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Partition function zeros at first-order phase transi-
tions: Pirogov-Sinai theory

M. Biskup,* C. Borgs,” J.T. Chayes and R. Kotecky*

This paper is a continuation of our previous analysis [2] of partition functions
zeros in models with first-order phase transitions and periodic boundary condi-
tions. Here it is shown that the assumptions under which the results of [2] were
established are satisfied by a large class of lattice models. These models are
characterized by two basic properties: The existence of only a finite number of
ground states and the availability of an appropriate contour representation. This
setting includes, for instance, the Ising, Potts and Blume-Capel models at low
temperatures. The combined results of [2] and the present paper provide com-
plete control of the zeros of the partition function with periodic boundary con-
ditions for all models in the above class.
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1. INTRODUCTION
1.1. Overview

In the recent papers [1, 2], we presented a general theory of partition function
zeros in models with periodic boundary conditions and interaction depending
on one complex parameter. The analysis was based on a set of assumptions,
called Assumptions A and B in [2], which are essentially statements concern-
ing differentiability properties of certain free energies supplemented by ap-
propriate non-degeneracy conditions. On the basis of these assumptions we
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characterized the topology of the resulting phase diagram and showed that the
partition function zeros are in one-to-one correspondence with the solutions to
specific (and simple) equations. In addition, the maximal degeneracy of the
zeros was proved to be bounded by the number of thermodynamically stable
phases, and the distance between the zeros and the corresponding solutions was
shown to be generically exponentially small in the linear size of the system.

The reliance on Assumptions A and B in [2] permitted us to split the
analysis of partition function zeros into two parts, which are distinct in both
mathematical and physical content: one concerning the zeros of a complex (in
fact, analytic) function—namely the partition function with periodic bound-
ary conditions—subject to specific requirements, and the other concerning the
control of the partition function in a statistical mechanical model depending
on one complex parameter. The former part of the analysis was carried out
in [2]; the latter is the subject of this paper. Explicitly, the principal goal of
this paper can be summarized as follows: We will define a large class of lattice
spin models (which includes several well-known systems, e.g., the Ising and
Blume-Capel models) and show that Assumptions A and B are satisfied for
every model in this class. On the basis of [2], for any model in this class we
then have complete control of the zeros of the partition function with periodic
boundary conditions.

The models we consider are characterized by two properties: the exis-
tence of only a finite number ajround statesand the availability of acon-
tour representation. In our setting, the term ground state will simply mean
a constant—or, after some reinterpretations, a periodic—infinite volume spin
configuration. Roughly speaking, the contour representation will be such that
the contours correspond to finite, connected subsets of the lattice where the spin
configuration differs from any of the possible ground states. A precise defini-
tion of these notions is a bit technical; details will be provided in Section 3.
Besides these properties, there will also be a few quantitative requirements on
the ground state energies and the scaling of the excess contour energy with the
size of the contour—the Peierls condition—see Sections 2.1 and 3.2.

These two characteristic properties enable us to apply Pirogov-Sinai
theory—a general method for determining low-temperature properties of a sta-
tistical mechanical model by perturbing about zero-temperature. The first for-
mulation of this perturbation technique [16, 17] applied to a class of models
with real, positive weights. The original “Banach space” approach of [16, 17]
was later replaced by inductive methods [9], which resulted in a complete clas-
sification of translation-invariant Gibbs states [21]. The inductive techniques
also permitted a generalization of the characterization of phase stability/coexis-
tence to models with complex weights [5]. However, most relevant for our
purposes are the results of [6], dealing with finite-size scaling in the vicinity
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of first-order phase transitions. There Pirogov-Sinai theory was used to derive
detailed asymptotics of finite volume partition functions. The present paper
provides, among other things, a variant of [6] that ensures appropriate differ-
entiability of the so-called metastable free energies as required for the analysis
of partition function zeros.

The remainder of this paper is organized as follows. Section 1.2 out-
lines the class of models of interest. Section 1.3 defines the ground state and
excitation energies and introduces the torus partition function—the main ob-
ject of interest in this paper. Section 2.1 lists the assumptions on the models
and Section 2.2 gives the statements of the main results of this paper. These
immediately imply Assumptions A and B of [2] for all models in the class
considered. Sections 3 and 4 introduce the necessary tools from Pirogov-Sinai
theory. These are applied in Section 5 to prove the main results of the paper.

1.2. Models of interest

Here we define the class of models to be considered in this paper. Most of what
is to follow in this and the forthcoming sections is inspired by classic texts on
spin models, Gibbs states and Pirogov-Sinai theory, e.g., [8,18, 20, 21].

We will consider finite-state spin models on ttielimensional hypercu-
bic latticeZd for d > 2. At each sitex € Z9 the spin denoted bysy, will
take values in a finite séf. A spin configuratiors = (ox)yc7d IS @an assign-
ment of a spin to each site of the lattice. The interaction Hamiltonian will
be described using a collection of potentiaédsy ), where A runs over all fi-
nite subsets of9. The®, are functions on configurations fro87° with the
following properties:

(1) The valued , (o) depends only oay with X € A.

(2) The potential is translation invariant, i.e.gifis a translate of and A’
is the corresponding translate &f then® 5/ (o) = ® A ().

(3) There exists aR > 1 such thatb, = 0O for all A with diameter exceed-
ing R+ 1.

Here thediameterof a cubic box withL x - - - x L sites is defined to be while
for a generalA c Z9 itis the diameter of the smallest cubic box containikg
The constanR is called therange of the interaction

Remark 1.1.  Condition (2) has been included mostly for convenience
of exposition. In fact, all of the results of this paper hold under the assumption
that ®, are periodic in the sense théty/(c) = ®A(¢') holds for A ando
related toA” and¢’ by a translation fronfaZ)? for some fixed integea. This
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is seen by noting that the periodic cases can always be converted to translation-
invariant ones by considering block-spin variables and integrated potentials.

As usual, the energy of a spin configuration is specified by the Hamil-
tonian. Formally, the Hamiltonian is represented by a collection of functions
(BH,) indexed by finite subsets @, wheref H, is defined by the formula

BHA() = D Do) (1.2)

AT NNAAD

(The superfluoug, playing the role of the inverse temperature, appears only
to maintain formal correspondence with the fundamental formulas of statistical
mechanics.) In light of our restriction to finite-range interactions, the sum is
always finite.

We proceed by listing a few well known examples of models in the above
class. With the exception of the second example, the range of each interaction
is equal to 1:

Ising model. HereS = {—1, +1} and® (o) # 0 only for A containing a
single site or a nearest-neighbor pair. In this case we have

R if A = (x], 12
A —Joyay, if A={x,y}with|x—y] =1 '

HereJ is the coupling constanh is an external field anfk — y| denotes the
Euclidean distance betwearandy.

Perturbed Ising model Again S = {—1, +1}, but now we allow for arbitrary
finite range perturbations. Explicitly,

_hoy, if A = {x],

Pl = 13
N I_‘]A [Txep ox if [A] > 2and diamA < R+ 1. (1.3)

The coupling constant3, are assumed to be translation invariant (iJg.,=
Ja if A and A’ are translates of each other). The constang again the
external field.

Blume-Capel model.In this caseS = {—1, 0, +1} and® (¢) = 0 unlessA
is just a single site or a nearest-neighbor pair. Explicitly, we have

—Jo2 — hoy, if A={x},

J(ox — oy)°, if A ={x,y}with |[x —y| =1

Dp(0) = {

Here J is the coupling constant, is a parameter favoring:1 against 0-spins
andh is an external field splitting the symmetry betwegeh and—1.
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Potts model in an external field. The state space hag elements,S =
{1,...,9} and®, is again nontrivial only ifA is a one-element set or a pair
of nearest-neighbor sites. Explicitly,

—hd 1, it A = {x),

. . (1.5)
— 9,0y if A={x,y}with|x—y| =1

D (o) = [

Hered,, » equals one it = ¢’ and zero otherwise] is the coupling constant
andh is an external field favoring spin value 1. Actually, the results of this pa-
per will hold only for the low-temperature regime (which in our parametriza-
tion corresponds td > logq); a more general argument coveriath tem-
peratures (but under the condition tlgas sufficiently large) will be presented
elsewhere [3,4].

Any of the constants appearing in the above Hamiltonian can in principle
be complex. However, not all complex values of, e.g., the coupling constant
will be permitted by our additional restrictions. See Section 2.3 for more dis-
cussion.

1.3. Ground states, excitations and torus partition function

The key idea underlying our formulation is thainstantconfigurations rep-
resent the potential ground states of the system. (A precise statement of this
fact appears in Assumption C2 below.) This motivates us to define the dimen-
sionlessground state energy density, @ssociated with spim € S by the
formula

1
€m = Z mcDA(Um)» (1.6)
A: A0

where|A| denotes the cardinality of the satand wheres™ is the spin con-
figuration that is equal ton at every site. By our restriction to finite-range
interactions, the sum is effectively finite.

The constant configurations represent the states with minimal energy; all
other configurations are to be regarded as excitations. Given a spin configura-
tion o, let Br(o) denote the union of all cubic boxasc 79 of diameter R+1
such thats is not constant il\. We think of Br(o) as the set on which is
“bad” in the sense that it is not a ground state at séald he setBr(o) will
be referred to as th&-boundaryof . Then theexcitation energy &) of
configuratiors is defined by

E@)= > > %@A(a). (1.7)

XeBRr(o) A: xeA
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To ensure that the sum is finite (and therefore meaningful) we will only con-
sider the configurations for which Br(o) is a finite set.

The main quantity of interest in this paper is the partition function with
periodic boundary conditions which we now define. lLet> 2R + 1, and
let T, denote the torus df x L x --- x L sites inZ9, which can be thought
of as the factor o9 with respect to the action of the subgro(Z). Let us
consider the HamiltoniafiH, : STt — C defined by

BHL@) = D> ®al0), oceS™, (1.8)

A ACTL

where® , are retractions of the corresponding potentials fi&hio T\ . (Here
we use the translation invariance @fy.) Then thepartition function with
periodic boundary conditions T is defined by

20T S 19)
oeSTL

In general,ZEer is a complex quantity which depends on all parameters of
the Hamiltonian. We note that various other partition functions will play an
important role throughout this paper. However, none of these will be needed
for the statement of our main results in Section 2, so we postpone the additional
definitions and discussion to Section 4.

We conclude this section with a remark concerning the interchangeability
of the various spin states. There are natural examples (e.g., the Potts model)
where several spin values are virtually indistinguishable from each other. To
express this property mathematically, we will consider the situation where
there exists a subgroup of the permutations of such that ifr € & then
€ m) = em and E(z (o)) = E(o) for eachm € S and each configuratios
with finite Br(o), wherer (o) is the spin configuration taking valug(oy) at
eachx. (Note thatBr(7z (6)) = Br(o) for any such permutatiom.) Then we
call two spin statesn andn interchangeabléf m andn belong to the same
orbit of the group® on S.

While this extra symmetry has absolutely no effect on the contour analysis
of the torus partition sum, it turns out that interchangeable spin states cannot
be treated separately in our analysis of partition function zeros. (The precise
reason is that interchangeable spin states would violate our non-degeneracy
conditions; see Assumption C3-C4 and Theorem A3-4 below.) To avoid this
difficulty, we will use the factor seR = S/®& instead of the original index
setS when stating our assumptions and results. In accordance with the notation
of [2], we will also user to denote the cardinality of the s&, i.e., R =
{1,2,...,r}, andgn to denote the cardinality of the orbit corresponding to
me R.
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2. ASSUMPTIONS AND RESULTS

In this section we list our precise assumptions on the models of interest and
state the main results of this paper.

2.1. Assumptions

We will consider the setup outlined in Sections 1.2-1.3 with the additional
assumption that the parameters of the Hamiltonian depend on one complex pa-
rameterz which varies in some open subgebf the complex plane. Typically,

we will takez = € or z = " whereh is an external field; see the examples

at the end of Section 1.2. Throughout this paper we will assume that the spin
spaceS, the factor seR, the integers),, and the range of the interaction are in-
dependent of the parameteiWe will also assume that the spatial dimension

IS no less than two.

The assumptions below will be expressed in terms of complex derivatives
with respect ta. For brevity of exposition, let us use the standard notation

oy =3(%-1%) and o;=3(Z+i%) (2.1)

for the derivatives with respect toand z, respectively. Herx = 9Rez and
y = Smz. Our assumptions will be formulated for the exponential weights

on(0,2) =€ 020D 5 (0) =e E@D and On(2) =e @, (2.2)

where we have now made the dependence patationally explicit. In terms
of thef’s and the quantity

0(2) = me%lem(Z)l (2.3)

we define the se¥, (m) by
Z,(m) ={ze 0: |6m(2)| > 0(2)€"}. (2.4)

Informally, £, (m) is the set oz for whichm is “almost” a ground state of the
Hamiltonian.

Since we want to refer back to Assumptions A and B of [2], we will call
our new hypothesis Assumption C.

Assumption C. There exist a domai? c C and constants, M, e (0, 00)
such that the following conditions are satisfied.

(0) For eaclhr € SZf and each finiteA c Z9, the functionz — ¢ (o, 2) is
holomorphic in&'.
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(1) Forallme S, allze ¢ and all¢ = 0, 1, 2, the ground state weights obey
the bounds
|050m(2)| < MYO(2) (2.5)

In addition, the quantity(z) is uniformly bounded away from zero ifi.

(2) For every configuratioa with finite R-boundaryBr(o), the Peierls condi-
tion
|64p2(0)| < (MIBR()])' (6770(2))**! (2.6)

holds for allz e & and¢ = 0, 1, 2.
(3) For all distinctm, n € R and allz € %, (m) N .Z,(n), we have

020m(2) _ 020n(2)

m@  Oh) | 2" @7

(4) If Q Cc RissuchthatQ| > 3, then for any € (.o Zo (M) we assume
that the complex quantitiesn(z) = 6m(2) ™1 8.6m(z), m € Q, regarded
as vectors irR?, are vertices of a strictly convex polygon. Explicitly, we
demand that the bound

inf[ )vm(z) — z wnon(2) ‘: wn > 0, z wn = 1] > a (2.8)

neQ~.{mj} ne O~.{mj}

holds for everym € Q and everyz € (.o Zz(n).

Assumptions CO-2 are very natural; indeed, they are typically a con-
sequence of the fact that the potentiglg (o, z)—and hence als®n(z2)
and p;(o)—arise by analytic continuation from the positive real axis. As-
sumptions C3-4 replace the “standard” multidimensional non-degeneracy con-
ditions which are typically introduced to control the topological structure of the
phase diagram, see e.qg. [16, 17, 20]. (However, unlike for the “standard” non-
degeneracy conditions, here this control requires a good deal of extra work,
see [2].) Assumption C4 is only important in the vicinity of multiple coexis-
tence points (see Section 3.2); otherwise, it can be omitted.

Remark 2.1. For many models, including the first three of our exam-
ples, the partition function has both zeros and poles, and sometimes even in-
volves non-integer powers @ In this situation it is convenient to multiply
the partition function by a suitable power pto obtain a function that is an-
alytic in a larger domain. Typically, this different normalization also leads
to a larger domair? for which Assumption C holds. Taking, e.g., the Ising
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model withz = e?", one easily verifies that for low enough temperatures, As-
sumption C holds everywhere in the complex plane—provided we replace the
term —hoy by —h(ox + 1). By contrast, in the original representation (where
pix (o, 2) = (/2)°%), one needs to take out a neighborhood of the negative real
axis (or any other ray from zero to infinity) to achieve the analyticity required
by Assumption CO.

Remark 2.2.  If we replace the term-hoy in (1.2-1.4) by—h(ox + 1),
Assumption C (withz = " for the Ising models, and = €" for the Blume
Capel and Potts model) holds for all four examples listed in Section 1.2, pro-
vided that the nearest-neighbor couplings are ferromagnetic and the tempera-
ture is low enough. (For the perturbed Ising model, one also needs that the
nearest-neighbor coupling is sufficiently dominant.)

2.2. Main results

Now we are in a position to state our main results, which show that Assump-
tions A and B from [2] are satisfied and hence our conclusions concerning
the partition function zeros hold. The structure of these theorems parallels the
structure of Assumptions A and B. We caution the reader that the precise state-
ment of these results is quite technical. For a discussion of the implications of
these theorems, see Section 2.3. The first theorem establishes the existence of
metastable free energies and their relation to the quaniifies

Theorem A.  LetM € (0,0) anda € (0, >0). Then there is a con-
stantzg depending oM, «, the number of spin stat¢S| and the dimensiod
such that if Assumption C holds for the constaMs «, some open domain
¢ c Cand some > g, then there are functiong,: ¢ — C, m € R, for
which the following holds:

(1) There are functionsy: ¢ — C, m € R, such thatm(z) can be ex-
pressed as

(m(@) = n(2e™?@  and |sn(2)] < e7/2 (2.9)

In particular, the quantity (z) = maxner [(m(2)| is uniformly positive
ino.

(2) Each functiorym, viewed as a function of two real variablgs= Rez
andy = Smz, is twice continuously differentiable ofi and satisfies the
Cauchy-Riemann equatiodg m(z) = O for all z € .#,, where

Im={ze 0: |tm(D| = (2} (2.10)

In particular,;y is analytic in the interior of,.
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(3) For any pair of distinct indices, n € R and anyz € .y, N ., we have

0z{m(2)  0z¢(n(2) —1/2
_ -2 . 2.11
w2 oo T (41

(4) If Q@ c RissuchthatQ| > 3, then for anyz € (g “m

_ 0z2{m(2)
om(2) = m,

€0, (2.12)

are the vertices of a strictly convex polygonGn= R?2.

Theorem A ensures the validity of Assumption A in [2] for any model
satisfying Assumption C with sufficiently large. Assumption A, in turn, al-
lows us to establish several properties of the topology of the phase diagram,
see Section 2.3 below for more details.

Following [2], we will refer to the indices iR asphasesand call a phase
m € R stable at zif |/m(2)] = ¢(z). We will say that a poinz € €' is a
point of phase coexistendéthere are at least two phasese R which are
stable atz. In [2] we introduced these definitions without further motivation,
anticipating, however, the present work which provides the technical justifica-
tion of these concepts. Indeed, using the expansion techniques developed in
Sections 3 and 4, one can show that, for eacle S that corresponds to a
stable phase ifR, the finite volume states witlm-boundary conditions tend to
a unique infinite-volume limit-),, in the sense of weak convergence on linear
functionals on local observables. (Here a local observable refers to a func-
tion depending only on a finite number of spins). The limit state is invariant
under translations d£9, exhibits exponential clustering, and is a small pertur-
bation ofdthe ground state" in the sense thaty, k)m = dmk + O(e~*/?) for
all x e Z°.

Remark 2.3.  Note that two state§)y, and(-),y are considered as two
different versions of the same phaseniindm’ are indistinguishable, in accor-
dance with our convention th&, and notS, labels phases. Accordingly, the
term phase coexistence refers to the coexistendesbhguishableghases, and
not to the coexistence of two states labelled by different indices in the same
orbit R. This interpretation of a “thermodynamic phase” agrees with that used
in physics, but disagrees with that sometimes used in the mathematical physics
literature.

While Theorem A is valid in the whole doma'@, our next theorem will
require that we restrict ourselves to a subget= ¢ with the property that
there exists some > 0 such that for each poirg € ¢, the discD,(z) of
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radiuse centered ar is contained inZ. (Note that this condition require

to be a strict subset af, unless¢ consists of the whole complex plane). In
order to state the next theorem, we will need to recall some notation from [2].
Given anym € R andé > 0, let.#s;(m) denote the region where the phase

is “almost stable,”

Fsm) =1{ze 0: |tm2)| > €77 (2)}. (2.13)

For anyQ c R, we also introduce the region where all phases fi@rare
“almost stable” while the remaining ones are not,

U(Q) = () L5\ | F2(), (2.14)

meQ ne Q¢
with the bar denoting the set closure.

TheoremB. LetM,a,e € (0,00), and letr > 7o, whererg is the
constant from Theorem A, and let= /4. Let& c C and& C & be open
domains such that that Assumption C holdgimndD,(z) c ¢ forallz e ©.
Then there are constar®g (depending only oM), Mg (depending oM and
€), andLg (depending ord, M, r ande¢) such that for eacim € R and each
L > Lothereis a functiom%): Z¢/L(m) — C such that the following holds
forall L > Lo:

(1) The functionz[®'is analytic in&.

(2) EacI‘((L) is non-vanishing and analytic it ;. (m). Furthermore,

‘Iog (L)() e 7L/8 (2.15)
(m(2 .
and
d Iog i@ + |03 Iog e 7L/8 (2.16)
T NI zm(> '

hold for allm € R and allz € ., (m).

(3) Foreachme R,all¢ > 1, and allz € ., (m), we have
d5m’ (2)
(@)
Moreover, for all distincm, n € R and allz € ., (m) N .7, (n),

< (£M)2M§. (2.17)

o’ (@) _ otn” @)

e O 7 —2e77/2, (2.18)
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(4) ForanyQ c R, the difference

FoL@=2{"2- > qm[cr(nL)(z)]Ld (2.19)

meQ

satisfies the bound

0020, (2)] < f!(COLd)f“c(z)“’( > qm)e—fL/16 (2.20)

meR

forall £ > 0 and allz € %, (Q).

Theorem B proves the validity of Assumption B from [2]. Together with
Theorem A, this in turn allows us to give a detailed description of the positions
of the partition function zeros for all models in our class, see Section 2.3.

The principal result of Theorem B is stated in part (4): The torus partition
function can be approximated by a finite sum of terms—one for each “almost
stable” phasen e R—which have well controlled analyticity properties. As a
consequence, the zeros of the partition function arise as a result of destructive
interference between almost stable phases, and all zeros are near to the set of
coexistence pointsy = Um;én “m N “n; see Section 2.3 for further details.
Representations of the form (2.19) were crucial for the analysis of finite-size
scaling near first-order phase transitions [6]. The original derivation goes back
to [5]. In our case the situation is complicated by the requirement of analyticity;
hence the restriction b e %, (Q) in (4).

2.3. Discussion

As mentioned previously, Theorems A and B imply the validity of Assump-
tions A and B of [2], which in turn imply the principal conclusions of [2] for
any model of the kind introduced in Section 1.2 that satisfies Assumption C
with 7 sufficiently large. Instead of giving the full statements of the results
of [2], we will only describe these theorems on a qualitative level. Readers
interested in more details are referred to Section 2 of [2].

Our first result concerns the set of coexistence poifitss (. #m N
“n, giving rise to the complex phase diagram. Here Theorem 2.1 of [2] asserts
that¥ is the union of a set of simple, smooth (open and closed) curves such that
exactly two phases coexist at any interior point of the curve, while at least three
phases coexist at the endpoints—these araerthiiple points Moreover, in
each compact set, any two such curves cannot get too close without intersecting
and there are only a finite number of multiple points. These properties are
of course direct consequences of the non-degeneracy conditions expressed in
Theorem A3-4.
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Having discussed the phase diagram, we can now turn our attention to
the zeros oZP®'. The combined results of Theorems 2.2-2.4 of [2] yield the
following: First, all zeros lie withinO(L~%) of the set¥. Second, along
the two-phase coexistence lines with stable phases € R, the zeros are
within O(e~¢b), for somec > 0, of the solutions to the equations

Y im@)] = 6 i@, 2.21)
LY Arg(¢m(2)/¢n(2)) = 7 mod 2. (2.22)

Consecutive solutions to these equations are separated by distances of or-
derL—9, i.e., there are of the othé® zeros per unit length of the coexistence
line. Scaling byL Y, this allows us to define density of zeroalong each two-
phase coexistence line, which in the linhit— oo turns out to be a smooth
function varying only over distances of order one.

Near the multiple points the zeros are still in one-to-one correspondence
with the solutions of a certain equation. However, our control of the errors here
is less precise than in the two-phase coexistence region. In any case, all zeros
are at mos{r — 1)-times degenerate. In addition, for models with an Ising-like
plus-minus symmetry, Theorem 2.5 of [2] gives conditions under which zeros
will lie exactly on the unit circle. This is the local Lee-Yang theorem.

Let us demonstrate these results in the context of some of our examples
from Section 1.2. We will begin with the standard Ising model at low temper-
atures. In this case there are two possible phases, laketed —, with the
corresponding metastable free energies given as functians=a®" by

(+(2) = exp{£h + e7283F2 4 O(e=“d-2)1. (2.23)

Symmetry considerations now imply th&t, (z)] = |¢-(2)] if and only

if Reh = 0, i.e.,|z| = 1, and, as already known from the celebrated Lee-
Yang Circle Theorem [11], the same is true for the actual zer@ 6f How-

ever, our analysis allows us to go further and approximately calculate the solu-
tions to the system (2.21-2.22), which shows that the zerdﬁedlie near the
pointsz = €%, wherek = 0,1, ..., L9 — 1 and

241

2k +1
b= "3 —

|_d

7 + 27243 sin( n) + O(e~“d-29) (2.24)

Of course, ad. increases, higher and higher-order termsid are needed to
pinpoint the location of any particular zero (given that the distance of close ze-
ros is of the ordet. ~9). Thus, rather than providing the precise location of any
given zero, the above formula should be used to calculate the quantity 6,

which is essentially the distance between two consecutive zeros. The resulting
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Figure 1: A schematic figure of the solutions to (2.21-2.22) giving the approximate
locations of partition function zeros of the Ising model in parametehich is related

to the external fieldh by z = €. The plot corresponds to dimensidn= 2 and torus
sideL = 8. The expansion used for calculating the quantitiess shown in (2.23).

To make the non-uniformity of the spacing between zeros more apparent, the plot has
been rendered for the choie&’ = 2.5 even though this is beyond the region where
we can prove convergence of our expansions.

derivation of thedensity of zeross new even in the case of the standard Ising
model. A qualitative picture of how the zeros span the unit circle is provided
in Fig. 1.

A similar discussion applies to the “perturbed” Ising model, provided
the nearest-neighbor coupling is ferromagnetic and the remaining terms in the
Hamiltonian are small in some appropriate norm. In the case of general multi-
body couplings, the zeros will lie on a closed curve which, generically, is not
a circle. (For instance, this is easily verified for the three-body interaction.)
However, if only even terms iffox) appear in the Hamiltonian, the models
have the plus-minus symmetry required by Theorem 2.5 of [2] and all of the
zeros will lie exactly on the unit circle. This shows that the conclusions of
the Lee-Yang theorem hold well beyond the set of models to which the classic
proof applies.

Finally, in order to demonstrate the non-trivial topology of the set of zeros,
let us turn our attention to the Blume-Capel model. In this case there are three
possible stable phases, each corresponding to a particular spin value. In terms
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(a) - .:.-.g.. ...'...-. ... ) (b) ) . :.‘;...,-. . (C) ......,..... oo

T .
.........

Figure 2: A picture demonstrating the location of partition function zeros of the
Blume-Capel model. Here the zeros concentrate on two curves, related by the cir-
cle inversion, which may or may not coincide along an arc of the unit circle. There are
two critical values of., denoted by.%, both of ordee=24?, such that for. < A7 < 0,

the two curves do not intersect; see (a). Ohdgcreases through;, a common piece
starts to develop which grows dsincreases through the interval], 1], see (b)

and (c). Finally, both curves collapse on the unit circlé at A} > 0 and stay there
forall 2 > Af. With the exception of the “bifurcation” points, the zerosdieactlyon

the unit circle along the shared arc. The non-uniform spacing of the zeros in (b) comes
from the influence of the “unstable” phase near the multiple points.

of the complex parameter= €", the corresponding metastable free energies
are computed from the formulas

(2 =2z€ exp{z—le—ZdJ—/l 4 dz2e4d-23-2i O(e—4dJ)} ’
c_(2) =zt exp{ze_ZdJ_)” + dAe"(#d-23-21 4 o(e—“rdJ)} ’

f0(2) = exp{(z+z—1)e—2dJ+/1 + d(+772)e@d-23+20 4 o4 J)}‘
(2.25)
Here it is essential that the energy of the plus-minus neighboring pair exceeds
that of zero-plus (or zero-minus) by a factor of four.

A calculation [1] shows that the zeros lie on two curves which are sym-
metrical with respect to circle inversion and which may coincide along an arc
of the unit circle, depending on the value iafsee Fig. 2. Asl increases, the
shared portion of these curves grows and, for positiexceeding a constant
of ordere=249, all zeros will lie on the unit circle. Note that by the methods of
[13], the last result can be established [12] for all temperatures provided
sufficiently large, while our results give the correct critiéddut only hold for
low temperatures.
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3. CONTOUR MODELS AND CLUSTER EXPANSION

Let us turn to the proofs. We begin by establishing the necessary tools for
applying Pirogov-Sinai theory. Specifically, we will define contours and show
that spin configurations and collections of matching contours are in one-to-
one correspondence. This will induce a corresponding relation between the
contour and spin partition functions. We will also summarize the facts we will
need from the theory of cluster expansions.

3.1. Contours

The goal of this section is to represent spin configurations in terms of contours.
Based on the fact—following from Assumption C—that the constant configu-
rations are the only possible minima of (the real part of) the energy, we will
define contours as the regions where the spin configuration is not constant.
Recalling our assumption > 2R+ 1, leto be a spin configuration dfi
and letBr(o) be theR-boundary ofs. We equipBr(o) with a graph structure
by placing an edge between any two distinct sitey € Br(o) wheneverx
andy are contained in a cubic box c T_ of diameter R + 1 whereo
is not constant. We will denote the resulting graph®y(s). Some of our
definitions will involve the connectivity induced by the gra@g(c) but we
will also use the usual concept of connectivity®n (or Z9): We say that a set
of sitesA c T is connected if every two sites frorkh can be connected by
a nearest-neighbor path @n Note that the connected componentBga{f(o)
and the (vertex sets corresponding to the) components of the Grafl) are
often very different sets.
Now we are ready to define contours. We start with contourg4rand
then define contours on the torus in such a way that they can be easily embed-
ded intoZ9.

Definition 3.1. A contour on Z% is a pair Y = (suppY,oy)
where supyY is afinite connected subset @ and wheresy is a spin config-
uration onZ¢ such that the grapBr(oy) is connected anBgr(oy) = suppY.

A contouronT| is a pairY = (suppY, oy) wWhere suppy is a non-empty,
connected subset df with diameter strictly less thah /2 and wheresy
is a spin configuration off' such that the grapfr(oy) is connected and
Br(oy) = suppY.

A contour networkon T is a pairN = (suppN, oxn), whereXN is a
(possibly empty or non-connected) subseflpfand wherery is a spin con-
figuration onT_ such thatBr(on) = suppN and such that the diameter of the
vertex set of each component@R(oy) is at least /2.

Note that each contour dfy has an embedding int8® which is unique
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up to translation by multiples df. (Informally, we just need to unwrap the
torus without cutting through the contour.) As long as we restrict attention
only to finite contours, the concept of a contour network has no counterpart
onZY, so there we will always assume thét= @.

Having defined contours and contour networkslipnabstractly, our next
task is to identify the contourg, ..., Y, and the contour networkl from a
general spin configuration diy . Obviously, the supports o, ..., Y, will be
defined as the vertex sets of the components of the geaih) with diameter
less tharlL /2, while suppN will be the remaining vertices iBr(o). To define
the corresponding spin configurations we need to demonstrate that the restric-
tion of o to suppY; (resp., supf\N) can be extended to spin configuratians
(resp.,on) on T such thatBr(oy.) = suppY; (resp.,Br(on) = SuppN). It
will turn out to be sufficient to show thatis constant on thboundaryof each
connected component @ \ Br(o).

Given a setA c T, (or A c Z9), let 8A denote the external boundary
of A,i.e.,0A = {x € T_: dist(x, A) = 1}. For the purposes of this section,
we also need to define the g€t which is justA reduced by the boundary of its
complementA° = A\o(T_\A). Animmediate consequence of Definition 3.1
(and the restriction toR + 1 > 3) is the following fact:

Lemma 3.2. Let (A, o) be either a contour or a contour network
on T, and let C be a connected component ©f \ A°. Theno is con-
stant onC. If (A, o) is a contour orZ9, thene is constant on each connected
component of Z9 \ A°, with A° now defined as\° = A \ 8(Z9 \ A).

Proof. Assume that is not constant o€. Then there must exist a pair
of nearest-neighbor sites y € C such thaby # oy. But thenx and all of its
nearest neighbors lie in = Bgr(s). SinceC N A° = @ andx € C, we are
forced to conclude that € A \ A°. But that contradicts the fact that all of the
neighbors ok also lie inA. The same proof applies to contoursth |

Definition 3.3.  Let (A, o) be either a contour or a contour network
on T and letC be a connected component®f \ A. The common value
of the spin on this component in configuratienvill be called thelabel of C.
Thedsame definition applies to contoursZfh and to connected componefits
of Z% \ A.

Let A ¢ T be a connected set with diameter less thag. Since the
diameter was defined by enclosure into a “cubic” box (see Sect. 1.2), it follows
that each suct\ has a well defined exterior and interior. Indeed, any box of
side less tha. /2 enclosingA contains less thafl/2)9 < L9/2 sites, so we
can define thexterior of A, denoted by Exf\, to be the unique component
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of T. \ A that contains more thah®/2 sites. Thenterior Int A is defined
simply by putting IntA = T\ (AUExt A). On the other hand, it is the union

of disjoint connected sets each with diameter at lea&we define ExA = ¢
and IntA = T \ A. These definitions for connected sets imply the following
definitions for contours off :

Definition 3.4. Let Y be a contour or a contour network @h. We
then define theexterior of Y, denoted by EXY, as the set Extsupp, and
the interior of Y, denoted by InY¥, as the set Intsupp. For eachm € S,
we let Int, Y be the union of all components of IMtwith labelm. If Y is a
contour onT_, we say thaly is am-contourif the label of ExtY is m.

Analogous definitions apply to contours @R, except that the exterior of
a contourY is now defined as the infinite componentZsf\ suppY, while the
interior is defined as the union of all finite component&8&f\ suppY.

While most of the following statements can be easily modified to hold
for Z9 as well as for the torug |, for the sake of brevity, we henceforth restrict
ourselves to the torus.

Lemma 3.5. LetR > 1landfixL > 2R+ 1. Leto be a spin configura-
tion onT and letA be either the vertex set of a component of the g1Gplio)
with diameter less thah /2 or the union of the vertex sets of all components
with diameter at least /2. Let A’ be of the same form witih” # A. Then
exactly one of the following is true:

(1) AUIntA cIntA’andA’ UEXxtA’ C ExtA, or
(2) ANuUlntA’ cIntAandA UExtA c ExtA’, or
(3) AUIntA c ExtA’andA’ UlInt A’ C ExtA.

Proof. It is clearly enough to prove the first half of each of the
statements (1-3), since the second half follow from the first by taking com-
plements (for example in (3), we just use th&atu IntA c ExtA’ im-
pliesT. \ (AU IntA) D T_ \ ExtA’, which is nothing but the statement
that A’ UInt A’ c Ext A by our definition of interiors and exteriors).

In order to prove the first halves of the statements (1-3), we first assume
that bothA and A’ are vertex sets of components of the gr&k(o) with di-
ameter less thah /2. Clearly, sinceA andA’ correspond to different compo-
nents ofGr(c), we haveA N A’ = @J. Moreover,A andA’ are both connected
(as subsets df | ) so we have eitheh c Int A’ or A C Ext A’ andvice versa
Hence, exactly one of the following four statements is true:

(@) A cIntA’andA’ C IntA, or
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(b) A cIntA”andA’ C ExtA, or
() A Cc ExtA"andA’ C IntA, or
(d) A c ExtA’andA’ C ExtA.

We claim that the case (a) cannot happen. Indeed, supposa ttatint A’

and observe that iB is a box of size less thah9/2 such thatA’ c B,
then ExtA’ © T, \ B. Hence IntA’ ¢ B. But thenB also encloseg and
thus ExtA N ExtA’ D T \ B # @. Now A’ U ExtA’ is a connected set in-
tersecting Ext\ but not intersecting\ (because we assumed thatc Int A').

It follows that A” U Ext A’ c ExtA, and hence InA’ D A U Int A. But then

we cannot have\’ C Int A as well. This excludes the case (a) above, and also
shows that (b) actually give& U Int A c Int A’, which is the first part of the
claim (1), while (c) givesA’ U Int A" c Int A, which is the first part of the
claim (2).

Turning to the remaining case (d), let us observe ffat Ext A implies
INntANA c IntANEXtA = @. SinceAN A" = @ as well, this implies
(AUIntA)N A’ = @. But AU IntA is a connected subset @f , so either
AUIntA cIntA"orAUlInt A c ExtA’. SinceA c ExtA’ excludes the first
possibility, we have shown that in case (d), we necessarily havant A C
ExtA’, which is the first part of statement (3). This concludes the proof of the
lemma for the case when bothiand A’ are vertex sets of components of the
graphGRr(o) with diameter less thah/2.

Since it is not possible that both and A’ are the union of the vertex sets
of all components of diameter at ledst2, it remains to show the statement
of the lemma for the case wheh is the vertex set of a component of the
graphGRr(o) with diameter less thah /2, while A’ is the union of the vertex
sets of all components of diameter at leagR. By definition we now have
ExtA’ = @, so we will have to prove thakt U Int A c Int A’, or equivalently,
A’ C ExtA. To this end, let us first observe thatnN A’ = @, sinceA has
diameter less thah /2 while all components oA\’ have diameter at leakt/2.
Consider the set Ink. SinceA has diameter less thary2, we can find a boB
of side length smaller thah/2 that containg\, and hence also Int. But this
implies that none of the components &f can lie in IntA (their diameter is
too large). Since all these components are connected subsets\af/IBkt A,
we conclude that they must be part of Bxt This gives the desired conclusion
AN c ExtA. |

The previous lemma allows us to organize the componer@sg) into a
tree-like structure by regarding to be the “ancestor” oA (or, equivalently A
to be a “descendant” at’) if the first option in Lemma 3.5 occurs. Explicitly,
let WRr(0) be the collection of all setd ¢ T that are either the vertex set
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of a connected component Gfr (o) with diameter less thah /2 or the union
of the vertex sets of all connected components of diameter at lle@st We
useAp to denote the latter. If there is no component of diamet& or larger,
we defineAg = @ and set InfAg = T .

We now define gartial order on Wgr(o) by settingA < A’ whenever
AUINtA C IntA’. If A < A/, butthereisnd\” € Wr(o) suchthatA < A” <
A’, we say thatA is a child of A” and A’ is a parent ofA. Using Lemma 3.5,
one easily shows that no child has more than one parent, implying that the
parent child relationship leads to a tree structur&\@g(o), with root Ag. This
opens the possibility for inductive arguments from the innermost contours (the
leaves in the above tree) to the outermost contours (the children of the root).
Our first use of such an argument will be to prove that unique labels can be
assigned to the connected components of the complemdit(e) .

Lemma 3.6. Let o be a spin configuration ofi. and letA be either
the vertex set of a component of the graph(o) with diameter less thah /2
or the set of sites iBr (o) that are not contained in any such componen€ If
is a connected component®f \ A°, theno is constant orC N A.

The proof is based on the following fact which is presumably well known:

Lemma3.7. Let A c Z9 be a finite connected set with a connected
complement. ThedAC is x-connected in the sense that any two sikeg e
0A° are connected by a path A° whose individual steps connect only pairs
of sites ofZ9 with Euclidean distance not exceedin@.

Proof. The proof will proceed in three steps. In the first step, we will
prove that theedgeboundary ofA, henceforth denoted byA, is aminimal
cutset (Here we recall that a set of edgesin a graphG = (V, E) is called
a cutset if the grapls’ = (V, E \ E’) has at least two components, and a
cutsetE’ is called minimal if any proper subset & is not a cutset.) In the
second step, we will prove that the dual of the edge bounélaiig a connected
set of facets, and in the third step we will use this fact to provedAatis -
connected.

Consider thus a se&& which is connected and whose complement is con-
nected. LetA be the edge boundary & and letEy be the set of nearest-
neighbor edges ifi%. The se¥A is clearly a cutset since any nearest-neighbor
path joiningA to A® must pass through one of the edgedAn To show that A
is also minimal, letE’ be a proper subset ofA, and lete € A\ E’. Since
both A and A€ are connected, an arbitrary pair of silesy € Z9 can be joined
by a path that uses only edges @ U (Eq \ 0A) C Eq \ E’. Hence suclt’ is
not a cutset which implies thatA is minimal as claimed.
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To continue with the second part of the proof, we need to introduce some
notation. As usual, we use the symlﬂfﬁd to denote the set of all points in
RY with half-integer coordinates. We say that a set 7*% is ak-cell if the
vertices inc are the “corners” of &-dimensional unit cube iiR9. A d-cell
c c Z*9 and a vertexx e 29 are called dual to each othenfis the center
of ¢ (considered as a subsetRf). Similarly, a facetf (i.e., a(d — 1)-cell
in Z*d) and a nearest-neighbor edge— 79 are called dual to each other if
the midpoint ofe (considered as a line segmentRf) is the center off. The
boundaryoC of a setC of d-cells inZ*Y is defined as the set of facets that are
contained in an odd number of cells@ and the boundargF of a setF of
facets inZ*9 is defined as the set ¢fl — 2)-cells that are contained in an odd
number of facets if. Finally, a set of facet§ is called connected if any two
facetsf, f’ € F can be joined by a path of facefs = f,..., f, = f’in F
suchdthat forali =1,...,n— 1, the facetsf; and f;;1 share ad — 2)-cell
inZ*".

Note that an arbitrary finite set of facefs has empty boundary if and
only if there exists a finite set of cub€ssuch thatF = 6C, which follows
immediately from the facRY has trivial homology. Using this fact, we now
prove that the seF of facets dual t@A is connected. LeW be the set of
d-cells dual toA, and letF = oW be the boundary o#V. We will now prove
thatF is a connected set of facets. Indeed, sikce 6W, we have thaF has
empty boundarygF = ¢. Assume that has more than one component, and
let F c F be one of them. TheRk andF \ F are not connected to each other,
and hence share rid — 2)-cells. But this implies that the boundary Bfmust
be empty itself, so that is the boundary of some s@{. This in turn implies
that the dual of is a cutset, contradicting the fact thig is a minimal cutset.

Consider now two pointx,y € 6A°® c A. Then there are points
X,V € A®such that{x, X} and{y, ¥} are edges i@ A. Taking into account the
connectedness of the dual®A, we can find a sequence of edggs= {X, X},
...,en=1{y,y}indAsuchthatforalk =1,...,n—1, the facets dual te
ande; 1 share gd — 2) cell in Z*9. As a consequence, the edgersinde, 1
are either parallel, and the four vertices in these two edges form an elementary
plaquette of the formjx, X + ny, X + N2, X + Ny + ny} wheren; andny are
unit vectors in two different lattice directions, ex andex;1 are orthogonal
and share exactly one endpoint. Since bmtlandec, 1 are edges idA, each
of them must contains a point #A°, and by the above case analysis, the two
points are at most/2 apart. The sequenes, . .., e, thus gives rise to a se-
guence of (not necessarily distinct) poits .. . ., X, € 0A° such thatx = x3,
y = Xp and distxk, Xk+1) < JV2forallk=1,...,n—1. This proves that A®
is x-connected. ||
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Proof of Lemma 3.6. Relying on Lemma 3.5, we will prove the
statement by induction from innermost to outermost components of diameter
less tharn_ /2. Let A be the vertex set of a component of the gr&jk(o) with
diameter less thah /2 and suppos8r(s) NInt A = @. (In other wordsA is
an innermost component &r(c).) Then the same argument that was used in
the proof of Lemma 3.2 shows that all connected components of thearly
have the desired property, so we only need to focus omExt

Let us pick two sitex,y € 0ExtA = AN JExtA and letA’ = AU
Int A. ThenA’ is connected with a connected complement and sintes a
diameter less thah /2, we may as well think o\’ as a subset d£9. Now
Lemma 3.7 guarantees thaA")¢ = 0 Ext A is x-connected and hengeandy
are connected by a-connected path entirely containeddext A. But the
spin configuration must be constant on any % [—R, R]%) N Z9 with z €
0 Ext A and thus the spin is constant along the path. It follows déhat oy.

The outcome of the previous argument is that now we can “rewrite” the
configuration onA” without changing the rest @r(s). The resulting config-
uration will have fewer connected components of diameter lessltliarand,
proceeding by induction, the proof is reduced to the cases when there are no
such components at all. But then we are down to the case whsimply
equalsBr(o). Using again the argument in the proof of Lemma 3.2, the spin
must be constant on each connected compo@eitT, \ Br(o)°. |1

The previous lemma shows that each component of the degjih) in-
duces a unique label on every connected compdderiits complement. Con-
sequently, if two contours share such a component—which includes the case
when their supports are adjacent to each other—they must induce the same la-
bel onit. A precise statement of this “matching” condition is as follows. (Note,
however, that not all collections of contours will have this matching property.)

Definition 3.8.  We say that the paifY, N)—whereY is a set of con-
tours and\N is a contour network offf . —is acollection of matching contours
if the following is true:

(1) suppY N suppY’ = @ for any two distinctY, Y’ € Y and suppy N
SuppN = ¢ for anyY e Y.

(2) If Cis a connected component Bf \ [(SuppN)° U [Jyy(SuppY)©],
then the restrictions of the spin configurations(andoy) to C are the
same for all contour¥ € Y (and contour networlk() with suppY NC #

@ (suppN N C # #). In other words, the contours/contour network
intersectingC induce the same label @.

Here we use the convention that there are altoggthjedistinct pairs(Y, N)
with bothY = @ andN = @, each of which corresponds to omee S.
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Definition 3.8 has an obvious analogue for s¥tof contours onZd,
where we require that (1) suppn suppY’ = @ for any two distinct
Y,Y" € Y and (2) all contours intersecting a connected compoemf
79\ [Uyey(suppY)©] induce the same label db.

It remains to check the intuitively obvious fact that spin configurations
and collections of matching contours are in one-to-one correspondence:

Lemma 3.9. For each spin configuration e STt, there exists a
unique collection(Y, N) of matching contours off. and for any collection
(Y, N) of matching contours off'|, there exists a unique spin configura-
tion o € STt such that the following is true:

(1) The supports of the contours 1 (of the contour networkN) are the
vertex sets (the union of the vertex sets) of the connected components of
the graphGRr(o) with diameter strictly less than (at leat) 2.

(2) The spin configuration corresponding to a collect{@nN) of match-
ing contours arise by restrictingy for eachY € Y as well asoy to
the support of the corresponding contour (contour network) and then ex-
tending the resulting configuration by the common label of the adjacent
connected components.

Proof. Leto be a spin configuration and Ié&t be a component of the
graphGRr(o) with diameter less thah /2. Then Lemma 3.6 ensures thais
constant on the boundaf of each componer® of A°. Restrictings to A
and extending the resulting configuration in such a way that the new config-
uration, o, restricted to a component componéhbf A, is equal to the old
configuration oroC, the pair(A, o) thus defines a contour. Similarly, A is
the union of all components of the gra@wr(o) with diameter at leask /2
andC is a connected component®f \ A°, thens is, after removal of all con-
tours, constant of£. The contours/contour network’, ) then arise froms
in the way described. The supports of these objects are all disjoint, so the last
property to check is that the labels induced on the adjacent connected compo-
nents indeed match. But this is a direct consequence of the construction.

To prove the converse, |1€l’, N) denote a set of matching contours and
let & be defined by the corresponding contour configuration on the support
of the contours (or contour network) and by the common value of the spin
in contour configurations for contours adjacent to a connected component of
T \ [(SuppN)° U Jyy(suppY)©]. (If at least one ofy, N is nonempty, then
this value is uniquely specified because of the matching condition; otherwise,
it follows by our convention that empt’, ') carries an extra label.)

It remains to show thaY are the contours ariy is the contour network
of 0. Let A be a component of the gragbr(c). We have to show that it
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coincides with supjy for someY € Y or with a component of sugy (viewed
as a graph). We start with the observation that suppN U (|Jyy SUppY).
Next we note that for eachl € Y, the graphGr(oy) is connected. Since
the restriction ofoy to suppY is equal to the corresponding restrictionaf
we conclude that supp N A # @ implies supp¥ c A, and similarly for
the components of supyp. To complete the proof, we therefore only have to
exclude that supl c A for more than one contof € Y, or thatA c Afor
more than one component of suppN, and similarly for the combination of
contours inY and components of supy.

Let us assume that suppc A for more than one contotff € Y. SinceA
is a connected component of the graph(o), this implies that there exists a
box B, = (z+ [—-R, R]%) N Z4 and two contourds, Y> € Y such that is
not constant orB;, suppY; U suppY2 C A andB; is intersecting both supy
and suppr2. But this is in contradiction with the fact that is a collection
of matching contours (and a configuration on any such box not contained in
the support of one of the contours ¥ or in a component of sugy must
be constant). In the same way one excludes the case combiningy suiip
a component of sugly or combining two components of supp Having
excluded everything else, we thus have shown that either the support of
one of the contours ilY, or one of the components of supp |

3.2. Partition functions and Peierls’ condition

A crucial part of our forthcoming derivations concerns various contour parti-
tion functions, so our next task will be to define these quantities. We need some
notation: Let(Y, N) be a collection of matching contours @h. A contour

Y € Y is called anexternal contour inY if suppY c ExtY’' forall Y € Y
different fromY, and we will call two contour¥, Y’ € Y mutually external

if suppY c ExtY’ and suppY’ c ExtY. Completely analogous definitions
apply to a set of matching contoutson Z9 (recall that on Z9, we always
setN = ¢). Note that, by Lemma 3.5, two contours of a configurataon

T are either mutually external or one is contained in the interior of the other.
Inspecting the proof of this Lemma 3.5, the reader may easily verify that this
remains true for configurations &f, provided the seBr(o) is finite.

Given a contourY = (suppY,oy) or a contour networkN =
(suppN, o) let E(Y, z) and E(N, z) denote the corresponding excitation
energiesE(oy, z) and E(oy, 2) from (1.7). We then introduce exponen-
tial weights p,(Y) and pz(N), which are related to the quantitids(Y, z)
andE(N, z) according to

p2(Y)=e EY:D and p,(N) = e B2, (3.1)
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The next lemma states that the exponential weighi(@), pz(Y) and pz(N)
are analytic functions of.

Lemma 3.10. Suppose that Assumption CO holds,det S, letY be
aq-contour and lelN be a contour network. The#y(2), p2(Y) andp,(N) are

analytic functions ot in &.

Proof. By assumption CO, the functionsg — ¢a(c,2) =
exp{—® (o, 2)} are holomorphic in¥. To prove the lemma, we will show
that04(2), p(Y) and p,(N) can be written as products over the exponential
potentialsy A (o, Z), with ¢ = 69, 6 = oy ando = oy, respectively.

Let us start withdq(z). Showing thatdy is the product of exponential
potentialsp (69, 2) is clearly equivalent to showing the4 can be rewritten in
the form

&= . Dalo"), (3-2)
AeVe
whereVe is a collection of subsetd c T_. But this is obvious from the
definition (1.6) ofey: just chooséVe in such a way that it contains exactly one
representative from each equivalence class under translations.

Consider now a contol¥ = (suppY, oy) and the corresponding excita-
tion energyE(Y, z). We will want to show thaE(Y, z) can be written in the
form

EY.2= > ®alov), (3.3)
AeVy
whereVy is again a collection of subsets C T\ . Let Aq = ExtY UlInty Y,
andAm = Intyy Y for m # g. Consider a poink € Ap. Sincex ¢ suppY =
Br(ovy), the configuratiomy must be constant on any subgetc T| that has
diameter R + 1 or less and contains the pomtimplying that

1 1

> A oA = > A 2AE™ =en (3.4)
A XeA A XeA

whenevelx € Ay. Using these facts, we now rewriEeY, z) as

1
E(Y,2) =BHL(ov)— D chbmv)

XeT | \suppY A:xeA

= Dp(oy) — D |Amlém
Aé;‘L aloy) r;g (3.5)
= > <1>A(oy)+z[( > <1>A(a”‘>)—|Am|aﬂ].
AcsuppY meS ACTL

ANAm#D
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To complete the proof, we note that the sum overfalWith A N Ay # @
contains at leagtA | translates of each ¢ T contributing to the right hand
side of (3.2). As a consequence, the difference on the right hand side of (3.5)
can be written in the form (3.3), proving thB(Y, 2) is of the form (3.3). The
proof thatp,(N) is an analytic function ot is virtually identical. 1

Next we define partition functions in finite subset&8t Fix an indexg €
S. Let A c Z9 be a finite set and leb1(A, ) be the set of all collection¥
of matching contours iZ% with the following properties:

(1) Foreachr € Y, we have suply U IntY c A.
(2) The external contours it areq-contours.

Note that supy uintY c A isimplied by the simpler condition that sufpc
Aif Z9\ A is connected, while in the case whé&t&\ A is not connected, the
condition suppy U IntY C A is stronger, since it implies that none of the
contoursY € Y contain any hole of\ in its interior. (Here a hole is defined as
a finite component oZ9 \ A.) In the sequel, we will say that is a contour
in A wheneverY obeys the condition suppu IntY c A.

The contour partition functionin A with boundary conditiorg is then
defined by

Z0= Y. [[Tm@ [T pn).  (36)

YeM(A,q) meS YeY

where Am(Y) denotes the union of all components/®f\ | Jy .y SuppY with
labelm, and|Am(Y)| stands for the cardinality ok, (Y).

If we add the condition that the contour netwdrkis empty, the def-
initions of the setM(A, q) and the partition functior?q(A, z) clearly ex-
tends to any subset ¢ T, because off | every contour has a well defined
exterior and interior. However, our goal is to have a contour representation
for the full torus partition function. LetM | denote the set of all collections
(Y, N) of matching contours ifT_. which, according to our convention, in-
clude an extra labeh € S when bothY andN are empty. If(Y,N) € M
is such a collection, le(Y,N) denote the union of the components of
Ty \ (suppN U Jyy SuppY) with labelm. Then we have:

Proposition 3.11(Contour representation). The partition func-
tion on the torudl is given by

2P¥(2) = z [H Hm(Z)IAm(Y’N)l] 22(N) H p2(Y). (3.7)

Y, N)eM| meS YeY
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In particular, we have

2= > 5N [] Zm(Am®.N), 2). (3.8)

@,N)yemM meS

Proof. By Lemma 3.9, the spin configuratioasire in one-to-one corre-
spondence with the pait¥, N) € M. Let (Y, N) be the pair corresponding
to 0. Rewriting (1.8) as

1
BHLG) =D D A 2AO): (3.9)
xeT, AI[{\;;(']TL

we can now split the first sum into several parts: one for each S corre-
sponding tax € An(Y, N), one for eacty € Y corresponding tx € suppY,
and finally, one for the part of the sum corresponding to suppN. Invoking
the definitions of the energies (2), E(Y, z) andE(N, z), this gives

BHL(0) = D en@|Am(Y,N)| + D E(Y.2) + E(N, 2. (3.10)
meS YeY

Strictly speaking, the fact that the excitation energy factors (technically, sums)
over contours and contour networks requires a proof. Since this is straight-
forward using induction as in the proof of Lemma 3.6, starting again with the
innermost contours, we leave the formal proof to the reader. Using the defini-
tions oftn(2), p2(Y) andpz(N) and noting that, by Lemma 3.9, the sum ower
can be rewritten as the sum ov@&f, N) € M|, formula (3.7) directly follows.

The second formula, (3.8), formally arises by a resummation of all con-
tours that can contribute together with a given contour netWwérklt only
remains to check that ¥, ¢ Y is the set ofY € Y with suppY C Am =
Am(@, N), thenY, can take any value in(Am, m). But this follows directly
from Definition 3.8 and the definition o1 (Am, m). |

In order to be useful, the representations (3.7) and (3.8) require that con-
tours and contour networks are sufficiently suppressed with respect to the max-
imal ground state weigh#t. This is ensured by Assumption C2, which guar-
antees thatp,(Y)| < 8(2Ye " and|p,(\)| < 0(2)MNle= "™l where we
used the symbolpr| and|N| to denote the cardinality of suppand supp\N,
respectively.

3.3. Cluster expansion

The last ingredient that we will need is thiister expansionwhich will serve
as our principal tool for evaluating and estimating logarithms of various parti-
tion functions. The cluster expansion is conveniently formulated in the context
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of so-called abstract polymer models [7,10, 14, 19]. K&k a countable set—
the set of albolymers—and let* be therelation of incompatibilitywhich is a
reflexive and symmetric binary relation ¢h For eachA c K, let M(A) be
the set of multi-indiceX: K — {0} U N that are finite,zyEK X(y) < oo, and
that satisfyX(y) = 0 whenever & A. Further, leC(A) be the set of all multi-
indicesX € M (A) with values in{0, 1} that satisfyX(y)X(y") = 0 whenever
y 7y andy # .

Let3: K — C be a polymer functional. For each finite sub&et K, let
us define the polymer partition functiah(A) by the formula

zmw= > []s0)*. (3.11)

XeC(A) yeK

In the most recent formulation [7, 14], the cluster expansion corresponds to
a multidimensional Taylor series for the quantity [B¢A), where the com-
plex variables are thg(y). Hereclustersare simply multi-indiceX € M (K)
for which any nontrivial decomposition of leads to incompatible multi-
indices. Explicitly, if X can be written a1 + X2 with X1, X2 # 0, then
there exist two (not necessary distinct) polymeysy, € K, y; # 7, such
thatX1(y1)X2(y2) # 0.

Given a finite sequenceé = (y4, ..., y,) of polymers inK, letn(I') = n
be the length of the sequenEelet G(I') be the set of all connected graphs on
{1,...,n} that have no edge between the verticesd | if y; ~ y;, and let
Xr be the multi-index for whickXr(y) is equal to the number of times that
appears ifi’. For a finite multi-indexX, we then define

1
a'lx)= >, ool > (e, (3.12)

T Xp=X geG(I)
with |g| denoting the number of edgesgnand
3700 =a' o) [ [s()*. (3.13)

yeK
Note thatG(I") = @ if Xr is not a cluster, implying, in particular, that(X) =

0 wheneveiX is not a cluster. We also use the notathor¥ y wheneveiX is a
cluster such thax(y”) > O for at least one’ » y.

The main result of [14] (building upon [7]) is then as follows:

Theorem 3.12(Cluster expansion). Leta: K — [0, co) be a func-
tion and letso: K — [0, co) be polymer weights satisfying the bound
> 3007 <ap), ek (3.14)
Y eK

Yty
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Then Z(A) # 0 for any finite setA ¢ K and any collection of polymer
weights3: K — C in the multidiscDy = {G(): 13(»)] < 30(y), y € A}.
Moreover, if we define logg (A) as the unique continuous branch of the com-
plex logarithm ofZ(A) onID, normalized so that log (A) = 0 whenz(y) =0
forall y € A, then

logz(m) = > 3’ (3.15)

XeM(A)

holds for each finite set c K. Here the power series on the right hand side
converges absolutely on the multidiBg. Furthermore, the bounds

DTl DD x0T < [30)]e? (3.16)

XeM(K) XeM(K)
X(y)=>1
and
>3 <am) (3.17)
XeM(K)
XFy

hold for eachy € K.

Proof.  This is essentially the main result of [14] stated under the
(stronger) condition (3.14), which is originally due to [10, 15]. To make the
correspondence with [14] explicit, let

1 (y) = log(1+ [3(y)|e*?) (3.18)

and note that(y) < |3(»)1€2?) < 30(y)€®"). The condition (3.14) then guar-
antees that we have.,,.,, u(y’) < a(y) and hence

B0 =€ = e < @V —exp|- D u(H}. (319
V'Fy

This implies that any collection of weighis K — C such that3(y)| < 30(y)
for all y € K will fulfill the principal condition of the main theorem of [14].
Hence, we can conclude th&{(A) # 0 in D, and that (3.15) holds. Moreover,
as shown in [14], both quantities on the left-hand side of (3.16) are bounded by
e — 1 which simply equal$;(y)|€2?). The bound (3.16) together with the
condition (3.14) immediately give (3.17).1

To facilitate the future use of this result, we will extract the relevant con-
clusions into two lemmas. Given a spin states S, let K4 denote the set
of all g-contours inZd. If Y,Y’ e Kg, let us callY andY’ incompatibleif
suppY NsuppY’ # @. If Ais a finite set ofj-contours, we will letZ(A) be the
polymer sum (3.11) defined using this incompatibility relation. Then we have:



30 Biskup, Borgs, Chayes and Kotecky

Lemma 3.13. There exists a constan§ = co(d, |S|) € (0, c0) such
that, for allq € S and all contour functionalg: Kq — C satisfying the condi-
tion

30| < 30(Y) = e @I forall Y e Kq, (3.20)

for somey > 0, the following holds for alk > 1:
(1) Z(A) # O for all finite A C Kq with log Z(A) given by (3.15), and

> ol <e (3.21)

XGM(Kq)
V(X)20, [IX]I =k

Here V(X) = Uy. x>0V (Y) with V(Y) = suppY U IntY and [X| =
Sverg XNIYI.

(2) Furthermore, if the activitieg(Y) are twice continuously differentiable
(but not necessarily analytic) functions of a complex parametauch that
the bounds

0w3(Y)| < 30(Y) and [8,,0,/3(Y)| < 30(Y) (3.22)

hold for anyw, v’ € {z, z} and anyY e Kgq, then

> ows' | < e and > Jowows ()| < e
XeM(Kq) XeM(Kq)
V(X)20, [IX[I=k V(X)30, X[k
(3.23)

foranyw, w’ € {z, z}.

Using, for any finiteA c Z9, the notatiorKg, A = {Y € Kq: suppY U
IntY c A} andéA for the set of sites itf.¢ \ A that have a nearest neighbor
in A, we get the following lemma as an easy corollary:

Lemma 3.14. Suppose that the weighisatisfy the bound (3.20) and
are invariant under the translations 8¥. Then thepolymer pressuregs =
lim 5170 |A| 71 l0g Z(Kg,A) exists and is given by

S = Z V00| 31 (X). (3.24)
XeM(Kq): V(X)=0
Moreover, the bounds
|ql < €7 (3.25)

and
|log Z(Kq,a) — SqlAl| < €7"[0A] (3.26)
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hold. Finally, if the conditions (3.22) on derivatives of the weight¥) are
also met, the polymer pressiggis twice continuously differentiable inwith
the bounds

|alUSQ‘ < e’ and |awaw’sq‘ < e"?j (327)

valid for anyw, w’ € {z, z}.

Proof of Lemma 3.13. Let us consider a polymer model where poly-
mers are either a single site @f' or ag-contour fromKq. (The reason for
including single sites as polymers will become apparent below.) Let the com-
patibility between contours be defined by disjointness of their supports while
that between a contoitf and a sitex by disjointness ofx} and suppy UlintY.

If we let 3(y) = 0 whenevery is just a single site, this polymer model is in-
distinguishable from the one considered in the statement of the lemma. Let us
choosecy so that
> e« (3.28)
YeKq: V(Y)30

To see that this is possible with a constentiepending only on the dimension
and the cardinality o, we note that each polymer is a connected subsgf of
As is well known, the number of such sets of sizeontaining the origin grows
only exponentially withn. Since there are only finitely many spin states, this
shows that it is possible to choosgas claimed.

Defininga(y) = 1if y is a single site and(Y) = |Y| if Y is ag-contour
in Kg, the assumption (3.14) of Theorem 3.12 is then satisfied. (Note that
assumption (3.14) requires slightly less than (3.28), namely the analogue of
(3.28) with the exponent afl — co)|Y| instead of(2 — co)|Y|; the reason why
we chosecy such that (3.28) holds will become clear momentarily.) Theo-
rem 3.12 guarantees that(A) # 0 and (3.15) holds for the corresponding
cluster weightg ™. Actually, assumption (3.14) is, for ajl > 0, also satisfied
whenj3(Y) is replaced by (Y)e?™) with b(Y) = 5|Y]|, yielding

> eWETX)| <a) (3.29)
Xe M(K)
X#y

with b(X) = #||X|| instead of (3.17). Using (3.29) with chosen to be the
polymer represented by the site at the origin and observing that the quantity
b(X) exceedsjk for any cluster contributing to the sum in (3.21), we get the
bound

et > BTl DD [Teole™ <1, (3.30)

XEM(Kq) XGM(Kq)
V(X)20, [IX]|>k V(X)=0
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i.e., the bound (3.21).
In order to prove the bounds (3.23), we first notice that, in view of (3.13)
and (3.22) we have

003" )| < IXI[3500| < X350 (3.31)

and

|0w0uw3T )] < IXI%3600] < eX[35(x)]. (3.32)
Using (3.29) withb(Y) = ( + 1)|Y| (which is also possible since we choose
Co such that (3.28) holds as stated, instead of the weaker condition izhere
Co)|Y| is replaced by(1 — cp)|Y|) we get (3.23) in the same way as (3.211

Proof of Lemma 3.14. The bound (3.21) fok = 1 immediately
implies that the sum in (3.24) converges wjth| < e~7. Using (3.15) and
standard resummation techniques, we rewrite the left hand side of (3.26) as

log Z(kq.0) — sl = | > FELEH
XeM(Kq)
V(X)ZA
Next we note that for any clustet € M(Kq), the setV (X) is a connected
subset ofzZ9, which follows immediately from the observations that s¥pp
IntY is connected for all contours, and that incompatibility of two contours
Y, Y/ implies that suppy NsuppY’ # @. Since only clusters withl (X)NA # ¢
andV (X) N A® # @ contribute to the right hand side of (3.33), we conclude
that the right hand side of (3.33) can be bounded by a sum over clister,
with V (X) N oA # @. Using this fact and the bound (3.21) wkh= 1, (3.26)
is proved.
Similarly, using the bounds (3.23) in combination with explicit expression
(3.24) in terms of absolutely converging cluster expansions, the claims (3.27)
immediately follow. |

37 (X)|. (3.33)

Remark 3.15. The proof of Lemma 3.13 holds without changes if we
replace the set of alfj-contours inZ9 by the set of allg-contours on the
torusTy.. This is not true, however, for the proof of the bound (3.26) from
Lemma 3.14 since one also has to take into account the difference between
clusters wrapped around the torus and cluste#inThe corresponding mod-
ifications will be discussed in Section 4.4.

4. PIROGOV-SINAI ANALYSIS

The main goal of this section is to develop the techniques needed to control the
torus partition function. Along the way we will establish some basic proper-
ties of the metastable free energies which will be used to prove the statements
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concerning the quantities,. Most of this section concerns the contour model
onZd. We will return to the torus in Sections 4.4 and 5.

All of the derivations in this section are based on assumptions that are
slightly more general than Assumption C. Specifically, we only make state-
ments concerning a contour model satisfying the following three conditions
(which depend on two parametetsandM):

(1) The partition functionZq(A, z) andZP*'(2) are expressed in terms of the
energy variable8n,(z) and contour weightg; as stated in (3.6) and (3.7),
respectively.

(2) The weightsp, of contours and contour networks are translation invariant
and are twice continuously differentiable functions@n They obey the
bounds

|6Lep2(V)| < (MY H e MgV, (4.1)

INA

and B }
058502 (N)| < (MIND T em™Nlg ()] (4.2)

aslongag,f > 0and( + ¢ < 2.

(3) The energy variable, are twice continuously differentiable functions on
¢ and obey the bounds

|6%0%m@)| < (Mo (2) (4.3)

as long ag, ¢ > 0 and¢ + ¢ < 2. We will assume thai(z) is bounded
uniformly from below throughout’. However, we allow that some of
thebf,, vanish at some € 0.

In particular, throughout this section we will not require that any of the quanti-
tiestm, pz(Y) or p,(N) is analytic inz.

4.1. Truncated contour weights

The key idea of contour expansions is that, for phases that are thermo-
dynamically stable, contours appear as heavily suppressed perturbations of the
corresponding ground states. At the points of the phase diagram where all
ground states lead to stable phases, cluster expansion should then allow us to
calculate all important physical quantities. However, even in these special cir-
cumstances, the direct use of the cluster expansion on (3.6) is impeded by the
presence of the energy terifis(z)!*m)! and, more seriously, by the require-
ment that the contour labels match.

To solve these problems, we will express the partition function in a form
which does not involve any matching condition. First we will rewrite the sum
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in (3.6) as a sum over mutually external contolf&! times a sum over col-
lections of contours which are contained in the interior of one of the con-
tours inY®, For a fixed contouY e Y® the sum over all contours in-
side Int, Y then contributes the factaty, (Inty Y, z), while the exterior of the
contours inY®X contributes the factoim(z)! X!, where Ext= Exta (Y®Y) =
Nyeyex(EXtY N A). As a consequence, we can rewrite the partition function
(3.6) as

Zg(A2) = > 6,2 T {pz(Y)HZm(Inth z)} (4.4)
Yext Yeyext

where the sum goes over all collections of compatible exteptaintours inA.
At this point, we use an idea which originally goes back to [9]. Let us
multiply each term in the above sum by 1 in the form

1— H H Zq(lnth 2) @.5)

yeyext m Zg(Inty Y, 2)

Associating the partition functions in the denominator with the corresponding
contour, we get

Zg(A2) =D 0, T (eq(z)lY'Kq(Y, 2)Zg(IntY, z)), (4.6)

yext Y eYyext

whereKq(Y, 2) is given by

_ Zn(Intn Y, 2)
Kq(Y,2) = p(V) 0~ T == 4.7
a(Y2) = pN a0 || T4 (4.7)
meS
Proceeding by induction, this leads to the representation
Zq(A,2) =6, D ] Kq(Y. 2, (4.8)

YeC(A,q) YeY

whereC (A, q) denotes the set of all collections of non-overlappgijrgontours
in A. Clearly, the sum on the right hand side is exactly of the form needed
to apply cluster expansion, provided the contour weights satisfy the necessary
convergence assumptions.

Notwithstanding the appeal of the previous construction, a bit of caution
is necessary. Indeed, in order for the weigKtgY, z) to be well defined, we
are forced to assume—or prove by cluster expansion, provided we somehow
know that the weight&y have the required decay—thag(Int, Y, 2) # 0. In
the “physical” cases when the contour weights are real and positive (and the



Partition function zeros at first-order phase transitions 35

ground-state energies are real-valued), this condition usually follows automati-
cally. However, here we are considering contour models with general complex
weights and, in fact, our ultimate goal is actually to look at situations where a
partition function vanishes.

Matters get even more complicated whenever there is a ground state which
fails to yield a stable state (which is what happens at a generic point of the
phase diagram). Indeed, for such ground states, the occurrence of a large con-
tour provides a mechanism for flipping from an unstable to a stable phase—
which is the favored situation once the volume gain of free energy exceeds the
energy penalty at the boundary. Consequently, the relative weights of (large)
contours in unstable phases are generally large, which precludes the use of the
cluster expansion altogether. A classic solution to this difficulty is to mod-
ify the contour functionals for unstable phases [5, 6,21]. We will follow the
strategy of [6], where contour weights are truncated with the aid of a smooth
mollifier.

To introduce the truncated contours weights, let us considef®)-
functionx — y(x), such that 0< y() < 1, y(x) = 0 forx < —2 and
x(X) = 1forx > —1. Letcy be the constant from Lemma 3.13. Usipg
as a regularized truncation factor, we shall inductively define new contour
weightsK( (-, 2) so that|K; (Y, 2)| < e~(@*+7/2IYI for all g-contoursY. By
Lemma 3.13, the associated partition functidia:{-, z) defined by

Z,(A2) =6, D T Ki(Y.2) (4.9)

YeC(A,q) YeY

can then be controlled by cluster expansion. (Of course, later we will show that
Ké(-, 2) = Kq(-,2) and Z;(A, 2) = Zq(A, z) whenever the ground state
gives rise to a stable phase.)

Letdq(z) # 0, letY be ag-contour inA, and suppose that;,(A’, z) has
been defined by (4.9) for ath € S and allA” & A. Let us further assume by
induction thatZ[](A’, z) # 0forallm e Sand allA” & A. We then define a
smoothed cutoff functiogq (Y, ) by

¢a(Y.2) = [ | xam(Y.2), (4.10)

meS

where
Z4(IntY,2)0q(2)"!
Z1,(INtY,2)0m(2)1V1

2qm(Y,2) = 1 (3 + 1 log ) . (4.11)

4 Y]

Here yq.m(Y, 2) is interpreted as 1 thn(z) or Z;,(IntY, z) is zero.
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As a consequence of the above definitions and the fact thairfg A
for allm € S, the expressions

K{ (Y, 2) = pa(Y) 0g () g (Y 2t Y. 2) 12
(Y. 2) = p2() 0D Mga (Y, 2) [ ] Zy(Inty Y, 2) @2
mes 4
and
i / o —(co+7/2)Y]
Qv = [Ka0De KD e @
0, otherwise

are meaningful for alk with 04(z) # 0. By Lemma 3.13 we now know that
Z(q (A, 2) # 0 and the inductive definition can proceed.

In the exceptional casg(z) = 0, we let Ké(" 7) = Ké(-, z) = 0 and
Z{q(-, z) = 0. Note that this is consistent wity (Y, z) = 0.

Remark 4.1. Theorem 4.3 stated and proved below will ensure that
IKq(Y, 2)| < e~©+/2I"I for all g-contoursY and allq € S, providedr >
4cy + 16. Hence, as it turns ot posteriori the second alternative in (4.13)
never occurs and, once we are done with the proof of Theorem 4.3, we can
safely replaceizc’1 everywhere byKg. The additional truncation allows us to
define and use the relevant metastable free energies before stating and proving
the (rather involved) Theorem 4.3. An alternative strategy would be to define
scale dependent free energies as was done e.g. in [6].

4.2. Metastable free energies
Let us rewriteZ{q (A, 2) as

Z4(A,2) = 0,0M™ Z4(A, 2) (4.14)

where _
Zin = > []KiY. 2. (4.15)
YeC(A,q) YeY
We then define
(q(2) = 0q(20e%@, (4.16)

where

5(2) = lim 1 log Z4(A, 2) (4.17)

[Al|— 00, %—)O [A]

By Lemma 3.14, the partition function:s‘a(A, z) and the polymer pressure

S(2) can be analyzed by a convergent cluster expansion, leading to the follow-
ing lemma.
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Lemma4.2. For eachq € S and eactz € &, the van Hove limit
(4.17) exists and obeys the bound

I59(2)] < €772, (4.18)

If A is a finite subset of¢ anddq(z) # 0, we further have thaza(A, 2)#0
and

log(¢cq(@ 7™M Z4 (A, 2))| < e77/?JaA, (4.19)
while (4(2) = 0 andZ4(A, 2) = 0 if 64(2) = 0.

Proof. Recalling the definition of compatibility betweepcontours

from the paragraph before Lemma 3.C3A, q) is exactly the set of all com-
patible collections ofg-contours inA. Using the bound (4.13), the state-
ments of the lemma are now direct consequences of Lemma 3.14, the defi-
nition (4.16), the representation (4.14) fZG(A, z) and the fact that we set
Kq(Y.2) =0if q(2) = 0. 1

The logarithm ofyy(z)—or at least its real part—has a natural interpre-
tation as themetastable free energyf the ground statg. To state our next
theorem, we actually need to define these (and some other) quantities explic-
itly: For eachz € & and eacly € S with 64(2) # 0, let

fa(@ = ~l0gica(2).
f(2) = min fn(@. (4.20)

aq(2) = fq(2 - T (@.

If 04(2) = O, we setfy(2) = co andag = co. (Note that sup ; f(2) < co
by (4.16), the bound (4.18) and our assumption th@ = maxq |04(2)| is
bounded away from zero.)

In accord with our previous definition, a phags stable at if aq(z) = 0.
We will also say that @-contourY is stable at zf Ka(Y, 7) = Kq(Y, 2). As
we will see, stability of the phasgimplies that allg-contours are stable. Now
we can formulate an analogue of Theorem 3.1 of [5] and Theorem 1.7 of [21].

Theorem 4.3.  Suppose that > 4co + 16 wherec is the constant
from Lemma 3.13, and lét = e~ %/2. Then the following holds for alt € ¢

() Forallg e S and allg-contoursY, we havelK (Y, 2)| < e~ @*/2I¥l
and, in particularK; (Y, 2) = K{(Y, 2).

(i)  If Y is ag-contour withag(z) diamY < 7, thenKé(Y, 2) = Kq(Y, 2).
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(i) If aq(z)diamA < 7, thenZq(A, 2) = Z;(A, 2) # 0 and
1Z4(A, 2)| > e Ta@IAI=€loAL (4.21)

(iv) If meS, then )
1Zm(A, 2)| < e T@IAgZIoAL (4.22)

Before proving Theorem 4.3, we state and prove the following simple
lemma which will be used both in the proof of Theorem 4.3 and in the proof of
Proposition 4.6 in the next subsection.

Lemma4.4. Letm,qeS,letze & and letY be ag-contour.

(i) If ¢q(Y,2) > O, then

aq(|IntY| +|Y]) < (z/4+ 2+ 4e77/?)Y]|. (4.23)

(i) If ¢q(Y,2) > Oandyq.m(Y, 2) <1, then

am(IINtY| + |Y]) < (1 + 8e77/?)|Y]. (4.24)

Proof of Lemma 4.4. By the definitions (4.10) and (4.11), the condi-
tion ¢q(Y, 2) > 0 implies that

Z! (IntY, 2)6n(2)!

maxlo
9 Z(’q(lnt Y, 2)0q (2)YI

neS

< (24 7/8)Y]. (4.25)

Next we observe thaty(Y, z) > 0 impliesfq(z) # 0. Since the maximum in
(4.25) is clearly attained for somrewith 6,(z) # 0, we may use the bound
(4.19) to estimate the partition functions on the left hand side of (4.25). Com-
bined with (4.16), (4.18), (4.20) and the estimgtitY| < |Y|, this immedi-
ately gives the bound (4.23).

Next we use that the conditign;;m(Y, 2) < 1 implies that

Z/ (IntY, 2)6m(2)""!
Z{,(IntY, 2)6q (2)VI

> (14 7/4)Y]. (4.26)

Since (4.26) is not consistent withy(z) = 0, we may again use (4.19), (4.16),
(4.18) and (4.20) to estimate the left hand side, leading to the bound

(fq = fm)( INLY[ 4+ [Y]) > (z/4+ 1 —4e"/2)|V]. (4.27)
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Combining (4.27) with (4.23) and expressiag asaq — (fq — fm), one easily
obtains the bound (4.24).1

As in [5], Theorem 4.3 is proved using induction on the diameteA of
andY. The initial step for the induction, namely, (i-ii) for diarh= 1—which
is trivially valid since no such contours exist—and (iii-iv) for diam= 1,
is established by an argument along the same lines as that which drives the
induction, so we just need to prove the induction step.NLet 1 and suppose
that the claims (i-iv) have been established (or hold automatically) fof al’
with diamY’, diamA’ < N. Throughout the proof we will omit the argument
in fn(z) andam(2).
The proof of the induction step is given in four parts:

Proof of (i). LetY be such that diatf = N. First we will show that
the second alternative in (4.13) does not apply. By the bounds (4.1) and (4.18),
we have that

V)
(V)@ M| < eIV (%) < e -2VigalYl (4.28)
q

while the inductive assumption (iv), the bound (4.19) and the fact that
dmlintnY[=]IntY|and> ,[0Intn Y| = |aIntY| < |Y], imply that

H Zm(lnth Z) aq|lntY| €|Y| (429)

Zy(IntmY, 2)

Assuming without loss of generality that(Y,z) > 0 (otherwise there is
nothing to prove), we now combine the bounds (4.28) and (4.29) with (4.23)
and the fact thaE = e %/2 < 2/r < 1/8, to conclude thatK (Y, 2)| <

e~ (Gr=3-59IY - g=(3r=4IYI By the assumption > 4cy+16, this is bounded

by e~(Cot7/2IY] a5 desired. |

Proof of (ii). Let diamY = N and suppose that is a g-contour
satisfyingaq diamY < /4. Using the bounds (4.18) and (4.19), the definitions
(4.16) and (4.20), and the fact tHatnt Y| < |Y| we can conclude that

Z/ (IntY, 2)6m(2)!
Z;,(IntY, 2)04(2)!"!

| suppY U IntY]|

+1
Y1

1
max—- log

+4¢ <
meS |Y] -

bl‘“‘

(4.30)
In the last inequality, we used the boupslppY U IntY| < |Y|diamY, the
assumption thadg diamY < z/4 and the fact thaté < 1. We also used that
ag < oo impliesdq # 0, which justifies the use of the bound (4.19). By the
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definitions (4.10) and (4.11), the bound (4.30) implies thgint Y, z) = 1. On

the other handZq(Inty Y, 2) = Z(’q(lntm Y, z) for all m € S by the inductive

assumption (iii) and the fact that diaminY < diamY = N. Combined with

the inductive assumption (i), we infer thﬁ(1 (Y,2) = K{(Y, 2) = Kq(Y, 2).
|

Proof of (iii). Let A c Z9 be such that diam = N andag diamA <
7 /4. By the fact that (ii) is known to hold for all contouyswith diamY < N,
we have thaKé(Y, z) = Kq(Y,2) forall Y in A, implying thatZq(A, 2) =
Z(q (A, 2). Invoking (4.19) and (4.20), the bound (4.21) follows directhj

Proof of (iv). Let A be a subset dZ¢ with diamA = N. Following [5,
21], we will apply the cluster expansion only to contours that are sufficiently
suppressed and handle the other contours by a crude upper bound. Given a
compatible collection of contour¥, recall thatinternal contours are those
contained in In¥ of some othelY € Y while the others arexternal Let us
call anm-contourY smallif a,, diamY < z/4; otherwise we will call ilarge.
The reason for this distinction is thatifis small then it is automatically stable.

Bearing in mind the above definitions, let us partition any collection of
contoursY e M(A, m) into three set¥™ U YE1, U Yii . of internal, small-
external and large-external contours, respectively. Flym and resumming
the remaining two families of contours, the partition functidn(A, z) can be

recast in the form

Zm(A, 2) = Z zgmalExt, 2) [ {pz(Y) [T znant, Y)} (4.31)

YeY neS

Here the sum runs over all séYsof mutually external largen-contours inA,
the symbol Ext= Ext, (V) denotes the séf)y .7 (ExtYNA) andZSMa(Ext, 2)
is the partition sum in Ext induced Y. Explicitly, ZSM@Y(A, z) is the quantity
from (3.6) with the sum restricted to the collectiofiss M (A, m) for which
all external contours are small according to the above definition.

In the special case wheég,(z) = 0, all contours are large by definition
(recall thatay, = oo if Oy, vanishes) and the partition functicm™(A, z) is
defined to be zero unlegs = @, in which case we set it to one. We will not
pay special attention to the ca&g = 0 in the sequel of this proof, but as the
reader may easily verify, all our estimates remain true in this case, and can be
formally derived by considering the lim#;, — oo.

Using the inductive assumption (iv) to estimate the partition functions
Zn(Int, YY), the Peierls condition (4.1) to bound the activitiggY), and the
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bound (4.18) to estimat&(z) by e~ fef, we get

H {Pz(Y) H Zn(Inty Y)} H {e—rIYIe—f(I IntY|+|YI)+3€|Y|}

YeY nes YeY (4.32)
_ o fIA\Ext] H e—(T=39)IY| '

YeY

Next we will estimate the partition functioBS™(Ext, z). Since all smalm-
contours are stable by the inductive hypothesis, this partition function can
be analyzed by a convergent cluster expansion. Let us consider the ratio of
zsmalExt, z) and Z/,(Ext, z). Expressing the logarithm of this ratio as a sum
over clusters we obtaln a sum over clusters that contain at least one contour of
size|Y| > diamY > t/aym > 2/an. Using the bound (3.21) with = 7 /2 we
conclude that

‘ ZsmaII(Ext 2) ‘ |Ext|e‘f/am

Z! (Ext, z) '

Combined with Lemma 4.2 and the definitions (4.20), this gives

(4.33)

‘ZsmaII(EXt Z)‘ <e (fm—€~7/3M)| Ext| EI6A| H eIYI (4_34)
YeY

We thus conclude that the left hand side of (4.31) is bounded by

|Zm(A, 2)| < max(e (am/2)| Ext| H e (1/4)IY|)

Ye¥ (4.35)
w e fIAIgEloA] Ze_b| Ext| H e~ (Be/4-4)Y|

Y YeY

whereb = an/2 — e~ 7/2n, Note thatb > e~7/2n which is implied by the fact
that 477/ < 4ay /7 < am.

For the purposes of this proof, it suffices to bound the first factor in
(4.35) by 1. In a later proof, however, we will use a more subtle bound.
To bound the second factor, we will invoke Zahrdadn method (see [21,
Main Lemma] or [5, Lemma 3.2]): Consider the contour model with weights
K(Y) = e G/4=4IVl jf Y is a largem-contour andK (Y) = O otherwise.
Let Z(A) be the corresponding polymer partition functionAr—see (3.11)—
and letp be the corresponding free energy. Cleaflv\) > 1 sothat—¢ > 0.
Since 3/4—4 > ¢p+1/2, we can use Lemmas 3.13 and 3.14 to obtain further
bounds. For the free energy, this givez0-¢ < min{é, e~*/3n} because the
weights of contours smaller tharn'@, identically vanish. Sincé > e~7/am,
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this allows us to bound the sum on the right hand side of (4.35) by

> B [T e Gr/a-2T < 3 el Bl H{e{/"Y'e—(3’/4—5€)'Y'}‘ (4.36)

Y YeY Y YeY

Using Lemma 3.14 once more, we have tRéint Y)e?! "t YIeflYl > 1. Insert-
ing into (4.36), we obtain

Z e—bIExt| H o= (Bt/4—40)Y|
Y

YeY

< 3 BRI Ey (YY) T { Z(ntY)K (Y)}
Y YeY

— NS {2(|ntv)r?(v)}.

Y YeY

(4.37)

Consider, on the other hand, the polymer partition funcﬁ(m) in the repre-
sentation (3.11). Resuming all contours but the external ones, we obtain pre-
cisely the right hand side of (4.37), except for the faa®dr*!. This shows

that the right hands side of (4.37) is equal Z¢A)e?!A which—again by
Lemma 3.14—is bounded baf!°Al. Putting this and (4.35) together we ob-
tain the proof of the claim (iv). |

4.3. Differentiability of free energies

Our next item of concern will be the existence of two continuous and bounded
derivatives of the metastable free energies. To this end, we first prove the
following proposition, which establishes a bound of the form (4.22) for the
derivatives of the partition functiondn (A, z).

Proposition 4.5. Let z andM be the constants from (4.1) and (4.3),
let ¢ = e/, and suppose that > 4cy + 16 wherecy is the constant from
Lemma 3.13. Then

050 Zm(A, )| < & @I (2m]A|) FeIN (4.38)
holds forallze &, allme S, and all¢, £ > O with ¢ + ¢ < 2.

Proof. Again, we proceed by induction on the diameter\ofWe start
from the representation (4.4) which we rewrite as

Zn(A 2 => [] m@ [] 2(Y.2. (4.39)

yext xeExt YeYext
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where we abbreviated (Y, z) = p(Y) [[, Zn(INth Y, 2). Letl < £ < o0

be fixed (later, we will use that actually, < 2) and let us consider the im-
pact of applyingd) on Zm(A, z). Clearly, each of the derivatives acts either
on some of)y’s, or on some of th&Z (Y, z)’s. Letky be the number of times
the termén(2) is differentiated “atx,” and letiy be the number of times the
factorZ(Y, z) is differentiated. Lek = (ky) andi = (iy) be the corresponding
multiindices. The resummation of all contofdor whichiy = 0 andky = 0

for all x € suppY U IntY then contributes a fact(im(ExtA(YeXT) \ A, 2),
where we use&eXt to denote the set of all tho3e e Y& for whichiy > 0,
Exta(Y™) = A\ U, _gea(SUpPY U IntY), andA’ = {x: k¢ > 0}. (Re-

member the requirement that no contour in/E(ﬁeX5 \ A’ surrounds any of
the “holes.”) Using this notation, the result of differentiating can be concisely
written as

EZmAD =D > ZmEXATTY\N.2)

<ext

Y A CExta (T

¢! . i
* Z k!l H/az Om(2) HtazYZ(Y, 2).  (4.40)

Here the first sum goes over all collections (including the empty ﬁés

of mutually external contours ik and the third sum goes over all pairs of
—ext

multiindices(k, i), kx = 1,2,...,x e Al,iy =21,2,...,Y € Y . (The
terms with |A'| + |YEXt| > { vanish.) We writek + i = ¢ to abbreviate
> xkx + >y iy = ¢ and use the symbold andi! to denote the multi-index
factorials [, kx! and[ [y iv!, respectively.

We now use (4.3) and (4.18) to bound*6m(2)| by (M)efe= @,
Employing (4.1) and (4.18) to bound the derivativespgtY), and the in-
ductive hypothesis to bound the derivatives &f(Inty, Y, z), we estimate
105 Z(Y, Z)| by [2M|V (Y)|]'Ye~(=30I¥le=T@IVMI (recall thatV (Y) was de-
fined as suply U IntY). Finally, we may use the bound (4.22) to estimate

1 Zm(EXt (TS \ A/, 2)] < ZRERT™ N f@IB TN (4 41)
Combining these estimates and invoking the inequality

0EXtA (TTY\ A < AT+ AT+ D 1YL, (4.42)

<ext

YeY
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we get
(Zn(A, 9] < @PNeTENST S S
T A’ cExty (Y° t)k-l—l 1,
x [TMeH T] (2M|V(Y)|)'Y — (=S¥, (4.43)
XeN’ ver®™

Let us now consider the cage= 1 and¢ = 2. For{ = 1, the sum on the
right hand side of (4.43) can be rewritten as

Z(Me‘?‘g—l— > 2Me—<f—5€>'Y|), (4.44)

XeA Y: xeV(Y)CA
while for £ = 2, it becomes

Z[(Mesg)z—l—ZMesEZM > et

X,yeA Y: xeA\V(Y)
yeV(Y)CA (445)
+@M> " ] e—“—f@”'],
YextY Yext

where the last sum goes over sets of mutually external conBurin A such
that{x, y} c UYe§extV(Y) and{x, y} N V(Y) # @ for eachY € Y. Note

that the last condition can only be satisfiedf contains either one or two
contours. Introducing the shorthand

S= > e 3N (4.46)
Y: 0eV(Y)czd

we bound the expression (4.44) @ + 2S)M|A|, and the expression (4.45)
by (€% + 4e¥ S+ 4(S+ S?))M?|A|2. Recalling thaty was defined in such a
way that the bound (3.28) holds, we may now use the factthdic —cy > %r
to boundS by e~2%¢. Sinceé < 1/8, this implies that the above two terms can
be estimated bye®8 + 2e~2)M|A| < 2M|A| and(e®/8 + €382+ 2(e72 +
2e7H)M?|A|? < 4M2|A?, as desired.

This completes the proof for the derivatives with resped.tdhe proof
for the derivatives with respect tband the mixed derivatives is completely
analogous and is left to the readed

Next we will establish a bound on the first two derivatives of the contour
weights Ké' Before formulating the next proposition, we recall the defini-
tions of the polymer partition functioﬁ(q (A, 2) and the polymer pressusg
in (4.17) and (4.15) .
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Proposition 4.6. Let z andM be the constants from (4.1) and (4.3),
let ¢y be the constant from Lemma 3.13, anddet e~%/2. Then there exists
a finite constant; > 4cp + 16 depending only oMM, d and|S| such that
if 7 > 71, the contour weighth’l(Y, -) are twice continuously differentiable in

0. Furthermore, the bounds
|6565K (Y, 2)| < e (te/21] (4.47)

and _ . )
050524 (A, 2)| < || ea@IAIFEIoA] (4.48)

hold for allqg € S, all z € 0, all g-contoursY, all finite A c Z9 and all
£, >0with¢ 4+ ¢ < 2.

Proposition 4.6 immediately implies that the polymer presssgeare
twice continuously differentiable and obey the bounds of Lemma 3.14. For
future reference, we state this in the following corollary.

Corollary 4.7.  Let r; be as in Proposition 4.6. Ift > 73 andq €
S, thensg is a twice continuously differentiable function # and obeys the
bounds

7/2

OwSq| < € and |0,0,5| < e /2, (4.49)
S S

valid for anyw, w’ € {z, z} and anyz 0.

Proof of Proposition 4.6. Letr > 71 > 4¢co + 16. Then Theorem 4.3
is at our disposal. It will be convenient to cover the &dby the open sets

O =(z€ 0 |64(2)| < e T/H2)g(z)) (4.50)

and
O =z 0 |04(2)] > e T/428q ()} (4.51)

We first note thak (Y, z) = 0ifz e ﬁ{q). Indeed, assumin§ (Y, z) # O we
necessarily havgq (Y, z) > 0, which, by (4.23), implies thaly < 7/4+2+4¢
and thus lo@(z) — log|64(2)| < 7/4 + 2 + 6€, which is incompatible with
Ze ﬁiq). Hence, the claims trivially hold im%’iq) and it remains to prove that
K(’](Y, -) is twice continuously differentiable iﬁé‘”, and that (4.47) and (4.48)

hold for all z € ééq). As in the proof of Theorem 4.3 we will proceed by
induction on the diameter of andA. Let N > 1 and suppose th:iift(’q (Y, e

Cz(ﬁé‘:‘)) and obeys the bounds (4.47) for glle S and all g-contoursY
with diamY < N, and that (4.48) holds for aj € S and allA c Z% with
diamA < N — 1.



46 Biskup, Borgs, Chayes and Kotecky

We start by proving thak (Y, ) € Cz(ﬁé‘”) whenevery is ag-contour

Y of diameterN. To this end, we first observe that 'rﬁéq), we have that
0q(2) # 0 and hence alsdg(IntY, z) # 0. Using the inductive assumption,
this implies that the quotient

Z/ (IntY, 2)6m(2)"!
Z,(IntY, 2)0q(2)!Y!

Qm,y(2) = (4.52)

is twice continuously differentiable irﬁ(Q), which in turn implies that
xq:m(Y, 2) is twice continuously differentiable. Combined with the cor-
responding continuous differentiability ¢f;(Y), 64(2), Zm(IntmY, 2), and
Z;(Intm Y, 2), this proves the existence of two continuous derivatives ©f
Kg(Y; 2) with respect to botfz andz.

Next we prove the bound (4.48) for diamm= N — 1. As we will see,
these bounds follow immediately from the inductive assumptions (4.47) and
Lemma 3.14. Indeed, Ig(Y) = Ka(Y, z)ifdiamY < N —1, andjq(Y) =0
if damyY > N — 1. The inductive assumptions (4.47) then guarantee the
conditions (3.22) of Lemma 3.14. Combining the representation (3.15) for
log Z{ (A, 2) with the estimate (3.23) from Lemma 3.14 we thus conclude that

95eblog Z4(A, 2| < 1ALZ, (4.53)
while (3.26) gives the bound
| Z4(A, 2)| < eNIAIFEIAL (4.54)

Combining these bounds with the estimages| < |A| andé?|A|? + E|A| <
|A|2, we obtain the desired bounds (4.48).

Before turning to the proof of (4.47) we will show that fore 5’5(‘), the
bound (4.48) implies

_ t+¢ ,
050524 (A, )| < (Mae"™3A) e @AM (4.55)

with M1 = 1 4+ M. Indeed, invoking the assumption (4.3), the definition of

ﬁéq), and the fact that < 1/8, we may estimate the first and second derivative
of 64(2)'* by

_ 0(2) 4+
Al A [A]
oLoltg@™| < (M|A||0q(z)|) 104(2)|

0+
< (M |A|ef/4+3) 10g ()" (4.56)
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Combined with (4.14) and (4.48) this gives (4.55).

Let Y be ag-contour with dian¥ = N, and let us consider the deriva-
tives with respect t@; the other derivatives are handled analogously. By the
assumption (4.1) and the bound (4.18), we have

|05p,(Y)| < [Y|"Mle =20V gaalYl|g, (2)|IY1, (4.57)
while (4.3) and the assumption that &\ (cf (4.56)) yields
10504~ < (Y] + 1) (Me” #3164 (2)| . (4.58)

Further, combining the bound (4.55) with Theorem 4.3 and Proposition 4.5 we
have

Zn(Inty Y, 2)
H Z/ (Intn Y, 2)

< It (2M + 2M; ¥ 1YIg3+7/4) g¥IYigaalint Yl (4.59)

Finally, let us consider one of the factorg.m(Y, z). To bound its derivative,

we may assume thatis an accumulation point af’ with yq.m(Y,Z) < 1
(otherwise its derivative is zero), so by Lemma 4.4(ii) we havedhat 1+ 8¢

and thus lo@(z) — log|0m(z)] < 14 106 < /4 + 2 + 8¢, implying that

Ze ﬁém). We may therefore use the bounds (4.56) and (4.55) to estimate the
derivatives ofyq.m(Y, 2), yielding the bound

. €
|6 yqm(Y, )| < C(INtY] + Y] (4M1e3+f/4e26|Yl) (4.60)

whereC is a constant bounding both the first and the second derivative of the
mollifier function y. Combining all these estimates, we obtain a bound of the
form

05K (Y, 2)| < C(lIntY| + |Y|) e /e —COllgalntYI+IYD (4 61)

with a constan€ that depends oM and the number of spin statg$|, and a
constant that depends only ofS|. Using the bound (4.23) and the fact that
e7/4 < e/®IYI (note thatY| > (2R+ 1) > 4 by our definition of contours),
we conclude that

|05K4(Y, 2)| < C(lIntY| 4 |Y|) e~ G/8=3-COIN] (4.62)
Increasingr; if necessary to absorb all of the prefactors, the bound (4.47) fol-

lows. |

We close the subsection with a lemma concerning the Lipschitz continuity
of real-valued functiong — f(z) andz +— e~2@ on ¢:
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Lemma 4.8. Let 71 be as in Proposition 4.6 and I&l = 4M + 1.

If r > 71,9 €S, and ifz, zg € € are such thaty, Z]= {sz+ (1 — s)zp: 0 <
s< 1} c 0, then B

| f(z0) — f(2)| < M1]|z— 2] (4.63)

and .
|e7%@ — g=%(@)| < 2My|z — | eM2IF~%l, (4.64)

Proof. Let {4(2) be the quantity defined in (4.16), and &t= e /2,
Combining the assumption (4.3) with the bounds (4.49) and (4.18), we get the
estimate

0biq(@] < (Me* + e~ 1@, w,w' e (z,2). (4.65)
With the help of the bounMe® + ¢ < 2M + 1/2 = M1/2, we conclude that
le~fal@) — g~ fal@)) < I\7I1/ e '@z, z,zel2,7, (4.66)
[21,22]

where |dZ| denotes the Lebesgue measure on the intezglz]. Using
that f = mayg fq, this implies

e @ _ e @) < M]/ e '@dZ|, z.z2e(z2.7. (4.67)
[21,22]

Now if (4.63) is violated, i.e., whepf (z) — f(z9)| > (Ml + €)|z — 29|, then

the same is true either about the first or the second half of the segmerit.|

This shows that there is a sequence of intenals [z n] of length 27" |zy — Z]

where|f(z1n) — f(z2n)| > (Ml + €)|z1n — 22n|. But that would be in

contradiction with (4.67) which implies that

jim (@) = fnl o jem 1) — e 1)

oo |Zyn = Zpnl n—oo fi, 1€ 1@ |dz]

where we use the mean-value Theorem and a compactness argument to infer
the first equality. Hence, (4.63) must be true after all.

To prove (4.64), we combine the triangle inequality and the bound
fq(z0) > f(z0) with (4.66) and (4.67) to conclude that

o=@ _ g=2(®0)| = }ef(z)e‘ fq(2 _ of (20)g— fq(20)|
e fq(ZO)

f(2) —fq(z) _ —fq(ZO) - -
e e € I+ e f@De—f(20)

z
< 2M1/ ef@=1@)dz.
20

Bounding f (z) — f (Z)) by M1|z — 79|, we obtain the bound (4.64).1
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4.4. Torus partition functions

In this subsection we consider the partition functighg A, z), defined for

A c T in (3.6). Since all contours contributing (A, z) have diameter
strictly less thanL /2, the partition functionZq(A, z) can be represented in
the form (4.8), withK(Y, z) defined by embedding the contoMrinto 7.

Let Za (A, 2) be the corresponding truncated partition function, defined with
weights Ké(Y, z) given by (4.12). Notice, however, that even though every
contourY C A can be individually embedded in%f, the relation of incom-
patibility is formulated on torus. The polymer partition functiﬁQ(A, z) and

Z(’q (A, z) can then again be analyzed by a convergent cluster expansion, bear-
ing in mind, however, the torus incompatibility relation. The torus analogue of
Lemma 4.2 is then as follows:

Lemma 4.9. Assumethg’t > 71, Wwherer; is the constant from Propo-
sition 4.6 and let| € S andz € & be such tha#;(z) # 0. Then

& log (gq @M Zy(A, z))‘ < e T/2|5A| + 2|Ale”L/4 (4.70)
foranyA c T, anyze &,¢=0,1, andw € {z, Z}.

Proof.  Let us write Za(A, z) in the form (4.14). Taking into ac-
count the torus compatibility relation when comparing the cluster expansion
for log Zé (A, z) with the corresponding terms contributingsg A|, we see
that the difference stems not only from clusters passing through the boundary
oA, but also from the clusters that are wrapped around the torus in the former
as well as the clusters that cannot be placed on the torus in the latter. For such
clusters, however, we necessarily hgve X(Y)|Y| > L/2. Since the func-
tional 3(Y) = Ké(Y, z) satisfies the bound (3.20) with= 7/2, we may use
the bound (3.21) to estimate the contribution of these clusters. This yields

log Z4(A, 2) — sqlAl| < € /?|0A| + 2| Ale™ M4, (4.71)

which is (4.70) forr = 0. To handle the cage= 1, we just need to recall that,
by Proposition 4.6, the functiong(Y) = K{](Y, ) satisfies the bounds (3.22)
with # = /2. Then the desired estimate foe= 1 follows with help of (3.23)
by a straightforward generalization of the above proof of (4.73.

Next we provide the corresponding extension of Theorem 4.3 to the torus:
Theorem 4.10. Let z > 4cg + 16 wherecy is the constant from

Lemma 3.13, and let us abbrevigte= e"7/2. For allz € &, the following
holds for all subseta of the torusT' :
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(

=

If ag(2) diamA < 7, thenZq(A, 2) = Za(A, z) # 0 and
1Z4(A, 2)| > e fa@IAlg=eloAI-21Ale™™ (4.72)

(i) If meS,then

1Zm(A, 2)| < e—f(z)|A|+2e|aA|+4|A|e—fL/4_ (4.73)
@) If me S, then
1Zn(TL, 2)| < & FOL max{ean@L/2 gmrl7h/aalfe ™t
(4.74)

Remark 4.11. The bounds (4.72) and (4.73) are obvious generaliza-
tions of the corresponding bounds in Theorem 4.3 to the torus. But unlike in
Proposition 4.6, we will not need to prove the bounds for the derivatives with
respect taz. When such bounds will be needed in the next section, we will
invoke analyticity inz and estimate the derivatives using Cauchy’s Theorem.

Proof of (i). Since all contours can by definition be embedded ftp
Theorem 4.3(ii) guarantees thlég1 (Y, 2) = Kq(Y, 2) for all g-contours inA
and henc&Zq(A, 2) = Z&(A, z). Then (4.72) follows by Lemma 4.9 and the
definition of f5. |}

Proof of (ii)). We will only indicate the changes relative to the proof of
part (iv) of Theorem 4.3. First, since all contours can be embeddedhtoe
have that a corresponding bound— namely, (4.22)—holds for the interiors of
all contours inA. This means that all of the derivation (4.31-4.35) carries over,
with the exception of the factaf!?Al in (4.34) and (4.35) which by Lemma 4.9
should now be replaced Bf1A1+2A1e™ % " |n order to estimate the last sum
in (4.35), we will again invoke the trick described in (4.36—4.37). This brings
in yet another factoeloAI+2IA1E™ " Erom here (4.73) follows. ||

Proof of (iii). The estimate is analogous to that in (ii); the only differ-
ence is that now we have to make use of the extra decay from the maximum
in (4.35). (Note that forA = T_ we have|oA| = 0 and|A| = LY.) Fol-
lowing [5], this is done as follows: I¥ is a contour, a standard isoperimetric
inequality yields

1 -
Y| > %w(suppY UlintY)| > | suppY U IntY|%. (4.75)
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Hence, ifY is a collection of external contoursT and Ext is the correspond-
ing exterior set, we have

D IYI= D IsuppY U IntY| T

YeY YeY
d-1
d

> (Z | suppY U IntY|) = (L9~ Ext|)%. (4.76)

YeY

Writing |Ext] = (1 — x)LY wherex e [0, 1], the maximum in (4.35) is
bounded by

@m Ty d-1,951
sup expi——L " (1—x) —-L """ xd . (4.77)
Sup expl = it

The function in the exponent is convex and the supremum is thus clearly domi-
nated by the bigger of the valuesxat= 0 andx = 1. This gives the maximum
in(4.74). 1

Apart from the partition function&n (T, z), we will also need to deal
with the situations where there is a non-trivial contour network. To this end,
we need a suitable estimate on the difference

20902 = 202 - > Zm(TL, 2. (4.78)
meS
This is the content of the last lemma of this section.

Lemma 4.12.  There exists a constatj depending only ol and|S|
such that forr > 48y + 16 and allz € ¢, we have

1Z29(2)| < Liemr LA e )L (4.79)

Proof. Let cg be the constant from Lemma 3.13, and gt =
Co(d, |S|) > cp be such that

> (Sl <L, (4.80)
ACTL

where the sum goes over all connected subseaitthe torusT (the existence

of such a constant follows immediately from the fact that the number of con-
nected subsetsd c Z9 that contain a given point and have siz& is bounded

by ad-dependent constant raised to the potger
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The proof of the lemma is now a straightforward corollary of Theo-
rem 4.10. Indeed, invoking the representation (3.8) we have

2% = > p:) [] Zm(Am(®@.N), 2), (4.81)
(g,jj\\ff);é\/tl_ meS

whereAm(9, N) is defined before Proposition 3.11. Using (4.2) and (4.73) in
conjunction with the bound&(z) < ¢ (2)e* and) s [0Am@, N)| < IN],
we get

2% < c@ ettt ST e, (4.82)

@,N)yemMp
N0

Taking into account that each connected component of Sulpgs size at least
L /2, the last sum can be bounded by

o0
. 1
—(1—43)IN| =
> e <> = S < se (4.83)
3,N)eM, n=1
N#G
where N
s= > (|5|e—(f—4€>) (4.84)
ACTL
|AI=L/2

is a sum over connected sefsc T of size at least. /2. Extracting a factor
e~7L/4 from the right hand side of (4.84), observing thaR — 4¢é > &, and
recalling tha€y was defined in such a way that (4.80) holds, we get the estimate
S < L9 7L/4. Combined with (4.82) and (4.83) this gives the desired bound
4.79). 1

5. PROOFS OF MAIN RESULTS

We are finally in a position to prove our main results. Unlike in Section 4, all
of the derivations will assume the validity of Assumption C. Note that the as-
sumptions (4.1-4.3) follow from Assumptions C0-C2, so all results from Sec-
tion 4 are at our disposal. Note also thatY), p.(N) andfn(z) are analytic
functions ofz by Lemma 3.10, implying that the partition functiods,(A, -)
andzP*" are analytic functions .

We will prove Theorems A and B for

70 = max{ry, 4 + 16, 210g(2/a)} (5.1)
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where 71 is the constant from Proposition 4.6y is the constant from
Lemma 4.12 andx is the constant from Assumption C. Recall that >
4co + 16, so forr > 7o we can use all results of Section 4.

First, we will attend to the proof of Theorem A:

Proof of Theorem A. Most of the required properties have already
been established. Indeed, {gtbe as defined in (4.16). Then (2.9) is exactly
(4.18) which proves part (1) of the Theorem A.

In order to prove thab;(q(z) = O wheneverz € .4, we recall that
{q(2) = 04q(2)e%D wheredy(z) is holomorphic ing andsy(2) is given in terms
of its Taylor expansion in the contour activitib’%(Y, ). Now, if ag(z) = 0—
which is implied byz e .“4—then K(](Y, z) = Kq(Y, 2) for anyg-contourY
by Theorem 4.3. Bug;Kq(Y, z) = 0 by the fact thap,(Y), Zq(Inty Y, z) and
Zm(Intm Y, 2) are holomorphic andq(Inty Y, z) # 0. Sincesy is given in
terms of an absolutely converging power series inKigés, we thus also have
thato,€%® = 0. Hencedzq(2) = 0 for allz € .74,

To prove part (3), lez € ./, N A, for some distinct indicem, n € R.
Using Lemma 4.2 we then have

Om(2) > 0(2)e~ 2" (5.2)

and similarly forn. Sincea > 2e~%/2 > 2e=7/2 we thus have € .Z,(m) N
%, (n). Using the first bound in (4.49), we further have
92{m(2) _ 02¢n(2)
(m(2) ¢n(2)

Applying Assumption C3, the right hand side is not less thar 2e=7/2.
Part (4) is proved analogously; we leave the details to the readier.

> |076m(2) — 0zen(2)| — 26772 (53)

Before proving Theorem B, we prove the following lemma.

Lemmab5.1. Lete > O, letr; be the constant from Proposition 4.6,
and let

1 /
2@ = T 09Z5(TL.2) (5.4)
and o
P (@) = bg(2e @, (5.5)
Then there exists a constavty depending only o andM such that
65D @] = (@) (Mo)'|c{H 2] (5.6)

holds for allg € S, all¢ > 1,allt > 7;,allL > 7/2and allz € 0 with
aq(2) < r/(4L) and distz, 0°) > e.
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Proof. We will prove the lemma withe the help of Cauchy’s theorem.
Starting with the derivatives iy, let e = min{e, 1/(4My)} where M; =
1+ 4M is the constant from Lemma 4.8, and 2ébe a point in the dis®,(z)
of radiuseg aroundz. Using the bounds (4.18) and (4.63), we now bound

\Gq(z/)| < = 1(@) < eg+|\’ﬁleoe—f(z)

< ef+Mieotaq(2) o= o (@) < |gq(z)|e25+mlfo+aq(z), (5.7)

With the help of Cauchy’s theorem and the estimates1/8, Mqie < 1/4 and
aq(2) < 1/2, this implies

|0504(2)|

< Oletel/ATYATY2 < pr2e 1y (5.8)
[2teal ° °

In order to bound the derivatives a&L), let us consider a multiindex con-

tributing to the cluster expansion e(ﬁL), and letk = maxy: x(v)-odiamY.
Defining
ek = min{e, (20eM1k) ™1}, (5.9)

where M; = 1 + 4M is the constant from Lemma 4.8, we will show that
the weightKé(Y, -) of any contourY with X(Y) > O is analytic inside the
disc D¢, (2) of radiusex aboutz. Indeed, letz — Z'| < ex. Combining the
assumptiorag(z) < 7/(4L) < 1/2 with Lemma 4.8, we have

e %@ > g%@ _ 2eMye > 1 — aq(z) — 2eMyek
- ~ 5.10
>1- gmax{aq(z), 10eMiey} > e 2MX2(2). 10Mrekd (610

Here we used the fact thatt y < g max{x, 5y} wheneveix, y > 0 in the last
but one step, and the fact thet® < 1 — (1—e H)2x < 1 — gx whenever

X < 1/2 in the last step. We thus have proven that

aq(Z) < max2aq(2), 20eM1ei} < max{ -, &} < (5.11)

T
Ea
so by Theorem 4.3K((Y,Z) = Kq(Y,Z) and Zq(Intm Y, Z’) # 0 for all
me S andZ € D (2). As a consequencé{é(Y, -) is analytic inside the
discD, (2), as claimed.

At this point, the proof of the lemma is an easy exercise. Indeed,
combining Cauchy's theorem with the boufidy (Y, Z)| < e—(t/2+c)lY] <
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e~ClYlg=(z/9diam¥ '\ye get the estimate
< {! flf He—(Co+r/2)|YIX(Y)

Y
< g fe AR T el XM, (5.12)
Y

o H Kg (Y, Z)*)
Y

Boundinge, ‘e~ (/2K by e ke < (¢e71e ), we conclude that

AT Ky, z’)X(Y)‘ < o@e e H [[er® ™. (5.13)
Y Y

Inserted into the cluster expansion @P, this gives the bound
\agsgu(z)\ < 0(te Yy, (5.14)
which in turn implies that
tsP (@ PR s N VAR S P)
|05 | < f1(te e M) 20 e D). (5.15)

Combining this bound with the bound (5.8), we obtain the bound (5.6) with a
constantMg that depends only onhandM;, and hence only oaandM. |

Next we will prove Theorem B. Recall the definitions of the sefsm)
and%,(Q) from (2.13) and (2.14) and the fact that in Theorem B, wecset
/4.

Proof of Theorem B(1-3). Part (1) is a trivial consequence of the fact
thatdm(z), p(N) andp;(Y) are analytic functions af throughout.

In order to prove part (2), we note that € ., (q) implies that
aq(2) < x/L = r/(4L) and hence by Theorem 4.3(ii) we have tK%l(Y, z) =
Kq(Y, 2) for any g-contour contributing taZq(T\, z). This immediately im-
plies that the functionséL) and {éL)(z) defined in (5.4) and (5.5) are ana-
lytic function in ., (q). Next we observe that > 4Cy + 16 implies that
7L/8 > 7/8 > log4 and henceetr /4 < e7*L/8, Sincez € .7, (q) im-
pliesaq(z) < oo and hencéy(z) # 0O, the bounds (2.15-2.16) are then direct
consequences of Lemma 4.9 and the fact &fiat = 4.

The bound (2.17) in part (3) finally is nothing but the bound (5.6) from
Lemma 5.1, while he bound (2.18) is proved exactly as for Theorem A. Note
that so far, we only have used that- 7o, except for the proof of (2.17), which
through the conditions from Lemma 5.1 requites- 7/2, and give a constant
Mo depending o andM. i
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Proof of Theorem B(4). We will again rely on analyticity and
Cauchy’s Theorem. Le@ c R and let@ c S be the set of correspond-
ing interchangeable spin states. Clearlymfand n are interchangeable,
then ((L) g,ﬁ” and, recalling that,, denotes the set of spins correspond-
ing tom € R, we have

200 =20 - S [(Vo]" =20 - >z, 2. (5.16)
ne@’ ne@’

Pick azo € %/L(Q). Forn e Q’, we then haven(zp) < z/(4L), and by the
argument leading to (5. 11) we have tlaatz) < 7/(2L) providedr/(4L) <
1/2 and 2M1|z— 79| < 54L On the other hand, ih € S\ @/, thenam(zp) >
7/(8L), and byaS|m|Iar argument, we get tiaaf(z) > z/(16L)if z/(8L) < 1
and $M1|z 20| < 108,_ Noting thatr > 7o impliest > 4cp + 16 > 16, we
now set

¢ = minfe, (10eM;L9) ™1}, (5.17)

Forz € D.w)(z) andn € Q', we then havean(z)% < /4 and hence
Z/ (T, z) = Zn(Ty, 2), implying in particular that

20@=2@+ Y. Zm(TL.2. (5.18)
meS~\ o’

Note that this implies, in particular, thatg(-) is analytic inD,«) (2o).

Our next goal is to prove a suitable bound on the right hand side of (5.18).
By Lemma 4.12, the first term contributes no more thad@z)L e~71/4,
providedr > 4& + 16 andL is so large that B% 7/ < log2. On the
other hand, sinceg € D, ) (zo) implies that thatan(z) > 7/(16L) for all
m ¢ @', the bound (4.74) implies that eac, (T, z) on the right hand
side of (5.18) contributes less than(@)-‘e~7-*"/32 onceL is so large that
4L9e~7L/4 < Jog2. By putting all of these bounds together and using that
@Y < (zo) eMilz2IL? < gl/(108) ~(2)LY py the bound (4.63) and our
definition ofe1), we get that

1Z0(2)] < 5ISIL (z) - et /%2 (5.19)

whenever € D, (20) andL is so large that. > 7/2 and 3.9%¢"1/4 < log 2.
IncreasingL if necessary to guarantee that) = (10eM;L9%)~! and applying
Cauchy’s theorem to bound the derivatives=aj(z), we thus get

~ d _,Ld-1
aﬁsg(z)‘z_zo < 01(10eMy)!5|S| LD - (zg) et 32 (5.20)

providedL > Lo, whereLo = Lo(d, M, 7, €) is chosen in such a way that for
L > Lo, we havelL > 7/2, 5L9%~7L/4 < log 2 and(10eM;L%)~! < €. Since
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20 € % (Q) was arbitrary andS| = > . Om, this proves the desired
bound (2.20) withCy = 10eM1 = 10e(1 + 4M). |
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