponding projectionfofU - - - U
Ay . Note that theA j could be chosen so thatN A% + 0.

By their construction, the projections of tig’s, j = 1,..., L, ontoH “fail
to cover” at mosLe|Ay | sites inAg, and so at mos + Le)|A}| sites inAy, are
not of the formx + ie, ;1 for somex e UJ— Aj. It follows that

(AR N %) \ A| < G+ LOIAR, (5.27)

i.e., A contains all except at moét € +6)-fraction of all sites inA}** that we care
about. Next we note that K is sufficiently large, then forevery 4 i < j <L,
the setH contains at Ieas} P2 -fraction of sitesx such that

de

Zi def +ie, e %, and z def +jer € Y.e. (5.28)

Since we assumed (5.26), ontes> 1, for each pailli, j)with1 <i < j <L
suchz andzj can be found so that € Aj andzj € Aj. ButtheAj's were
picked to make (5.19) true and so via these pairs of sites we now show that

|)((y, w) — x (X, w)‘ <K +¢€L + 2¢n (5.29)

for everyx,y e A1 U---U AL; see again (the left part of) Fig. 4.
From (5.19) and (5.29) we now conclude that foral € A,

|x(r,w) — x(s,w)| < 3K + €L + 4en < 5en, (5.30)

provided thakn > 3K + €L. If p,  denotes the right-hand side of (5.17) before
takinge | 0, the bounds (5.27) and (5.30) and) A} # @ yield

0v+15¢(w) <9+ Le, (5.31)

for P-almost everyw. But the left-hand side of this inequality increasesca$
0 while the right-hand side decreases. Thus, taking 0 andé | O proves
thatp,,1 = 0 holdsP-almost surely. O

Proof of Theorem 5.4The proof is an easy consequence of Lemma 5.5. First, by
Theorem 4.1 we know that (w) = 0 for Pg-almost everyo. Invoking appropriate
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shifts, the same conclusion applieslmost surely. Using induction on dimension,
Lemma 5.5 then tells us thatj(w) = 0 for Pg-almost everyw. Letw € Qp. By
Theorem 4.1, for each > 0 there isng = hp(w) with Po(ng < o) = 1 such
that for alln > no(w), we have|y (x, w)| < enfor all x € A} N %o (w). Using
this to estimate away the infimum in (5.17), the fact that= 0 now immediately
implies (5.15) foralk > 0. O

6. Proof of main results

Here we will finally prove our main theorems. First, in Sect. 6.1, we will show the
convergence of the “lazy” walk on the deformed graph to Brownian motion and
then, in Sect. 6.2, we use our previous results on corrector growth to extend this
to the walk on the original graph. This separation will allow us to treat the parts
of the proof common fod = 2 andd > 3 in a unified way. Theorem 1.2, which
concerns the “agile” walk, is proved in Sect. 6.3.

6.1. Convergence on deformed graph
We begin with a simple observation that will drive all underlying derivations:

Lemma6.1.Fix w € Qp and let x— y (X, ) be the corrector. Given a path of
random walk(Xn)n=o with law Ry, let

Mr(]w) = Xn + X(Xn: CU), n:= 0 (61)

Then(Mrﬁ“’))nzo is an L2-martingale for the filtration(o (Xo, . . ., Xn))n>0. More-
over, conditional on ), = X, the incrementsM(“’) - M,E(‘)"))kzo have the same

k+k0
law as(Mlﬁ’X”))kzo-

Proof. SinceXy is boundedy (Xn, ) is bounded and sMr(,“’) is square integrable
with respect toPy,. Sincex — X + x (X, w) is harmonic with respect to the
transition probabilities of the random walkp) with law Pg ,,, we have

Eow(MZyo(Xn) =M@,  n=o0, (6.2)

Po,,-almost surely. Since/lr(]‘”) is a(Xn)—measurabIe(Mr(,‘”)) is a martingale. The

stated relation between the Iaws(Mlﬁ‘;’)kO — Mgﬁ)kzo and(MlETX“’))kzo is implied

by the shift-invariance (2.12) and the fact tIﬁMr(,“’)) is a simple random walk on
the deformed infinite componento

Next we will establish the convergence of the above martingale to Brownian
motion. The precise statement is as follows:

Theorem 6.2.Letd > 2, p > pc andw € Qq. Let (Xn)n>0 be the random walk
with law Ry, and Iet(M,ﬁ‘”))nzo be as defined i6.1). Let(§r(,“’)(t): t > 0) be
defined by

B = =M +n—Ltn)(M{),, —MP)),  t=0. (6.3

Ltn]

S

n



26 Noam Berger and Marek Biskup

Then for all T > 0 and Pg-almost everyw, the law of(§n(t): O<t<T
on (C[0, T], #7) converges weakly to the law of an isotropic Brownian motion
(Bt: 0 <t < T) with diffusion constant D, i.e., 8?) = Dt, where

D = Eo(Eou| X1 + £ (X1, @)[) € (0, 00). (6.4)

Proof. Without much loss of generality, we may confine ourselves to the case
whenT = 1. Let.% = o(Xo, X1, ..., Xx) and fix a vectoma € R9. We will
show that (the piece-wise linearization)tot> a- Mffﬁj scales to one-dimensional
Brownian motion. Fom < n, consider the random variable

1 n
(@) (@0)y12
Vn(f%(é) = ﬁ E Eo’w([a.(Mkﬁl—Mk‘” )] 1{|a-(M(‘“)—Ml£‘”))|zeﬁ} ﬁ.k) (6.5)
k=0

k+1
In order to apply the Lindeberg-Feller Functional CLT for martingales (Theo-
rem 7.7.3 of Durrett [15]), we need to verify that f&g-almost everyo,
(1) V%), (0 = Ctin Po,,-probability for allt € [0, 1] and some & (0, c0).
(2) VA% (e) = 0in Py ,-probability for alle > 0.

Both of these conditions will be implied by Theorem 3.1. Indeed, by the last con-
clusion of Lemma 6.1 we may write

1 m
Vi@ = = > f a0 mxi(), (6.6)
k=0
where 012
@
fi () = Eo,w([a.Ml ] 1“a_M£w>|ZK}). (6.7)
Now if ¢ = 0, Theorem 3.1 tells us that, fé-almost everyo,
lim V{0 E M{@)12 b2 6.8
n|—>moo n,n()Z]EO( O,a)([a' 1 ]))Za lal”, ()

where we used the symmetry of the joint expectations under rotations by 90
From here condition (1) follows by scaling out thelependence first and working
with tn instead of.

On the other hand, when > 0, we havefeﬁ < fk oncen is sufficiently
large and soPg-almost surely,

; () (@72
im SupV/{ (e)gEo(EO,w([a M. ]1{|a.M;w>|zK})) — 0, (6.9

K— oo

where to apply Dominated Convergence we used ahaM{‘”) e L2 Hence,
the above conditions (1) and (2) hold—in fact, even with limits taRgp-almost
surely. Applying the Martingale functional CLT and the Ci&mrwold device (The-
orem 2.9.2 of [15]), we conclude that, fBg-almost everyw, the linear interpola-

.....

with covariance matrix; D 1.
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To make the proof complete, we need to show that (0, co). Here the finite-
ness is immediate by the square-integrability ofThe positivity can be shown in
many ways: either by a direct computation from (6.4) using HEw(tEo,, (X1 -
x (X1, w)) = 0 [which in turn is implied byEo(x (€, ®) 1{w=1;) = O for ev-
ery coordinate vectag] or by invoking the sublinearity of the corrector proved in
Theorems 5.1-5.4, or by an appeal to the lower (or, alternatively, upper) bound
in [3, Theorem 1]. O

6.2. Correction on the corrector

It remains to estimate the influence of the harmonic deformation on the path of
the walk. As already mentioned, while our proofdn= 2 is completely self-
contained, fod > 3 we rely heavily on (a discrete version of) the sophisticated
Theorem 1 of Barlow [3].

Let us first dismiss the two-dimensional case of Theorem 1.1:
Proof of Theorem 1.1 (& 2). We need to extend the conclusion of Theorem 6.2
to the linear interpolation ofX,,). Since the corrector is an additive perturbation
of M,ﬁ“’), it clearly suffices to show that, f@p-almost everyo,
|x (Xk, »)]

1@&)517 =2 o, in Po,,-probability. (6.10)

By Theorem 5.1 we know that for eveey> 0 there exists & = K(w) < oo
such that

X6 @)] < K +elXlos X € Coo(@). (6.11)

If € < Y5, then this implies
lx Xk, ®)] < 2K + 2¢|M]. (6.12)

But the above CLT foX M) tells us that maxn |M|£(”)|/\/ﬁ converges in law to

the maximum of a Brownian motioB(t) overt e [0, 1]. Hence, ifP denotes the
probability law of the Brownian motion, the Portmanteau Theorem (Theorem 2.1
of [7]) allows us to conclude

0
lim supPo,, (max| y (Xk, ®)| > 6v/n) < P( max |B(t)| > —). (6.13)
N k<n <1 2¢

n—o0 O<t<

The right-hand side tends to zeroea$ O foralld > 0. O

In order to prove the same resultdn> 3, we will need the following upper
bounds on the transition probability of our random walk:

Theorem 6.3.(1) There is a random variable & C(w) with Po(C < o0) = 1
such that for allw € Qg and all x € ¢ (w),

Clw) n> 1 (6.14)

Po,w(Xn = X) < PRI 2
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(2) There are constants o, € (0, o) and random variables N= Ny (w) such
that for all w € Qg, all X € € (), all R > 1, and all N> Ny (w),

Pe.o(IXn — X| > R) < ¢ exp{—c,R?/n}. (6.15)

Moreover, the random variablgd\y) have stretched-exponential tails, i.e., there
exist constants,c> 0 andé® > 0 such that for all xe Z9,

Po(Ny > Ry <e®f  R>1 (6.16)

For a continuous-time version of our walk, these bounds are the content of
Theorem 1 of Barlow [3]. (In fact, the continuous-time version of the bound (6.14)
was obtained already by Mathieu and Remy [31].) Unfortunately, to derive The-
orem 6.3 from Barlow’s Theorem 1, one needs to invoke various non-trivial facts
about percolation and/or mixing of Markov chains. In Appendix A we list these
facts and show how to assemble all ingredients together to establish the above
upper bounds.

Proof of Theorem 1.1 (&> 3). We will adapt (the easier part of) the proof of
Theorem 1.1 in Sidoravicius and Sznitman [38]. First we show that the laws of
(Ba(t): t < T)on(C[O, T], #4) are tight. To that end it suffices to show (e.g., by
Theorem 8.6 of Ethier-Kurtz [16]) that it/ is the class of all stopping times of
the filtration (o ({Bn(S): s < t}))o<t<T, then

lim sup lim sup sup Eo.,(1Bn(z + €) — Bn(z)|%) = 0. (6.17)

€l0 N—0o0 e

As in [38], we replacer by its integer-valued approximation. Explicitly, lét=
Inz | + 1 and letd be a number such that = [ne| + 1. Sincer differs fromnz
by a constant of order unity, and similarly for+ nd andn(z + ¢), we have
B B L x Xs| + = 6.18
[Bn(r +¢€) — n(T)|§ﬁ| t4ns — f|+ﬁ (6.18)
for some constant, < oo. This allows us to estimate (6.17) by means of the
second moment giX; , n5 — X;|.

Recalling thatr < T, we may assume that < 2Tn. By (6.16) we know
that there exists an almost-surely finite random varidle= C’(w) such that
maxyx<r Nx < C’(w)(log R)¢ onceR > 2, where; = 2. Since|X;| < 2Tn,
this implies thalNx, < C’(w)[log(2T n)]¢. Theorem 6.3(2) and the strong Markov
property— is a stopping time of the random walk—tell us that, for some con-
stantcs < oo (depending only o, ¢, and the dimension),

Eo.w(IXi4ns — X¢1%) < Csen,  n > no(o). (6.19)

Here we used — 6 = O(Yy) and letnp(w) be such thadn > C’(w)[log(2T n)]¢
for all n > ng. The bound (6.17) is now proved by combining (6.18-6.19) and
taking the required limits.

Once we know that the laws 6B (t): t < T) are tight, it suffices to show the
convergence of finite-dimensional distributions. In light of Theorem 6.2 (and the
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Markov property of the walk), for that it is enough to prove that fortal 0 and
Po-almost everyy,

X (Xitn), ) : ) .

T = 0 in Po,,-probability. (6.20)
Without loss of generality, we need to do this only fee 1. By Theorem 6.3, the
random variablé,, lies with probability 1— € in the block -M/n, M /n]9NZ4,
providedM sufficiently large (with “large” depending possibly af). Using The-
orem 6.3(1) to estimatBy ., (X = X) for x inside this block, we have

1
Po.o (lx (Xn, @)| > 6¢/N) < € + C(w) a7z Z Ly oo - (6.21)
XEG oo (w)
Ix|<M/n
But Theorem 5.4 tells us that, for @) M > 0 andPg-almost every, the second
term tends to zero as— oo. This proves (6.20) and the whole claimo

6.3. Extension to “agile” walk

It remains to prove Theorem 1.2 for the “agile” version of simple random walk
0N %. Since the proof is based entirely on the statement of Theorem 1.1, we will
resume a unified treatment of al> 2. First we will make the observation that
the times of the two walks run proportionally to each other:

Lemma 6.4.Let (Tx)k=0 be the stopping times defined(i7). Then forallt> 0
andPg-almost everyy,

T
A et Po.,-almost surely (6.22)
n n-ooo
where 1 1
1_ g2 1) 6.23
® O(Zd e_%:_l {“’e—l}) (6.23)

Proof. This is an easy consequence of the second part of Theorem 3.1 and the fact
that forPg-almost everys we haverxw # @ oncex # 0. Indeed, letf (w, ') =
1{w2a)- FOrt = 0 the statement holds trivially so let us assume that0. If n is

so large thafl|n¢; > 0, we have

n 1 Uy
= Z f(Tx_ @, T, ). (6.24)
Tin)  Tiny

SinceTjthy — oo asn — oo, by Theorem 3.1 the right hand side converges
to the expectation of (w, 7x,®) in the annealed measuBy(Py,(-)). A direct
calculation shows that this expectation equals O

Proof of Theorem 1.ZThe proof is based on a standard approximation argument
for stochastic processes. LB} (t) be as in Theorem 1.1 and recall tHgfj(t) is a
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linear interpolation of the valueB, (Ti/n) fork = 0, ..., n. The path-continuity
of the processeB(t) as well as the limiting Brownian motion implies that for
everye > Othereis & > 0 such that

Po,a,( sup |Ba(t) — Bn(t)] < e)> 1—e¢ (6.25)
tt'<T
t—t’| <6
oncen is sufficiently large. Similarly, Lemma 6.4, the continuitytof> ©t and
the monotonicity ok — Ty imply that forn sufficiently large,

.
Po,w(suqﬂ - ot < 5) > 1-e. (6.26)
t<T! N

On the intersection of these events, the equzﬁﬁ&k/n) = Bn(Tk/n) yields

ocBX |B/,(Kn) — Bn(®k)| < e. (6.27)
In light of piece-wise linearity this shows that, with probability at least Z¢, the
pathst — By (t) andt —» Bn(®t) are within a multiple o€ in the supremum norm
of each other. In particular, B; denotes the weak limit of the proced@, (t): t <
T), then(ﬁg(t): t < T) converges in law tdBg¢: t < T). The latter is an
isotropic Brownian motion with diffusion constabl = D®2. 0O

A. Heat-kernel upper bounds

Let (Zt)t>0 denote the continuous-time random walk which attempts a jump to one
of its nearest-neighbors at rate one (regardless of the number of accessible neigh-
bors). Letg’ (x, y) denote the probability tha; started ak is aty at timet. In his

paper [3], Barlow proved the following statement: There exist cons@t€, e

(0, 00) and, for eachx e Z9, a random variabl&(x) = S(x, w) € (0, o) such

that for allx, y € ¢ (w) and allt > S(x),

g’ (X, y) < Cat ™2 exp{—Ca|x — y|?/t}. (A1)

Moreover,S(x) has uniformly stretched-exponential tails, i.e.,

Po(SX) > R) <SR R>1. (A2)

Barlow provides also a corresponding, and significantly harder-to-prove lower
bound which requires the additional conditibn- |x — y|. However, for (A.1),
this condition is redundant.

In the remarks after his Theorem 1, Barlow mentions that appropriate mod-
ifications to his arguments yield the corresponding discrete time estimates. Here
we present the details of these modifications which are needed to make our proof
of the invariance principles in Theorems 1.1 and 1.2 complete. Notice that we do
not re-prove Barlow’s bounds in their full generality, just the absolute minimum
necessary for our purposes.
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A.1. Uniform bound

There will be two kinds of bounds on the heat-kernel as a function of the terminal
position of the walk aften steps: a uniform bound by a constant tinme$/2 and

a non-uniform, Gaussian bound on the tails. We begin with the statement of the
uniform upper bound:

Proposition A.1.Let d > 2 and let p > pc(d). There exists a random vari-
able C= C(w) withP(C < o0) = 1 such that for allw € Qg and all X € ¢,

Clw) n> 1. (A.3)

Po,o(Xn = X) < Y7 2

The proof will invoke the isoperimetric bound from Barlow [3]:

Lemma A.2. There exists a constante (0, co) such that forPg-almost everyn

and all R sufficiently large,

oA
JOAL S gyt (A.4)
Al

forall A C €» N[—R, R]Y such thaA| > ROOL,

Proof. This is a consequence of Proposition 2.11 on page 3042, and Lemma 2.13
on page 3045 of Barlow’s paper [3].0

This isoperimetric bound will be combined with the techniqueadlving sets
developed by Morris and Peres [32], whose salient features we will now recall.
Consider a Markov chain on a countable state-spadet p(x, y) be the transition
kernel and letr be a stationary measure. L&t(x,y) = =z (X)p(X, y) and for

eachS, S C V, et Q(S, ) = D ycq ZyeSz Q(X, y). For each se6 c V
with finite non-zero total measurg(S) we define theconductancebs by

QS S
Og= ——. A.
s (S (A.5)
For sufficiently large, we also define the function
O(r) =inf{®ds: 7(S) <r}. (A.6)

The following is the content of Theorem 2 in Morris and Peres [32]: Suppose
that p(x, x) > y for somey € (0,15] and allx € V. Lete > Oandx,y € V. If n
is so large that

N2 Ae
n>1+ ¢ zy) / deu, (A.7)
Y 4z () Az (y)] UP(U)
then
p"(X,y) < ex(y). (A.8)

Equipped with this powerful result, we are now ready to complete the proof of
Proposition A.1:
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Proof of Proposition A.1First we will prove the desired bound for even times.
Fix o € Q and letY, = Xz, be the random walk off(w) observed only at
even times. For eack, y € % (w), let us usep(x, y) to denote the transition
probability Py ,(Y1 = y). Let z (x) denote the degree afon % (w). Thenz is
an invariant measure of this chain. Moreover, by our restriction to even times we
havep(x, x) > (2d)~2 > 0 and so (A.7—A.8) can be applied.

By Lemma A.2 we have thabs > c;r(S)‘% for somec > 0 and all setsS of
the formS = %, N[—R, R]Y for R > 1. Hence®d(r) < ¢/r—1 for some finite
¢ = ¢/(w). Plugging into the integral (A.7) and using thatis bounded, we find
thatifn > Ce‘g, then (A.8) holds. Her€ is a positive constant that may depend
on w. Choosing the minimah possible, and applying"(x, ) = Px.o(Yn = ¥),
the bound (A.8) proves the desired claim for all even times. To extend the result to
odd times, we apply the Markov property at time onel

A.2. Gaussian tails

Next we will attend to the Gaussian-tail bound. Given the random vari&oesy)
from (A.1-A.2), define random variabl@, = Ny (w) by

S(y)?
Ny = S(X) v su .
x = S() y:y£x|y_x|

(A.9)

Here is a restatement of the corresponding bound from Theorem 6.3:

Proposition A.3.Letd > 2and p> pc(d). There exist constantg,@, € (0, o)
such that for allw € Qq, all X € € (w), all R > 1and all n > Ny(w),

> Pro(Xn=1y) < crexp{—c,R?/n}. (A.10)
y: ly—=X|>R

Proof. The proof is an adaptation of Barlow’s Theorem 1 to the discrete setting.

Let (Xn) be the discrete time random walk, and(&t):>o be the continuous time

random walk with jumps occurring at rate 1, both startex &¥e consider the cou-

pling of the two walks such that they make the same moves. We wilPused E

to denote the coupling measure and the corresponding expectation, respectively.
Letn > Ny and letA, be the event thgdiX,, — x| > R. PickK > 1 and let

an
In =/ 14z x> R/K} dt (A.12)
n

be the amount of time inn} 4n] that the walk(Z;) spends at distance larger
thanR/k from x. By the inequality
E(ln)
P(An) < ———,
" = Elnl An
it suffices to derive an appropriate upper boundEf,) and a matching lower
bound onE(l,|An). Note that we may assume thHat< n because otherwise we
haveP (An) = 0 and there is nothing to prove.

(A.12)
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To derive an upper bound di(l,), we note that fot > n, our choicen > Ny
impliest > S(x). The expectation can then be bounded using (A.1):

4n
=/ ¥ axyd

n

y: ly—=X|>R/K
an , (A.13)
< Cl/ t—d/2 Z e~ CoX?/t gt < Cune=Cs T
n x: [X]>R/K
whereC4 andCs are constants (possibly dependingoh
It thus remains to prove that, for some cons@gt- 0,
E(In]An) > Cgn. (A.14)

To derive this inequality, let us recall that the transition&phappen at rate one,
and they are independent of the path of the walk. Hend®, ié the event thak;
attempted at least jumps by time 2, thenP (Bp|An) = P(B,) is bounded away
from zero for alln > 1. Therefore, it suffices to prove tha(l,| Ay N Br) > Cgn.

Let T be the first time when the wallZ; ) is farther fromx thanR. On A,N By,
this happens before timen2i.e., T < 2n. Let Qr = [—-R, R]9NZ% andQr/x =
[—Ri, Rik]9NZ9. Then for valueg on the external boundary €r—which are
those thaZt can take—the bound (A.1) tells us

d

> gy < (ZK—R) maX[S‘d/zexp(—%Csz/S)} < C7K™Y,
yeQr/k s>0
(A.15)

provided that > S(z). But our assumptions > Ny andR < nimply n > S(2),
and so in light of the fact thal < 2n on A, N By, (A.15) actually holds for alt
such thatT +t e [3n, 4n]. Plugging Z1 for z on the left-hand side and taking
expectation gets us an upper bound B(Z; € Qgr/k|An N Bp)—with t now
playing the role ofT + t. Hence,

4n
E(lnlAn N1 Bn) > / P(Zt ¢ Qr/k|An N Bn) = n(1— C7K~9).  (A.16)

3n

ChoosingK sufficiently large, the right-hand side grows linearlynin O

Proof of Theorem 6.3art (1) is a direct consequence of Proposition A.1, while
part (2) follows from Proposition A.3 and the fact that if t8éx) have stretched
exponential tails (uniformly irx), then so do thé\k's. 0O

B. Some questions and conjectures

While our control of the corrector id > 3 is sufficient to push the proof of the
functional CLT through, it is not sufficient to provide tlwenceptually correct
proof of the kind we have constructed fdr= 2. However, we do not see any
reason whyd > 3 should be different frord = 2, so our first conjecture is:
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Conjecture 1. Theorem 5.1 is true in all @& 2.

Our proof of Theorem 5.1 id = 2 hinged on the fact that the corrector plus
the position is a harmonic function on the percolation cluster. Of interest is the
guestion whether harmonicity is an essential ingredient or just mere convenience.
Yuval Peres suggested the following generalization of Conjecture 1:

Question 2.Let f: Z9 — R be a shift invariant, ergodic process @f whose
gradients are in It and have expectation zero. Is it true that

lim 1 max |f(x)|=0 (B.1)

N—00 N xezZdN[—n,n]d
almost surely?

Update The above question, while obviously truedn= 1, has a negative answer

in all d > 2. The first counterexample, based on constructions in [43] and [11],
was provided to us by Martin Zerner. Later Tom Liggett pointed out the following,
embarrassingly simple, counterexample: f€k) be i.i.d. with distribution func-
tion P(f(x) > u) =u~9foru > 1. Then(f (x)),c7zd is shift-invariant, ergodic,
with f e LT and the gradients of having zero mean, yet—1 maXx<n | f (X)|

has a non-trivial distributional limit as — oco.

The harmonic embedding &f,, has been indispensable for our proofs, but it
also appears to be a very interesting object in its own right. This motivates many
guestions about the correctp(x, w). Unfortunately, at the moment it is not even
clear what properties make the corrector unique. The following question has been
asked by Scott Sheffield:

Question 3.1s it true that, for a.ew € Qq, there exists only one vector-valued
function x —» y(X,w) 0N % (w) such that x — X + y (X, ®) is harmonic
0N % (), ¥ (0, w) = 0and y (X, w)/|X| — 0as|x| - co?

If this question is answered in the affirmative, we could generate the corrector
by its finite-volume approximations (this would also fully justify Fig. 1). If we re-
strict ourselves to functions that have the shift-invariance property (2.12), unique-
ness can presumably be shown using the “electrostatic methods” from, e.g., [18].
However, it is not clear whether (2.12) holds for the corrector defined by the ther-
modynamic limit from finite boxes.

As to the more detailed properties of the corrector, for the purposes of the
present work one would like to know how(x, @) scales withx and whether it
has a well-defined scaling limit. We believe that, in sufficiently high dimension,
the corrector is actually tight:

Conjecture 4. Let d > 1. Then for eacke > 0 there exists K< oo such that
Po( |y (X, w)| > K | X € €x) < € forall x e Z9.

It appears that one might be able to prove Conjecture 4 by using Barlow’s heat-
kernel estimates. To capture the behavior in low dimensions, we make a somewhat
wilder guess:
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Conjecture 5. Let d > 1. Then the law of x> e#x(LX/EJ) on compact subsets

of RY converges weakly (as | 0) to Gaussian Free Field, i.e., a multivariate
Gaussian field with covariance proportional 11, where A is the Dirichlet
Laplacian onRY and1 is the d-dimensional unit matrix.

Here is a heuristic reasoning that led us to these conjectures: Consider the
problem of random conductances to avoid problems with conditioning on contain-
ment in the infinite cluster. To show the above convergence, we need that for any
smoothf : R — R with compact support,

d 2-d D ) ,
€ XeZZ:d(Af)(xe)e Zx0 2 N(0,62|VF]31), (B.2)

whereV and A denote the (continuous) gradient and Laplacian, respectively, and
whereN (0, C) is a mean-zero, covariané@multivariate normal random variable.
Next we note that the corrector is defined, more or less, as the solution to the
equationAqy = —V, whereV is the local drift andA is the relevant generator,
which is basically a discrete Laplacian @A. Thus, ifg: RY — R is smooth with
compact support angl (X) = g(xe), then

P Mg X020 = =T Y G (OVX)

xezd xeZd

(X +€) — ge (X
=2y Zg( z g()ew(x,x+e) (B.3)

e: lel=1xezd

D 2
T N(0, [Vgli51)

The convergence statement (B.2) would then follow from (B.3) provided we can
replace the “discretized” Laplaciam?Aqg, by its continuous counterpa#tg.

Note that ford = 1 and conductances bounded away from zero, Conjecture 5
is actually a theorem. Indeed, the corrector is a random walk with increments given
by reciprocal conductances and so the convergence follows by the invariance prin-
ciple for random walks. Conjecture 5 suggests that Conjecture 4 appliesf@.

Despite the emphasis on the harmonic embeddingof our proofs used,
quite significantly, the underlying group structureZst; e.g., in Sect. 4. Presum-
ably this will not prevent application of our method to other regular lattices, but for
more irregular graphs, e.g., Voronoi percolatiofRity significant changes may be
necessary. A similar discussion applies to various natural subdomaifs edr
instance, it is not clear how to adapt our proof to random walk on the infinite
percolation cluster in the half-spage e Z9: xq > 0}.

A different direction of generalizations are the model$omig-rangepercola-
tion with power-law decay of bond probabilities. Here we conjecture:

Conjecture 6. Let d > 1 and consider long-range percolation obtained by adding
to Z9 a bond between every two distinct siteg Z9 independently with proba-
bility proportional to|x — y|~@+®) If o € (0, 2), then the corresponding random
walk scales to a symmetricstable Levy process iRY.
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Note that, according to this conjecture,dn= 1, the intervala < (0, 2) of
“interesting” exponents is larger than the interval for which an infinite connected
component may occur even without the “help” of nearest neighbor connections.
On the other hand, in dimensiods> 3, the interval conjectured for stable conver-
gence is strictly smaller than that of “genuine” long-range percolation behavior,
as defined, e.g., in terms of the scaling of graph distance with Euclidean distance;
cf [4,5,8].
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