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What this course is about (and what it is not)

This is a set of lecture notes for a course on Discrete Gaussian Free Field (DGFF)
delivered at the 2017 PIMS-CRM Summer School in Probability at the Univer-
sity of British Columbia in June 2017. The course has been quite intense with
the total of sixteen 90-minute lectures spanning over 4 weeks. Still, the subject
of the DGFF has become so so developed that we could mainly focus only on one
specific aspect: extremal values. The text below stays close to the actual lectures
although later additions have been made to make the exposition self-contained.
Each lecture contains a number of exercises that address reasonably accessible
aspects of the presentation.

In Lecture 1 we give an introduction to the DGFF in general spatial dimen-
sion and discuss possible limit objects. The aim here is to show that the scaling
properties single out the two-dimensional DGFF as a case of special interest to
which the rest of the text is then exclusively devoted.

Lecture 2 opens up by some earlier developments that captured the leading-
order behavior of the maximum of the DGFF in growing lattice domains. This
sets the scale for the study (in Lectures 2–4) of what we call intermediate level
sets — namely, those where the DGFF takes values above a constant multiple
of the absolute maximum. The technique of proof is of interest here as it will be
reused later: we first establish tightness, then extract a subsequential limit and,
finally, identify the limit object uniquely, thus proving the existence of the limit.
The limit is expressed using the concept of Liouville Quantum Gravity (LQG)
which we introduce via Kahane’s theory of Gaussian Multiplicative Chaos.

Our next item of interest is the behavior of the DGFF maximum. For this
we recall (in Lectures 5 and 6) two basic, albeit technically advanced, tech-
niques from the theory of Gaussian processes: correlation inequalities (Kahane,
Borell-TIS, Sudakov-Fernique, FKG) and Fernique’s majorization bound for the
expected maximum.

Once the generalities have been dispensed with, we return (in Lectures 7
and 8) to the DGFF and relate the tightness of its centered maximum to that
of a Branching Random Walk (BRW). A novel proof of tightness of the DGFF
maximum is presented that avoids the so-called modified BRW; instead we rely
on the Sudakov-Fernique inequality and the Dekking-Host argument applied to
the DGFF coupled with a BRW. This handles the upper tail tightness; for the
lower tail we develop the concept of a concentric decomposition of the DGFF
that will be useful later as well.

In Lectures 9–11 we move to the extremal level sets — namely, those where
the DGFF is within order-unity of the absolute maximum. Similarly to the
intermediate levels, we encode these via a three-coordinate point measure that
records the scaled spatial position, the centered value and the “shape” of the
configuration at the local maxima. Using the above proof strategy we then show
that, in the scaling limit, this measure tends in law to a Poisson Point Process
with a random intensity measure whose spatial part can be identified with the
critical LQG.
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A key technical tool in this part is Liggett’s theory of non-interacting particle
systems which we discuss in full detail (in Lecture 9); the uniqueness of the limit
measure is linked to the convergence in law of the centered DGFF maximum
(Lecture 10). Another key tool is the concentric decomposition which permits us
to control (in Lecture 11) the local structure of the extremal points and to give
(in Lecture 12) independent proofs of spatial tightness of the extremal level sets
and convergence in law of the centered DGFF maximum. Interesting corollaries
(stated at the end of Lecture 11) give existence of supercritical LQG measures
and the limit law for the Gibbs measure naturally associated with the DGFF.

The final segment of the course (Lectures 13–15) is devoted to a random
walk driven by the DGFF. After the statement of main theorems we proceed
to develop (in Lecture 13) the main technique of the proofs: an electric network
associated with the DGFF. In Lecture 14 we give variational characterizations of
the effective resistance/conductance using only geometric objects such as paths
and cuts. Various duality relations (conductance/resistance reciprocity, path/cut
planar duality) along with concentration of measure are invoked to control the
effective resistivity across rectangles. These are the key ingredients for controlling
(in Lecture 15) the relevant aspects of the random walk.

A standalone final lecture (Lecture 16) discusses some open research-level
problems that stem directly from the topics discussed in these notes.

To keep the course at a reasonable level of mathematical depth, considerable
sacrifices in terms of scope had to be made. The course thus omits a large body
of literature on Gaussian Multiplicative Chaos and Liouville Quantum Gravity.
We do not address the level sets at heights of order unity and their connections to
the Schramm-Loewner evolution and the Conformal Loop Ensemble. We ignore
recent developments in Liouville First Passage percolation nor do we discuss
the close cousin of our random walk, the Liouville Brownian Motion. We pass
over the connections to random-walk local time. In many of these cases, better
resources exist to obtain the relevant information elsewhere.

Thanks to our focused approach we are able to present many difficult proofs
in nearly complete detail. A patient reader will thus have a chance to learn
a number of useful arguments specific to the DGFF as well as several general
techniques relevant for probability at large. The hope is that interlacing specifics
with generalities will make these notes interesting for newcomers as well as ad-
vanced players in this field. The exposition should be sufficiently self-contained
to serve as the basis for a one-semester graduate course.
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Lecture 1

Discrete Gaussian Free Field and scaling limits

In this lecture we define the main object of interest in this course: the Discrete
Gaussian Free Field (henceforth abbreviated as DGFF). By studying its limit
properties we are naturally guided towards the two-dimensional case where we
describe, in great level of detail, its scaling limit. The limit object, the continuum
Gaussian Free Field (CGFF), will underlie, albeit often in disguise, most of the
results discussed in the course.

1.1 Definitions

For d ≥ 1 integer, let Zd denote the d-dimensional hypercubic lattice. This is an
unoriented graph with vertices at the points of Rd with integer coordinates and
an edge between any pair of vertices at unit Euclidean distance. Denoting the
set of all edges (with both orientations identified) by E(Zd), we put forward:

Definition 1.1 (DGFF, explicit formula). Let V ⊂ Zd be finite. The DGFF
in V is a process {hVx : x ∈ Zd} indexed by the vertices of Zd with the law given

(for any measurable A ⊆ RZd) by

P (hV ∈ A) :=
1

norm.

∫
A

e−
1
4d

∑
(x,y)∈E(Zd)(hx−hy)2

∏
x∈V

dhx
∏
x 6∈V

δ0(dhx) . (1.1)

Here δ0 is the Dirac point-mass at 0 and “norm.” is a normalization constant.

Notice that the definition forces the values of h outside V to zero — we thus
talk about zero boundary condition. To see that this definition is good, we pose:

Exercise 1.2. Prove that the integral in (1.1) is finite for A := RZd and so the
measure can be normalized to be a probability.

The appearance of the 4d factor in the exponent is a convention used in proba-
bility; physicists would write 1

2 instead of 1
4d . Without this factor, the definition

extends readily from Zd to any locally-finite graph but since Zd (in fact Z2) will
be our main focus, we keep the normalization as above.

Definition 1.1 gives the law of the DGFF in the form of a Gibbs measure, i.e.,
a measure of the form

1

norm.
e−βH(h) ν(dh) (1.2)

where “norm.” is again a normalization constant, H is the Hamiltonian, β is the
inverse temperature and ν is an a priori (typically a product) measure. Many
models of statistical mechanics are cast this way; a key feature of the DGFF
is that the Hamiltonian is a positive-definite quadratic form and ν a product
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Lebesgue measure which makes the law of h a multivariate Gaussian. This offers
the possibility to define the law directly by prescribing its mean and covariance.

Let {Xn : n ≥ 0} denote the path of a simple symmetric random walk on Zd.
For V ⊂ Zd, we recall the definition of the Green function in V :

GV (x, y) := Ex
( τV c−1∑

n=0

1{Xn=y}

)
, (1.3)

where Ex is the expectation with respect to the law of X with X0 = x a.s. and
τV c := inf{n ≥ 0: Xn 6∈ V } is the first exit time of the walk from V . We note:

Exercise 1.3. Prove that, for any x, y ∈ Zd,

V 7→ GV (x, y) is non-decreasing with respect to set inclusion. (1.4)

In particular, for any V ( Zd (in any d ≥ 1), we have GV (x, y) < ∞ for
all x, y ∈ Zd.

As is also easy to check, GV (x, y) = 0 unless x, y ∈ V (in fact, unless x
and y can be connected by a path on Zd that lies entirely in V ). The following
additional properties of GV will be important in the sequel:

Exercise 1.4. Let ∆ denote the discrete Laplacian on Zd acting on finitely-
supported functions f : Zd → R as

∆f(x) :=
∑

y : (x,y)∈E(Zd)

(
f(y)− f(x)

)
. (1.5)

Show that for any V ( Zd and any x ∈ Zd, y 7→ GV (x, y) is the solution to{
∆GV (·, x) = −2dδx(·), on V,

GV (·, x) = 0, on V c,
(1.6)

where δx is the Kronecker delta at x.

Another way to phrase this exercise is by saying that the Green function is a
(2d)-multiple of the inverse of the negative Laplacian on `2(V ) — with Dirichlet
boundary conditions on V c. This functional-analytic representation of the Green
function allows us to solve:

Exercise 1.5. Prove that for any V ( Zd we have:

(1) for any x, y ∈ Zd,
GV (x, y) = GV (y, x) , (1.7)

(2) for any f : Zd → R with finite support,∑
x,y∈Zd

GV (x, y)f(x)f(y) ≥ 0. (1.8)
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We remark that purely probabilistic ways to solve this (i.e., using solely con-
siderations of random walks) exist as well. What matters for us is that properties
(1-2) make GV a covariance of a Gaussian process. This gives rise to:

Definition 1.6 (DGFF, via the Green function). Let V ( Zd be given.
The DGFF in V is a multivariate Gaussian process {hVx : x ∈ Zd} with law
determined by

E(hVx ) = 0 and E(hVx h
V
y ) = GV (x, y), x, y ∈ Zd, (1.9)

or, written concisely,
hV := N (0, GV ) . (1.10)

Here and henceforth, N (µ,C) denotes the (multivariate) Gaussian with mean µ
and covariance C. The dimensions of these objects will usually be clear from the
context.

In order to avoid accusations of logical inconsistency, we pose:

Exercise 1.7. Prove that for V ⊂ Zd finite, Definitions 1.1 and 1.6 coincide.

The advantage of Definition 1.6 over Definition 1.1 is that it works for infi-
nite V as well. The functional-analytic connection can be pushed further as
follows. Given a finite set V ⊂ Zd, consider the Hilbert space HV := {f : Zd →
R, supp(f) ⊂ V } endowed with the Dirichlet inner product

〈f, g〉∇ :=
1

2d

∑
x∈Zd

∇f(x) · ∇g(x) , (1.11)

where ∇f(x), the discrete gradient of f at x, is the vector in Rd whose i-th
component is f(x+ei)−f(x), for ei the i-th unit coordinate vector in Rd. (Since
the supports of f and g are finite, the sum is effectively finite. The normalization
is for consistence with Definition 1.1.) We then have:

Lemma 1.8 (DGFF as Hilbert-space Gaussian). For the setting as above
with V finite, let {ϕn : n = 1, . . . , |V |} be an orthonormal basis in HV and let

Z1, . . . , Z|V | be i.i.d. standard normals. Then {h̃x : x ∈ Zd}, where

h̃x :=

|V |∑
n=1

ϕn(x)Zn, x ∈ Zd, (1.12)

has the law of the DGFF in V .

Exercise 1.9. Prove the previous lemma.

Lemma 1.8 thus gives yet another way to define DGFF. (The restriction to
finite V was imposed only for simplicity.) As we will see at the end of this lecture,
this is the definition that generalizes seamlessly to a continuum underlying space.
Writing {ψn : n = 1, . . . , |V |} for the orthonormal set in `2(V ) of eigenfunctions
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of the negative Laplacian with the corresponding eigenvalue written as 2dλn,
i.e., −∆ψn = 2dλnψn on V , the choice

ϕn(x) :=
1√
λn

ψn(x) , (1.13)

produces an orthonormal basis in HV . This is useful when one wishes to generate
samples of the DGFF efficiently on a computer.

The fact that Zd is an additive group, and the random walk is translation
invariant, implies that the Green function and thus the law of hV are translation
invariant in the sense that, for all z ∈ Z2 and for z + V := {z + x : x ∈ V },

Gz+V (x+ z, y + z) = GV (x, y), x, y ∈ Zd, (1.14)

and
{hz+Vx+z : x ∈ Z2} law

= {hVx : x ∈ Z2} (1.15)

A similar rule applies to rotations by multiples of π
2 around any vertex of Z2.

We finish this section by a short remark on notation: Throughout these lec-
tures we will write hV to denote the whole configuration of the DGFF in V and
write hVx for the value of hV at x. We may at times write hV (x) instead of hVx
when the resulting expression is easier to parse.

1.2 Why d = 2 only?

As noted above, this course will focus on the DGFF in d = 2. Let us therefore
explain what makes the two-dimensional DGFF special. We begin by noting:

Lemma 1.10 (Green function growth rate). Let VN := (0, N)d ∩ Zd and,
for any ε ∈ (0, 1/2), denote V εN := (εN, (1− ε)N)d ∩ Zd. Then for any x ∈ V εN ,

GVN (x, x) ∼
N→∞


N, d = 1,

logN, d = 2,

1, d ≥ 3,

(1.16)

where “∼” means that the ratio of the left and right-hand side tends to a positive
and finite number as N → ∞ (which may depend on where x is asymptotically
located in VN ).

Proof (sketch). We will only prove this in d = 1 and d ≥ 3 as the d = 2 case will
be treated later in far more explicit terms. First note that a routine application
of the Strong Markov Property for the simple symmetric random walk yields

GV (x, x) =
1

P x(τ̂x > τV c)
, (1.17)

where τ̂x := inf{n ≥ 1: Xn = x} is the first return time to x. Assuming x ∈ V ,
in d = 1 we then have

P x(τ̂x > τV c) =
1

2

[
P x+1(τx > τV c) + P x−1(τx > τV c)

]
, (1.18)
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where τx := inf{n ≥ 0: Xn = x} is the first hitting time of x. For V := VN , the
Markov property of the simple random walk shows that y 7→ P y(τx > τV c

N
) is

discrete harmonic (and thus piecewise linear) on {1, . . . , x−1}∪{x+1, . . . , N−1}
with value zero at y = x and one at y = 0 and y = N . Hence

P x+1(τx > τV c
N

) =
1

N − x
and P x−1(τx > τV c

N
) =

1

x
. (1.19)

As x ∈ V εN , both of these probabilities are order 1/N and scale nicely when x
grows proportionally to N . This proves the claim in d = 1.

In d ≥ 3 we note that the transience and translation invariance of the simple
symmetric random walk imply

GVN (x, x) −→
N→∞

1

P 0(τ̂0 =∞)
(1.20)

uniformly in x ∈ V εN . (Transience is equivalent to P 0(τ̂0 =∞) > 0.) ut
Let us now proceed to examine the law of the whole DGFF configuration

in the limit as N → ∞. Focusing for the moment on d = 1, the fact that the
variance blows up suggests that we normalize the DGFF by the square-root of
the variance, i.e.,

√
N , and attempt to extract a limit. This does work and yields:

Theorem 1.11 (Scaling to Brownian Bridge in d = 1). Suppose d = 1 and
let hVN be the DGFF in VN := (0, N) ∩ Z. Then{ 1√

N
hVNbtNc : t ∈ [0, 1]

}
law−→

N→∞

{√
2Wt : t ∈ [0, 1]

}
, (1.21)

where W is the standard Brownian Bridge on [0, 1].

We leave it to the reader to solve:

Exercise 1.12. Prove Theorem 1.11 with the convergence in the sense of finite-
dimensional distributions or, if you like the challenge, in Skorokhod topology.
Hint: Note that {hVNx+1 − hVNx : x = 0, . . . , N − 1} are i.i.d. N (0, 2) conditioned
on their total sum being zero.

We remark that the limit taken in Theorem 1.11 is an example of a scaling
(or continuum) limit — the lattice spacing is taken to zero while keeping the
overall (continuum) domain fixed. In renormalization group theory, taking the
scaling limit corresponds to the removal of an ultraviolet cutoff.

Moving to d ≥ 3, in the proof of Lemma 1.10 we observed enough to conclude:

Theorem 1.13 (Full-space limit in d ≥ 3). Suppose d ≥ 3 and abbreviate

ṼN := (−N/2, N/2)d ∩ Zd. Then for any x, y ∈ Zd,

GṼN (x, y) −→
N→∞

GZd(x, y) :=

∫
dk

(2π)d
cos(k · (x− y))

2
d

∑d
j=1 sin(kj/2)2

. (1.22)

In particular, hṼN → N (0, GZd) = full space DGFF.
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This means that the DGFF in large enough (finite) domains is well approx-
imated by the full-space DGFF as long as we are far away from the boundary.
This is an example of a thermodynamic limit — the lattice stays fixed and the
domain boundaries slide off to infinity. In renormalization group theory, taking
the thermodynamic limit corresponds to the removal of an infrared cutoff.

From Lemma 1.10 it is clear that the thermodynamic limit is meaningless for
the two-dimensional DGFF (indeed, variances blow up and, since we are talking
about Gaussian random variables, there is no tightness). Let us attempt to take
the scaling limit just as in d = 1: normalize the field by the square-root of the
variance (i.e.,

√
logN) and extract a distributional limit (for which it suffices to

prove the limit of the covariances). Here we note that, for all ε > 0,

sup
N≥1

sup
x,y∈VN
|x−y|≥εN

GVN (x, y) <∞, (1.23)

a fact that we will prove later. For any s, t ∈ (0, 1)2 we thus get

Cov

(
hVNbtNc√
logN

,
hVNbsNc√
logN

)
−→
N→∞

{
c(t) > 0, if s = t,

0, else,
(1.24)

where, here and henceforth,

btNc := the unique z ∈ Z2 such that tN ∈ z + [0, 1)2 . (1.25)

The only way to read (1.24) is that the limit distribution is a collection of
independent normals indexed by t ∈ (0, 1)2 — an object too irregular and generic
to retain useful information from before the limit was taken.

As we will see, the right thing to do is to take the limit of the DGFF without
any normalization. That will lead to a singular limit as well but one that captures
better the behavior of the DGFF. Moreover, the limit object exhibits additional
symmetries (e.g., conformal invariance) not present at the discrete level.

1.3 Green function asymptotic

Let us now analyze the situation in d = 2 in more detail. Our aim is to con-
sider the DGFF in sequences of lattice domains {DN : N ≥ 1} that somehow
correspond to the scaled-up versions of a given continuum domain D ⊂ C. The
assumptions on the continuum domains are the content of:

Definition 1.14 (Admissible domains). Let D be the class of sets D ⊂ C
that are bounded, open and such that their topological boundary ∂D is the union
of a finite number of connected components each of which has a positive (Eu-
clidean) diameter.

For the sake of future use we note:

Exercise 1.15. All bounded, open and simply connected D ⊂ C belong to D.
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Fig. 1. An example of an admissible discretization of a continuum domain.
The continuum domain is the region in the plane bounded by the solid curves.
The discrete domain is the set of lattice vertices in the shaded areas.

As to what sequences of discrete approximations of D we will permit, a
natural choice would be to work with plain discretizations {x ∈ Z2 : x/N ∈ D}.
However, this is too crude because parts of ∂D could be missed out completely;
see Fig. 1. We thus have to qualify admissible discretizations more precisely:

Definition 1.16 (Admissible lattice approximations). A family of subsets
{DN : N ≥ 1} of Z2 is a sequence of admissible lattice approximations of a
domain D ∈ D if

DN ⊆
{
x ∈ Z2 : dist∞(x/N,Dc) > 1/N

}
, (1.26)

where dist∞ denotes the `∞-distance on Z2, and if, for each δ > 0,

DN ⊇
{
x ∈ Z2 : dist∞(x/N,Dc) > δ

}
(1.27)

holds once N is sufficiently large (depending possibly on δ).

Note that this still ensures that x ∈ DN implies x/N ∈ D. For the statement
of the next theorem, consider the (standard) Brownian motion {Bt : t ≥ 0}
on R2 and let τDc := inf{t ≥ 0: Bt 6∈ D} be the first exit time from D. Denote
by ΠD(x, ·) the law of the exit point from D of the Brownian motion started
from x; i.e.,

ΠD(x,A) := P x
(
BτDc ∈ A

)
, (1.28)

for all Borel A ⊆ R2. This measure is supported on ∂D and is also known as the
harmonic measure from x in D. The following then holds:
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Theorem 1.17 (Green function asymptotic in d = 2). Suppose d = 2
and let g := 2/π. There is c0 ∈ R such that for all domains D ∈ D, all se-
quences {DN : N ≥ 1} of admissible lattice approximations of D, and all x ∈ D,

GDN
(
bxNc, bxNc

)
= g logN + c0 + g

∫
∂D

ΠD(x, dz) log |x− z|+ o(1), (1.29)

where o(1)→ 0 as N →∞ locally uniformly in x ∈ D. Moreover, for all x, y ∈ D
with x 6= y, we also have

GDN
(
bxNc, byNc

)
= −g log |x− y|+ g

∫
∂D

ΠD(x, dz) log |y− z|+ o(1), (1.30)

where o(1) → 0 as N → ∞ locally uniformly in (x, y) ∈ D ×D with x 6= y and
| · | denotes the Euclidean norm on R2.

Proof (modulo two lemmas). The proof of the theorem starts by a convenient
representation of the Green function using the potential kernel a : Z2 → [0,∞)
defined, e.g., by the explicit formula

a(x) :=

∫
(−π,π)2

dk

(2π)2

1− cos(k · x)

sin(k1/2)2 + sin(k2/2)2
. (1.31)

A characteristic (although not completely characterizing) property of the poten-
tial kernel is the content of:

Exercise 1.18. Show that a solves the Poisson problem{
∆a(·) = 4δ0(·), on Z2,

a(0) = 0,
(1.32)

where, as before, δ0 is the Kronecker delta at 0.

Writing ∂V for external vertex boundary of V , i.e., the set of vertices in V c

that have an edge to a vertex in V , we now get:

Lemma 1.19 (Green function from potential kernel). For any finite set
V ⊂ Z2 and any vertices x, y ∈ V ,

GV (x, y) = −a(x− y) +
∑
z∈∂V

HV (x, z)a(z − y) , (1.33)

where HV (x, z) := P x(XτV c = z) is the probability that the simple symmetric
random walk X started at x exists V at z ∈ ∂V .

Proof. Fix x ∈ V and let X denote a path of the simple symmetric random walk.
In light of (1.6), (1.32) and the translation invariance of the lattice Laplacian,

φ(y) := GV (x, y) + a(x− y) (1.34)
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is discrete harmonic in V . Hence Mn := φ(XτV c∧n) is a martingale for the
usual filtration σ(X0, . . . , Xn). The finiteness of V ensures that M is bounded
and τV c <∞ a.s. The Optional Stopping Theorem then gives

φ(y) = Ey
(
φ(XτV c )

)
=
∑
z∈∂V

HV (y, z)φ(z). (1.35)

Since GV (x, ·) vanishes on ∂V , this along with the symmetry of x, y 7→ GV (x, y)
and x, y 7→ a(x− y) readily imply the claim. ut

We note that the restriction to finite V was not a mere convenience. Indeed:

Exercise 1.20. Show that GZ2r{0}(x, y) = a(x) + a(y) − a(x − y). Use this to
conclude that, in particular, (1.33) is generally false for infinite V .

As the next step of the proof, we invoke:

Lemma 1.21 (Potential kernel asymptotic). There is c0 ∈ R such that

a(x) = g log |x|+ c0 +O
(
|x|−2

)
, (1.36)

where, we recall, g = 2/π and |x| is the Euclidean norm of x.

This asymptotic form was apparently first proved by Stöhr [119] in 1950. In a
2004 paper, Kozma and Schreiber [82] analyzed the behavior of the potential
kernel on other lattices and identified the constants g and c0 in terms of specific
geometric attributes of the underlying lattice. In our case, we can certainly
attempt to compute the asymptotic explicitly:

Exercise 1.22. Prove Lemma 1.21 by asymptotic analysis of (1.31).

Using (1.33) and (1.36) together, for x, y ∈ D with x 6= y we now get

GDN
(
bxNc, byNc

)
= g log |x− y|

+ g
∑

z∈∂DN

HDN
(
bxNc, z

)
log |y − z/N |+O(1/N) , (1.37)

where the O(1/N) term arises from the approximation of (the various occur-
rences of) bxNc by xN and also from the error in (1.36). To get (1.30), we thus
need to convert the sum into the integral. Here we will need:

Lemma 1.23 (Weak convergence of discrete harmonic measures). For
any domain D ∈ D and any sequence {DN : N ≥ 1} of admissible lattice ap-
proximations of D,∑

z∈∂DN

HDN
(
bxNc, z

)
δz/N (·) weakly−→

N→∞
ΠD(x, ·). (1.38)
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We will omit the proof as it would take us too far on a tangent; the reader is
instead referred to (the Appendix of) Biskup and Louidor [26]. The idea is to use
Donsker’s Invariance Principle to extract a coupling of the simple random walk
and the Brownian motion that ensures that once the random walk exits DN , the
Brownian motion will exit D at a “nearby” point, and vice versa. This is where
we find it useful that the boundary components have a positive diameter.

Since u 7→ log |y − u| is bounded and continuous in a neighborhood of ∂D
(whenever y ∈ D), the weak convergence in Lemma 1.23 implies∑
z∈∂DN

HDN
(
bxNc, z

)
log |y − z/N | =

∫
∂D

ΠD(x, dz) log |y − z|+ o(1) , (1.39)

with o(1)→ 0 as N →∞. This proves (1.30). The proof of (1.29) only amounts
to the substitution of −g log |x− y| in (1.37) by g logN + c0; the convergence of
the sum to the corresponding integral is then handled as before. ut

We remark that the convergence of the discrete harmonic measure to the
continuous one in Lemma 1.23 is where the above assumptions on the continuum
domain and its lattice approximations crucially enter. (In fact, we could perhaps
even define admissible lattice approximations by requiring (1.38) to hold.) The
reader familiar with conformal mapping theory may wish to think of (1.38) as
a version of Carathéodory convergence for discrete planar domains.

The objects appearing on the right-hand side of (1.29–1.30) are actually well
known. Indeed, we set:

Definition 1.24 (Continuum Green function and conformal radius).
For bounded, open D ⊂ C, we define the continuum Green function in D from x
to y by

ĜD(x, y) := −g log |x− y|+ g

∫
∂D

ΠD(x, dz) log |y − z| . (1.40)

Similarly, for x ∈ D we define

rD(x) := exp
{∫

∂D

ΠD(x, dz) log |x− z|
}

(1.41)

to be the conformal radius of D from x.

The continuum Green function is usually defined as the fundamental solution
to the Poisson equation; i.e., a continuum version of (1.6). We will not need this
characterization in what follows so we will content ourselves with the explicit
form above. Similarly, for open simply connected D ⊂ C, the conformal radius
of D from x is defined as the value |f ′(x)|−1 for f any conformal bijection of D
onto {z ∈ C : |z| < 1} such that f(x) = 0. (The result does not depend on the
choice of the bijection.) The reader will find it instructive to solve:

Exercise 1.25. Check that this coincides with rD(x) above.

For this as well as later derivations it may be useful to know:
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Lemma 1.26 (Conformal invariance of harmonic measure). For any con-
formal bijection f : D 7→ f(D) between D, f(D) ∈ D,

ΠD(x,A) = Πf(D)
(
f(x), f(A)

)
(1.42)

for any measurable A ⊆ ∂D.

This can be proved using conformal invariance of the Brownian motion, although
more direct approaches to prove this exist as well. The proof is fairly straightfor-
ward when both f and f−1 extend continuously to the boundaries; the general
case is handled by stopping the Brownian motion before it hits the boundary
and invoking approximation arguments.

1.4 Continuum Gaussian Free Field

Theorem 1.17 reveals two important facts: First, a pointwise limit of the unscaled
DGFF is meaningless as, in light of (1.29), there is no tightness. Notwithstand-
ing, by (1.30), the off-diagonal covariances of the DGFF do have a limit which is
given by the continuum Green function. This function is singular on the diago-
nal, but the singularity is only logarithmic and thus relatively mild. This permits
us to derive:

Theorem 1.27 (Scaling limit of DGFF). Let D ∈ D and consider a se-
quence {DN : N ≥ 1} of admissible lattice approximations of D. For any bounded
measurable function f : D → R, let

hDN (f) :=

∫
D

dx f(x)hDNbxNc. (1.43)

Then
hDN (f)

law−→
N→∞

N (0, σ2
f ) , (1.44)

where

σ2
f :=

∫
D×D

dxdy f(x)f(y)ĜD(x, y) . (1.45)

Proof. The random variable hDN (f) is Gaussian with mean zero and variance

E
[
hDN (f)2

]
=

∫
D×D

dxdy f(x)f(y)GDN
(
bxNc, byNc

)
. (1.46)

The monotonicity from Exercise 1.3 and the reasoning underlying the proof of
Theorem 1.17 show the existence of c ∈ R such that for all N large enough and
all x, y ∈ DN ,

GDN (x, y) ≤ g log

(
N

|x− y| ∨ 1

)
+ c. (1.47)

Since D is bounded, this gives

GDN
(
bxNc, byNc

)
≤ −g log |x− y|+ c̃ (1.48)
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for some c̃ ∈ R, uniformly in x, y ∈ D. Using this bound, we can estimate (and
later neglect) the contributions to the integral in (1.46) from pairs (x, y) with
|x − y| < ε for any given ε > 0. The convergence of the remaining part of the
integral is then treated using the pointwise convergence (1.30) (which is locally
uniform on the set where x 6= y) and the Bounded Convergence Theorem. ut

Exercise 1.28. Give a detailed proof of (1.47).

Formula (1.43) can be viewed as a projection of the field configuration onto
a test function. Theorem 1.27 then implies that these projections admit a joint
distributional limit. This suggests we could regard the limit object as a linear
functional on a suitable space of test functions, which leads to:

Definition 1.29 (CGFF as a function space-indexed Gaussian). A con-
tinuum Gaussian Free Field (CGFF) on a bounded, open D ⊂ C is an assign-
ment f 7→ Φ(f) of a random variable to each bounded measurable f : D → R
such that

(1) Φ is a.s. linear, i.e.,

Φ(af + bg) = aΦ(f) + bΦ(g) a.s. (1.49)

for all bounded measurable f and g and each a, b ∈ R, and
(2) for all bounded measurable f ,

Φ(f)
law
= N (0, σ2

f ) , (1.50)

where σ2
f is as in (1.45).

Theorem 1.27 shows that the DGFF scales to the CGFF in this sense —
which, modulo a density argument, also entails that a CGFF as defined above
exists! (Linearity is immediate from (1.43). An independent construction of a
CGFF will be performed in Exercise 2.16.)

We remark that definitions given in the literature usually require that the
CGFF is even a.s. continuous in a suitable topology over a suitable (and suitably
completed) class of functions. We will not need such continuity considerations
here so we do not pursue them in any detail. However, they are important when
one tries to assign meaning to Φ(f) for singular f (e.g., those vanishing Lebesgue
a.e.) or for f varying continuously with respect to some parameter. This is for
example useful in the study of the disc-average process t 7→ Φ(ft), where

ft(y) :=
1

πe−2t
1B(x,e−t)(y) for B(x, r) :=

{
y ∈ C : |y − x| < r

}
. (1.51)

Here it is quite instructive to note:

Exercise 1.30 (Disc average process). For CGFF as defined above and for
any x ∈ D at Euclidean distance r > 0 from Dc, show that for t > log(1/r), the
process t 7→ Φ(ft) has independent increments with

Var
(
Φ(ft)

)
= gt+ c1 + g log rD(x) (1.52)
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for some c1 ∈ R independent of x. In particular, t 7→ Φ(ft) admits a continuous
version whose law is (for t > log(1/r)) that of a Brownian motion.

The same conclusion is obtained for the circle average process, where Φ is
projected, via a suitable regularization procedure, onto the indicator of a circle
{y ∈ C : |x−y| = r}. This is because the circle and disc average of the continuum
Green function (in one variable with the other one fixed) coincide for small-
enough radii, due to the fact that the Green function is harmonic away from the
diagonal.

We refer to the textbook by Janson [79] for a thorough discussion of various
aspects of generalized Gaussian processes. The Gaussian Free Field existed in
physics for a long time where it played the role of a “trivial,” which in the
jargon of physics means “non-interacting,” field theory. Through various scaling
limits as well as in its own right, it has recently come to the focus of a larger
mathematical community as well. A pedestrian introduction to the subject of
the CGFF can be found in Sheffield [114] and also in Chapter 5 of the recent
posting by Armstrong, Kuusi and Mourrat [14].

Lecture 2

Maximum and intermediate values

In this lecture we begin to discuss the main topic of interest in this course:
extremal properties of the DGFF sample paths. After some introduction and
pictures, we focus attention on the behavior of the absolute maximum and the
level sets at heights proportional to the absolute maximum. We then state the
main theorem on the scaling limit of such level sets and link the limit object
to the concept of Liouville Quantum Gravity. The proof of the main theorem is
relegated to the forthcoming lectures.

2.1 Level set geometry

The existence of the scaling limit established in Theorem 1.27 indicates that the
law of the DGFF is asymptotically scale invariant. Scale invariance of a random
object usually entails one of the following two possibilities:

– either the object is trivial and boring (e.g., degenerate, flat, non-random),
– or it is very interesting (e.g., chaotic, rough, fractal).

As attested by Fig. 2, the two-dimensional DGFF seems, quite definitely, to fall
into the latter category.

Looking at Fig. 2 more closely, a natural first question is to understand the
behavior of the (implicit) boundaries between warm and cold colors. As the
field averages to zero, and should thus take both positive and negative values
pretty much equally likely, this amounts to looking at the contour lines between
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Fig. 2. A sample of the DGFF on 300×300 square in Z2. The cold colors (pur-
ple and blue) indicate low values, the warm colors (yellow and red) indicate
large values. The fractal nature of the sample is quite apparent.

the regions where the field is positive and where it is negative. This has been
done and constitutes the beautiful work started by Schramm and Sheffield [112]
and continued in Sheffield and Werner [116], Sheffield [115] and Sheffield and
Miller [95–98]. We thus know that the contour lines admit a scaling limit to a
process of nested collections of loops called the Conformal Loop Ensemble with
the individual curves closely related to the Schramm-Loewner process SLE4.

Our interest in these lectures is somewhat different as we wish to look at the
level sets at heights that scale proportionally to the absolute maximum. We call
these the intermediate level sets although the term thick points is quite common
as well. Samples of such level sets are shown in Fig. 3.

The self-similar nature of the plots in Fig. 3 is quite apparent. This motivates
the following questions:

– Is there a way to take a scaling limit of the samples in Fig. 3?
– And if so, is there a way to characterize the limit object directly?

Our motivation for these questions stems from Donsker’s Invariance Principle
for random walks. There one first answers the second question by constructing
a limit process; namely, the Brownian Motion. Then one proves that, under the
diffusive scaling of space and time, all random walks whose increments have zero
mean and finite second moment scale to that Brownian motion.

The goal of this and the next couple of lectures is to answer the above ques-
tions for the intermediate level sets of the DGFF. We focus only on one under-
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Fig. 3. Plots of the points in the sample of the DGFF in Fig. 2 at heights (la-
beled left to right) above 0.1, 0.3 and 0.5-multiples of the absolute maximum,
respectively. Higher level sets are too sparse to produce a visible effect.

lying discrete process so this can hardly be sold as a full-fledged analogue of
Donsker’s Invariance Principle. Still, we will perform the analysis over a whole
class of continuum domains thus achieving some level of universality. The spirit
of the two results is thus quite similar.

2.2 Growth of absolute maximum

In order to set the scales for our future discussion, we first have to identify
the growth rate of the absolute maximum. Here an early result of Bolthausen,
Deuschel and Giacomin [30] established the leading-order asymptotic in square
boxes. Their result reads:

Theorem 2.1 (Growth of absolute maximum). For VN := (0, N)2 ∩ Z2,

max
x∈VN

hVNx =
(
2
√
g + o(1)

)
logN (2.1)

where o(1)→ 0 in probability as N →∞.

Proof of upper bound in (2.1). We start by noting the well-known tail estimate
for centered normal random variables:

Exercise 2.2 (Standard Gaussian tail bound). Prove that, for any σ > 0,

Z
law
= N (0, σ2) ⇒ P (Z > a) ≤ σ

σ + a
e−

a2

2σ2 , a > 0. (2.2)

We want to use this for Z replaced by hVNx but for that we need to bound
the variance of hVNx uniformly in x ∈ VN . Here we observe that, by the mono-

tonicity of V 7→ GV (x, x) and translation invariance (1.14), denoting ṼN :=
(−N/2, N/2)2 ∩ Z2, there is a c ≥ 0 such that

max
x∈VN

Var(hVNx ) ≤ Var
(
hṼ2N

0

)
≤ g logN + c, (2.3)
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where the last bound follows from the asymptotic in Theorem 1.17. (We have just
given away the solution to Exercise 1.28.) Plugging this in (2.2), for any θ > 0
we thus get

P
(
hVNx > θ logN

)
≤ exp

{
−1

2

θ2(logN)2

g logN + c

}
. (2.4)

Using that (1 + λ)−1 ≥ 1− λ for λ ∈ (0, 1) we obtain

1

g logN + c
≥ 1

g logN
− c

(g logN)2
(2.5)

as soon as N is sufficiently large. Then

max
x∈VN

P
(
hVNx > θ logN

)
≤ c′N−

θ2

2g (2.6)

for c′ := eθ
2c/(2g2) as soon as N is large enough. The union bound and the fact

that |VN | ≤ N2 then give

P
(

max
x∈VN

hVNx > θ logN
)
≤
∑
x∈VN

P
(
hVNx > θ logN

)
≤ c′|VN |N−

θ2

2g = c′N2− θ22g .

(2.7)

This tends to zero as N →∞ for any θ > 2
√
g thus proving “≤” in (2.1). ut

The proof of the complementary lower bound is considerably harder. The
idea is to use the second-moment method but that requires working with a scale
decomposition of the DGFF and computing the second moment under a suitable
truncation. We will not perform this calculation here as the result will follow as
a corollary from Theorem 7.3. (Section 4.5 gives some hints how the truncation
is performed.)

Building on [30], Daviaud [51] was able to extend the control to the level sets
of the form {

x ∈ VN : hVNx ≥ 2
√
g λ logN

}
, (2.8)

where λ ∈ (0, 1). The relevant portion of his result reads:

Theorem 2.3 (Size of intermediate level sets). For any λ ∈ (0, 1),

#
{
x ∈ VN : hVNx ≥ 2

√
g λ logN

}
= N2(1−λ2)+o(1) , (2.9)

where o(1)→ 0 in probability as N →∞.

Proof of “ ≤” in (2.9). Let LN denote the cardinality of the set in (2.8). Using
the Markov inequality and the reasoning (2.6–2.7),

P
(
LN ≥ N2(1−λ2)+ε

)
≤ N−2(1−λ2)−εE(LN )

≤ c′N−2(1−λ2)−εN2−2λ2

= c′N−ε.
(2.10)
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This tends to zero as N →∞ for any ε > 0 thus proving “≤” in (2.9). ut
We will not give a full proof of the lower bound for all λ ∈ (0, 1) as that

requires similar truncations as the corresponding bound for the maximum. How-
ever, these truncations are avoidable for λ sufficiently small, so we will content
ourselves with:

Proof of “≥” in (2.9) with positive probability for λ < 1/
√

2. Define

YN :=
∑
x∈V εN

eβh
VN
x , (2.11)

where β > 0 is a parameter to be adjusted later and V εN := (εN, (1− ε)N)2 ∩Z2

for some ε ∈ (0, 1/2) to be fixed for the rest of the calculation. The quantity YN
may be thought of as the normalizing factor (a.k.a. the partition function) for the
Gibbs measure on VN where the “state” x gets “energy” hVNx . (See Section 11.4
for more on this.) Our first observation is:

Lemma 2.4. For β > 0 such that β2g < 2 there is c = c(β) > 0 such that

P
(
YN ≥ cN2+ 1

2β
2g
)
≥ c (2.12)

once N is sufficiently large.

Proof. We will prove this by invoking the second moment method whose driving
force is the following inequality:

Exercise 2.5 (Second moment estimate). Let Y ∈ L2 be a non-negative
random variable with EY > 0. Prove that

P
(
Y ≥ qEY

)
≥ (1− q)2 [E(Y )]2

E(Y 2)
, q ∈ (0, 1). (2.13)

In order to make use of (2.13) we have to prove that the second moments of YN
is of the same order as the first moment squared. We begin by the first moment
of YN . The fact that EeX = eEX+ 1

2 Var(X) for any X normal yields

EYN =
∑
x∈V εN

e
1
2β

2Var(h
VN
x ). (2.14)

Writing ṼN := (−N/2, N/2)2 ∩ Z2, the monotonicity of V 7→ GV (x, x) gives

Var(hṼεN0 ) ≤ Var(hVNx ) ≤ Var(hṼ2N
0 ). Theorem 1.17 then implies

sup
N≥1

max
x∈V εN

∣∣Var(hVNx )− g logN
∣∣ <∞ (2.15)

As |V εN | is of order N2, using this in (2.14) we conclude that

cN2+ 1
2β

2g ≤ EYN ≤ c−1N2+ 1
2β

2g (2.16)
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holds for some constant c ∈ (0, 1) and all N ≥ 1.
Next we will estimate the second moment of YN . Recalling the notation GVN

for the Green function in VN , we have

E(Y 2
N ) =

∑
x,y∈V εN

e
1
2β

2[GVN (x,x)+GVN (y,y)+2GVN (x,y)] . (2.17)

Invoking (2.15) and (1.47) we thus get

E(Y 2
N ) ≤ c′Nβ2g

∑
x,y∈V εN

(
N

|x− y| ∨ 1

)β2g

. (2.18)

For β2g < 2 the sum is dominated by pairs x and y with |x− y| of order N . The
sum is thus of order N4 and so we conclude

E(Y 2
N ) ≤ c′′Nβ2g+4 (2.19)

for some constant c′′ > 0. By (2.16), this bound is proportional to [EYN ]2 so
using this in (2.13) (with, e.g., q := 1/2) readily yields (2.12). ut

Next we will need to observe that the main contribution to YN comes from
the set of points where the field roughly equals βg logN :

Lemma 2.6. For any δ > 0,

P

( ∑
x∈V εN

1{|hVNx −βg logN |>(logN)1/2+δ} eβh
VN
x ≥ δN2+ 1

2β
2g

)
−→
N→∞

0. (2.20)

Proof. By (2.15), we may instead prove this for βg logN replaced by βVar(hVNx ).
Using the Markov inequality, the probability is then bounded by

1

δN2+ 1
2β

2g

∑
x∈V εN

E
(

1{|hVNx −βVar(h
VN
x )|>(logN)1/2+δ} eβh

VN
x

)
. (2.21)

Changing variables inside the (single-variable) Gaussian integral gives

E
(

1{|hVNx −βVar(h
VN
x )|>(logN)1/2+δ} eβh

VN
x

)
= e

1
2β

2Var(h
VN
x )P

(
|hVNx | > (logN)1/2+δ

)
≤ cN 1

2β
2ge−c

′′(logN)2δ (2.22)

for some c, c′′ > 0, where we used again (2.15). The probability in the statement

is thus at most a constant times δ−1e−c
′′(logN)2δ , which vanishes as N →∞. ut

Continuing the proof of “≥” in (2.9), the above lemmas yield

P

( ∑
x∈V εN

1{hVNx ≥βg logN−(logN)1/2+δ} ≥
c

2
N2+ 1

2β
2g−β2ge−β(logN)1/2+δ

)
≥ c

2

(2.23)
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Fig. 4. Left: A sample of the level set (2.8), or rather the point measure (2.26),
on a square of side N := 300 with λ := 0.2. Right: A corresponding sample
for i.i.d. normals with mean zero and variance g logN . Although both samples
live on the same “vertical scale”, their local structure is very different.

as soon as N is sufficiently large. Choosing β so that

βg logN − (logN)1/2+δ = 2
√
gλ logN (2.24)

gives 2 − 1
2β

2g = 2(1 − λ2) + O((logN)−1/2+δ) and so, since V εN ⊂ VN , the
cardinality LN of the level set (2.8) obeys

P
(
LN ≥ N2(1−λ2)−c′(logN)1/2+δ

)
≥ c

2
(2.25)

for some constant c′ ∈ R once N is large enough. This implies “≥” in (2.9) with
o(1) → 0 with a uniformly positive probability. The proof used that β2g < 2,
which means that it applies only to λ < 1/

√
2. ut

Having the lower bound with a uniformly positive probability is actually
sufficient to complete the proof of (2.9) as stated (when λ < 1/

√
2). The key

additional tool needed for this is the Gibbs-Markov decomposition of the DGFF
which will be discussed in the next lecture. (See Exercise 3.5.)

It is actually quite remarkable that the first-moment calculation alone is able
to nail the correct leading order of the maximum as well as the asymptotic size
of the level set (2.8). As that calculation did not involve correlations between the
DGFF at distinct vertices, the same estimate would apply to i.i.d. Gaussians with
the same growth rate of the variances. This (and many subsequent derivations)
may lead one to think that the extreme values behave somehow like those of
i.i.d. Gaussians. However, although some connection does exist, this is very far
from the truth, as seen in Fig. 4.

The factor 1− λ2 in the exponent is ubiquitous in this subject area. Indeed,
it appears in the celebrated analysis of the Brownian fast points (Orey and
Taylor [103]) and, as was just noted, for i.i.d. Gaussians with variance g logN .
A paper by Chatterjee, Dembo and Ding [41] gives (generous) conditions under
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which such a factor should be expected. For suitably formulated analogue of
Daviaud’s level sets, called the thick points, of the two-dimensional CGFF, this
has been shown by Hu, Miller and Peres [78].

2.3 Intermediate level sets

The main objective in this part of the course is to show that the intermediate
level sets (2.8) admit a non-trivial scaling limit whose law can be explicitly
characterized. We start by pondering about the formulation that makes taking
a scaling limit meaningful. Not all natural ideas may work; for instance, scaling
the box down to a unit size, the set (2.8) becomes increasingly dense everywhere
so taking its limit using, e.g., the topology of Hausdorff convergence does not
seem useful. A better idea here is to encode the set into the point measure
on [0, 1]2 × R of the form ∑

x∈VN

δx/N ⊗ δhVNx −aN , (2.26)

where, to allow for some generalizations, aN is a scale sequence such that

aN
logN

−→
N→∞

2
√
g λ (2.27)

for some λ ∈ (0, 1). A sample of the measure (2.26) is shown on the left of Fig. 4.

By Theorem 2.3, the measures in (2.26) assign unbounded mass to bounded
intervals in the second variable, and so a normalization is required. We will show
that this can be done (somewhat surprisingly) by a deterministic sequence of
the form

KN :=
N2

√
logN

e−
a2N

2g logN . (2.28)

Note that (2.27) implies KN = N2(1−λ2)+o(1) so the normalization is consistent
with Theorem 2.3. Our main result, proved in Biskup and Louidor [28], is then:

Theorem 2.7 (Scaling limit of intermediate level sets). For each λ ∈
(0, 1) and each D ∈ D there is an a.s.-finite random Borel measure ZDλ on D
such that for any aN satisfying (2.27) and any admissible sequence {DN : N ≥ 1}
of lattice approximations of D, the normalized point measure

ηDN :=
1

KN

∑
x∈DN

δx/N ⊗ δhDNx −aN
(2.29)

obeys

ηDN
law−→

N→∞
ZDλ (dx) ⊗ e−αλhdh, (2.30)

where α := 2/
√
g. Moreover, ZDλ (A) > 0 a.s. for every non-empty open A ⊆ D.
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A remark is perhaps in order on what it means for random measures to con-
verge in law. The space of Radon measures on D × R (of which ηDN is an exam-
ple) is naturally endowed with the topology of vague convergence. This topology
makes the space of Radon measures a Polish space which permits discussion of
distributional convergence. We pose:

Exercise 2.8. Let X be a Polish space and M(X ) the space of Radon mea-
sures on X endowed with the vague topology. Prove that a sequence of random
measures ηN ∈M(X ) converges in law to η if and only if for each f ∈ Cc(X ),

〈ηN , f〉
law−→

N→∞
〈η, f〉, (2.31)

where 〈η, f〉 denotes the integral of f with respect to η and the convergence in
law is in the sense of ordinary R-valued random variables.

A subtlety of the above theorem is that the convergence actually happens
over a larger “base” space, namely, D × (R ∪ {+∞}) implying, in particular,
ZDλ (∂D) = 0 a.s. This means that we get weak convergence of the said integral
even for (continuous) functions that take non-zero values on ∂D in the x-variable
and/or at +∞ in the h-variable. This implies:

Corollary 2.9. For the setting of Theorem 2.7,

1

KN
#
{
x ∈ DN : hDNx ≥ aN

} law−→
N→∞

(αλ)−1 ZDλ (D). (2.32)

Proof (idea). Use Theorem 2.7 for ηDN integrated against f(x, y) := 1[0,∞)(h). ut

Exercise 2.10. Apply suitable monotone limits to check that the convergence in
(2.30) — which involves a priori only integrals of these measures with respect to
compactly-supported continuous functions — can be applied to functions of the
form

f(x, h) := f̃(x)1[a,b](h) (2.33)

for f̃ : D → R continuous and a < b (including b :=∞).

We remark that Corollary 2.9 extends, quite considerably, Theorem 2.3 orig-
inally proved by Daviaud [51]. In order to get some feeling for what Theorem 2.7
says about the positions of the points in the level set, we also state:

Corollary 2.11. For aN as in (2.27), given a sample of hDN , let XN be a point
chosen uniformly from {x ∈ DN : hDNx ≥ aN}. Then

1

N
XN

law−→
N→∞

X̂ with law(X̂) = E

[
ZDλ (·)
ZDλ (D)

]
. (2.34)

In fact, the joint law of XN and ηDN obeys

(N−1XN , η
D
N )

law−→
N→∞

(X̂, ηD), (2.35)

where the marginal law of ηD is that of ZDλ (dx) ⊗ e−αλhdh and the law of X̂
conditional on ηD is given by ZDλ (·)/ZDλ (D).
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Proof. We easily check that, for any f : D → R continuous (and thus bounded),

E
[
f(XN/N)

]
= E

[
〈ηDN , f ⊗ 1[0,∞)〉
〈ηDN , 1[0,∞)〉

]
, (2.36)

where (f ⊗ 1[0,∞))(x, h) := f(x)1[0,∞)(h) and the brackets denote the integral of
the function with respect to the measure. Applying Theorem 2.7, we get

〈ηDN , f ⊗ 1[0,∞)〉
〈ηDN , 1⊗ 1[0,∞)〉

law−→
N→∞

∫
D

ZDλ (dx) f(x)

ZDλ (D)
. (2.37)

This yields (2.34). The more general clause (2.35) is then proved by considering
test functions in both variables in (2.36) and proceeding as above. ut

Exercise 2.12. The statement (2.37) harbors a technical caveat: we are tak-
ing the distributional limit of a ratio of two random variables, each of which
converges (separately) in law. Fill the details needed to justify the conclusion.

We conclude that the spatial part of the right-hand side of (2.30) thus tells
us about the local “intensity” of the sets in the samples in Fig. 4. Concerning the
values of the field, we may be tempted to say that these are Gumbel “distributed”
with decay exponent αλ. This is not justified by the statement per se as the
measure on the right of (2.30) is not a probability (it is not even finite). Still,
one can perhaps relate this to the corresponding problem for i.i.d. Gaussians with
variance g logN . Indeed, as an exercise in extreme-value statistics, we pose:

Exercise 2.13. Consider the measure ηDN for hDN replaced by i.i.d. Gaussians
with mean zero and variance g logN . Prove the same limit as in (2.30), with the
same KN and but with ZDλ replaced by a multiple of the Lebesgue measure on D.

We rush to add that (as we will explain later) ZDλ is a.s. singular with respect
to the Lebesgue measure. Compare, one more time, the two samples in Fig. 4.

2.4 Link to Liouville Quantum Gravity

Not too surprisingly, the random measures {ZDλ : D ∈ D} (or, rather, their laws)
are very closely related. We will later give a list of properties that characterize
these laws uniquely. From these properties one can derive the following trans-
formation rule for conformal maps between admissible domains:

Theorem 2.14 (Conformal covariance). Let λ ∈ (0, 1). Under any confor-
mal bijection f : D → f(D) between the admissible domains D, f(D) ∈ D, the
laws of the above measures transform as

Z
f(D)
λ ◦ f(dx)

law
= |f ′(x)|2+2λ2

ZDλ (dx). (2.38)
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Recall that rD(x), defined in (1.41), denotes the conformal radius ofD from x.
The following is now a simple consequence of the above theorem:

Exercise 2.15. Show that in the class of admissible D, the law of

1

rD(x)2+2λ2 Z
D
λ (dx) (2.39)

is invariant under conformal maps.

In light of Exercise 1.15, the law of ZDλ for any bounded, open, simply con-
nected D can thus be reconstructed from the law on, say, the open unit disc. As
we will indicate later, such a link exists for all admissible D. However, that still
leaves us with the task of determining the law of ZD for at least one admissible
domain. We will instead give an independent construction of the law of ZDλ that
works for general D. This will also give us the opportunity to review some of
the ideas of Kahane’s theory of multiplicative chaos.

Let H1
0(D) denote the closure of the set of smooth functions with compact

support in D in the topology of the Dirichlet inner product

〈f, g〉∇ :=
1

4

∫
D

∇f(x) · ∇g(x) dx , (2.40)

where ∇f is now the ordinary (continuum) gradient and · denotes the Euclidean
scalar product in R2. For {Xn : n ≥ 1} i.i.d. standard normals and {fn : n ≥ 1}
an orthonormal basis in H1

0(D), let

ϕn(x) :=

n∑
k=1

Xkfk(x). (2.41)

These are to be thought of as regularizations of the CGFF:

Exercise 2.16 (Hilbert space definition of CGFF). For any smooth func-
tion f ∈ H1

0(D), let Φn(f) :=
∫
D
f(x)ϕn(x)dx. Show that Φn(f) converges,

as n→∞, in L2 to a CGFF in the sense of Definition 1.29.

Using the above random fields, for each β ∈ [0,∞), we then define the random
measure

µD,βn (dx) := 1D(x)eβϕn(x)− β
2

2 E[ϕn(x)2] dx. (2.42)

The following observation goes back to Kahane [81] in 1985:

Lemma 2.17 (Gaussian Multiplicative Chaos). There exists a random,
a.s.-finite (albeit possibly trivial) Borel measure µD,β∞ on D such that for each
Borel A ⊆ D,

µD,βn (A) −→
n→∞

µD,β∞ (A), a.s. (2.43)
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Proof. Pick A ⊆ D Borel measurable. First we will show that µD,βn (A) converge
a.s. To this end, for each n ∈ N, define

Mn := µD,βn (A) and Fn := σ(X1, . . . , Xn). (2.44)

We claim that {Mn : n ≥ 1} is a martingale with respect to {Fn : n ≥ 1}. Indeed,
using the regularity of the underlying measure space (to apply Fubini-Tonelli)

E(Mn+1|Fn) = E
(
µD,βn+1(A)

∣∣Fn)
=

∫
A

dxE
(
eβϕn+1(x)− β

2

2 E[ϕn+1(x)2]
∣∣Fn) . (2.45)

The additive structure of ϕn now gives

E
(
eβϕn+1(x)− β

2

2 E[ϕn+1(x)2]
∣∣Fn)

= eβϕn(x)− β
2

2 E[ϕn(x)2]E
(
eβfn+1(x)Xn+1− 1

2β
2fn+1(x)2E[X2

n+1]
)

= eβϕn(x)− β
2

2 E[ϕn(x)2]. (2.46)

Using this in (2.45), the right-hand side then wraps back into µD,βn (A) = Mn

and so {Mn : n ≥ 1} is a martingale as claimed.
The martingale {Mn : n ≥ 1} is non-negative and so the Martingale Conver-

gence Theorem yields Mn → M∞ a.s. (with the implicit null event depending
on A). In order to identify the limit in terms of a random measure, we have to
rerun the above argument as follows: For any bounded measurable f : D → R
define

φn(f) :=

∫
f dµD,βn . (2.47)

Then the same argument as above shows that φn(f) is a bounded martingale
and so φn(f)→ φ∞(f) a.s. Specializing to continuous f , the bound∣∣φn(f)

∣∣ ≤ µD,βn (D) ‖f‖C(D) (2.48)

along with the above a.s. convergence Mn →M∞ (for A := D) yields∣∣φ∞(f)
∣∣ ≤M∞‖f‖C(D). (2.49)

Restricting to a countable dense subclass of f ∈ C(D) to manage the prolif-
eration of null sets, f 7→ φ∞(f) extends to a continuous linear functional φ′∞
on C(D) a.s. such that φ∞(f) = φ′∞(f) a.s. for each f ∈ C(D) (the null set
possibly depending on f). On the event that φ′∞ is well-defined and contin-
uous, the Riesz Representation Theorem yields existence of a (random) Borel
measure µD,β∞ such that

φ∞(f)
a.s.
= φ′∞(f) =

∫
f dµD,β∞ (2.50)
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for each f ∈ C(D).

To identify the limit in (2.43) (which we already showed to exist a.s.) with
µD,β∞ (A) we proceed as follows. First, given a Gδ-set A ⊆ D, we can find functions
fk ∈ C(D) such that fk ↓ 1A as k → ∞. Since µD,βn (A) ≤ φn(fk) → φ′∞(fk)
a.s. as n → ∞ and φ′∞(fk) ↓ µD,β∞ (A) as k → ∞ by the Bounded Convergence
Theorem, we get

lim
n→∞

µD,βn (A) ≤ µD,β∞ (A) a.s. (2.51)

Next, writing L1(D) for the space of Lebesgue absolutely integrable f : D → R,
Fatou’s lemma shows

E
∣∣φ′∞(f)

∣∣ ≤ ‖f‖L1(D), f ∈ C(D). (2.52)

The above approximation argument, along with the fact the Lebesgue measure
is outer regular now shows that Leb(A) = 0 implies µD,β∞ (A) = 0 a.s. This gives
(2.51) for all Borel A ⊆ D. The string of equalities

µD,βn (A) + µD,βn (Ac) = φn(1)
a.s.−→
n→∞

φ′∞(1) = µD,β∞ (A) + µD,β∞ (Ac) (2.53)

now shows that equality must hold in (2.51). ut
An interesting question is how the limit object µD,β∞ depends on β and, in

particular, for what β it is non-trivial. We pose:

Exercise 2.18. Use Kolmogorov’s zero-one law to show that, for each A ⊆ D
measurable, {

µD,β∞ (A) = 0
}

is a zero-one event. (2.54)

Exercise 2.19. Prove that there is βc ∈ [0,∞] such that

µD,β∞ (D)

{
> 0, if 0 ≤ β < βc,

= 0, if β > βc.
(2.55)

Hint: Use Gaussian interpolation and conditional Fatou’s lemma to show that
the Laplace transform of µD,βn (A) is non-decreasing in β.

We will show later that, in our setting (and with α from Theorem 2.7),

βc := α = 2/
√
g. (2.56)

As it turns out, the law of the measure µD,β∞ is independent of the choice of
the underlying basis in H1

0(D). This has been proved gradually starting with
somewhat restrictive Kahane’s theory [81] (which we will review later) and cul-
minating in a recent paper by Shamov [113]. (See Theorems 4.14 and 5.5.)

The measure µD,β∞ is called the Gaussian multiplicative chaos associated with
the continuum Gaussian Free Field. We now claim:
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Fig. 5. A sample of the LQG measure rD(x)2λ2

µD,λα∞ (dx) for D a unit square
and λ := 0.3. The high points indicate places of high local intensity.

Theorem 2.20 (ZDλ -measure as LQG measure). Assume the setting of The-
orem 2.7 with λ ∈ (0, 1). Then there is ĉ ∈ (0,∞) such that for all D ∈ D,

ZDλ (dx)
law
= ĉ rD(x)2λ2

µD,λα∞ (dx). (2.57)

where, we recall, rD(x) denotes the conformal radius of D from x.

The measure on the right of (2.57) (without the constant ĉ) is called the Liou-
ville Quantum Gravity (LQG) measure in D for parameter β := λα. This object
is currently heavily studied in connection with random conformally-invariant
geometry (see, e.g., Miller and Sheffield [99, 100]).

An alternative construction of the LQG measure was given by Duplantier
and Sheffield [68] using disc/circle averages (cf Exercise 1.30). This construc-
tion is technically more demanding (as it is not based directly on martingale
convergence theory) but, as a benefit, one gets some regularity of the limit.

We note (and will prove this for λ < 1/
√

2 in Corollary 3.17) that,

EµD,λα∞ (A) = Leb(A), λ ∈ [0, 1). (2.58)

For each λ < 1, the total mass µD,λα∞ (D) has moments up to 1+ε(λ), for ε(λ) > 0
that tends to zero as λ ↑ 1.

We will not discuss Gaussian Multiplicative Chaos and/or the LQG measures
as a stand-alone topic much in these lectures (although these objects will keep
popping up in our various theorems) and instead refer the reader to Beresty-
cki [20] and the review by Rhodes and Vargas [105]. The proofs of the Theo-
rems 2.7, 2.14 and 2.20 will be given in the forthcoming lectures.
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Lecture 3

Intermediate level sets: factorization

The aim of this and the following lecture is to give a fairly detailed account of the
proofs of the above theorems on the scaling limit of the intermediate level sets.
We will actually do this only in the regime where the second-moment calculations
work without the need for truncations; this requires restricting to λ < 1/

√
2. We

comment on the changes that need to be made for the complementary set of λ’s
at the end of the next lecture.

3.1 Gibbs-Markov property of DGFF

A number of forthcoming proofs will use a special property of the DGFF that
addresses the behavior of the field restricted, via conditioning, to a subdomain.
This property is the spatial analogue of the Markov property in one-parameter
stochastic processes and is a consequence of the Gaussian decomposition into
orthogonal subspaces along with the fact that the law of the DGFF is a Gibbs
measure for a nearest-neighbor Hamiltonian (cf Definition 1.1). For this rea-
son, we will attach the adjective Gibbs-Markov to this property, although the
literature uses the term domain-Markov as well. Here is the precise statement:

Lemma 3.1 (Gibbs-Markov property). For U ( V ( Z2, denote

ϕV,Ux := E
(
hVx
∣∣σ(hVz : z ∈ V r U)

)
. (3.1)

where hV is the DGFF in V . Then we have:

(1) A.e. sample of x 7→ ϕV,Ux is discrete harmonic on U with “boundary values”
determined by ϕV,Ux = hVx for each x ∈ V r U .

(2) The field hV − ϕV,U is independent of ϕV,U and

hV − ϕV,U law
= hU . (3.2)

Proof. Assume that V is finite for simplicity. Conditioning a multivariate Gaus-
sian on part of the values preserves the multivariate Gaussian nature of the law.
Hence ϕV,U and hV −ϕV,U are multivariate Gaussians that are, by the properties
of the conditional expectation, uncorrelated. It follows that ϕV,U ⊥⊥ hV − ϕV,U .

Next let us prove that ϕV,U has discrete-harmonic sample paths in U . To
this end pick any x ∈ U and note that the “smaller-always-wins” principle for
nested conditional expectations yields

ϕV,Ux = E
(
E
(
hVx
∣∣σ(hVz′ : z

′ 6= x)
) ∣∣∣σ(hVz : z ∈ V r U)

)
. (3.3)
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In light of Definition 1.1, the inner conditional expectation admits the explicit
form

E
(
hVx
∣∣σ(hVz′ : z

′ 6= x)
)

=

∫
R
hx e−

1
8

∑
y : y∼x(hVy −hx)2dhx∫

R
e−

1
8

∑
y : y∼x(hVy −hx)2dhx

, (3.4)

where y ∼ x abbreviates (x, y) ∈ E(Z2). Now

1

4

∑
y : y∼x

(hy − hx)2 = h2
x − 2

1

4

∑
y : y∼x

hy +
1

4

∑
y : y∼x

h2
y

=
(
hx −

1

4

∑
y : y∼x

hy

)2

+
1

4

∑
y : y∼x

h2
y −

(1

4

∑
y : y∼x

hy

)2

.

(3.5)
The last two terms factor from both the numerator and denominator on the
right of (3.4). Shifting hx by the average of the neighbors then gives

E
(
hVx
∣∣σ(hVz′ : z

′ 6= x)
)

=
1

4

∑
y : y∼x

hVy . (3.6)

Using this in (3.3) shows that ϕV,U has the mean-value property, and is thus
discrete harmonic, on U .

Finally, we need to show that h̃U := hV −ϕV,U has the law of hU . The mean
of h̃U is zero so we just need to verify that the covariances match. Here we note
that, using HU to denote the discrete harmonic measure on U , the mean-value
property of ϕV,U yields

h̃Ux = hVx −
∑
z∈∂U

HU (x, z)hVz , x ∈ U. (3.7)

For any x, y ∈ U , this implies

Cov(h̃Ux , h̃
U
y ) = GV (x, y)−

∑
z∈∂U

HU (x, z)GV (z, y)

−
∑
z∈∂U

HU (y, z)GV (z, x) +
∑

z,z̃∈∂U

HU (x, z)HU (y, z̃)GV (z, z̃) . (3.8)

Now recall the representation (1.33) which casts GV (x, y) as −a(x − y) + φ(y)
with φ harmonic on V . Plugging this in (3.8), the fact that∑

z∈∂U

HU (x, z)φ(z) = φ(x), x ∈ U, (3.9)

shows that all occurrences of φ in (3.8) cancel out. As x 7→ a(z − x) is discrete
harmonic on U for any z ∈ ∂U , replacing GV (·, ·) by −a(· − ·) in the last two
sums on the right of (3.8) makes these sums cancel each other as well.
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K

N

Fig. 6. A typical setting for the application of the Gibbs-Markov property.
The box VN = (0, N)2 ∩ Z2 is partitioned into (N/K)2 translates of boxes
VK := (0,K)2 ∩ Z2 of side K (assuming K divides N). This leaves a “line of
sites” between any two adjacent translates of VK . The DGFF on VN is then
partitioned as hVN = hV

◦
N + ϕVN ,V

◦
N with hV

◦
N ⊥⊥ ϕVN ,V

◦
N , where V ◦N is the

union of the shown translates of VK and ϕVN ,V
◦
N has the law of the harmonic

extension to V ◦N of the values of hVN on VN r V ◦N . The translates of VK can
be further subdivided to produce a hierarchical description of the DGFF.

We are thus left with the first two terms on the right of (3.8) in which GV (·, ·)
is now replaced by −a(· − ·). The representation (1.33) then tells us that

Cov(h̃Ux , h̃
U
y ) = GU (x, y), x, y ∈ U. (3.10)

Since both h̃U and hU vanish outside U , we have h̃U
law
= hU as desired. ut

Exercise 3.2. Supply the missing (e.g., limiting) arguments to prove the Gibbs-
Markov decomposition applies even to the situation when U and V are allowed
to be infinite.

A short way to write the Gibbs-Markov decomposition is as

hV
law
= hU + ϕV,U where hU ⊥⊥ ϕV,U . (3.11)

with the law of hU and ϕV,U (often implicitly) as above.
We have seen that the monotonicity V 7→ GV (x, y) allows for control of the

variance of the DGFF in general domains by that in more regular ones. One
of the important consequences of the Gibbs-Markov property is to give similar
comparisons for various probabilities involving a finite number of vertices. The
following examples will turn out to be useful:
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Exercise 3.3. Suppose ∅ 6= U ⊆ V ( Z2. Prove that for every a ∈ R,

P
(
hUx ≥ a

)
≤ 2P

(
hVx ≥ a

)
, x ∈ U. (3.12)

Similarly, for any binary relation R ⊆ Zd × Zd, show that also

P
(
∃x, y ∈ U : (x, y) ∈ R, hUx , hUy ≥ a

)
≤ 4P

(
∃x, y ∈ V : (x, y) ∈ R, hVx , hVy ≥ a

)
. (3.13)

Similar ideas lead to:

Exercise 3.4. Prove that for any ∅ 6= U ⊆ V ( Z2 and any a ∈ R,

P
(
max
x∈U

hUx > a
)
≤ 2P

(
max
x∈V

hVx > a
)
. (3.14)

For finite V we get
E
(

max
x∈U

hUx
)
≤ E

(
max
x∈V

hVx
)
, (3.15)

and so U 7→ E(maxx∈U h
U
x ) is non-decreasing with respect to the set inclusion.

These estimates squeeze the maximum in one domain between that in smaller
and larger domains. If crude bounds are sufficient, this permits reduction to
simple domains, such as squares.

A typical setting for the application of the Gibbs-Markov property is depicted
in Fig. 6. There each of the small boxes (the translates of VK) has its “private”
independent copy of the DGFF. By (3.11), to get hVN these copies are “bound
together” by an independent Gaussian field ϕVN ,V

◦
N that, as far as its law is

concerned, is just the harmonic extension of the values of hVN on the dividing
lines that separate the small boxes from each other. For this reason we sometimes
refer to ϕVN ,V

◦
N as the binding field. Note that ϕVN ,V

◦
N has discrete-harmonic

sample paths on V ◦N yet it becomes quite singular on VN r V ◦N ; cf Fig. 7.
Iterations of the partitioning sketched in Fig. 6 lead to a hierarchical descrip-

tion of the DGFF on a square of side N := 2n as the sum (along root-to-leaf
paths of length n) of a family of tree-indexed binding fields. If these binding
fields could be regarded as constant on each of the “small” square, this would
cast the DGFF as a Branching Random Walk. Unfortunately, the binding fields
are not constant on relevant squares so this representation is only approximate.
Still, it is extremely useful; see Lecture 7.

The Gibbs-Markov property can be used to bootstrap control from positive
probability (in small boxes) to probability close to one (in a larger box, perhaps
for a slightly modified event). An example of such a statement is:

Exercise 3.5. Prove that “≥” holds in (2.9) with probability tending to one
as N →∞ (still assuming that λ < 1/

√
2).

The term sprinkling technique is sometimes used for such bootstrap arguments in
the literature although we prefer to leave it reserved for parameter manipulations
of independent Bernoulli or Poisson random variables.
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Fig. 7. A sample of the binding field ϕVN ,V
◦
N for the (first-level) partition

depicted in Fig. 6 with N := 4K. Here V ◦N is the union of 16 disjoint translates
of VK . Note that while samples of the field are discrete harmonic inside the
individual squares, they become quite rough on the dividing lines of sites.

3.2 First moment of level-set size

Equipped with the Gibbs-Markov property, we are now ready to begin the proof
of the scaling limit of the measures in Theorem 2.7. The key point is to estimate,
as well as compute the asymptotic of, the first two moments of the size of the
level set

ΓDN (b) :=
{
x ∈ DN : hDNx ≥ aN + b

}
. (3.16)

We begin with the first-moment calculation. Assume that λ ∈ (0, 1), an ad-
missible domain D ∈ D and an admissible sequence {DN : N ≥ 1} of domains
approximating D are fixed. Our first lemma is then:

Lemma 3.6 (First moment upper bound). For each δ ∈ (0, 1) there is
c ∈ (0,∞) such that for all N ≥ 1, all b ∈ R with |b| ≤ logN and all aN with
δ logN ≤ aN ≤ δ−1 logN , and all A ⊆ DN ,

E
∣∣ΓDN (b) ∩A

∣∣ ≤ cKN
|A|
N2

e−
aN

g logN b . (3.17)

Proof. Similarly as in the proof of the upper bound in Theorem 2.1, the claim
will follow by summing over x ∈ A the inequality

P
(
hDNx ≥ aN + b

)
≤ c 1√

logN
e−

a2N
2g logN e−

aN
g logN b, (3.18)

which (we claim) holds with some c > 0 uniformly in x ∈ DN and b with |b| ≤
logN . By (3.12) and translation invariance of the DGFF, it suffices to prove
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(3.18) for x := 0 and DN replaced by the box D̃N of side length 4 diam∞(DN )
centered at the origin. (We will still write x for the vertex in question though.)

For this setting, Theorem 1.17 ensures that the variance of hD̃Nx is within a
constant c̃ > 0 of g logN . Hence we get

P
(
hD̃Nx ≥ aN + b

)
≤ 1√

2π

1√
g logN − c̃

∫ ∞
b

e−
1
2

(aN+s)2

g logN+c̃ ds. (3.19)

Bounding (aN + s)2 ≥ a2
N + 2aNs and noting that the assumptions on aN (and

the inequality (1 + r)−1 ≥ 1− r for 0 < r < 1) imply

a2
N

g logN + c
≥ a2

N

g logN
− c

g2δ
, (3.20)

we get ∫ ∞
b

e−
1
2

(aN+s)2

g logN+c̃ ds ≤ c′e−
a2N

2g logN e−
aN

g logN+c̃ b (3.21)

for some constant c′ > 0. As aN ≤ δ−1 logN and |b| ≤ logN , the constant c̃
in the exponent can be dropped at the cost of another multiplicative (constant)
term popping up in the front. The claim follows. ut

The fact that the estimate in Lemma 3.6 holds uniformly for all subsets of DN

will be quite useful for the following reason:

Exercise 3.7. Show that for each D ∈ D, each b ∈ R and each ε > 0 there
is δ > 0 such that for all N sufficiently large,

E
∣∣{x ∈ ΓDN (b) : dist∞(x,Dc

N ) < δN}
∣∣ ≤ εKN . (3.22)

We remark that no properties of ∂D other than those stated in Definition 1.14
should be assumed in the solution. Next let us note the following fact:

Exercise 3.8. A sequence {µn : n ≥ 1} of random Borel measures on a topolog-
ical space X is tight with respect to the vague topology if and only if the sequence
of random variables {µN (K) : n ≥ 1} is tight for every compact K ⊆X .

Lemma 3.6 then gives:

Corollary 3.9 (Tightness). The family {ηDN : N ≥ 1}, regarded as measures
on D × (R ∪ {+∞}), is a tight sequence in the topology of vague convergence.

Proof. Every compact set in D × (R ∪ {+∞}) is contained in Kb := D × [b,∞]
for some b ∈ R. The definition of ηDN shows

ηDN (Kb) =
1

KN

∣∣ΓDN (b)
∣∣. (3.23)

Lemma 3.6 shows these have uniformly bounded expectations and so are tight
as ordinary random variables. The claim follows by Exercise 3.8. ut
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In probability, tightness is usually associated with “mass not escaping to
infinity” or “the total mass being conserved.” However, for convergence of ran-
dom unnormalized measures in the vague topology, tightness does not prevent
convergence to zero measure. In order to rule that out, we will need:

Lemma 3.10 (First moment asymptotic). Assume that aN obeys (2.27)
and let c0 be as in (1.36). Then for all b ∈ R and all open A ⊆ D,

E
∣∣{x ∈ ΓDN (b) : x/N ∈ A}

∣∣ =
e2c0λ

2/g

λ
√

8π
e−αλb

[
o(1) +

∫
A

dx rD(x)2λ2
]
KN ,

(3.24)
where o(1)→ 0 as N →∞ uniformly on compact sets of b.

Proof. Thanks to Exercise 3.7 we may remove a small neighborhood of ∂D from A
and thus assume that dist∞(A,Dc) > 0. We will proceed by extracting an asymp-
totic expression for P (hDNx ≥ aN + b) with x such that x/N ∈ A. For such x,
Theorem 1.17 gives

GDN (x, x) = g logN + θN (x), (3.25)

where
θN (x) = c0 + g log rD(x/N) + o(1) , (3.26)

with o(1)→ 0 as N →∞ uniformly in x ∈ DN with x/N ∈ A. Using this in the
formula for the probability density of hDNx yields

P
(
hDNx ≥ aN + b

)
=

1√
2π

1√
g logN + θN (x)

∫ ∞
b

e
− 1

2

(aN+s)2

g logN+θN (x) ds . (3.27)

The first occurrence of θN (x) does not affect the overall asymptotic as this quan-
tity is bounded uniformly for all x under consideration. Expanding the square
(aN + s)2 = a2

N + 2aNs + s2 and noting that (by decomposing the integration
domain into s� logN and its complement) the s2 term has negligible effect on
the overall asymptotic of the integral, we find out∫ ∞

b

e
− 1

2

(aN+s)2

g logN+θN (x) ds =
(
1 + o(1)

)
(αλ)−1e

− 1
2

a2N
g logN+θN (x) e−αλb+o(1) . (3.28)

We now use Taylor’s Theorem (and the asymptotic of aN ) to get

a2
N

g logN + θN (x)
=

a2
N

g logN
− 4λ2

g
θN (x) + o(1) (3.29)

with o(1)→ 0 again uniformly in all x under consideration. This yields

P
(
hDNx ≥ aN + b

)
=
(
1 + o(1)

)e2c0λ
2/g

λ
√

8π
e−αλb rD(x/N)2λ2 KN

N2
. (3.30)

The result follows by summing this probability over x with x/N ∈ A and using
the continuity of rD to convert the resulting Riemann sum into an integral. ut
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3.3 Second moment estimate

Our next task is to perform a rather tedious estimate on the second moment of
the size of ΓDN (b). It is here where we need to limit the range of possible λ.

Lemma 3.11 (Second moment bound). Suppose λ ∈ (0, 1/
√

2). For each
b0 > 0 and each D ∈ D there is c1 ∈ (0,∞) such that for each b ∈ [−b0, b0] and
each N ≥ 1,

E
(
|ΓDN (b)|2

)
≤ c1K2

N . (3.31)

Proof. Assume b := 0 for simplicity (or absorb b into aN ). Writing

E
(
|ΓDN (0)|2

)
=

∑
x,y∈DN

P
(
hDNx ≥ aN , hDNy ≥ aN

)
. (3.32)

we need to derive a good estimate for the probability on the right-hand side. In
order to ensure uniformity, let D̃N be a neighborhood of DN of diameter twice
the diameter of DN . Exercise 3.3 then shows

P
(
hDNx ≥ aN , hDNy ≥ aN

)
≤ 4P

(
hD̃Nx ≥ aN , hD̃Ny ≥ aN

)
. (3.33)

We will now estimate the probability on the right by conditioning on hD̃Nx .
First note that the Gibbs-Markov property yields a pointwise decomposition

hD̃Ny = gx(y)hD̃Nx + ĥD̃Nr{x}
y , (3.34)

where

(1) hD̃Nx and ĥD̃Nr{x} are independent,

(2) ĥD̃Nr{x} has the law of the DGFF in D̃N r {x}, and

(3) gx is harmonic in D̃N r {x}, vanishes outside D̃N and obeys gx(x) = 1.

Using (3.34), the above probability is recast as

P
(
hD̃Nx ≥ aN , hD̃Ny ≥ aN

)
=

∫ ∞
0

P
(
ĥD̃Nr{x}
y ≥ aN (1− gx(y))− sgx(y)

)
P
(
hD̃Nx − aN ∈ ds

)
. (3.35)

Given δ > 0 we can always bound the right-hand side by P (hD̃Nx ≥ aN ) when
|x− y| ≤ δ

√
KN . This permits us to assume that |x− y| > δ

√
KN from now on.

The s ≥ aN portion of the integral is similarly bounded by P (hD̃Nx ≥ 2aN ), so
we will henceforth focus on s ∈ [0, aN ].

Since x, y lie “deep” inside D̃N and |x− y| > δ
√
KN = N1−λ2+o(1), we have

gx(y) =
GD̃N (x, y)

GD̃N (x, x)
≤

log N
|x−y| + c

logN − c
≤ 1− (1− λ2) + o(1) = λ2 + o(1),

(3.36)
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where o(1) → 0 uniformly in x, y ∈ DN . For s ∈ [0, aN ], λ < 1/
√

2 implies the
existence of an ε > 0 such that, for N is large enough,

εaN ≤ aN
(
1− gx(y)

)
− sgx(y) ≤ aN , x, y ∈ DN . (3.37)

The Gaussian bound P (X ≥ t) ≤ σt−1e−
t2

2σ2 for X = N (0, σ2) and any t > 0

along with GD̃Nr{x}(y, y) ≤ g logN + c uniformly in y ∈ DN show

P
(
ĥD̃Nr{x}
y ≥ aN

(
1− gx(y)

)
− sgx(y)

)
≤
√
G(y, y)

εaN
e−

[aN (1−gx(y))−sgx(y)]2

2G(y,y) ≤ cKN

N2
egx(y)

a2N
g logN +

aN
g logN gx(y)s , (3.38)

where G(y, y) abbreviates GD̃Nr{x}(y, y). The first inequality in (3.36) gives

egx(y)
a2N

g logN ≤ c
(

N

|x− y|

)4λ2+o(1)

(3.39)

with o(1)→ 0 uniformly in x, y ∈ DN with |x− y| > δ
√
KN .

The uniform upper bound on GD̃N (x, x) allows us to dominate the law

of hD̃Nx − aN on [0,∞) by

P
(
hD̃Nx − aN ∈ ds

)
≤ cKN

N2
e−

aN
g logN sds. (3.40)

As 1−gx(y) = 1−λ2 + o(1), the s ∈ [0, aN ] part of the integral in (3.35) is then
readily performed to yield

P
(
hD̃Nx ≥ aN , hD̃Ny ≥ aN

)
≤ P

(
hD̃Nx ≥ 2aN

)
+ c
(KN

N2

)2
(

N

|x− y|

)4λ2+o(1)

(3.41)
uniformly in x, y ∈ DN with|x− y| > δ

√
KN .

In order to finish the proof, we now use (3.33) to write

E
(
|ΓDN (0)|2

)
≤

∑
x,y∈DN

|x−y|≤δ
√
KN

P
(
hDNx ≥ aN

)
+

∑
x,y∈DN

|x−y|>δ
√
KN

4P
(
hD̃Nx ≥ aN , hD̃Ny ≥ aN

)
.

(3.42)

Summing over y and invoking Lemma 3.6 bounds the first term by a factor of
order (δKN )2. The contribution of the first term on the right of (3.41) to the
second sum is bounded via Lemma 3.6 as well:

P
(
hDNx ≥ 2aN

)
≤ c√

logN
e−2

a2N
g logN

= c
(KN

N2

)2

e−
a2N

g logN

√
logN ≤ cδ

(KN

N2

)2

.

(3.43)
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Plugging in also the second term on the right of (3.41), we thus get

E
(
|ΓDN (0)|2

)
≤ 2cδ(KN )2 + c

(KN

N2

)2 ∑
x,y∈DN

|x−y|>δ
√
KN

(
N

|x− y|

)4λ2+o(1)

. (3.44)

Dominating the sum by cN4
∫
D×D |x − y|

−4λ2+o(1)dxdy, with the integral con-

vergent due to 4λ2 < 2, we find that also the second term on the right is of
order (KN )2. ut

As a corollary we now get:

Corollary 3.12 (Subsequential limits are non-trivial). Let λ ∈ (0, 1/
√

2).
Then every subsequential limit ηD of {ηDN : N ≥ 1} obeys

P
(
ηD(A× [b, b′]) > 0

)
> 0 (3.45)

for any open and non-empty A ⊆ D and every b < b′.

Proof. Abbreviate XN := ηDN (A× [b, b′]). Then Lemma 3.10 implies

E(XN ) −→
N→∞

ĉ
[∫
A

dx rD(x)2λ2
](

e−λαb − e−λαb
′)
, (3.46)

where ĉ := e2c0λ
2/g/(λ

√
8π). This is positive and finite for any A and b, b′ as

above. On the other hand, Lemma 3.11 shows that supN≥1E(X2
N ) < ∞. The

second-moment estimate (Exercise 2.5) then yields the claim. ut

3.4 Second-moment asymptotic and factorization

At this point we know that the subsequential limits exist and are non-trivial
(with positive probability). The final goal of this lecture is to prove:

Proposition 3.13 (Factorization). Suppose λ ∈ (0, 1/
√

2). Then every sub-
sequential limit ηD of {ηDN : N ≥ 1} takes the form

ηD(dxdh) = ZDλ (dx)⊗ e−αλhdh, (3.47)

where ZDλ is a random, a.s.-finite Borel measure on D with P (ZDλ (D) > 0) > 0.

The proof relies on yet another (and this time quite lengthy) second-moment
calculation. The result of this calculation is the content of:

Lemma 3.14. For any λ ∈ (0, 1/
√

2), any open A ⊆ D, any b ∈ R, and

AN := {x ∈ Z2 : x/N ∈ A} (3.48)

we have

lim
N→∞

1

KN
E
∣∣∣∣∣ΓDN (0) ∩AN

∣∣− eαλb
∣∣ΓDN (b) ∩AN

∣∣∣∣∣ = 0. (3.49)
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Proof (modulo a computation). By Lemma 3.6 we may assume dist∞(A,Dc) > ε
for some ε > 0. We will prove

lim
N→∞

1

K2
N

E

(∣∣∣∣∣ΓDN (0) ∩AN
∣∣− eαλb

∣∣ΓDN (b) ∩AN
∣∣∣∣∣2) = 0 (3.50)

which implies the claim via the Cauchy-Schwarz inequality. Plugging∣∣ΓDN (·) ∩AN
∣∣ =

∑
x∈AN

1{hDNx ≥aN+·} (3.51)

into (3.50) we get a sum of pairs of (signed) products of the various combinations
of these indicators. The argument in the proof of Lemma 3.11 allows us to
estimate the pairs where |x − y| ≤ δN by a quantity that vanishes as N → ∞
and δ ↓ 0. It will thus suffice to show

max
x,y∈AN
|x−y|>δN

(
P
(
hDNx ≥ aN , hDNy ≥ aN

)
− eαλbP

(
hDNx ≥ aN + b, hDNy ≥ aN

)
− eαλbP

(
hDNx ≥ aN , hDNy ≥ aN + b

)
+ e2αλbP

(
hDNx ≥ aN + b, hDNy ≥ aN + b

))
= o
(K2

N

N4

)
(3.52)

as N → ∞. A computation refining the argument in the proof of Lemma 3.11
to take into account the precise asymptotic of the Green function (this is where
we get aided by the fact that |x − y| > δN and dist∞(A,Dc) > ε) now shows
that, for any b1, b2 ∈ {0, b},

P
(
hDNx ≥ aN + b1, h

DN
y ≥ aN + b2

)
=
(
e−αλ(b1+b2) + o(1)

)
P
(
hDNx ≥ aN , hDNy ≥ aN

)
(3.53)

with o(1)→ 0 as N →∞ uniformly in x, y ∈ AN . This then implies (3.52) and
thus the whole claim. ut

Exercise 3.15. Supply a detailed proof of (3.53). (Consult [26] if lost.)

From Lemma 3.14 we get:

Corollary 3.16. Suppose λ ∈ (0, 1/
√

2). Then any subsequential limit ηD of the
processes {ηDN : N ≥ 1} obeys the following: For any open A ⊆ D and any b ∈ R,

ηD
(
A× [b,∞)

)
= e−αλbηD

(
A× [0,∞)

)
, a.s. (3.54)

Proof. In the notation of Lemma 3.14,

ηDN
(
A× [b,∞)

)
=

1

KN

∣∣ΓDN (b) ∩AN
∣∣. (3.55)
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Taking a joint distributional limit of ηDN (A × [b,∞)) and ηDN (A × [0,∞)) along
the given subsequence, Lemma 3.14 along with Fatou’s lemma show

E
∣∣∣ηD(A× [0,∞)

)
− eαλbηD

(
A× [b,∞)

)∣∣∣ = 0. (3.56)

(This requires a routine approximation of indicators of these events by continu-
ous functions as in Exercise 2.10.) The claim follows. ut

We now give:

Proof of Proposition 3.13. For each Borel A ⊆ D define

ZDλ (A) := (αλ)ηD
(
A× [0,∞)

)
(3.57)

Then ZDλ is an a.s.-finite (random) Borel measure on D. Letting A be the set of
all half-open dyadic boxes entirely contained in D, Corollary 3.16 and a simple
limiting argument show that, for any A ∈ A and any b ∈ Q,

ηD
(
A× [b,∞)

)
= (αλ)−1ZDλ (A)e−αλb, a.s. (3.58)

Since A×Q is countable, the null set in (3.58) can be chosen so that the equality
in (3.58) holds for all A ∈ A and all b ∈ Q simultaneously, a.s. Note that the
sets {A × [b,∞) : A ∈ A, b ∈ Q} constitute a π-system that generates all Borel
sets in D × R. In light of

(αλ)−1ZDλ (A)e−αλb =

∫
A×[b,∞)

ZDλ (dx)⊗ e−αλhdh (3.59)

the claim follows from Dynkin’s π-λ-theorem. ut
We also record an important observation:

Corollary 3.17. Assume λ ∈ (0, 1/
√

2) and denote

ĉ :=
e2c0λ

2/g

λ
√

8π
(3.60)

for c0 as in (1.36). Then ZDλ from (3.47) obeys

E
[
ZDλ (A)

]
= ĉ

∫
A

dx rD(x)2λ2

(3.61)

for each Borel A ⊆ D. Moreover, there is c ∈ (0,∞) such that for any open
square S ⊂ C,

E
[
ZSλ (S)2

]
≤ cdiam(S)4+4λ2

. (3.62)

Proof (sketch). Thanks to the uniform square integrability proved in Lemma 3.11,
the convergence in probability is accompanied by convergence of the first mo-
ments. Then (3.61) follows from Lemma 3.10. To get also (3.62) we need a
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uniform version of the bound in Lemma 3.11. We will not perform the requisite
calculation, just note that for a c′ ∈ (0,∞) the following holds for all D ∈ D,

lim sup
N→∞

1

K2
N

E
(
|ΓDN (0)|2

)
≤ c′

∫
D×D

dx⊗ dy

(
[diamD]2

|x− y|

)4λ2

, (3.63)

where diamD is the diameter of D in the Euclidean norm. We leave further
details of the proof to the reader. ut

This closes the first part of the proof of Theorem 2.7 which showed that every
subsequential limit of the measures of interest factors into the desired product
form. The proof continues in the next lecture.

Lecture 4

Intermediate level sets: nailing the limit

The goal of this lecture is to finish the proof of Theorem 2.7 and the results
that follow thereafter. This amounts to proving a list of properties that the ZDλ -
measures (still tied to a specific subsequence) satisfy and showing that these
properties characterize the law of the ZDλ -measures uniquely. As part of the
proof, we obtain a conformal transformation rule for ZDλ and a representation
thereof as a Liouville Quantum Gravity measure. All proofs remain restricted to
λ < 1/

√
2; the final section comments on necessary changes in the complemen-

tary regime of λ’s.

4.1 Gibbs-Markov property in the scaling limit

We have shown so far that every subsequential limit of the family of point mea-
sures {ηDN : N ≥ 1} takes the form

ZDλ (dx)⊗ e−αλhdh (4.1)

for some random Borel measure ZDλ on D. Our next goal is to identify properties
of these measures that will ultimately nail their law uniquely. The most impor-
tant of these is the behavior under restriction to a subdomain which arises from
the Gibbs-Markov decomposition of the DGFF (which defines the concept of the
binding field used freely below). However, as the ZDλ -measure appears only in
the scaling limit, we have to first describe the scaling limit of the Gibbs-Markov
decomposition itself.

The main observation to be made below is that, although the DGFF has no
pointwise scaling limit, the binding field does. This is facilitated (and basically
implied) by the fact that the binding field has discrete-harmonic sample paths.

To define the relevant objects, let D̃,D ∈ D be two domains satisfying D̃ ⊆ D.
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For each x, y ∈ D̃, set

CD,D̃(x, y) := g

∫
∂D

ΠD(x,dz) log |y − z|

− g
∫
∂D̃

ΠD̃(x,dz) log |y − z| , (4.2)

where ΠD is the harmonic measure from (1.28). Given any admissible approxi-

mations {DN : N ≥ 1} and {D̃N : N ≥ 1} of domains D and D̃, respectively, of

which we also assume that D̃N ⊆ DN for each N ≥ 1, we now observe:

Lemma 4.1 (Convergence of covariances). Locally uniformly in x, y ∈ D̃,

GDN
(
bxNc, byNc

)
−GD̃N

(
bxNc, byNc

)
−→
N→∞

CD,D̃(x, y). (4.3)

We leave it to the reader to solve:

Exercise 4.2. Prove Lemma 4.1 while noting that this includes uniform con-
vergence on the diagonal x = y. Hint: Use the representation in Lemma 1.19.

From here we get:

Lemma 4.3 (Limit binding field). For any D and D̃ as above, x, y 7→
CD,D̃(x, y) is a symmetric, positive semi-definite kernel on D̃×D̃. In particular,

there is a Gaussian process x 7→ ΦD,D̃(x) on D̃ with zero mean and covariance

Cov
(
ΦD,D̃(x), ΦD,D̃(y)

)
= CD,D̃(x, y), x, y ∈ D̃. (4.4)

Proof. Let U ⊂ V be non-empty and finite. The Gibbs-Markov decomposition
implies

Cov(ϕV,Ux , ϕV,Uy ) = GV (x, y)−GU (x, y). (4.5)

Hence, x, y 7→ GV (x, y) − GU (x, y) is symmetric and positive semi-definite on

U ×U . In light of (4.3), this extends to CD,D̃ on D̃× D̃ by a limiting argument.

Standard arguments then imply the existence of the Gaussian process ΦD,D̃. ut
In light of Exercise 1.3 and (4.5) we see that CD,D̃(x, y) ≥ 0 for all x, y ∈ D̃.

When D̃ ( D, we will even have CD,D̃(x, x) > 0 for some x ∈ D̃. We will call

ΦD,D̃ the continuum binding field. To justify this name, observe:

Lemma 4.4 (Coupling of binding fields). ΦD,D̃ has a version with contin-

uous sample paths on D̃. Moreover, for each δ > 0 and each N ≥ 1 there is a

coupling of ϕDN ,D̃N and ΦD,D̃ such that

sup
x∈D̃

dist(x,∂D̃)>δ

∣∣ΦD,D̃(x)− ϕDN ,D̃NbxNc
∣∣ −→
N→∞

0, in probability. (4.6)
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Fig. 8. A sample of ϕD,D̃N where D := (−1, 1)2 and D̃ obtained from D by
removing points on the coordinate axes.

Proof (assuming regularity of the fields). Abbreviate ϕD,D̃N (x) := ϕDN ,D̃NbxNc . The

convergence of the covariances from Lemma 4.1 implies ϕD,D̃N (x)→ ΦD,D̃(x) in

law for each x ∈ D̃, so the point is to extend this to the convergence of these
fields as random functions. Fix δ > 0 and denote

D̃δ :=
{
x ∈ C : dist(x, ∂D̃) > δ

}
. (4.7)

Fix r > 0 small and let x1, . . . , xk be an r-net in D̃δ. As convergence of the
covariances implies convergence in law, and convergence in law on Rk can be
turned into convergence in probability under a suitable coupling measure, for

each N ≥ 1 there is a coupling of ϕDN ,D̃N and ΦD,D̃ such that

P
(

max
i=1,...,k

∣∣ΦD,D̃(xi)− ϕD,D̃N (xi)
∣∣ > ε

)
−→
N→∞

0. (4.8)

The claim will then follow if we can show that

lim
r↓0

P

(
sup

x,y∈D̃δ
|x−y|<r

∣∣ΦD,D̃(x)− ΦD,D̃(y)
∣∣ > ε

)
= 0 (4.9)

and similarly (with an additional limes superior as N → ∞ preceding the

limit r ↓ 0) for ΦD,D̃(·) replaced by ϕD,D̃N . This, along with the continuity

of ΦD,D̃, will follow from the regularity estimates on Gaussian processes to be
proved in Lecture 6 (specifically, in Lemma 6.17). ut

For future reference, we suggest that the reader solve the following exercises:
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Exercise 4.5 (Projection definition). Prove (by comparing covariances) that

ΦD,D̃ is the projection of the CGFF on D onto the subspace of functions in H1
0(D)

that are harmonic on (the connected components of) D̃.

We will also need to note that the binding field has a nesting property:

Exercise 4.6 (Nesting property). Show that if U ⊂ V ⊂W , then

ϕW,U
law
= ϕW,V + ϕV,U with ϕW,V ⊥⊥ ϕV,U . (4.10)

Similarly, if D′′ ⊂ D′ ⊂ D are admissible, then (on D′′)

ΦD,D
′′ law

= ΦD,D
′
+ ΦD

′,D′′ with ΦD,D
′
⊥⊥ ΦD

′,D′′ . (4.11)

To demonstrate the benefits of taking the scaling limit we note that continu-
ous binding field behaves nicely under conformal maps of the underlying domain.
Indeed, we have:

Exercise 4.7. Show that under a conformal bijection f : D → f(D), we have

Cf(D),f(D̃)
(
f(x), f(y)

)
= CD,D̃(x, y), x, y ∈ D̃, (4.12)

for any D̃ ⊂ D. Prove that this implies

Φf(D),f(D̃) ◦ f law
= ΦD,D̃. (4.13)

Hint: Use Lemma 1.26.

4.2 Properties of ZD
λ -measures

We are now ready to move to the discussion of the properties of (the laws of)
the ZDλ -measures. These will often relate the measures in different domains and
so we need to ensure that the subsequential limit can be taken for all of these do-
mains simultaneously. Applying Cantor’s diagonal argument, we can definitely
use the same subsequence for any countable collection D0 ⊂ D of admissible
domains and thus assume that a subsequential limit ηD, and hence also the
measure ZDλ , has been extracted for each D ∈ D0. All of our subsequent state-
ments will then be restricted to the domains in D0. We will always assume
that D0 contains all finite unions of dyadic open and/or half-open squares plus
any finite number of additional domains of present (or momentary) interest.

Some of the properties of the measures {ZDλ : D ∈ D0} are quite elementary
consequences of the above derivations and so we relegate them to:

Exercise 4.8 (Easy properties). Prove that:

(1) for each D ∈ D0, ZDλ is supported on D; i.e., ZDλ (∂D) = 0 a.s.,
(2) if A ⊂ D ∈ D0 is measurable with Leb(A) = 0, then ZDλ (A) = 0 a.s.,
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(3) if D, D̃ ∈ D0 obey D ∩ D̃ = ∅, then

ZD∪D̃λ (dx)
law
= ZDλ (dx) + ZD̃λ (dx), (4.14)

with the measures ZDλ and ZD̃λ on the right regarded as independent, and
(4) the law of ZDλ is translation invariant; i.e.,

Za+D
λ (a+ dx)

law
= ZDλ (dx) (4.15)

for each a ∈ C such that D, a+D ∈ D0.

As already mentioned, a key point for us is to prove the behavior under the
restriction to a subdomain. We formulate this as follows:

Proposition 4.9 (Gibbs-Markov for ZDλ -measures). For any D, D̃ ∈ D0

satisfying D̃ ⊆ D and Leb(D r D̃) = 0,

ZDλ (dx)
law
= eαλΦ

D,D̃(x) ZD̃λ (dx), (4.16)

where ΦD,D̃ ⊥⊥ ZD̃λ with the laws as above.

Note that, by Exercise 4.8(2), both sides of the expression assign zero mass

to Dr D̃ a.s. It therefore does not matter that ΦD,D̃ is not really defined there.
(The decomposition in Fig. 6 shows that, even with D and D̃ restricted to D0,

non-trivial examples exist with D̃ ⊂ D and Leb(D r D̃) = 0.)

Proof. Suppose D, D̃ ∈ D0 obey D̃ ⊆ D and Leb(D r D̃) = 0. Thanks to Exer-
cise 4.8(2) and the Monotone Convergence Theorem, it suffices to prove equality
in law for the integrals of the two measures with respect to any function bounded
and continuous f : D×R→ R with support in K× [−b, b] for a compact K ⊂ D̃
and some b > 0.

We start by invoking the Gibbs-Markov decomposition

hDN
law
= hD̃N + ϕD,D̃N where hD̃N ⊥⊥ ϕD,D̃N . (4.17)

A calculation then shows

〈ηDN , f〉
law
= 〈ηD̃N , fϕ〉 , (4.18)

where

fϕ(x, h) := f
(
x, h+ ϕDN ,D̃NbxNc

)
. (4.19)

Next consider the coupling of ϕDN ,D̃N and ΦD,D̃ from Lemma 4.4 where we may

and will assume ΦD,D̃ ⊥⊥ ηD̃N . Our aim is to replace fϕ by

fΦ(x, h) := f
(
x, h+ ΦD,D̃(x)

)
(4.20)
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in (4.18). Given ε > 0 let δ > 0 be such that for all x ∈ D̃ and all h, h′ ∈ [−b, b]
with |h− h′| < δ we have |f(x, h)− f(x, h′)| < ε. Then, on the event{

sup
x∈K
|ΦD,D̃(x)| ≤M

}
∩
{

sup
x∈K
|ϕDN ,D̃NbxNc − ΦD,D̃(x)| < δ

}
, (4.21)

we get ∣∣〈ηD̃N , fϕ〉 − 〈ηD̃N , fΦ〉∣∣ ≤ ηD̃N(D̃ × [−b−M − δ,∞)
)
ε. (4.22)

By Lemmas 3.6 and 4.4, the probability of the event in (4.21) tends to one while
the right-hand side of (4.22) tends to zero in probability as N → ∞ followed

by ε ↓ 0 and M → ∞. Any simultaneous subsequential limits ηD, resp., ηD̃ of

{ηDN : N ≥ 1}, resp., {ηD̃N : N ≥ 1} therefore obey

〈ηD, f〉 law
= 〈ηD̃, fΦ〉 , (4.23)

where ΦD,D̃ (implicitly contained in fΦ) is independent of ηD̃.
The representation from Proposition 3.13 now permits us to write∫

D×R
ZDλ (dx)⊗ dh e−αλh f(x, h) = 〈ηD, f〉 law

= 〈ηD̃, fΦ〉

=

∫
D×R

ZD̃λ (dx)⊗ dh e−αλh f
(
x, h+ ΦD,D̃(x)

)
=

∫
D×R

ZD̃λ (dx)⊗ dh eαλΦ
D,D̃(x) e−αλh f(x, h).

(4.24)

As noted at the beginning of the proof, this implies the claim. ut

4.3 Representation via Gaussian multiplicative chaos

We will now show that the above properties determine the laws of {ZDλ : D ∈ D0}
uniquely. To this end we restrict our attention to dyadic open squares, i.e., those
of the form

2−nz + (0, 2−n)2 for z ∈ Z2 and n ≥ 0. (4.25)

For a fixed m ∈ Z, set S := (0, 2−m)2 and let {Sn,i : i = 1, . . . , 4n} be an enumer-
ation of the dyadic squares of side 2−(n+m) that have a non-empty intersection
with S. (See Fig. 6 for an illustration of this setting.) Recall that we assumed
that D0 contains all these squares which makes ZDλ defined on all of them.

Abbreviating

S̃n :=

4n⋃
i=1

Sn,i (4.26)

the Gibbs-Markov decomposition (4.16) gives

ZSλ (dx)
law
=

4n∑
i=1

eαλΦ
S,S̃n (x) Z

Sn,i
λ (dx), (4.27)
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where the measures {ZSn,iλ : i = 1, . . . , 4n} and the binding field ΦS,S̃
n

on the
right-hand side are regarded as independent. The expression (4.27) links Zλ-
measure in one set in terms of Zλ-measures in a scaled version thereof. This
suggests we think of (4.27) as a fixed point of a smoothing transformation; cf
e.g., Durrett and Liggett [69]. Such fixed points are found by studying the variant
of the fixed point equation where the object of interest on the right is replaced
by its expectation. This leads to the consideration of the measure

Y Sn (dx) := ĉ

4n∑
i=1

1Sn,i(x) eαλΦ
S,S̃n (x) rS̃n(x)2λ2

dx. (4.28)

where ĉ is as in (3.60). Indeed, in light of the fact that

rS̃n(x) = rSn,i(x) for x ∈ Sn,i (4.29)

we have
Y Sn (A) = E

[
ZSλ (A)

∣∣σ(ΦS,S̃
n

)
]

(4.30)

for any Borel A ⊂ C. The next point to observe is that these measures can be
interpreted in terms of Gaussian multiplicative chaos (see Lemma 2.17):

Lemma 4.10. There is a random measure Y S∞ such that for all Borel A ⊂ C,

Y Sn (A)
law−→
n→∞

Y S∞(A). (4.31)

Proof. Denoting S̃0 := S, the nesting property of the binding field (Exercise 4.6)

allows us to represent {ΦS,S̃n : n ≥ 1} on the same probability space via

ΦS,S̃
n

:=

n−1∑
k=0

ΦS̃
k,S̃k+1

, (4.32)

where the fields {ΦS̃k,S̃k+1

: k ≥ 0} are independent with their corresponding
laws. In this representation, the measures Yn are defined all on the same proba-
bility space and so we can actually prove the stated convergence in almost-sure
sense. Indeed, (1.41), (4.2) and α2g = 4 imply

D̃ ⊆ D ⇒ rD̃(x)2λ2

= rD(x)2λ2

e
1
2α

2λ2Var[ΦD,D̃(x)], x ∈ D̃. (4.33)

This permits us to rewrite (4.28) as

Y Sn (dx) := ĉ rS(x)2λ2
4n∑
i=1

1Sn,i(x) eαλΦ
S,S̃n (x)− 1

2α
2λ2Var[ΦD,D̃(x)] dx (4.34)

and thus cast Y Sn in the form we encountered in the definition of the Gaussian
Multiplicative Chaos. Adapting the proof of Lemma 2.17 (or using it directly
with the help of Exercise 4.5), we get (4.31) any Borel A ⊂ C. ut

We now claim:
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Proposition 4.11 (Characterization of ZDλ measure). For any dyadic squa-
re S ⊂ C and any bounded and continuous function f : S → [0,∞), we have

E
(
e−〈Z

S
λ ,f〉

)
= E

(
e−〈Y

S
∞,f〉

)
. (4.35)

In particular,

ZSλ (dx)
law
= Y S∞(dx). (4.36)

Proof of “≥” in (4.35). Writing ZSλ via (4.27) and invoking conditional expec-

tation given ΦS,S̃
n

with the help of (4.30), the conditional Jensen inequality
shows

E
(
e−〈Z

S
λ ,f〉

)
= E

(
E
(
e−〈Z

S
λ ,f〉

∣∣σ(ΦS,S̃
n

)
))

≥ E
(
e−E[〈ZSλ ,f〉 |σ(ΦS,S̃

n
]
)

= E
(
e−〈Y

S
n ,f〉

) (4.37)

for any continuous f : S → [0,∞). The convergence in Lemma 4.10 implies

E(e−〈Y
S
n ,f〉) −→

n→∞
E(e−〈Y

S
∞,f〉) (4.38)

and so we get “≥” in (4.35). ut
For the proof of the opposite inequality in (4.35) we first note:

Lemma 4.12 (Reversed Jensen’s inequality). If X1, . . . , Xn are indepen-
dent non-negative random variables, then for each ε > 0,

E

(
exp
{
−

n∑
i=1

Xi

})
≤ exp

{
−e−ε

n∑
i=1

E(Xi ; Xi ≤ ε)
}
. (4.39)

Proof. In light of assumed independence, it suffices to prove this for n = 1. This

is checked by bounding E(e−X) ≤ E(e−X̃), where X̃ := X1{X≤ε}, writing

− logE(e−X̃) =

∫ 1

0

ds
E(X̃e−sX̃)

E(e−sX̃)
(4.40)

and invoking E(X̃e−sX̃) ≥ e−εE(X̃) and E(e−sX̃) ≤ 1. ut
We are now ready to give:

Proof of “≤” in (4.35). Pick n large and assume ZSλ is again represented via
(4.27). We first invoke an additional truncation: Given δ > 0, let Sδn,i be the

translate of (δ2−(n−m), (1−δ)2−(n−m)) centered at the same point as Sn,i. Denote

S̃nδ :=

4n⋃
i=1

Sδn,i and fn,δ(x) := f(x)1S̃nδ
(x). (4.41)

Denoting also

Xi :=

∫
Sn,i

fn,δ(x) eαλΦ
S,S̃n

Z
Sn,i
λ (dx) (4.42)
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from f ≥ fn,δ we then have

E
(
e−〈Z

S
λ ,f〉

)
≤ E

(
e−〈Z

S
λ ,fn,δ〉

)
= E

(
exp
{
−

n∑
i=1

Xi

})
. (4.43)

Conditioning on ΦS,S̃
n

, the bound (4.39) yields

E
(
e−〈Z

S
λ ,f〉

)
≤ E

(
exp
{
−e−ε

4n∑
i=1

E
(
Xi1{Xi≤ε}

∣∣σ(ΦS,S̃
n

)
)})

. (4.44)

Since (4.30) shows

4n∑
i=1

E
(
Xi

∣∣σ(ΦS,S̃
n

)
)
= 〈Y Sn , fn,δ〉 , (4.45)

we will also need:

Lemma 4.13. Assume λ ∈ (0, 1/
√

2). Then for each ε > 0,

lim
n→∞

4n∑
i=1

E
(
Xi; Xi > ε

)
= 0 . (4.46)

Postponing the proof until after that of Proposition 4.11, from (4.44) and (4.46)
we now get

E
(
e−〈Z

S
λ ,f〉

)
≤ lim sup

n→∞
E(e−e−ε〈Y Sn ,fn,δ〉) . (4.47)

But

〈Y Sn , fn,δ〉 ≥ 〈Y Sn , f〉 − ‖f‖Y Sn (S r S̃nδ ) (4.48)

and so

E(e−e−ε〈Y Sn ,fn,δ〉) ≤ eε‖f‖E(e−e−ε〈Y Sn ,f〉) + P
(
Y Sn (S r S̃nδ ) > ε

)
. (4.49)

A calculation based on (4.34) shows

P
(
Y Sn (S r S̃nδ ) > ε

)
≤ cε−1Leb(S r S̃nδ ) ≤ c′ε−1δ. (4.50)

Invoking also (4.31) we get

E
(
e−〈Z

S
λ ,f〉

)
≤ lim

ε↓0
lim sup
δ↓0

lim sup
n→∞

E(e−e−ε〈Y Sn ,fn,δ〉) ≤ E(e−〈Y
S
∞,f〉). (4.51)

This completes the proof of (4.35); (4.36) then directly follows. ut
It remains to give:
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Proof of Lemma 4.13. First we note

4n∑
i=1

E
(
Xi; Xi > ε

)
≤ 1

ε

4n∑
i=1

E(X2
i )

≤ ‖f‖
2

ε

4n∑
i=1

E

(∫
Sδn,i×Sδn,i

E
(
eαλ[ΦS,S̃

n
(x)+ΦS,S̃

n
(y)]
)
Z
Sn,i
λ (dx)Z

Sn,i
λ (dy)

)
.

(4.52)
Denote L := 2n. In light of the fact that, for some constant c independent of n,

Var(ΦS,S̃
n

(x)) = g log
rS(x)

rSn,i(x)
≤ g log(L) + c (4.53)

holds uniformly in x ∈ S̃nδ , (4.52) is bounded by ‖f‖2/ε2 times

c′e4 1
2α

2λ2g log(L)
4n∑
i=1

E
[
Z
Sn,i
λ (Sn,i)

2
]

≤ c′′L8λ2+2−(4+4λ2) = c′′L−2(1−2λ2), (4.54)

where we also used α2g = 4, invoked (3.62) and noted that there are L2 terms
in the sum. In light of λ < 1/

√
2, this tends to zero as L→∞. ut

4.4 Finishing touches

We are now ready to combine the above observations to get the main conclusion
about the existence of the limit of processes {ηDN : N ≥ 1}:
Proof of Theorem 2.7 for λ < 1/

√
2. Pick D ∈ D and assume, as discussed

before, that D0 used above contains D. For any subsequence of N ’s for which
the limit of the measures in question exists for all domains in D0 we then have
the representation (3.47) as well as the properties stated in Exercise 4.8 and
Proposition 4.9. We just have to show that the limit measure ZDλ is determined
by these properties and the observation from Proposition 4.11. This will also
prove the existence of the limit of {ηDN : N ≥ 1}.

By Exercise 4.8(1,2) it suffices to show that the law of 〈ZDλ , f〉 is determined
for any continuous f : D×R→ R with compact support. Let Dn be the union of
all the open dyadic squares of side 2−n entirely contained in D. Letting n be so
large that supp(f) ⊆ Dn× [−n, n] and denoting D̃n := Dr∂Dn, Proposition 4.9
and Exercise 4.8(3) then imply

〈ZDλ , f〉
law
=
〈
ZD

n

λ , eαλΦ
D,D̃n

f
〉

with ZD
n

λ ⊥⊥ ΦD,D̃
n

. (4.55)

It follows that the law of the left-hand side is determined once the law of ZD
n

λ

is determined. But part (3) of Exercise 4.8 also shows (as in (4.27)) that the
measure ZD

n

λ is the exponential of the continuum binding field times the sum of
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independent copies of ZSλ for S ranging over the dyadic squares constituting Dn.
The laws of these ZSλ are determined uniquely by Proposition 4.11 and hence so
are those of ZD

n

λ and ZDλ as well. ut
Concerning the proof of conformal invariance and full characterization by the

LQG measure, we will need the following result:

Theorem 4.14 (Uniqueness of the GMC/LQG measure). The law of the
Gaussian Multiplicative Chaos measure µD,β∞ does not depend on the choice of
the orthonormal basis in H1

0(D) that was used to define it (see Lemma 2.17).

We will not prove this theorem in these notes as that would take us on a
tangent that we do not wish to follow. We remark that the result has a rather
neat proof due to Shamov [113] which is made possible by his ingenious charac-
terization of the GMC measures using Cameron-Martin shifts. An earlier work
of Kahane [81] required uniform convergence of the covariances of the approxi-
mating fields; we state and prove this version in Theorem 5.5. This version also
suffices to establish a conformal transformation rule for the limit (cf Exercise 5.7).

Equipped with the uniqueness claim in Theorem 4.14, let us now annotate
the steps that identify ZDλ with the LQG-measure ĉrD(x)2λ2

µD,λα∞ (dx). Let us
start with a unit square S. For each k ≥ 0, let {Sk,i : i = 1, . . . , n(k)} be the
collection of open dyadic squares of side 2−k that are entirely contained in S.
Denote

Dk :=

n(k)⋃
j=1

Sk,j , k ≥ 0, (4.56)

with D−1 := S and observe that Dk ⊂ Dk−1 for each k ≥ 0. Observe that ∂Dk

is a collection of horizontal and vertical lines. Note also that ∂Dk−1 ⊂ ∂Dk.

Exercise 4.15. For each k ≥ 0, let Hk denote the subspace of functions in H1
0(S)

that are harmonic in Dk and vanish on ∂Dk−1. Prove that

H1
0(S) =

∞⊕
k=0

Hk . (4.57)

Next, for each k ≥ 1, let {f̃k,j : j ≥ 1} be an orthonormal basis in Hk with
respect to the Dirichlet inner product. Then show:

Exercise 4.16. Prove that, for {Xk,j : k, j ≥ 1} i.i.d. standard normals,

ΦD
k−1,Dk law

=
∑
j≥1

Xk,j f̃k,j on Dk (4.58)

holds for all k ≥ 1 with the sums converging locally uniformly in Dk, a.s. Con-
clude that for all m ≥ 1,

ΦD,D
m law

=

m∑
k=1

∑
j≥1

Xk,j f̃k,j on Dm . (4.59)

Hint: Define the Xk,j’s by suitable inner products and check the covariances.



56 Marek Biskup

From here and Theorem 4.14 we now infer the following:

Exercise 4.17. Using suitable test functions, and a convenient enumeration of
the above orthogonal basis in H1

0(S), show that

ZSλ (dx)
law
= Y S∞(dx)

law
= ĉ rS(x)2λ2

µS,λα∞ (dx). (4.60)

Hint: Use either the argument based on Jensen’s inequality from the previous
section or invoke Kahane’s convexity inequality from Proposition 5.6.

The point here is that although the right-hand side (4.58) casts the binding field
from D to Dm in the form akin to (2.41), the sum over j is infinite. One thus
has to see that a suitable truncation to a finite sum will do as well.

Exercise 4.17 identifies ZDλ with the LQG measure for D a dyadic square. To
extend this to general domains, which can be reduced to dyadic squares using
the Gibbs-Markov property, we also need to solve:

Exercise 4.18 (Gibbs-Markov for LQG measure). Suppose that domains

D̃ ⊂ D obey Leb(D r D̃) = 0. Use (4.33) to prove that, for all β ∈ (0, α),

rD(x)2(β/α)2µD,β∞ (dx)
law
= eβΦ

D,D̃(x) rD̃(x)2(β/α)2µD̃,β∞ (dx) , (4.61)

where ΦD,D̃ and µD̃,β∞ are regarded as independent.

We remark that, in the regime λ < 1/
√

2, formula (4.61) would be enough to
complete (4.60); indeed, our Proposition 4.11 only required the Gibbs-Markov
property, the expectation formula (3.61) and the bounds on the second moment
in (3.62–3.63), which are known to hold for the LQG measure as well. However,
this does not apply in the complementary regime of λ’s where we use a truncation
on the underlying field that is hard to interpret in the language of the above
random measures.

Once we identify the limit measure with the LQG-measure — and accept
Theorem 4.14 without proof — the proof of the conformal transformation rule
in Theorem 2.14 is quite easy. A key point is to solve:

Exercise 4.19 (Conformal transform of GMC measure). Let f : D 7→
f(D) be a conformal map between bounded and open domains in C. Show that
if {gn : n ≥ 1} is an orthonormal basis in H1

0(D) with respect to the Dirich-
let inner product, then {gn ◦ f−1 : n ≥ 1} is similarly an orthonormal basis
in H1

0(f(D)). Prove that this implies

µf(D),β
∞ ◦ f(dx)

law
=
∣∣f ′(x)

∣∣2µD,β∞ (dx). (4.62)

To get the proof of Theorem 2.14, one then needs to observe:

Exercise 4.20. For any conformal bijection f : D → f(D),

rf(D)

(
f(x)

)
=
∣∣f ′(x)

∣∣ rD(x), x ∈ D. (4.63)
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Fig. 9. An illustration of the collection of sets ∆k(x) above. The domain DN
corresponds to the region marked by the outer curve.

We reiterate that a proof of conformal invariance avoiding the full strength of
Theorem 4.14 will be posed as Exercise 5.7.

4.5 Dealing with truncations

The above completes the proof of our results in the regime where second-moment
calculations can be applied without truncations. To get some feeling for what
happens in the the complementary regime, 1/

√
2 ≤ λ < 1, let us at least intro-

duce the basic definitions and annotate the relevant steps.

Denote Λr(x) := {y ∈ Zd : dist∞(x, y) ≤ r}. Given a discretized version DN

of a continuum domain D, for each x ∈ DN define

∆k(x) :=


∅ for k = 0 ,

Λek(x) for k = 1, . . . , n(x)− 1 ,

DN for k = n(x) ,

(4.64)

where n(x) := max{n ≥ 0: Λen+1(x) ⊆ DN}. See Fig. 9 for an illustration.
Using the definition of ϕDN ,∆

k

(x) as a conditional expectation of hDN , we
now define the truncation event

TN,M (x) :=

n(x)⋂
k=kN

{∣∣∣ϕDN ,∆kx − aN
n(x)− k
n(x)

∣∣∣ ≤M[n(x)− k
]3/4}

, (4.65)

where M is a parameter and kN := 1
8 log(KN ) ≈ 1

4 (1 − λ2) logN . Next we
introduce the truncated point measure

η̂D,MN :=
1

KN

∑
x∈DN

1TN,M (x) δx/N ⊗ δhDNx −aN
. (4.66)
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The following elementary inequality will be quite useful:

ηDN ≥ η̂
D,M
N , M ∈ (0,∞). (4.67)

Indeed, the tightness of {η̂DN : N ≥ 1} is thus inherited from {ηDN : N ≥ 1} and,
as can be shown, the limit points of the former increase to those of the latter
as M →∞. The requisite (now really ugly) second moment calculations are then
performed which yield the following conclusions for all M <∞ and all λ ∈ (0, 1):

(1) Defining Γ̂D,MN (b) := {x ∈ DN : hDNx ≥ aN + b, TN,M (x) occurs}, we have

sup
N≥1

1

K2
N

E
(
|Γ̂D,MN (b)|2

)
<∞. (4.68)

By a second-moment argument, the limits of {η̂D,MN : N ≥ 1} are non-trivial.
(2) The factorization property proved in Proposition 3.13 applies to limit points

of {η̂D,MN : N ≥ 1} with ZDλ replaced by some ẐD,Mλ instead.

The property (4.67) now implies that M 7→ ẐD,Mλ is pointwise increasing and
so we may define

ZDλ (·) := lim
M→∞

ẐD,Mλ (·). (4.69)

We then check that this measure has the properties in Exercise 4.8 as well as
the Gibbs-Markov property from Proposition 4.9. However, although the limit
in (4.69) exists in L1 for all λ ∈ (0, 1), it does not exist in L2 for λ ≥ 1/

√
2 —

because, e.g., by Fatou’s Lemma, the limit LQG measure would then be in L2 as
well which is known to be false — and so we have to keep using ẐD,Mλ whenever
estimates involving second moments are needed.

This comes up only in one proof: “≤” in (4.35). There we use the inequality

ZDλ (·) ≥ ẐD,Mλ (·) and the fact that ZDλ satisfies the Gibbs-Markov property to
dominate ZDλ (·) from below by the measure

Z̃Sλ (dx) :=

4n∑
i=1

eαλΦ
S,S̃n

Ẑ
Sn,i,M
λ (dx). (4.70)

Then we perform the calculation after (4.27) with this measure instead of ZSλ
modulo one change: In the proof of Lemma 4.13 we truncate to the event

sup
x∈S̃nδ

ΦS,S̃
n

(x) < 2
√
g log(2n) + c

√
log(2n) , (4.71)

which has probability very close to one. On this event, writing again L := 2n,
the sum on the right-hand side of (4.52) is thus bounded by

c′e2
√
gαλ log(L)+c

√
log(L) e

1
2α

2λ2g log(L)L2L−2(2+2λ2). (4.72)

Using the definition of α, this becomes L−2(1−λ)2+o(1) which vanishes as n→∞
for all λ ∈ (0, 1). The rest of the proof is then more or less the same.
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The full proof of Theorem 2.7 is carried out in [28] to which we refer the
reader for further details.

Lecture 5

Gaussian comparison inequalities

In our discussion we have so far managed to get by using only elementary facts
about Gaussian processes. The forthcoming derivations will require more sophis-
ticated techniques and so it is time we addressed them properly. In this lecture
we focus on Gaussian comparison inequalities, starting with Kahane’s inequality
and its corollaries called the Slepian Lemma and the Sudakov-Fernique inequal-
ity. We give an application of Kahane’s inequality to uniqueness of the Gaussian
Multiplicative Chaos, a subject touched upon before. In the last section, we
will review the concepts of stochastic domination and the FKG inequality. The
presentation draws on Adler [5], Adler and Taylor [6] and Liggett [87].

5.1 Kahane’s inequality

Let us first make a short note on terminology: We say that a (multivariate)
Gaussian X = (X1, . . . , Xn) is centered if E(Xi) = 0 for all i = 1, . . . , n. A
function f : Rn → R is said to have a subgaussian growth if for each ε > 0 there
is C > 0 such that |f(x)| ≤ Ceε|x|

2

holds for all x ∈ Rn.

In his development of the theory of Gaussian Multiplicative Chaos, Kahane
made convenient use of inequalities that, generally, give comparison estimates
of expectation of functions (usually convex in appropriate sense) of Gaussian
random variables whose covariances can be compared in a pointwise sense. One
version of this inequality is as follows:

Proposition 5.1 (Kahane inequality). Let X,Y be centered Gaussian vec-
tors on Rn and f ∈ C2(Rn) a function whose second derivatives have a subgaus-
sian growth. Assume

∀i, j = 1, . . . , n :


E(YiYj) > E(XiXj) ⇒ ∂f

∂xi∂xj
(x) ≥ 0, x ∈ Rn

E(YiYj) < E(XiXj) ⇒ ∂f

∂xi∂xj
(x) ≤ 0, x ∈ Rn

(5.1)
Then

Ef(Y ) ≥ Ef(X). (5.2)

Note also that for pairs i, j such that E(YiYj) = E(XiXj) the sign of ∂f
∂xixj

is

not constrained. For the proof we will need the following standard fact:
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Lemma 5.2 (Gaussian integration by parts). Let X be a centered Gaussian
vector on Rn and suppose f ∈ C1(Rn) is such that f,∇f have subgaussian
growth. Then for each i = 1, . . . , n,

Cov
(
f(X), Xi

)
=

n∑
j=1

Cov(Xi, Xj)E
( ∂f
∂xj

(X)
)
. (5.3)

Exercise 5.3. Prove Lemma 5.2. Hint: The proof is an actual integration by
parts for X one-dimensional. For the general case use the positive definiteness
of the covariance to find an n × n matrix A such that X = AZ for Z i.i.d.
N (0, 1). Then apply the one-dimensional results to each coordinate of Z.

Gaussian integration can also be proved by approximating f by polynomials
and invoking the following identity:

Exercise 5.4 (Wick pairing formula). Let (X1, . . . , X2n) be a centered mul-
tivariate Gaussian (with some variables possibly repeating). Show that

E(X1 . . . X2n) =
∑

π : pairing

n∏
i=1

Cov
(
Xπ1(i)Xπ2(i)

)
, (5.4)

where a “pairing” is a pair π = (π1, π2) of functions π1, π2 : {1, . . . , n} →
{1, . . . , 2n} such that

π1(i) < π2(i), i = 1, . . . , n, (5.5)

π1(1) < π1(2) · · · < π1(n) (5.6)

and

{1, . . . , 2n} =

n⋃
i=1

{
π1(i), π2(i)

}
. (5.7)

(Note that these force π1(1) = 1.)

The pairing formula plays an important role in computations involving Gaussian
fields; in fact, it is the basis of perturbative calculations of functionals of Gaussian
processes and their organization in terms of Feynman diagrams.

Proof of Proposition 5.1. Suppose that X and Y are realized on the same prob-
ability space so that X ⊥⊥ Y . Consider the Gaussian interpolation

Zt :=
√

1− t2X + tY, t ∈ [0, 1]. (5.8)

Then Z0 = X and Z1 = Y and so

Ef(Y )− Ef(X) =

∫ 1

0

d

dt
Ef(Zt) dt. (5.9)
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Using elementary calculus along with Lemma 5.2,

d

dt
Ef(Zt) =

n∑
i=1

E

(( −t√
1− t2

Xi + Yi

) ∂f
∂xi

(Zt)

)

= t

n∑
i,j=1

E

([
E(YiYj)− E(XiXj)

] ∂2f

∂xi∂xj
(Zt)

)
.

(5.10)

Based on our assumptions, the expression under the expectation is non-negative
for every realization of Zt. Using this in (5.9) yields the claim. ut

5.2 Kahane’s theory of Gaussian Multiplicative Chaos

We will find Theorem 5.1 useful later but Kahane’s specific interest in Gaussian
Multiplicative Chaos actually required a version that is not directly obtained
from the one above. Let us recall the setting more closely.

Let D ⊂ Rd be a bounded open set and let ν be a finite Borel measure on D.
Assume that C : D×D → R∪{∞} is a symmetric, positive semi-definite kernel
in L2(ν) which means that∫

D×D
ν(dx)⊗ ν(dy)C(x, y)f(y)f(x) ≥ 0 (5.11)

holds for every bounded measurable f : D → R. If C is finite everywhere, then
one can define a Gaussian process ϕ = N (0, C). Our interest is, however, in the
situation when C is allowed to diverge on the diagonal {(x, x) : x ∈ D} ⊂ D×D
which means that the Gaussian process exists only in a generalized sense — e.g.,
as a random distribution on a suitable space of test functions.

We will not try to specify the conditions on C that would make this setting
fully meaningful; instead, we will just assume that C can be written as

C(x, y) =

∞∑
k=1

Ck(x, y), x, y ∈ D, (5.12)

where Ck is a continuous (and thus finite) covariance kernel for each k and the
sum converges pointwise everywhere (including, possibly, to infinity when x = y).
We then consider the Gaussian processes

ϕk = N (0, Ck) with {ϕk : k ≥ 1} independent . (5.13)

Letting

Φn(x) :=

n∑
k=1

ϕk(x) (5.14)

we define

µn(dx) := eΦn(x)− 1
2 Var[Φn(x)]ν(dx). (5.15)
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Lemma 2.17 (or rather its proof) gives the existence of a random Borel mea-
sure µ∞ such that for each A ⊂ D Borel,

µn(A) −→
n→∞

µ∞(A) a.s. (5.16)

As the covariances Cov(Φn(x), Φn(y)) converge to C(x, y), we take µ∞ as our
interpretation of the measure

“ eΦ∞(x)− 1
2 Var[Φ∞(x)]ν(dx) ” (5.17)

for Φ∞ being the centered generalized Gaussian field with covariance C. A key
problem that Kahane had to deal with was the dependence of the limit measure
on the above construction, and the uniqueness of the law of µ∞ in general. This
is, at least partially, resolved in:

Theorem 5.5 (Kahane’s Uniqueness Theorem). For D ⊂ Rd bounded and

open, suppose there are covariance kernels Ck, C̃k : D ×D → R such that

(1) both Ck and C̃k is continuous and non-negative everywhere on D ×D,
(2) for each x, y ∈ D,

∞∑
k=1

Ck(x, y) =

∞∑
k=1

C̃k(x, y) (5.18)

with both sums possibly simultaneously infinite, and
(3) the fields ϕk = N (0, Ck) and ϕ̃k = N (0, C̃k), with {ϕk, ϕ̃k : k ≥ 1} all inde-

pendent of one-another, have versions with continuous paths for each k ≥ 1.

Define, via (5.14–5.16), the random measures µ∞ and µ̃∞ associated with these
fields. Then

µ∞(dx)
law
= µ̃∞(dx). (5.19)

In order to prove Theorem 5.5 we will need the following variation on Propo-
sition 5.1 which lies at the heart of Kahane’s theory:

Proposition 5.6 (Kahane’s convexity inequality). Let D ⊂ Rn be bounded

and open and let ν be a finite Borel measure on D. Let C, C̃ : D × D → R be
covariance kernels such that ϕ = N (0, C) and ϕ̃ = N (0, C̃) have continuous
paths a.s. If

C̃(x, y) ≥ C(x, y), x, y ∈ D, (5.20)

then for each convex f : [0,∞)→ R with at most polynomial growth at infinity,

E f
(∫

D

eϕ̃(x)− 1
2 Var[ϕ̃(x)]ν(dx)

)
≥ E f

(∫
D

eϕ(x)− 1
2 Var[ϕ(x)]ν(dx)

)
. (5.21)

Proof. By approximation we may assume that f ∈ C2(R) (still convex). By the
assumption of the continuity of the fields, it suffices to prove this for ν being
the sum of a finite number of point masses, ν =

∑n
i=1 piδxi where pi > 0. (The

general case then follows by the weak limit of such measures to ν.)
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Assume that the fields ϕ and ϕ̃ are realized on the same probability space so
that ϕ ⊥⊥ ϕ̃. Consider the interpolated field

ϕt(x) :=
√

1− t2 ϕ(x) + tϕ̃(x), t ∈ [0, 1]. (5.22)

Since ϕ0(x) = ϕ(x) and ϕ1(x) = ϕ̃(x), it suffices to show

d

dt
E f
( n∑
i=1

pie
ϕt(xi)− 1

2 Var[ϕt(xi)]
)
≥ 0 . (5.23)

For this we abbreviate Wt(x) := eϕt(x)− 1
2 Var[ϕt(x)] and use elementary calculus

to get

d

dt
E f
( n∑
i=1

piWt(xi)
)

=

n∑
i=1

piE

([
− t√

1− t2
ϕ(xi) + ϕ̃(xi)

+ tVar
(
ϕ(xi)

)
− tVar

(
ϕ̃(xi)

)]
Wt(xi)f

′(· · · )
)

(5.24)

Next we integrate by parts (cf Lemma 5.2) the terms involving ϕ(xi), which
results in the ϕ(xj)-derivative of Wt(xi) or f(· · · ). A similar process is applied to
the term ϕ̃(xi). A key point is that the contribution from differentiating Wt(xi)
exactly cancels that coming from the variances. Hence we get

d

dt
E f
( n∑
i=1

piWt(xi)
)

=

n∑
i,j=1

pipj
[
C̃(xi, xj)− C(xi, xj)

]
E
(
Wt(xi)Wt(xj)f

′′(· · · )
)
. (5.25)

As f ′′ ≥ 0 by assumption and Wt(x) ≥ 0 and pi, pj ≥ 0 by inspection, (5.20)
indeed implies (5.23). The claim follows by integration over t. ut

This permits us to give:

Proof of Theorem 5.5. The claim (5.19) will follow once we show∫
g(x)µ∞(dx)

law
=

∫
g(x)µ̃∞(dx) (5.26)

for any continuous function g : D → [0,∞) supported in a compact set A ⊂ D.

Let {Ck : k ≥ 1} and {C̃k : k ≥ 1} be the covariances in the statement. We now
invoke a reasoning underlying the proof of Dini’s Theorem: For each ε > 0 and
each n ∈ N, there is m ∈ N such that

n∑
k=1

C(x, y) < ε+

m∑
k=1

C̃(x, y), x, y ∈ A. (5.27)
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Indeed, fix n ∈ N and let Fm be the set of pairs (x, y) ∈ A × A where (5.27)
fails. Then Fm is closed (and thus compact) by the continuity of the covariances;
their non-negativity in turn shows that m 7→ Fm is decreasing with respect to
set inclusion. The equality (5.18) translates into

⋂
m≥1 Fm = ∅ and so, by Heine-

Borel, we must have Fm = ∅ for m large enough thus giving us (5.27).
Interpreting the ε term on the right-hand side of (5.27) as the variance of

the random variable Zε = N (0, ε) that is independent of ϕ̃, Proposition 5.6 with
the choice f(x) := e−λx for some λ ≥ 0 gives us

E
(
e−λ eZε−ε/2

∫
g dµ̃m

)
≥ E

(
e−λ

∫
g dµn

)
. (5.28)

Invoking the limit (5.16) and taking ε ↓ 0 afterwards yields

E
(
e−λ

∫
g dµ̃∞

)
≥ E

(
e−λ

∫
g dµ∞

)
. (5.29)

Swapping C and C̃ shows that equality holds in (5.29) and since this is true for
every λ ≥ 0, we get (5.26) as desired. ut

As far as the GMC associated with the two-dimensional Gaussian Free Field
is concerned, Theorem 5.5 shows that any decomposition of the continuum Green
function ĜD(x, y) into the sum of positive covariance kernels will yield, through
the construction in Lemma 2.17, the same limiting measure µD,β∞ . One example
of such a decomposition is that induced by the Gibbs-Markov property upon
reductions to a subdomain; this is the content of Exercises 4.15–4.17. Another
example is the white noise decomposition that will be explained in Section 10.5.

We remark that (as noted above) uniqueness of the GMC measure has now
been proved in a completely general setting by Shamov [113]. Still, Kahane’s ap-
proach is sufficient to prove conformal transformation rule for the ZDλ -measures
discussed earlier in these notes:

Exercise 5.7. Prove that {ZDλ : D ∈ D} obey the conformal transformation rule
stated in Theorem 2.14. Unlike Exercise 4.19, do not assume the full uniqueness
stated in Theorem 4.14.

5.3 Comparisons for the maximum

Our next task is to use Kahane’s inequality from Theorem 5.1 to provide com-
parisons between the maxima of two Gaussian vectors with point-wise ordered
covariances. We begin with a corollary to Theorem 5.1:

Corollary 5.8. Suppose that X and Y are centered Gaussians on Rn such that

E(X2
i ) = E(Y 2

i ), i = 1, . . . , n (5.30)

and
E(XiXj) ≤ E(YiYj), i, j = 1, . . . , n. (5.31)

Then for any t1, . . . , tn ∈ R,

P
(
Xi ≤ ti : i = 1, . . . , n

)
≤ P

(
Yi ≤ ti : i = 1, . . . , n

)
. (5.32)
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Proof. Consider any collection g1, . . . , gn : R→ R of non-negative bounded func-
tions that are smooth and non-increasing. Define

f(x1, . . . , xn) :=

n∏
i=1

gi(xi). (5.33)

Then ∂2f
∂xi∂xj

≥ 0 for each i 6= j. Hence, by Theorem 5.1, conditions (5.30–5.31)

imply Ef(Y ) ≥ Ef(X). The claim follows by letting gi decrease to 1(−∞,ti]. ut
From here we now immediately get:

Corollary 5.9 (Slepian’s lemma). Suppose X and Y are centered Gaussians
on Rn with

E(X2
i ) = E(Y 2

i ), i = 1, . . . , n (5.34)

and
E
(
(Xi −Xj)

2
)
≤ E

(
(Yi − Yj)2

)
, i, j = 1, . . . , n. (5.35)

Then for each t ∈ R,

P
(

max
i=1,...,n

Xi > t
)
≤ P

(
max

i=1,...,n
Yi > t

)
. (5.36)

Proof. Set t1 = · · · = tn := t in the previous corollary. ut
Slepian’s lemma (proved originally in [118]) has a nice verbal formulation

using the following concept: Given a Gaussian process {Xt : t ∈ T} on a set T ,

ρX(t, s) :=
√
E
(
(Xt −Xs)2

)
(5.37)

defines a pseudometric on T . Indeed, we pose:

Exercise 5.10. Verify that ρX is indeed a pseudo-metric on T .

Disregarding the prefix “pseudo”, we will call ρX the canonical, or intrinsic, met-
ric associated with Gaussian processes. Slepian’s lemma may then be verbalized
as follows: For two Gaussian processes with equal variances, the one with larger
intrinsic distances has a stochastically larger maximum.

The requirement of equal variances is often too much to ask for. One way to
compensate for an inequality there is by adding suitable independent Gaussians
to X and Y . However, it turns out that this inconvenience disappears altogether
if we contend ourselves with the comparison of expectations only (which is, by
way of integration, implied by (5.36)):

Proposition 5.11 (Sudakov-Fernique inequality). Suppose that X and Y
are centered Gaussians in Rn such that

E
(
(Xi −Xj)

2
)
≤ E

(
(Yi − Yj)2

)
, i, j = 1, . . . , n. (5.38)

Then
E
(

max
i=1,...,n

Xi

)
≤ E

(
max

i=1,...,n
Yi
)

(5.39)
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Proof. Consider the function

fβ(x1, . . . , xn) :=
1

β
log
( n∑
i=1

eβxi
)
. (5.40)

For readers familiar with statistical mechanics, fβ can be thought of as a free
energy. Hölder’s inequality implies that x 7→ fβ(x) is convex. In addition, we
also get

lim
β→∞

fβ(x) = max
i=1,...,n

xi. (5.41)

Using Dominated Convergence, it therefore suffices to show that

Efβ(X) ≤ Efβ(Y ), β ∈ (0,∞). (5.42)

The proof of this inequality will be based on a re-run of the proof of Kahane’s
inequality. Assuming again X ⊥⊥ Y and letting Zt :=

√
1− t2X + tY , differen-

tiation yields

d

dt
Efβ(Zt) = t

n∑
i,j=1

E
( [
E(YiYj)− E(XiXj)

] ∂2fβ
∂xi∂xj

(Zt)
)
. (5.43)

Now
∂fβ
∂xi

=
eβxi∑n
j=1 eβxj

=: pi(x) (5.44)

where pi ≥ 0 with
∑n
i=1 pi(x) = 1. For the second derivatives we get

∂2fβ
∂xi∂xj

= β
[
pi(x)δij − pi(x)pj(x)

]
. (5.45)

Plugging this on the right of (5.43) (and omitting the argument Zt of the second
derivative as well as the pi’s) we then observe

n∑
i,j=1

[
E(YiYj)− E(XiXj)

] ∂2fβ
∂xi∂xj

= β

n∑
i,j=1

[
E(YiYj)− E(XiXj)

][
piδij − pipj

]
= β

n∑
i,j=1

[
E(Y 2

i ) + E(X2
i )
]
pipj + β

n∑
i,j=1

[
E(YiYj)− E(XiXj)

]
pipj

=
1

2
β

n∑
i,j=1

[
E
(
(Yi − Yj)2

)
− E

(
(Xi −Xj)

2
)]
pipj ,

(5.46)
where we used that {pi : i = 1, . . . , n} are probabilities in the second line and
then symmetrized the first sum under the exchange of i for j to wrap the various
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parts into the expression in the third line. Invoking (5.38), this is non-negative
(pointwise) and so we get (5.42) by integration. The claim follows. ut

The Sudakov-Fernique inequality may be verbalized as follows: For two Gaus-
sian processes, the one with larger intrinsic distances has a larger expected max-
imum. Here are some other, rather elementary, facts related to the same setting:

Exercise 5.12. Show that, for any centered Gaussians X1, . . . , Xn,

E
(

max
i=1,...,n

Xi

)
≥ 0. (5.47)

Prove that equality occurs if and only if Xi = X1 for all i = 1, . . . , n a.s.

Exercise 5.13. Suppose that X, resp., Y are centered Gaussian vectors on Rn
with covariances C, resp., C̃. Show that if C̃ − C is positive semi-definite, then
(5.39) holds.

We will use the Sudakov-Fernique inequality a number of times in these notes.
Unfortunately, the comparison between the expected maxima is often insufficient
for the required level of precision; indeed, (5.39) only tells us that maxiXi is
not larger than a large multiple of Emaxi Yi with significant probability. In
Lemma 8.2, which is a kind of cross-breed between the Slepian Lemma and the
Sudakov-Fernique inequality, we will show how this can be boosted to control
the upper tail of maxiXi by that of maxi Yi, assuming that the latter maximum
is concentrated.

5.4 Stochastic domination and FKG inequality

Yet another set of convenient inequalities that we will use on occasion is related
to the (now) classical notions of stochastic domination. This topic has been
covered in the concurrent class by Hugo Duminil-Copin [64], but we will still
review its salient features for future (and independent) reference.

We have already invoked the following version of stochastic domination:
Given real-valued random variables X and Y , we say that X is stochastically
larger than Y or, equivalently, that X stochastically dominates Y if the cumula-
tive distribution function of Y exceeds that of X at all points, i.e.,

P (X ≤ t) ≤ P (Y ≤ t), t ∈ R. (5.48)

Although this may seem just a statement about the laws of these random vari-
ables, there is a way to realize the “domination” pointwise:

Exercise 5.14. Suppose that X stochastically dominates Y . Prove that there is
a coupling of these random variables (i.e., a realization of both of them on the
same probability space) such that P (Y ≤ X) = 1.

The complete order of the real line plays a crucial role here. A natural ques-
tion is what to do about random variables that take values in a set which admits
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only a (non-strict) partial order ; i.e., a reflexive, antisymmetric and transitive
binary relation 4. An instance of this is the product space RA where

x 4 y means that xi ≤ yi for every i ∈ A. (5.49)

In the more general context, we will rely on the following notion: A real-valued
function f is called increasing if x 4 y implies f(x) ≤ f(y). The same concept
applies for Cartesian products of arbitrary ordered spaces (not just R).

Definition 5.15 (Stochastic domination). We say that X stochastically dom-
inates Y , writing Y 4 X, if Ef(Y ) ≤ Ef(X) holds for every bounded measurable
increasing f .

It is an easy exercise to check that, for X and Y real valued and 4 be-
ing the usual order of the reals, this coincides with the definition given above.
Exercise 5.14 then turns into an instance of:

Theorem 5.16 (Strassen’s lemma). Suppose X and Y take values in a par-
tially-ordered compact metric space X such that {(x, y) : x 4 y} is closed in
X ×X . Then X stochastically dominates Y if and only if there is a coupling
of these random variables such that P (Y 4 X) = 1.

For a proof we refer to Liggett [87, Theorem 2.4]. Stochastic domination is
often interpreted as a property of probability measures; i.e., we write µ 4 ν if
the random variables X and Y with respective laws ν and µ obey Y 4 X.

Stochastic domination is closely related to the concept of positive correlations,
also known as positive association or (weak) FKG inequality. Let us call an
event A increasing if its indicator 1A is an increasing function, and decreasing
if 1A is a decreasing function. The following concept inherits its acronym from
the authors of Fortuin, Kasteleyn and Ginibre [72]:

Definition 5.17 (Positive correlations a.k.a. FKG inequality). A proba-
bility measure µ on a partially-order space is said to have positive correlations,
or satisfy the (weak) FKG inequality, if

µ(A ∩B) ≥ µ(A)µ(B) (5.50)

holds for any pair of increasing events A and B.

Positive correlations can be interpreted using the concept of stochastic dom-
ination as follows:

∀B increasing with µ(B) > 0: µ 4 µ(·|B). (5.51)

In other words, a probability measure has positive correlations if (and only if)
conditioning on an increasing event “increases” the measure.

As is readily checked, if (5.50) holds for pairs of increasing events then it
also holds for pairs of decreasing events, and that the opposite inequality applies
when one event is increasing and the other decreasing. A seemingly stronger,
albeit equivalent, formulation of positive correlations is via increasing functions:
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Exercise 5.18. Show that µ has positive correlations if and only if

Eµ( fg) ≥ Eµ(f)Eµ(g) (5.52)

holds true for any pair of increasing (or decreasing) functions f, g ∈ L2(µ). Hint:
Write every such f as a limit of linear combinations of increasing indicators.

That positive correlations and stochastic domination are related is seen from:

Exercise 5.19. Let µ and ν be probability measures on a partially-ordered space.
If µ and ν have positive correlations and µ 4 ν (or ν 4 µ), then their convex
combination tµ+ (1− t)ν has positive correlations for all t ∈ [0, 1].

To see how the above concepts are related, let us recall the situation of
independent random variables where these connections were observed first:

Lemma 5.20 (Harris’ inequality). For any set A, any product law on RA
(endowed with the product σ-algebra and the partial order (5.49)) has positive
correlations.

Proof. Let µ be a product law which (by the assumed product structure) we
may think of as the distribution of independent random variables {Xi : i ∈ A}.
We first prove (5.52) for f, g ∈ L2(µ) that depend only on one of these random

variables, say Xi. Let X̃i be an independent copy of Xi. If f, g are increasing,
then [

f(Xi)− f(X̃i)
][
g(Xi)− g(X̃i)

]
≥ 0. (5.53)

Taking expectation then yields (5.52).
Assuming (5.52) holds for f, g ∈ L2(µ) that depend on random variables

X1, . . . , Xk, we will now show that it holds for any f, g ∈ L2(µ) that depend
on X1, . . . , Xk+1. Denote

Fk := σ(X1, . . . , Xk), fk := E(f |Fk) and gk := E(g|Fk) (5.54)

and write µk for the regular conditional probability µ(·|Fk). Then (5.52) for the
one-dimensional case yields Eµk(fg) ≥ fkgk. Moreover, thanks to the product
structure and Fubini-Tonelli, fk, gk are both increasing. They are also functions
of X1, . . . , Xk only and so the induction assumption shows

Eµ(fg) = Eµ
(
Eµk(fg)

)
≥ Eµ

(
fkgk

)
≥ Eµ(fk)Eµ(gk) = Eµ(f)Eµ(g).

(5.55)

We conclude that (5.52) applies to all f, g ∈ L2(µ) depending only on a finite
number of coordinates.

Now take a general f ∈ L2(µ). By elementary measurability considerations, f
is a function of at most a countable (sub)collection {X1, X2, . . . } of the above
random variables; Levy’s Forward Theorem ensures Eµ(f |Fk) → f in L2(µ)
as k →∞. Since Eµ(f |Fk) is also increasing, (5.52) for any f, g ∈ L2(µ) follows
from the finite-dimensional case by usual approximation arguments. ut

The above proof actually showed more than (5.52); namely, that any product
law has the following property:
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Definition 5.21 (strong-FKG property). We say that a probability measure
on RA is strong-FKG if the conditional law given the values for any finite number
of coordinates has positive correlations.

We remark that the expression “positive correlations” is sometimes used in
the context when µ is a law of random variables {Xi : i ∈ I} and “positivity of
correlations” refers to Cov(Xi, Xj) ≥ 0 — namely, a special case of (5.52) with
f(x) := xi and g(x) := xj . This is the reason why the term “positive association”
is generally preferred to capture the full strength of (5.52). Notwithstanding, this
is all the same for Gaussian random variables:

Proposition 5.22 (strong-FKG for Gaussians). Suppose that µ is the law
of a Gaussian vector X on Rn. Then

µ is strong-FKG ⇔ Cov(Xi, Xj) ≥ 0, i, j = 1, . . . , n. (5.56)

Proof. To get ⇒ we just use the definition of (weak) FKG along with the fact
that f(X) := Xi is increasing. Moving to the ⇐ part, assume Cov(Xi, Xj) ≥ 0
for all i, j = 1, . . . , n. Conditioning a multivariate Gaussian on part of the
variables preserves the multivariate Gaussian structure as well as the covari-
ances. It thus suffices to prove that µ satisfies the weak FKG inequality for
which, by Exercise 5.18 and routine approximation arguments, it suffices to show
Cov(f(X), g(X)) ≥ 0 for any non-decreasing smooth functions f, g : Rn → R
with bounded gradients. This follows from an enhanced version of Gaussian in-
tegration by parts in Lemma 6.2 (to be proved soon) and the fact that the first
partial derivatives of f and g are non-negative. ut

We note that, since the DGFF covariance is given by the Green function
which is non-negative everywhere, Proposition 5.22 shows that the DGFF is a
strong-FKG process.

We close this lecture by noting that the above discussion of stochastic domi-
nation focused only on the topics that are needed for a full understanding of the
arguments carried out in these notes. The reader is referred to, e.g., Liggett [87]
or Grimmett [77] for a comprehensive treatment of this subject including its
(interesting) history.

Lecture 6

Concentration techniques

In this lecture we will establish bounds on the maximum of Gaussian random
variables that are not be based on comparisons but rather on the metric prop-
erties of the covariance kernel. The first result to be proved here is the Borell-
Tsirelson-Ibragimov-Sudakov inequality on the concentration of the maximum.
Any use of this inequality will inevitably entail estimates on the expected max-
imum which we do via the Fernique majorization technique. Once these are
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stated and proved, we will infer some standard but useful consequences concern-
ing boundedness and continuity of centered Gaussian processes. The presentation
draws on that in Ledoux [86], Adler [5] and Adler and Taylor [6].

6.1 Inheritance of Gaussian tails

Much of the present day probability hinges on the phenomenon of concentra-
tion of measure. For Gaussian random variables this is actually a very classical
subject. The following inequality will come up frequently in the sequel:

Theorem 6.1 (Borell-TIS inequality). Let X be a centered Gaussian on Rn
and set

σ2
X := max

i=1,...,n
E(X2

i ). (6.1)

Then for each t > 0,

P
(∣∣ max
i=1,...,n

Xi − E( max
i=1,...,n

Xi)
∣∣ > t

)
≤ 2e

− t2

2σ2
X . (6.2)

This result may be verbalized as: The maximum of Gaussian random variables
has a tail no heavier than the heaviest tail seen among these random variables.
Of course, the maximum is no longer centered (cf Exercise 5.12) and so any use
of this bound requires information on its expectation as well.

The original proof of Theorem 6.1 was given by Borell [32] using a Gaus-
sian isoperimetric inequality; the inequality was discovered independently in the
Eastern block by Tsirelson, Ibragimov and Sudakov [124]. We will instead pro-
ceed using analytic techniques based on hypercontractivity. The following lemma
offers a generalization of the formula on the Gaussian integration by parts:

Lemma 6.2. Let X be a Gaussian vector on Rn and let f, g ∈ C1(Rn) have
subgaussian growth. Then

Cov
(
f(X), g(X)

)
=

∫ 1

0

dt

n∑
i,j=1

Cov(Xi, Xj)E

(
∂f

∂xi
(X)

∂g

∂xj

(
tX +

√
1− t2 Y

))
, (6.3)

where Y
law
= X with Y ⊥⊥ X on the right-hand side.

Proof. Since (6.3) is an equality between bilinear expressions for two functions of
finitely-many variables, we may try to prove it by first checking it for a sufficiently
large class of functions (e.g., the exponentials x 7→ ek·x) and then using extension
arguments. We will instead rely on Gaussian integration by parts.

For X and Y as above and t ∈ [0, 1], abbreviate

Zt := tX +
√

1− t2 Y. (6.4)
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Approximation arguments permit us to assume g ∈ C2 along with all the second
partial derivatives having subgaussian growth. Then

Cov
(
f(X), g(X)

)
= E

(
f(X)

[
g(Z1)− g(Z0)

])
=

∫ 1

0

dt E
(
f(X)

d

dt
g(Zt)

)
=

∫ 1

0

dt

n∑
i=1

E

([
Xi −

t√
1− t2

Yi

]
f(X)

∂g

∂xi
(Zt)

)
.

(6.5)

The integration by parts (cf Lemma 5.2) will eliminate the square bracket and
yield two contributions: one from the derivative hitting f and the other from
the derivative hitting the partial derivative of g. The latter term equals the sum

over j of tCov(Xi, Xj)− tCov(Yi, Yj) times E[f(X) ∂2g
∂xi∂xj

(Zt)]. As Y
law
= X, this

term vanishes identically. The term where the derivative hits f produces the
integrand in (6.3). ut

As a side note, we notice that this implies:

Corollary 6.3 (Gaussian Poincaré inequality). For X1, . . . , Xn i.i.d. copies

of N (0, 1) and any f ∈ C1(Rn) with f,∇f ∈ L2(e−|x|
2/2dx),

Var
(
f(X)

)
≤ E

(
|∇f(X)|2

)
. (6.6)

Proof. Apply Cauchy-Schwarz on the right-hand side of (6.3) while noting also

that tX +
√

1− t2 Y law
= X. An alternative is to use Gaussian integration by

parts formula instead of (6.3). ut
Note that this bound is of dimension-less nature — meaning: with no n depen-

dence of the (implicit) constant on the right-hand side. This is quite in contrast
to the Poincaré inequality on Rd. (A generalization to non-i.i.d. Gaussian vectors
is straightfoward.)

Moving along with the proof of the Borell-TIS inequality, next we will prove:

Lemma 6.4 (Concentration for Lipschitz functions). Let X1, . . . , Xn be
i.i.d. copies of N (0, 1) and let f : Rn → R be Lipschitz in the sense that, for
some M ∈ (0,∞), ∣∣f(x)− f(y)

∣∣ ≤M |x− y|, x, y ∈ Rn, (6.7)

where | · | on the right-hand side is the Euclidean norm. Then for each t > 0,

P
(
f(X)− Ef(X) > t

)
≤ e−

t2

2M2 . (6.8)

Proof. By approximation we may assume that f ∈ C1 with ∇f having the
Euclidean norm at most M . By adding a suitable constant to f we may as-
sume Ef(X) = 0. The exponential Chebyshev inequality then shows

P
(
f(X)− Ef(X) > t

)
≤ e−λtE

(
eλf(X)

)
(6.9)
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for any λ ≥ 0 and so just we need to bound the expectation on the right.
Here we note that Lemma 6.2 with g(x) := eλf(x) and (6.7) imply

E
(
f(X)eλf(X)

)
=

∫ 1

0

dt λE
(
∇f(X) · ∇f(Zt)e

λf(Zt)
) λ≥0

≤ λM2E
(
eλf(X)

)
. (6.10)

The left-hand side is the derivative of the expectation on the right-hand side. It
follows that the function

h(λ) := E
(
eλf(X)

)
(6.11)

obeys the differential inequality

h′(λ) ≤ λM2h(λ), λ ≥ 0. (6.12)

As h(0) = 1, this is readily solved to give

E
(
eλf(X)

)
≤ e

1
2λ

2M2

. (6.13)

Inserting this into (6.9) and optimizing over λ ≥ 0 then yields the claim. ut
In order to prove the Borell-TIS inequality, we will also need:

Exercise 6.5. Denote f(x) := maxi=1,...,n xi. Prove that for any n×n-matrix A,∣∣f(Ax)− f(Ay)
∣∣ ≤√ max

i=1,...,n
(ATA)ii |x− y|, x, y ∈ Rn, (6.14)

with |x− y| denoting the Euclidean norm of x− y on the right-hand side.

Proof of Theorem 6.1. Let X be the centered Gaussian on Rn from the statement
and let C denote its covariance matrix. In light of the symmetry and positive
semi-definiteness of C, there is an n × n-matrix A such that C = ATA. If Z =
(Z1, . . . , Zn) are i.i.d. copies of N (0, 1), then

X
law
= AZ. (6.15)

Denoting f(x) := maxi=1,...,n xi, Exercise 6.5 shows that x 7→ f(Ax) is Lipschitz
with Lipschitz constant σX . The claim follows from (6.8) and a union bound. ut

For a future reference, note that using (6.15), Theorem 6.1 generalizes to all
functions that are Lipschitz with respect to the `∞-norm:

Corollary 6.6 (Gaussian concentration, a general case). Let f : Rn → R
be such that for some M > 0 and all x, y ∈ Rn,∣∣f(y)− f(x)

∣∣ ≤M max
i=1,...,n

|xi − yi|. (6.16)

Then for any centered Gaussian X on Rn with σX as in (6.1) and any t ≥ 0,

P
(
f(X)− Ef(X) > t

)
≤ e
− t2

2M2σ2
X . (6.17)
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Proof. Let A be the n×n matrix such that (6.15) holds. From (6.16) and (6.14)
we get ∣∣f(Ay)− f(Ax)

∣∣ ≤M max
i=1,...,n

∣∣(A(x− y))i
∣∣ ≤MσX |x− y| . (6.18)

Now apply Lemma 6.4. ut

6.2 Fernique majorization

As noted before, the Borell-TIS inequality is of little use unless we have a way
to control the expected maximum of a large collection of Gaussian random vari-
ables. Our next task is to introduce a method for this purpose. We will actually
do this for the supremum over a countable family of such variables as that
requires no additional effort. A principal notion here is that of the canonical
(pseudo) metric ρX associated via (5.37) with the Gaussian process {Xt : t ∈ T}
on any set T . Our principal result here is:

Theorem 6.7 (Fernique majorization). There is K ∈ (0,∞) such that the
following holds for any Gaussian process {Xt : t ∈ T} over a countable set T for
which (T, ρX) is totally bounded: For any probability measure µ on T , we have

E
(

sup
t∈T

Xt

)
≤ K sup

t∈T

∫ ∞
0

dr

√
log

1

µ(B(t, r))
, (6.19)

where B(t, r) := {s ∈ T : ρX(t, s) < r}.

A measure µ for which the integral in (6.19) converges is called a ma-
jorizing measure. Note that the integral exists because the integrand is non-
increasing and left-continuous. Also note that the domain of integration is ef-
fectively bounded because µ(B(t, r)) = 1 whenever r exceeds the ρX -diameter
of T , which is finite by the assumed total boundedness.

The above theorem takes its origin in Dudley’s work [62] whose main result
is the following theorem:

Theorem 6.8 (Dudley’s inequality). For the same setting as in the previous
theorem, there is a universal constant K ∈ (0,∞) such that

E
(

sup
t∈T

Xt

)
≤ K

∫ ∞
0

dr
√

logNX(r) , (6.20)

where NX(r) is the minimal number of ρX-balls of radius r that are needed to
cover T .

We will prove Dudley’s inequality by modifying a couple of last steps in the
proof of Fernique’s estimate. Dudley’s inequality is advantageous as it sometimes
easier to work with. To demonstrate its use we note that the setting of the
above theorems is so general that they fairly seamlessly connect boundedness of
Gaussian processes to sample-path continuity. Here is an exercise in this vain:
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Exercise 6.9. Apply Dudley’s inequality to the process Xt,s := Xt − Xs with
t, s ∈ T restricted by ρX(t, s) ≤ R to prove, for K ′ a universal constant,

E
(

sup
t,s∈T

ρX(t,s)≤R

|Xt −Xs|
)
≤ K ′

∫ R

0

dr
√

logNX(r) . (6.21)

Conclude that if r 7→
√

logNX(r) is integrable, then t 7→ Xt has a version with
(uniformly) ρX-continuous sample paths a.s.

If this exercise seems too hard at first, we suggest that the reader first reads
the proof of Theorem 6.14 and solves Exercise 6.15. To see (6.21) in action, it is
instructive to solve:

Exercise 6.10. Use Dudley’s inequality (6.21) to prove the existence of a ρX-
continuous version for the following Gaussian processes:

(1) the standard Brownian motion, i.e., a centered Gaussian process {Bt : t ∈
[0, 1]} with E(BtBs) = t ∧ s,

(2) the Brownian sheet, i.e., a centered Gaussian process {Wt : t ∈ [0, 1]d} with

E(WtWs) =

d∏
i=1

(ti ∧ si), (6.22)

(3) any centered Gaussian process {Xt : t ∈ [0, 1]} such that

E
(
[Xt −Xs]

2
)
≤ c[log(1/|t− s|)]−1−δ (6.23)

for some δ > 0 and c > 0 and |t− s| sufficiently small.

The continuity of these processes can as well be proved via the Komogorov-
Čenstov condition. Both techniques play small probability events against the
entropy arising from their total count. (Roughly speaking, this is why the log-
arithm of NX(r) appears; the square root arises from Gaussian tails.) Both
techniques offer an extension to the proof of uniform Hölder continuity.

Notwithstanding the above discussion, an advantage of Fernique’s bound over
Dudley’s inequality is that it allows optimizing over the probability measure µ.
This is in fact all one needs to get a sharp estimate. Indeed, a celebrated result
of Talagrand [122] shows that a choice of µ exists such that the corresponding
integral bounds the expectation from below modulo a universal multiplicative
constant. This is known to fail for Dudley’s inequality. The optimizing µ may
be thought of as the distribution of the point t where the maximum of Xt is
achieved, although this has not been made rigorous.

6.3 Proof of Fernique’s estimate

We will now give a proof of Fernique’s bound but before we get embroiled in
detail, let us outline the main idea. The basic strategy is simple: We identify
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an auxiliary centered Gaussian process {Yt : t ∈ T} whose intrinsic distance
function ρY dominates ρX . The Sudakov-Fernique inequality then bounds the
expected supremum of X by that of Y .

For the reduction to be useful, the Y -process must be constructed with a lot
of independence built in from the outset. This is achieved by a method called
chaining. First we organize the elements of T in a kind of tree structure by
defining, for each n ∈ N, a map πn : T → T whose image is a finite set such
that the ρX -distance between πn−1(t) and πn(t) tends to zero exponentially fast
with n→∞, uniformly in t. Assuming that π0(T ) is a singleton, π0(T ) = {t0},
the Borel-Cantelli estimate then allows us to write

Xt −Xt0 =

∞∑
n=1

[
Xπn(t) −Xπn−1(t)

]
, (6.24)

with the sum converging a.s. for each t ∈ T . We then define Y by replacing the
increments Xπn(t) − Xπn−1(t) by independent random variables with a similar
variance. The intrinsic distances for Y can be computed quite explicitly and
shown, thanks to careful choices in the definition of πn, to dominate those for X.
A computation then bounds the expected supremum of Yt by the integral in
(6.19). We will now begin with the actual proof:

Proof of Theorem 6.7. Assume the setting of the theorem and fix a probability
measure µ on T . The proof (whose presentation draws on Adler [5]) comes in
five steps.

STEP 1: Reduction to unit diameter. If D := diam(T ) vanishes, T is effectively
a singleton and the statement holds trivially. So we may assume D > 0. The
process X̃t := D−1/2Xt has a unit diameter. In light of ρX̃(s, t) = D−1/2ρX(s, t),

the ρX̃ -ball of radius r centered at t coincides with B(t,D−1/2r). Passing from X

to X̃ in (6.19), both sides scale by factor
√
D.

STEP 2: Construction of the tree structure. Next we will define the aforemen-
tioned maps πn subject to properties that will be needed later:

Lemma 6.11. For each n ∈ N there is πn : T → T such that

(1) πn(T ) is finite,
(2) for each t ∈ T , we have ρ(t, πn(t)) < 2−n,
(3) for each t ∈ T ,

µ
(
B(πn(t), 2−n−2)

)
≥ µ

(
B(t, 2−n−3)

)
, (6.25)

(4) the sets {B(t, 2−n−2) : t ∈ πn(T )} are (pairwise) disjoint.

Proof. Fix n ∈ N and, using the assumption of total boundedness, let t1, . . . , trn
be points such that

rn⋃
i=1

B(ti, 2
−n−3) = T. (6.26)
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Assume further that these points have been labeled so that

i 7→ µ
(
B(ti, 2

−n−2)
)

is non-increasing. (6.27)

We will now identify {C1, C2, . . . } ⊆ {∅} ∪ {B(ti, 2
−n−2) : i = 1, . . . , rn} by

progressively dropping balls that have a non-empty intersection with one of the
lesser index. Formally, we set

C1 := B(t1, 2
−n−2) (6.28)

and, assuming that C1, . . . , Ci have already been defined, let

Ci+1 :=


B(ti+1, 2

−n−2), if B(ti+1, 2
−n−2) ∩

i⋃
j=1

Cj = ∅,

∅, else.

(6.29)

Now we define πn as the composition of two maps described informally as follows:
Using the ordering induced by (6.27), first assign t to the point ti of smallest
index i such that t ∈ B(ti, 2

−n−3). Then assign this ti to the tj with the largest
j ∈ {1, . . . , i} such that B(ti, 2

−n−2) ∩ Cj 6= ∅. In summary,

i = i(t) := min
{
i = 1, . . . , rn : t ∈ B(ti, 2

−n−3)
}

j = j(t) := max
{
j = 1, . . . , i(t) : B(ti(t), 2

−n−2) ∩ Cj 6= ∅
}
,

(6.30)

where we notice that, by the construction of {Ck}, the set in the second line is
always non-empty. We then define

πn(t) := tj for j := j(t). (6.31)

This implies πn(T ) ⊆ {t1, . . . , trn} and so πn(T ) is indeed finite, proving (1).
For (2), using i and j for the given t as above, the construction gives

ρX(t, πn(t)) = ρX(t, tj)

≤ ρX(t, ti) + ρX(ti, tj)

≤ 2−n−3 + 2 2−n−2 < 2−n.

(6.32)

For (3) we note that

B(t, 2−n−3) ⊆ B(ti, 2
−n−2) (6.33)

and, by (6.27) and j ≤ i,

µ
(
B(ti, 2

−n−2)
)
≤ µ

(
B(tj , 2

−n−2)
)
. (6.34)

Finally, tj ∈ πn(T ) only if Cj 6= ∅ and, when that happens, Cj = B(tj , 2
−n−2).

The construction ensures that the Cj ’s are disjoint, thus proving (4). ut
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STEP 3: Auxiliary process. We are now ready to define the aforementioned
process {Yt : t ∈ T}. For this, consider a collection {Zn(t) : n ∈ N, t ∈ πn(T )} of
i.i.d. standard normals and set

Yt :=
∑
n≥1

2−nZn
(
πn(t)

)
. (6.35)

The sum converges absolutely a.s. for each t due to the fact that the maximum
of the first n terms in a sequence of i.i.d. standard normals grows at most like a
constant times

√
log n. We now state:

Lemma 6.12. For any t, s ∈ T ,

E
(
[Xt −Xs]

2
)
≤ 6E

(
[Yt − Ys]2

)
. (6.36)

In particular,
E
(
sup
t∈T

Xt

)
≤
√

6E
(
sup
t∈T

Yt
)
. (6.37)

Proof. We may assume ρX(t, s) > 0 as otherwise there is nothing to prove. Since
diam(T ) = 1, there is an integer N ≥ 1 such that 2−N < ρX(t, s) ≤ 2−N+1.
Lemma 6.11(2) and the triangle inequality then show πn(t) 6= πn(s) for all
n ≥ N + 1. This is quite relevant because the independence built into Yt yields

E
(
[Yt − Ys]2

)
=
∑
n≥1

2−2nE
([
Zn(πn(t))− Zn(πn(s))

]2)
(6.38)

and the expectation on the right vanishes unless πn(t) 6= πn(s). As that expec-
tation is either zero or 2, we get

E
(
[Yt − Ys]2

)
≥ 2

∑
n≥N+1

2−2n = 2
4−(N+1)

3/4
=

1

6
4−N+1 ≥ 1

6
E
(
[Xt −Xs]

2
)
,

(6.39)
where the last inequality follows from the definition of N . This is (6.36); the
second conclusion then follows from the Sudakov-Fernique inequality. ut

STEP 4: Majorizing E(supt∈T Yt). For the following argument it will be con-
venient to have a random variable τ , taking values in T , that identifies the
maximizer of t 7→ Yt. Such a random variable can certainly be defined when T
is finite. For T infinite, one has to work with approximate maximizers only. To
this end we pose:

Exercise 6.13. Suppose there is M ∈ (0,∞) such that E(Yτ ) ≤ M holds for
any T -valued random variable τ that is measurable with respect to σ(Yt : t ∈ T ).
Prove that then also E(supt∈T Yt) ≤M .

It thus suffices to estimate E(Yτ ) for any T -valued random variable τ . For
this we first partition the expectation according to the values of πn(τ) as

E(Yτ ) =
∑
n≥1

2−n
∑

t∈πn(T )

E
(
Zn(t)1{πn(τ)=t}

)
. (6.40)
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We now estimate the expectation on the right as follows: Set g(a) :=
√

2 log(1/a)
and note that, for Z = N (0, 1) and any a > 0,

E
(
Z1{Z>g(a)}

)
=

1√
2π

∫ ∞
g(a)

x e−
1
2x

2

dx =
1√
2π

e−
1
2 g(a)2 =

a√
2π
. (6.41)

Therefore,

E
(
Zn(t)1{πn(τ)=t}

)
≤ E

(
Zn(t)1{Zn(t)>g(a)}

)
+ g(a)P

(
πn(τ) = t

)
=

a√
2π

+ g(a)P
(
πn(τ) = t

)
.

(6.42)

Now set a := µ(B(t, 2−n−2)) and perform the sum over t and n. In the first term
we use the disjointness claim from Lemma 6.11(4) to get

1√
2π

∑
t∈πn(T )

µ(B(t, 2−n−2)) ≤ 1√
2π

(6.43)

while in the second term we invoke

g
(
µ(B(πn(t), 2−n−2))

)
≤ g
(
µ(B(τ, 2−n−3))

)
, (6.44)

as implied by Lemma 6.11(3), and the fact that g is non-increasing to get∑
n≥1

2−n
∑

t∈πn(T )

g
(
µ(B(t, 2−n−2))

)
P
(
πn(τ) = t

)
= E

[∑
n≥1

2−ng
(
µ(B(πn(τ), 2−n−2))

)]

≤ E
[∑
n≥1

2−ng
(
µ(B(τ, 2−n−3))

)]
≤ sup

t∈T

∑
n≥1

2−ng
(
µ(B(t, 2−n−3))

)
. (6.45)

Using the monotonicity of g,

2−ng
(
µ(B(t, 2−n−3))

)
≤ 16

∫ 2−n−3

2−n−4

g
(
µ(B(t, r))

)
dr, (6.46)

and so the last sum in (6.45) can now be dominated by 16-times the integral
in the statement of the theorem. Putting the contribution of both terms on the
right of (6.42) together, we thus conclude

E(Yτ ) ≤ 1√
2π

+ 16 sup
t∈T

∫ 1

0

g
(
µ(B(t, r))

)
dr. (6.47)

Exercise 6.13 now extends this to a bound on the expected supremum.



80 Marek Biskup

STEP 5: A final touch. In order to finish the proof, we need to show that the
term 1/

√
2π is dominated by, and can thus be absorbed into, the integral. Here we

use the fact that, since diam(T ) = 1, there is t ∈ T such that µ(B(t, 1/2)) ≤ 1/2.
The supremum on the right of (6.47) is then at least 1

2

√
2 log 2. The claim follows

with K := [ 1√
2π

2√
log 2

+ 16
√

2]
√

6. ut

The proof of Dudley’s inequality requires only minor adaptations:

Proof of Theorem 6.8. We follow the previous proof verbatim (while disregarding
all statements concerning µ) until (6.42) at which point we instead choose

a :=
1

NX(2−n−3)
. (6.48)

As the number of balls in (6.26) could be assumed minimal for the given radius,
we have |πn(T )| ≤ NX(2−n−3) and so the analogue of (6.43) applies. Hence,

E(Yτ ) ≤ 1√
2π

+
∑
n≥1

2−ng
(
1/NX(2−n−3)

)
. (6.49)

The sum is converted to the desired integral exactly as in (6.46). The additive
prefactor is absorbed by noting that NX(1/2) ≥ 2 because diam(X) = 1. ut

6.4 Consequences for continuity

As already alluded to after the statement of Dudley’s inequality, the generality
of the setting in which Fernique’s inequality was proved permits a rather easy
extension to a criterion for continuity. The relevant statement is as follows:

Theorem 6.14. There is a universal constant K ′ ∈ (0,∞) such that the follow-
ing holds for every Gaussian process {Xt : t ∈ T} on a countable set T such that
(T, ρX) is totally bounded: For any probability measure µ on T and any R > 0,

E
(

sup
t,s∈T

ρX(t,s)≤R

|Xt −Xs|
)
≤ K ′ sup

t∈T

∫ R

0

dr

√
log

1

µ(B(t, r))
. (6.50)

Proof. We will reduce this to Theorem 6.7 but that requires preparations. Let

U ⊆
{

(t, s) ∈ T × T : ρX(t, s) ≤ R
}

(6.51)

be a finite and symmetric set. Denote Ys,t := Xt −Xs and notice that

ρY
(
(s, t), (s′, t′)

)
:=
√
E
(
[Ys,t − Ys′,t′ ]2

)
(6.52)

obeys

ρY
(
(s, t), (s′, t′)

)
≤

{
ρ(s, s′) + ρ(t, t′),

ρ(s, t) + ρ(s′, t′).
(6.53)
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Writing BY for the balls (in T ×T ) in the ρY -metric and BX for the balls (in T )
in ρX -metric, the first line in (6.53) then implies

BY
(
(s, t), r

)
⊇ BX(s, r/2)×BX(t, r/2) (6.54)

while the second line shows diamρY (U) ≤ 2R. Now define f : T × T → U by

f(y) :=

{
y, if y ∈ U,
argminU ρY (y, ·), else,

(6.55)

where in the second line the minimizer exists because U is finite and, in case
of ties, is chosen minimal in some a priori complete ordering of U . Then f is
clearly measurable and so, given a probability measure µ on T

ν(A) := µ⊗ µ
(
f−1(A)

)
. (6.56)

defines a probability measure on U . Theorem 6.7 then yields

E
(

sup
(s,t)∈U

Ys,t

)
≤ K sup

(s,t)∈U

∫ 2R

0

√
log

1

ν(BY ((t, s), r))
dr . (6.57)

Our next task is to bring the integral on the right to the form in the statement.
First observe that if x ∈ U and y ∈ BY (x, r), then

ρY
(
x, f(y)

)
≤ ρY (x, y) + ρY

(
y, f(y)

) x∈U
≤ 2ρY (x, y) . (6.58)

Hence we get
BY (x, r) ⊆ f−1

(
BY (x, 2r)

)
, x ∈ U, (6.59)

and so, in light of (6.54),

ν
(
BY ((s, t), 2r)

)
= µ⊗ µ

(
f−1

(
BY ((s, t), 2r)

))
≥ µ⊗ µ

(
BY ((s, t), r)

)
≥ µ

(
BX(s, r/2)

)
µ
(
BX(t, r/2)

)
.

(6.60)

Plugging this in (6.57) and invoking
√
a+ b ≤

√
a +
√
b, elementary calculus

gives

E
(

sup
(s,t)∈U

Yt,s

)
≤ 4K sup

t∈T

∫ R

0

√
log

1

µ(BX(t, r))
dr . (6.61)

Increasing U to UR := {(s, t) ∈ T×T : ρX(s, t) ≤ R} and applying the Monotone
Convergence Theorem, the bound holds for U := UR as well. To connect this to
the expectation on the left of (6.50), the symmetry of ρX(t, s) and antisymmetry
of |Xt −Xs| under the exchange of t and s shows

E
(

sup
t,s∈T

ρX(t,s)≤R

|Xt −Xs|
)

= E
(

sup
(s,t)∈UR

Ys,t

)
. (6.62)
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The claim follows with K ′ := 4K, where K is as in Theorem 6.7. ut
Theorem 6.14 gives us means to prove continuity with respect to the intrinsic

metric. However, more often than not, T has its own private metric structure
and continuity is desired in the topology thereof. Here the following exercise —
a version of which we already asked for Dudley’s inequality (6.20) — helps:

Exercise 6.15. Suppose (T, ρ) is a metric space, {Xt : t ∈ T} a Gaussian pro-
cess and ρX the intrinsic metric on T induced thereby. Assume

(1) (T, ρ) is totally bounded, and
(2) s, t 7→ ρX(s, t) is uniformly ρ-continuous on T × T .

Prove that, if there is a probability measure µ on T such that

lim
R↓0

sup
t∈T

∫ R

0

√
log

1

µ(B(t, r))
dr = 0, (6.63)

then X admits (uniformly) ρ-continuous sample paths on T , a.s.

We note that condition (2) is necessary for sample path continuity, but defi-
nitely not sufficient. To see this, solve:

Exercise 6.16. Given a measure space (X ,F , ν) with ν finite, consider the
(centered) Gaussian white-noise process {W (A) : A ∈ F} defined by

E
(
W (A)W (B)

)
= ν(A ∩B). (6.64)

This corresponds to the intrinsic metric ρW (A,B) =
√
ν(A4B). Give a (sim-

ple) example of (X ,F , ν) for which A 7→ W (A) does not admit ρW -continuous
sample paths.

6.5 Binding field regularity

As our last item of concern in this lecture, we return to the problem of uniform
continuity of the binding field for the DGFF and its continuum counterpart. (We
used these in the proof of the coupling of the two processes in Lemma 4.4.) The
relevant bounds are stated in:

Lemma 6.17 (Binding field regularity). Let D̃,D ∈ D be such that D̃ ⊂ D
and Leb(D r D̃) = 0. For δ > 0, denote D̃δ := {x ∈ D : dist(x,Dc) > δ}. Then
for each ε, δ > 0,

lim
r↓0

P

(
sup

x,y∈D̃δ
|x−y|<r

∣∣ΦD,D̃(x)− ΦD,D̃(y)
∣∣ > ε

)
= 0. (6.65)

Similarly, given an admissible sequence {DN : N ≥ 1} of approximating domains

and denoting D̃δ
N := {x ∈ D̃N : dist(x, D̃c

N ) > δN}, for each ε, δ > 0,

lim
r↓0

lim sup
N→∞

P

(
sup

x,y∈D̃δN
|x−y|<rN

∣∣ϕDN ,D̃Nx − ϕDN ,D̃Ny

∣∣ > ε

)
= 0. (6.66)
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Proof of (6.65). Consider the set D̃δ
1 := {x ∈ C : dist(x, D̃δ) < δ/2}. The

intrinsic metric associated with {ΦD,D̃(x) : x ∈ D̃δ
1} is given by

ρΦ(x, y) =

√
CD,D̃(x, x) + CD,D̃(y, y)− 2CD,D̃(x, y). (6.67)

Since x 7→ CD,D̃(x, y) is harmonic on D̃, it is continuously differentiable and thus

uniformly Lipschitz on D̃δ
1. It follows that, for some constant L = L(δ) <∞,

ρΦ(x, y) ≤ L
√
|x− y|, x, y ∈ D̃δ

1. (6.68)

Let B(x, r) := {y ∈ C : |x− y| < r}, denote BΦ(x, r) := {y ∈ D̃δ
1 : ρΦ(x, y) < r}

and let µ be the normalized Lebesgue measure on D̃δ
1. Then

BΦ(x, L
√
r) ⊇ B(x, r), x ∈ D̃δ

1, (6.69)

while (by the choice of D̃δ
1),

µ
(
B(x, r)

)
≥ cr2, x ∈ D̃δ

1, (6.70)

for some c = c(δ) > 0. Combining these observations, we get

µ(BΦ(x, r)) ≥ cL−2r4. (6.71)

As r 7→ log(1/r4) is integrable at zero, (6.65) follows from Theorem 6.14, Exer-
cise 6.15 and Markov’s inequality. ut

The above argument could be improved a bit by noting that ρΦ is itself
Lipschitz although that does not change the main conclusion.

Exercise 6.18. Using an analogous argument with the normalized counting mea-
sure replacing the Lebesgue measure, prove (6.66).

Lecture 7

Connection to Branching Random Walk

In this lecture we return to the two-dimensional DGFF and study the behavior
of its absolute maximum beyond the leading order discussed in Lecture 2. We
begin by recounting the so-called Dekking-Host argument which yields, rather
effortlessly, tightness of the maximum (away from its expectation) along a subse-
quence. Going beyond this will require development of a connection to Branching
Random Walk and proving sharp concentration for the maximum thereof. These
will serve as the main ingredients for our proof of the tightness of the DGFF
maximum in Lecture 8.
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Fig. 10. The partition of box V2N (both kinds of bullets) into four translates
of VN for N := 8 and two lines of sites (empty bullets) in the middle. The set
V ◦2N is the collection of all fat bullets.

7.1 Dekking-Host argument for DGFF

In Lecture 2 we already noted that the maximum of the DGFF in a box of
side-length N ,

MN := max
x∈VN

hVNx , (7.1)

grows as MN ∼ 2
√
g logN in probability, with the same leading-order growth

rate for EMN . The natural follow-up questions are then:

(1) What is the growth rate of

EMN − 2
√
g logN (7.2)

with N ; i.e., what are the lower-order corrections?
(2) What is the size of the fluctuations, i.e., the growth rate of MN − EMN?

As observed by Bolthausen, Deuschel and Zeitouni [31] in 2011, an argument
that goes back to Dekking and Host [54] from 1991 shows that, for the DGFF,
these seemingly unrelated questions are tied closely together:

Lemma 7.1 (Dekking-Host argument). For MN as above and any N ≥ 2,

E
∣∣MN − EMN

∣∣ ≤ 2
(
EM2N − EMN

)
. (7.3)

Proof. We will use an idea underlying the solution of the second part of Exer-
cise 3.4. Note that the box V2N embeds four translates V (1)

N , . . . , V (4)

N of VN that
are separated by two lines of sites in-between; see Fig. 10. Denoting by V ◦2N the
union of the four translates of VN , the Gibbs-Markov property tells us that

hV2N := hV
◦
2N + ϕV2N ,V

◦
2N , with hV

◦
2N ⊥⊥ ϕV2N ,V

◦
2N , (7.4)
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has the law of the DGFF in V2N . Writing MN for the maximum of hVN , using X
to denote the (a.s.-unique) vertex where hV

◦
2N achieves its maximum on V ◦2N and

abbreviating

M (i)

N := max
x∈V (i)

N

h
V ◦2N
x , i = 1, . . . , 4, (7.5)

it follows that

EM2N = E
(

max
x∈V2N

(h
V ◦2N
x + ϕ

V2N ,V
◦
2N

x )
)

≥ E
(

max
x∈V ◦2N

h
V ◦2N
x + ϕ

V2N ,V
◦
2N

X

)
= E

(
max
x∈V ◦2N

h
V ◦2N
x

)
= E

(
max
i=1,...,4

M (i)

N

)
,

(7.6)

where we used that ϕV2N ,V
◦
2N is independent of hV

◦
2N and thus also of X to infer

that Eϕ
V2N ,V

◦
2N

X = 0. The portions of hV
◦
2N restricted to V (1)

N , . . . , V (4)

N are i.i.d.
copies of hVN and so {M (i)

N : i = 1, . . . , 4} are i.i.d. copies of MN . Dropping two
out of the four terms from the last maximum in (7.6) then yields

M ′N
law
= MN , M

′
N ⊥⊥MN ⇒ EM2N ≥ Emax{MN ,M

′
N} . (7.7)

Now use 2 max{a, b} = a+ b+ |a− b| to turn this into

E
∣∣MN −M ′N

∣∣ = 2Emax{MN ,M
′
N} − E(MN +M ′N )

≤ 2EM2N − 2EMN .
(7.8)

To get (7.3), we apply Jensen’s inequality to pass the expectation over M ′N inside
the absolute value. ut

From the growth rate of EMN we then readily conclude:

Corollary 7.2 (Tightness along a subsequence). There is a (deterministic)
sequence {Nk : k ≥ 1} of integers with Nk →∞ such that {MNk−EMNk : k ≥ 1}
is tight.

Proof. Denote an := EM2n . From (7.3) we know that {an} is non-decreasing. The
fact that EMN ≤ c logN (proved earlier by simple first-moment calculations)
reads as an ≤ c′n for c′ := c log 2. The increments of an increasing sequence with
at most a linear growth cannot tend to infinity, so there must be {nk : k ≥ 1}
such that nk → ∞ and ank+1 − ank ≤ 2c′. Setting Nk := 2nk , from Lemma 7.1
we get E|MNk −EMNk | ≤ 4c′. This gives tightness via Markov’s inequality. ut

Unfortunately, tightness along an (existential) subsequence seems to be all
one is able to infer from the leading-order asymptotic of EMN . If we hope to
get any better along this particular line of reasoning, we need to control the
asymptotic of EMN up to terms of order unity. This was achieved by Bramson
and Zeitouni [38] in 2012. Their main result reads:
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Theorem 7.3 (Tightness of DGFF maximum). Denote

mN := 2
√
g logN − 3

4

√
g log log(N ∨ e) . (7.9)

Then
sup
N≥1

E
∣∣MN −mN

∣∣ <∞. (7.10)

As a consequence, {MN −mN : N ≥ 1} is tight.

This and the next lecture will be spent on proving Theorem 7.3 using, however,
a different (and, in the lecturer’s view, easier) approach than that of [38].

7.2 Upper bound by Branching Random Walk

The Gibbs-Markov decomposition underlying the proof of Lemma 7.1 can be
iterated as follows: Consider a box VN := (0, N)2 ∩ Z2 of side N := 2n for some
large n ∈ N. As illustrated in Fig. 11, the square V2n then contains four translates
of V2n−1 separated by a “cross” of “lines of sites” in-between, and each of these
squares contains four translates of V2n−2 , etc. Letting V (i)

N , for i = 1, . . . , n− 1,
denote the union of the resulting 4i translates of V2n−i , and setting V (0)

N := VN
and V (n)

N := ∅, we can then write

hVN
law
= hV

(1)
N + ϕV

(0)
N ,V

(1)
N

law
= hV

(2)
N + ϕV

(0)
N ,V

(1)
N + ϕV

(1)
N ,V

(2)
N

...
. . .

. . .

law
= ϕV

(0)
N ,V

(1)
N + · · ·+ ϕV

(n−1)
N ,V

(n)
N ,

(7.11)

where V (n)

N := ∅ gives hV
(n−1)
N = ϕV

(n−1)
N ,V

(n)
N .

The fields in each line on the right-hand side of (7.11) are independent.

Moreover, the binding field ϕV
(i)
N

,V
(i+1)
N is a concatenation of 4i independent copies

of the binding field ϕU,V for U := V2n−i and V := V2n−i−1 , with one for each

translate of V2n−i constituting V (i)

N . A significant nuisance is that ϕV
(i)
N

,V
(i+1)
N is

not constant on these translates. If it were, we would get a representation of the
DGFF by means of a Branching Random Walk that we will introduce next.

For an integer b ≥ 2, consider a b-ary tree T b which is a connected graph
without cycles where each vertex except one (to be denoted by ∅) has exactly
b+1 neighbors. The distinguished vertex ∅ is called the root; we require that the
degree of the root is b. We will write Ln for the set of vertices at graph-theoretical
distance n from the root — these are the leaves at depth n.

Every vertex x ∈ Ln can be identified with a sequence

(x1, . . . , xn) ∈ {1, . . . , b}n, (7.12)

where xi can be thought of as an instruction which “turn” to take at the i-th
step on the (unique) path from the root to x. The specific case of b = 4 can
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Fig. 11. The sets V (0)

N = VN , V (1)

N and V (2)

N underlying the hierarchical repre-
sentation of the DGFF on VN with N := 16. The empty bullets in V (i)

N mark
the vertices that are being removed to define V (i+1)

N . Boundary vertices (where
the fields are set to zero by default) are not depicted otherwise. The binding

field ϕV
(1)
N

,V
(2)
N is independent on each of the four squares constituting V (1)

N ,
but is neither constant nor independent on the squares constituting V (2)

N .

be linked with a binary decomposition of VN := (0, N)2 ∩ Z2 with N := 2n

as follows: Every x ∈ V2n has non-negative coordinates so it can be written in
R2-vector notation as

x =
( n−1∑
i=0

σi2
i,

n−1∑
i=0

σ̃i2
i
)
, (7.13)

for some uniquely-determined σi, σ̃i ∈ {0, 1}. Now set the i-th instruction for
the sequence (x1, . . . , xn) as

xi := 2σn−i+1 + σ̃n−i+1 + 1 (7.14)

to identify x ∈ V2n with a point in Ln. Since VN contains only (N − 1)2 vertices
while, for b := 4, the cardinality of Ln is 4n, we only get a subset of Ln.

We now come to:

Definition 7.4 (Branching random walk). Given integers b ≥ 2, n ≥ 1
and a random variable Z, let {Zx : x ∈ T b} be i.i.d. copies of Z indexed by the
vertices of T b. The Branching Random Walk (BRW) on T b of depth n with

step distribution Z is the family of random variables {φT bx : x ∈ Ln} where
for x = (x1, . . . , xn) ∈ Ln we set

φT
b

x :=

n−1∑
k=0

Z(x1,...,xk), (7.15)

with the k = 0 term corresponding to the root value Z∅.

We write n−1 in (7.15) to ensure that the restriction of z 7→ φT
b

z −φT
b

x to the

subtree of T b rooted at x is independent of φT
b

x with the same law (after proper
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Fig. 12. A schematic picture of how the values of the BRW on T 4 are natu-
rally interpreted as a field on Z2. There is a close link to the Gibbs-Markov
decomposition of the DGFF from (7.11).

relabeling) as φT
b

. This is, in fact, a statement of the Gibbs-Markov property
for the BRW.

The specific case of interest for us is the Gaussian Branching Random Walk
where we take Z normal. The value of the BRW at a given point x ∈ Ln is then
very much like the last line in (7.11) — the sum of n independent Gaussians
along the unique path from the root to x. As already noted, the correspondence
is not perfect because of the more subtle covariance structure of the DGFF
compared to the BRW and also because Ln has more active vertices than V2n .
Still, we can use this fruitfully to get:

Lemma 7.5 (Domination of DGFF by BRW). Consider a BRW φT
4

on T 4

with step distribution N (0, 1) and identify VN for N := 2n with a subset of Ln
as above. There is c > 0 such that for each n ≥ 1 and each x, y ∈ Ln,

E
(
[hVNx − hVNy ]2

)
≤ c+ (g log 2)E

([
φT

4

x − φT
4

y

]2)
. (7.16)

In particular, there is k ∈ N such that for each n ≥ 1 (and N := 2n),

E
(

max
x∈VN

hVNx

)
≤
√
g log 2 E

(
max

x∈Ln+k

φT
4

x

)
. (7.17)

Proof. Since V 7→ E([hVx − hVy ]2) is non-decreasing under the set inclusion, the
representation of the Green function from Lemma 1.19 along with the asymptotic
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for the potential kernel from Lemma 1.21 shows that, for some constant c̃ > 0
and all distinct x, y ∈ Ln,

E
(
[hVNx − hVNy ]2

)
≤ c̃+ 2g log |x− y|. (7.18)

Denoting by dn(x, y) the ultrametric distance between x, y ∈ Ln, which is defined
as the graph-theoretical distance on T b from x to the nearest common ancestor
with y, from (7.15) we readily infer

E
([
φT

4

x − φT
4

y

]2)
= 2[dn(x, y)− 1] (7.19)

for any two distinct x, y ∈ Ln. We now pose:

Exercise 7.6. There is c̃′ ∈ (0,∞) such that for each n ≥ 1 and each x, y ∈ Ln,

|x− y| ≤ c̃′ 2dn(x,y) . (7.20)

Combining this with (7.18–7.19), we then get (7.16).
To get (7.17), let k ∈ N be so large that c in (7.16) obeys c ≤ 2k(g log 2).

Now, for each x = (x1, . . . , xn) ∈ Ln let θ(x) := (x1, . . . , xn, 1, . . . , 1) ∈ Ln+k.
Then (7.16) implies

E
(
[hVNx − hVNy ]2

)
≤ (g log 2)E

([
φT

4

θ(x) − φ
T 4

θ(y)

]2)
, x, y ∈ Ln. (7.21)

The Sudakov-Fernique inequality then gives

E
(

max
x∈VN

hVNx

)
≤
√
g log 2 E

(
max
x∈Ln

φT
4

θ(x)

)
. (7.22)

The claim now follows by extending the maximum on the right from θ(Ln) to
all vertices in Ln+k. ut

7.3 Maximum of Gaussian Branching Random Walk

In order to use Lemma 7.5 to bound the expected maximum of the DGFF, we
need a good control of the expected maximum of the BRW. This is a classi-
cal subject with strong connections to large deviation theory. (Indeed, as there
are bn branches of the tree, the maximum will be determined by events whose
probability decays exponentially with n. See, e.g., Zeitouni’s notes [126].) For
Gaussian BRWs, we can rely on explicit calculations and so the asymptotic is
completely explicit as well:

Theorem 7.7 (Maximum of Gaussian BRW). For b ≥ 2, let {φT bx : x ∈ T b}
be the Branching Random Walk on b-ary tree with step distribution N (0, 1). Then

E
(

max
x∈Ln

φT
b

x

)
=
√

2 log b n− 3

2
√

2 log b
log n+O(1), (7.23)
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where O(1) is a quantity that is bounded uniformly in n ≥ 1. Moreover,{
max
x∈Ln

φT
b

x − E(max
x∈Ln

φT
b

x ) : n ≥ 1
}

(7.24)

is tight.

Let us henceforth abbreviate the quantity on the right of (7.23) as

m̃n :=
√

2 log b n− 3

2
√

2 log b
log n . (7.25)

The proof starts by showing that the maximum exceeds m̃n −O(1) with a uni-
formly positive probability. This is achieved by a second moment estimate of
the kind we employed for the intermediate level sets of the DGFF. However,
as we are dealing with the absolute maximum, a truncation is necessary. Thus,
for x = (x1, . . . , xn) ∈ Ln, let

Gn(x) :=

n−1⋂
k=0

{
φT

b

(x1,...,xk−1) ≤
k

n
m̃n + 2

}
(7.26)

be the “good” event that curbs the growth the BRW on the unique path from
the root to x. Now define

Γn :=
{
x ∈ Ln : φT

b

x ≥ m̃n, Gn(x) occurs
}

(7.27)

as the analogue of the truncated level set Γ̂D,MN (b) from our discussion of inter-
mediate levels of the DGFF. We now claim:

Lemma 7.8. For the setting as above,

inf
n≥1

E|Γn| > 0 (7.28)

while
sup
n≥1

E
(
|Γn|2

)
<∞. (7.29)

Let us start with the first moment calculations:

Proof of (7.28). Fix x ∈ Ln and, for k = 1, . . . , n, abbreviate Zk := Z(x1,...,xk−1)

(with Z1 := Z∅). Set

Sk := Z1 + · · ·+ Zk, k = 1, . . . , n. (7.30)

Then

P
(
φT

b

x ≥ m̃n, Gn(x) occurs
)

= P

(
{Sn ≥ m̃n} ∩

n⋂
k=1

{
Sk ≤

k

n
m̃n + 2

})
. (7.31)

In what follows we will make frequent use of:
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Exercise 7.9. Prove that, for Z1, . . . , Zn i.i.d. normal and any a ∈ R,

P

(
(Z1, . . . , Zn) ∈ ·

∣∣∣ n∑
i=1

Zi = a

)

= P

((
Z1 +

a

n
, . . . , Zn +

a

n

)
∈ ·
∣∣∣ n∑
i=1

Zi = 0

)
. (7.32)

To see this in action, denote

µn(ds) := P (Sn − m̃n ∈ ds) (7.33)

and use (7.32) to express the probability in (7.31) as∫ ∞
0

µn(ds)P

( n⋂
k=1

{
Sk ≤ −

k

n
s+ 2

} ∣∣∣∣Sn = 0

)
. (7.34)

As a lower bound, we may restrict the integral to s ∈ [0, 1] which yields k
ns ≤ 1.

Realizing Zk as the increment of the standard Brownian motion on [k − 1, k),
the giant probability on the right is bounded from below by the probability that
the standard Brownian motion on [0, n], conditioned on Bn = 0, stays below 1
for all times in [0, n]. For this we observe:

Exercise 7.10. Let {Bt : t ≥ 0} be the standard Brownian motion started from 0.
Prove that for all a, b > 0 and all r > 0,

P a
(
Bt ≥ 0: t ∈ [0, r]

∣∣∣Br = b
)

= 1− exp
{
−2

ab

r

}
. (7.35)

Invoking (7.35) with a, b := 1 and r := n and applying the shift invariance of
the Brownian motion, the giant probability in (7.34) is at most 1 − e−2/n. A
calculation shows that, for some constant c > 0,

µn
(
[0, 1]

)
≥ c√

n
e−

m̃2
n

2n = c eO(n−1 logn)b−nn (7.36)

thanks to our choice of m̃n. The product n(1− e−2/n) is uniformly positive and
so we conclude that the probability in (7.31) is at least a constant times b−n.
Since |Ln| = bn, summing over x ∈ Ln we get (7.28). ut

We remark that (7.36) (and later also (7.48)) is exactly what determines the
precise constant in the subleading term in (7.25). Next we tackle the second
moment estimate which is somewhat harder:

Proof of (7.29). Pick distinct x, y ∈ Ln and let k ∈ {1, . . . , n− 1} be such that
the paths from the root to these vertices have exactly k vertices (including the
root) in common. Let S1, . . . , Sn be the values of the BRW on the path to x and
let S′1, . . . , S

′
n be the values on the path to y. Then Si = S′i for i = 1, . . . , k while

{Sk+j − Sk : j = 1, . . . , n− k} and {S′k+j − S′k : j = 1, . . . , n− k} (7.37)
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are independent and each equidistributed to S1, . . . , Sn−k. Denoting

µn,k(ds) = P
(
Sk −

k

n
m̃n ∈ ds

)
, (7.38)

conditioning on Sk − k
nm̃n then implies

P
(
φT

b

x ∨ φT
b

y ≥ m̃n, Gn(x) ∩Gn(y) occurs
)

=

∫ 2

−∞
µn,k(ds) fk(s) gk,n−k(s)2 , (7.39)

where

fk(s) := P

( k⋂
j=1

{
Sj ≤

j

n
m̃n + 2

} ∣∣∣∣Sk − k

n
m̃n = s

)
(7.40)

and

gk,r(s) := P

( r⋂
j=1

{
Sj ≤

j

n
m̃n + 2− s

}
∩
{
Sr ≥

r

n
m̃n − s

})
. (7.41)

We now need good estimates on both fk and gk,r. For this we will need a version
of Exercise 7.10 for random walks:

Exercise 7.11 (Ballot problem). Let Sk := Z1 + · · ·+Zk be the above Gaus-
sian random walk. Prove that there is c ∈ (0,∞) such that for any a ≥ 1 and
any n ≥ 1,

P

( n−1⋂
k=1

{
Sk ≤ a

} ∣∣∣∣Sn = 0

)
≤ ca

2

n
. (7.42)

In what follows we will use c to denote a positive constant whose meaning may
change line to line.

Concerning an upper bound on fk, Exercise 7.9 gives

fk(s) = P

( k⋂
j=1

{
Sj ≤ 2− j

k
s
} ∣∣∣∣Sk = 0

)
. (7.43)

Exercise 7.11 (and s ≤ 2) then yields

fk(s) ≤ c1 + s2

k
. (7.44)

As for gk,r, we again invoke Exercise 7.9 to write

gk,r(s) =

∫ 2−s

−s
µn,r(du)P

( r⋂
j=1

{
Sj ≤ 2− s− j

r
u
} ∣∣∣∣Sr = 0

)
. (7.45)
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Exercise 7.11 (and s ≤ 2) again gives

gk,r(s) ≤ c
1 + s2

r
P
(
Sr ≥

r

n
m̃n − s

)
. (7.46)

In order to plug this into the integral in (7.39), we invoke the standard Gaussian
estimate (2.2) and the fact that m̃n/n is uniformly positive and bounded to get,
for all k = 1, . . . , n− 1 and all s ≤ 2,

µn,k(ds)P
(
Sn−k ≥

n− k
n

m̃n − s
)2

≤ c√
k

e−
( k
n
m̃n+s)2

2k

[ 1√
n− k

e−
(n−k
n

m̃n−s)2

2(n−k)

]2
ds

≤ c√
k (n− k)

e−
1
2 (m̃n/n)2(2n−k)+(m̃n/n)s ds .

(7.47)

(When n−k
n m̃n−s is not positive, which for n large happens only when log b ≤ 2,

k = n − 1 and s is close to 2, the probability is bounded simply by one.) The
explicit form of m̃n then gives

e−
1
2 (m̃n/n)2(2n−k) ≤ cb−(2n−k)n3− 3

2k/n. (7.48)

The exponential factor in s in (7.47) ensures that the integral in (7.39), including
all s-dependent terms arising from (7.44) and (7.46), is bounded. Collecting the
denominators from (7.44) and (7.46), we get that

P
(
φT

b

x ∨ φT
b

y ≥ m̃n, Gn(x) ∩Gn(y) occurs
)
≤ cb−(2n−k) n3− 3

2k/n

k3/2(n− k)3
(7.49)

holds whenever x, y ∈ Ln are distinct and k is as above.
The number of distinct pairs x, y ∈ Ln with the same k is b2n−k. Splitting

off the term corresponding to x = y, from (7.49) we obtain

E
(
|Γn|2

)
≤ E|Γn|+ c

n−1∑
k=1

n3− 3
2k/n

k3/2(n− k)3
. (7.50)

For k < n/2 the expression under the sum is bounded by 8k−3/2 which is
summable on all k ≥ 1. For the complementary k we use k−3/2 ≤

√
8n−3/2

and then change variables to j := n− k to get∑
n/2≤k<n

n3− 3
2k/n

k3/2(n− k)3
≤
√

8
∑

1≤j≤n/2

e
3
2 (j/n) logn

j3
. (7.51)

Using ` to denote the unique integer such that n
logn` ≤ j <

n
logn (`+ 1), the sum

on the right is further bounded by∑
j≥1

e3/2

j3
+ 2

(log n)2

n2

∑
1≤`<logn

e
3
2 (`+1)

`3
. (7.52)
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The first sum is convergent and, by e
3
2 (`+1) ≤ cn3/2 for ` < log n, the second

part of the expression is at most order (log n)2/
√
n. Using this in (7.50) we get

E(|Γn|2) ≤ E|Γn| + c for all n ≥ 1. The Cauchy-Schwarz inequality and some
algebra then show E(|Γn|2) ≤ 1 +

√
c+ c thus proving (7.29). ut

As a consequence of Lemma 7.8 we get:

Corollary 7.12. Using the notation m̃n from (7.25),

inf
n≥1

P
(

max
x∈Ln

φT
b

x ≥ m̃n

)
> 0. (7.53)

Proof. The probability in (7.53) is bounded below by P (|Γn| > 0) which by (2.13)
is bounded from below by (E|Γn|)2/E(|Γn|2). Thanks to (7.28–7.29), this ratio
is positive uniformly in n ≥ 1. ut

7.4 Bootstrap to exponential tails

Our next task in this lecture is to boost the uniform lower bound (7.53) to an
exponential tail estimate. Our method of proof will for convenience be restricted
to b > 2 (remember that we are interested in b = 4) and so this is what we will
assume in the statement:

Lemma 7.13 (Lower tail). For each integer b > 2 there is a = a(b) > 0
such that

sup
n≥1

P
(

max
x∈Ln

φT
b

x < m̃n − t
)
≤ 1

a
e−at, t > 0. (7.54)

In particular, “≥” holds in (7.23).

Proof. The proof will be based on a percolation argument. Recall that the
threshold for site percolation on T b is pc(b) = 1/b. (This is also the survival
threshold of a branching process with offspring distribution Bin(b, p).) Since
P (Zx ≥ 0) = 1/2, for any b > 2 there is ε > 0 such that the set {x ∈ T b : Zx ≥ ε}
contains an infinite connected component a.s. We denote by C the one closest to
the origin (breaking ties using an arbitrary a priori ordering of the vertices).

Noting that C, if viewed from the point closest to the origin, contains a
supercritical branching process that survives forever, the reader will surely be
able to solve:

Exercise 7.14. Show that there are θ > 1 and c > 0 such that for all r ≥ 1,

P
(
∃n ≥ r : |C ∩ Ln| < θn

)
≤ e−cr (7.55)

Writing again c for a generic positive constant, we claim that this implies

P
(
|{x ∈ Lk : φT

b

x ≥ 0}| < θk
)
≤ e−ck, k ≥ 1. (7.56)
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Indeed, a crude first moment estimate shows

P
(

min
x∈Lr

φT
b

x ≤ −2
√

log b r
)
≤ cb−r, r ≥ 0. (7.57)

Taking r := δn, with δ ∈ (0, 1), on the event that minx∈Lr φ
T b

x > −2
√

log b r
and C ∩ Lr 6= ∅, we then have

φT
b

x ≥ −2
√

log b δn+ ε(n− δn), x ∈ C ∩ Ln. (7.58)

Assuming δ > 0 is small enough so that ε(1− δ) > 2
√

log b δ, this gives φT
b

x ≥ 0
for all x ∈ C ∩ Ln. Hence (7.56) follows from (7.55) and (7.57).

Moving to the proof of (7.54), fix t > 0 and let k be the largest integer less

than n such that m̃n − t ≤ m̃n−k. Denote Ak := {x ∈ Lk : φT
b

x ≥ 0}. On the
event in (7.54), the maximum of the BRW of depth n− k started at any vertex
in Ak must be less than m̃n−k. Conditional on Ak, this has probability at most
(1 − q)|Ak|, where q is the infimum in (7.53). On the event that |Ak| ≥ θk, this
decays double exponentially with k and so the probability in (7.54) is dominated
by that in (7.56). The claim follows by noting that t ≈

√
2 log b k. ut

With the lower-tail settled, we can address the upper bound as well:

Lemma 7.15 (Upper tail). For each b > 0 there is ã = ã(b) > 0 such that

sup
n≥1

P
(

max
x∈Ln

φT
b

x > m̃n + t
)
≤ 1

ã
e−ãt, t > 0. (7.59)

Proof. The continuity of the involved Gaussian random variables ensures that the
maximum occurs at a unique x = (x1, . . . , xn) ∈ Ln a.s. Write Zk := Z(x1,...,xk−1)

(with Z1 := Z∅) and recall the notation Sk from (7.30). Note that each vertex
(x1, . . . , xk) on the path from the root to x has b− 1 “children” y1, . . . , yb−1 not

lying on this path. Let M̃ (i)

` denote the maximum of the BRW of depth ` rooted
at yi and abbreviate

M̂` := max
i=1,...,b−1

M̃ (i)

`−1, (7.60)

see Fig. 13. Since the maximum occurs at x and equals m̃n + u for some u ∈ R,
we must have Sk + M̂n−k ≤ m̃n + u for all k = 1, . . . , n− 1. The symmetries of
the BRW then allow us to write the probability in (7.59) as

bn
∫ ∞
t

µn(du)P

( n−1⋂
k=1

{
Sk + M̂n−k ≤ m̃n + u

} ∣∣∣∣Sn = m̃n + u

)
, (7.61)

where µn is the measure in (7.33) and where M̂1, . . . , M̂n are independent of
each other and of the random variables Z1, . . . , Zn that define the Sk’s.

We will now estimate (7.61) similarly as in the proof of Lemma 7.8. First,
shifting the normals by their arithmetic mean, the conditional probability in the
integral is recast as

P

( n−1⋂
k=1

{
Sk + M̂n−k ≤

n− k
n

(m̃n + u)
} ∣∣∣∣Sn = 0

)
. (7.62)
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Fig. 13. The picture demonstrating the geometric setup for the representation
in (7.61). The bullets mark the vertices on the path from the root (top vertex)
to x (the vertex on the bottom left). The union of the relevant subtrees of
these vertices are marked by shaded triangles. The maximum of the field in
the subtrees of `-th vertex on the path is the quantity in (7.60).

Letting θn(k) := (k ∧ (n− k))1/5, we readily check that

n− k
n

m̃n ≤ m̃n−k + θn(k), k = 1, . . . , n, (7.63)

as soon as n is sufficiently large. Introducing

Θn := max
k=1,...,n

[
m̃n−k − M̂n−k − θn(k)

]
+
, (7.64)

the probability in (7.62) is thus bounded from above by

P

( n−1⋂
k=1

{
Sk ≤ Θn + 2θn(k) + u

} ∣∣∣∣Sn = 0

)
. (7.65)

We now observe:

Exercise 7.16 (Inhomogenous ballot problem). Let Sk := Z1 + · · · + Zk
be the above Gaussian random walk. Prove that there is c ∈ (0,∞) such that for
any a ≥ 1 and any n ≥ 1,

P

( n−1⋂
k=1

{
Sk ≤ a+ 2θn(k)

} ∣∣∣∣Sn = 0

)
≤ ca

2

n
. (7.66)

(This is in fact quite hard. Check the Appendix of [27] for ideas and references.)
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Noting that Θn is independent of Z1, . . . , Zn, Exercise 7.16 bounds the proba-
bility in (7.65) by a constant times n−1E([Θn +u]2). The second moment of Θn
is bounded uniformly in n ≥ 1 because, by Lemma 7.13 and a union bound,

P (Θn > u) ≤
n∑
k=1

e−a(θn(k)+u), u > 0. (7.67)

The probability in (7.65) is thus at most a constant times (1 + u2)/n. Since

µn
(
[u, u+ 1]

)
≤ c e−(m̃n/n)u nb−n, u ≥ 0, (7.68)

the claim follows by a routine calculation. ut

Remark 7.17. Exercise 7.16 is our first excursion to the area of “random walks
above slowly-varying curves” or “Inhomogenous Ballot Theorems” which we will
encounter several times in these notes. We will not supply detailed proofs of these
estimates as these are quite technical and somewhat detached from the main
theme of these notes. The reader is encouraged to consult Bramson’s seminal
work [35] as well as the Appendix of [27] or the recent posting by Cortines,
Hartung and Louidor [47] for a full treatment.

We now quickly conclude:

Proof of Theorem 7.7. Combining Lemmas 7.13–7.15, the maximum has expo-
nential tails away from m̃n, uniformly in n ≥ 1. This yields the claim. ut

Notice that the underlying idea of the previous proof is to first establish a
bound on the lower tail of the maximum and then use it (via a bound on the
second moment of Θn) to control the upper tail. A similar strategy, albeit with
upper and lower tails interchanged, will be used in the next lecture to prove
tightness of the DGFF maximum.

Lecture 8

Tightness of DGFF maximum

We are now ready to tackle the tightness of the DGFF maximum stated in
Theorem 7.3. The original proof due to Bramson and Zeitouni [38] was based
on comparisons with the so called modified Branching Random Walk. We by-
pass this by proving tightness of the upper tail directly using a variation of the
Dekking-Host argument and controlling the lower tail via a concentric decompo-
sition of the DGFF. This brings us closer to what we have done for the Branching
Random Walk. The concentric decomposition will be indispensable later as well;
specifically, in the analysis of the local structure of nearly-maximal local maxima
and the proof of distributional convergence of the DGFF maximum.
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8.1 Upper tail of DGFF maximum

Recall the notation mN from (7.9) and m̃n from (7.25). As is easy to check,
for b := 4 and N := 2n we have√

g log 2 m̃n = mN +O(1) (8.1)

and so (7.17) and (7.23) yield EMN ≤ mN +O(1). Unfortunately, this does not
tell us much by itself (indeed, the best type of bound we can extract from this
is that P (MN > 2mN ) is at most about a half.) Notwithstanding, the argument
can be enhanced to yield tightness of the upper tail of MN :

Lemma 8.1 (Upper tail tightness). We have

sup
N≥1

E
(
(MN −mN )+

)
<∞. (8.2)

For the proof we will need the following general inequality:

Lemma 8.2 (Between Slepian and Sudakov-Fernique). Suppose X and Y
are centered Gaussians on Rn such that

E
(
(Xi −Xj)

2
)
≤ E(

(
Yi − Yj)2

)
, i, j = 1, . . . , n (8.3)

and
E(X2

i ) ≤ E(Y 2
i ), i = 1, . . . , n. (8.4)

Abbreviate
MX := max

i=1,...,n
Xi and MY := max

i=1,...,n
Yi (8.5)

and let M ′Y
law
= MY be such that M ′Y ⊥⊥MY . Then

E
(
(MX − EMY )+

)
≤ E

(
max{MY ,M

′
Y }
)
− EMY . (8.6)

Proof. Let Y ′ be a copy of Y and assume X,Y, Y ′ are realized as independent
on the same probability space. Define random vectors Z, Z̃ ∈ R2n as

Zi := Xi and Zn+i := Y ′i , i = 1, . . . , n (8.7)

and
Z̃i := Yi and Z̃n+i := Y ′i , i = 1, . . . , n . (8.8)

Since E((Xi − Y ′j )2) = E(X2
i ) + E((Y ′j )2), from (8.3–8.4) we readily get

E
(
(Zi − Zj)2

)
≤ E

(
(Z̃i − Z̃j)2

)
, i, j = 1, . . . , 2n. (8.9)

Writing M ′Y := maxi=1,...,n Y
′
i , from the Sudakov-Fernique inequality we infer

E
(
max{MX ,M

′
Y }
)
≤ E

(
max{MY ,M

′
Y }
)
. (8.10)
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Invoking (a − b)+ = max{a, b} − b and using Jensen’s inequality to pass the
expectation over Y ′ inside the positive-part function, the claim follows. ut

Proof of Lemma 8.1. Let n be the least integer such that N ≤ 4n, assume
that VN is naturally embedded into Ln and consider the map θ : Ln → Ln+k

for k as in Lemma 7.5. Assume hVN and φT
4

are realized independently on the
same probability space, denote

M̃n :=
√
g log 2 max

x∈Ln
φT

4

x , (8.11)

and observe that √
g log 2 max

x∈Ln
φT

4

θ(x) ≤Mn+k (8.12)

and √
g log 2 E

(
max
x∈Ln

φT
4

θ(x)

)
≥ EM̃n , (8.13)

where the second inequality follows by the same reasoning as (7.6) in the Dekking-
Host argument. In light of (7.21) and

E
(
[hVNx ]2

)
≤ (g log 2)E

(
[φT

4

θ(x)]
2
)
, x ∈ Ln, (8.14)

(proved by the same computation as (7.21)) the conditions (8.3–8.4) are satisfied

for X := hVN and Y :=
√
g log 2φT

4

θ(·) (both indexed by Ln). Lemma 8.2 along

with (8.12–8.13) and downward monotonicity of b 7→ (a− b)+ show

E
(
(MN − EM̃n+k)+

)
≤ E

(
max{M̃n+k, M̃

′
n+k}

)
− E(M̃n), (8.15)

where
M̃ ′n+k

law
= M̃n+k with M̃ ′n+k ⊥⊥ M̃n+k. (8.16)

The maximum on the right-hand side is now dealt with as in the Dekking-Host
argument (see the proof of Lemma 7.1). Indeed, the definition of the BRW gives

Mn+k+1

law
≥ Z + max{M̃n+k, M̃

′
n+k} , (8.17)

where Z
law
= N (0, g log 2) is independent of M̃n+k and M̃ ′n+k. It follows that

E
(
(MN − EM̃n+k)+

)
≤ E(M̃n+k+1)− E(M̃n). (8.18)

By Theorem 7.7 and (8.1), both the right-hand side and EM̃n+k − mN are
bounded uniformly in N ≥ 1, thus proving the claim. ut

Once we know that (MN −mN )+ cannot get too large, we can bootstrap this
to an exponential upper tail, just as in Lemma 7.15 for the BRW:

Lemma 8.3. There are ã > 0 and t0 > 0 such that

sup
N≥1

P
(
MN ≥ mN + t

)
≤ e−ãt, t ≥ t0. (8.19)
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Fig. 14. The geometric setup underlying the proof of Lemma 8.3. The large
square marks the domain V3KN for K := 4. The shaded squares are the
translates V (i)

N , with i = 1, . . . ,K2, of VN .

Proof. Lemma 8.1 and the Markov inequality ensure that, for some r > 0,

inf
N≥1

P
(
MN ≤ mN + r

)
≥ 1

2
. (8.20)

Fix an even integer K ≥ 1 and consider the DGFF in V3KN . Identify K2 dis-
joint translates of V3N inside V3KN such that any pair of adjacent translates is
separated by a line of sites. Denote these translates V (i)

3N , with i = 1, . . . ,K2,

and abusing our earlier notation slightly, write V ◦3KN :=
⋃K2

i=1 V
(i)

3N . Moreover,
let V (i)

N be a translate of VN centered at the same point as V (i)

3N ; see Fig. 14.
Using the Gibbs-Markov decomposition, we then have

M3KN

law
≥ max

i=1,...,K2
max
x∈V (i)

N

(
h
V

(i)
3N
x + ϕ

V3KN ,V
◦
3KN

x

)
. (8.21)

Consider the event

AK :=

{
#
{
i ∈ {1, . . . ,K2} : min

x∈V (i)
N

ϕ
V3KN ,V

◦
3KN

x ≥ −
√
t
√

logK
}
≥ K2/2

}
.

(8.22)

Since Var(ϕ
V3KN ,V

◦
3KN

x ) ≤ c logK, a combination of Borell-TIS inequality with
Fernique’s majorization permits us to solve:

Exercise 8.4. Prove that there are a > 0 and t0 ≥ 0 such that for all t ≥ t0,

sup
N≥1

max
i=1,...,K

P
(

min
x∈V (i)

N

ϕ
V3KN ,V

◦
3KN

x < −
√
t
√

logK
)
≤ e−at. (8.23)
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Assuming t ≥ t0, the Markov inequality shows P (Ac
K) ≤ 2e−at. The Gibbs-

Markov decomposition (8.21) (and translation invariance of the DGFF) then
yields

P
(
M3KN ≤ m3KN + r

)
≤ 2e−at + P

(
max
x∈V ′N

hV3N
x ≤ mKN + r +

√
t
√

logK
)K2/2

, (8.24)

where V ′N is the translate of VN centered at the same point as V3N . We now invoke
the bound P (X ≤ s) = 1 − P (X > s) ≤ e−P (X>s) along with Exercise 3.4 to
replace hV3N by hV

′
N in the maximum over x ∈ V ′N at the cost of another factor

of 1/2 popping in front of the probability. This turns (8.20) and (8.24) into

1

2
− 2e−at ≤ exp

{
−1

4
K2P

(
MN > m3NK + r +

√
t
√

logK
)}

. (8.25)

Assuming t is so large that 2e−at ≤ 1/4 and applying the inequality

m3KN ≤ mN + 2
√
g logK, (8.26)

this proves the existence of c′ > 0 such that, for all even K ≥ 1,

sup
N≥1

P
(
MN > mN + r + 2

√
g logK +

√
t logK

)
≤ c′K−2 . (8.27)

Substituting t := c logK for c large enough that r + 2
√
g logK +

√
t logK ≤ t

then gives (8.19). ut

8.2 Concentric decomposition

Although the above conclusions seem to be quite sharp, they are not inconsis-
tent with MN being concentrated at values much smaller than mN . (Indeed,
comparisons with the BRW will hardly get us any further because of the con-
siderable defect in (7.20). This is what the modified BRW was employed in [38]
for but this process is then much harder to study than the BRW.) To address
this deficiency we now develop the technique of concentric decomposition that
will be useful in several parts of these notes.

In order to motivate the definitions to come, note that, to rule out MN �
mN , by Lemma 8.3 it suffices to show EMN ≥ mN + O(1). In the context of
BRW, this was reduced (among other things) to calculating the asymptotic of a
probability that for the DGFF takes the form

P
(
hDN ≤ mN + t

∣∣hDN0 = mN + t
)
, (8.28)

where we assumed that 0 ∈ DN . For the BRW it was useful (see Exercise 7.9)
that the conditional event can be transformed into (what for the DGFF is)
hDN0 = 0 at the cost of subtracting a suitable linear expression in hDN0 from all
fields. Such a reduction is possible here as well and yields:
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Lemma 8.5 (Reduction to pinned DGFF). Suppose DN ⊂ Z2 is finite
with 0 ∈ DN . Then for all t ∈ R and s ≥ 0,

P
(
hDN ≤ mN + t+ s

∣∣hDN0 = mN + t
)

= P
(
hDN ≤ (mN + t)(1− gDN ) + s

∣∣hDN0 = 0
)
, (8.29)

where gDN : Z2 → [0, 1] is discrete-harmonic on DN r {0} with gDN (0) = 1
and gDN = 0 on Dc

N . In particular, the probability is non-decreasing in s and t.

Proof. The Gibbs-Markov decomposition of hD
N

reads

hDN
law
= hDNr{0} + ϕDN ,DNr{0}. (8.30)

Now ϕDN ,DNr{0} has the law of the discrete-harmonic extension of hDN on {0}
to DN r {0}. This means ϕDN ,DNr{0} = gDNhDN (0). Using this, the desired
probability can be written as

P
(
hDNr{0} ≤ (mN + t)(1− gDN ) + s

)
. (8.31)

The claim then follows from the next exercise. ut

Exercise 8.6 (Pinning is conditioning). For any finite D ⊂ Z2 with 0 ∈ D,

(hD |hD0 = 0)
law
= hDr{0}. (8.32)

The conditioning the field to be zero is useful for the following reason:

Exercise 8.7 (Pinned field limit). Prove that, for 0 ∈ Dn ↑ Z2,

hDNr{0} law−→
N→∞

hZ
2r{0} (8.33)

in the sense of finite dimensional distributions.

Let us now inspect the event hDN ≤ mN (1 − gDN ) in (8.29) — with t
and s dropped for simplicity. The following representation using the Green func-
tion GDN will be useful

mN

(
1− gDN (x)

)
= mN

GDN (0, 0)−GDN (0, x)

GDN (0, 0)
. (8.34)

Now mN = 2
√
g logN + o(logN) while (for 0 deep inside DN ) for the Green

function we get GDN (0, 0) = g logN + O(1). With the help of the relation be-
tween the Green function and the potential kernel a as well as the large-scale
asymptotic form of a (see Lemmas 1.19 and 1.21) we then obtain

mN

(
1− gDN (x)

)
=

2
√
g
a(x) + o(1) = 2

√
g log |x|+O(1). (8.35)
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The event {hDN ≤ mN (1−gDN )}∩{hDN0 = 0} thus forces the field to stay below
the logarithmic cone x 7→ 2

√
g log |x| + O(1). Notice that this is the analogue

of the event that the BRW on all subtrees along the path to the maximum stay
below a linear curve; see (7.61).

In order to mimic our earlier derivations for the BRW, we need to extract as
much independence from the DGFF as possible. The Gibbs-Markov property is
the right tool to use here. We will work with a decomposition over a sequence
of domains defined, with a slight abuse of our earlier notation, by

∆k :=

{
{x ∈ Z2 : |x|∞ < 2k}, if k = 0, . . . , n− 1,

DN , if k = n,
(8.36)

where n is the largest integer such that {x ∈ Z2 : |x|∞ ≤ 2n+1} ⊆ DN ; see Fig. 9
in Section 4.5. The Gibbs-Markov property now gives

hDN = h∆
n law

= h∆
n−1

+ h∆
nr∆n−1

+ ϕ∆
n,∆nr∂∆n−1

, (8.37)

where ∂D stands for the set of vertices on the external boundary of D ⊂ Z2

and D := D ∪ ∂D. This relation can be iterated to yield:

Lemma 8.8. For the setting as above,

hDN
law
=

n∑
k=0

(
ϕk + h′k

)
(8.38)

where all the fields on the right are independent with

ϕk
law
= ϕ∆

k,∆kr∂∆k−1

and h′k
law
= h∆

kr∆k−1
(8.39)

for k = 1, . . . , n and

ϕ0
law
= h{0} and h′0 = 0. (8.40)

Proof. Apply induction to (8.37) while watching for the provisos at k = 0. ut
The representation (8.38) is encouraging in that it breaks hDN into the sum

of independent contributions of which one (the ϕk’s) is “smooth” and timid
and the other (the h′k’s) is, while “rough” and large, localized to the annulus

∆kr∆k−1. In order to make the correspondence with the BRW closer, we need to
identify an analogue of the Gaussian random walk from (7.30) in this expression.
Here we use that, since ϕk is harmonic on ∆k r ∂∆k−1, its typical value is well
represented by its value at the origin. This gives rise to:

Proposition 8.9 (Concentric decomposition of DGFF). For the setting
as above,

hDN
law
=

n∑
k=0

((
1 + bk

)
ϕk(0) + χk + h′k

)
, (8.41)
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Fig. 15. A plot of bk on the set ∆k+1 for k large. The function equals −1
outside ∆k and vanishes at the origin. It is discrete harmonic on ∆kr∂∆k−1.

where all the random objects in
⋃n
k=0{ϕk(0), χk, h

′
k} are independent of one

another with the law of ϕk(0) and h′k as in (8.39–8.40) and with

χk(·) law
= ϕk(·)− E

(
ϕk(·)

∣∣σ(ϕk(0))
)
. (8.42)

The function bk : Z2 → R is defined by

bk(x) :=
E
(
[ϕk(x)− ϕk(0)]ϕk(0)

)
E
(
ϕk(0)2

) . (8.43)

Proof. Define χk from ϕk by the right-hand side of (8.42). Then χk and ϕk(0)
are uncorrelated and, being Gaussian, independent. Moreover, the fact that con-
ditional expectation is a projection in L2 ensures that E

(
ϕk(·)

∣∣σ(ϕk(0))
)

is a
linear function of ϕk(0). The fact that these fields have zero mean then implies

E
(
ϕk(x)

∣∣σ(ϕk(0))
)

= fk(x)ϕk(0) (8.44)

for some deterministic fk : Z2 → R. A covariance computation shows fk = 1+bk.
Substituting

ϕk = (1 + bk)ϕk(0) + χk, (8.45)

which, we note, includes the case k = 0, into (8.38) then gives the claim. ut

8.3 Bounding the bits and pieces

One obvious advantage of (8.41) is that it gives us a representation of DGFF as
the sum of independent, and reasonably localized, objects. However, in order to
make use of this representation, we need estimates on the sizes of these objects
as well. The various constants in the estimates that follow will depend on the
underlying set DN but only via the smallest k1 ∈ N such that

DN ⊆ {x ∈ Z2 : |x|∞ ≤ 2n+1+k1} (8.46)
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with n as above. We thus assume this k1 to be fixed; all estimates are then
uniform in the domains satisfying (8.46). We begin with the ϕk(0)’s:

Lemma 8.10. For each ε > 0 there is k0 ≥ 0 such that for all n ≥ k0 + 1,

max
k=k0,...,n−1

∣∣∣Var
(
ϕk(0)

)
− g log 2

∣∣∣ < ε (8.47)

Moreover, Var(ϕk(0)) is bounded away from zero and infinity by positive con-
stants that depend only on k1 from (8.46).

Proof (sketch). For k < n large, ϕk(0) is close in law to the value at zero of the
continuum binding field ΦB2,B2r∂B1 , where Br := [−r, r]2. A calculation shows
Var(ΦB2,B2r∂B1(0)) = g log 2. ut

Lemma 8.11. The function bk is bounded uniformly in k, is discrete-harmonic
on ∆k r ∂∆k−1 and obeys

bk(0) = 0 and bk(·) = −1 on Z2 r∆k . (8.48)

Moreover, there is c > 0 such that for all k = 0, . . . , n,∣∣bk(x)
∣∣ ≤ c dist(0, x)

dist(0, ∂∆k)
, x ∈ ∆k−2. (8.49)

Proof (sketch). The harmonicity of bk follows from harmonicity of ϕk. The overall
boundedness is checked by representing bk using the covariance structure of ϕk.
The bound (8.49) then follows from uniform Lipschitz continuity of the (discrete)
Poisson kernels in square domains. See Fig. 15. ut

Lemma 8.12. For k = 0, . . . , n and ` = 0, . . . , k − 2,

E

(
max
x∈∆`

∣∣χk(x)
∣∣) ≤ c2`−k (8.50)

and

P

(∣∣∣max
x∈∆`

χk(x)− E max
x∈∆`

χk(x)
∣∣∣ > λ

)
≤ e−c4

k−`λ2

. (8.51)

Proof (idea). These follow from Fernique majorization and Borell-TIS inequality
and Lipschitz property of the covariances of ϕk (which extend to χk). ut

The case of ` = k − 1, k has intentionally been left out of Lemma 8.12
because χk ceases to be regular on and near ∂∆k−1, being essentially equal (in
law) to the DGFF there; see Fig. 16. Combining χk with h′k and χk+1 we get:

Lemma 8.13 (Consequence of upper-tail tightness of MN). There exists
a > 0 such that each k = 1, . . . , n and each t ≥ 1,

P
(

max
x∈∆kr∆k−1

[
χk+1(x) + χk(x) + h′k(x)

]
−m2k ≥ t

)
≤ e−at. (8.52)
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Fig. 16. A plot of a sample of χk on ∆k for k := 7. The sample function is
discrete harmonic on ∆k r ∂∆k−1 but quite irregular on and near ∂∆k−1.

Proof (sketch). Recalling how the concentric decomposition was derived,

ϕk+1 + ϕk + h′k
law
= h∆

k

on ∆k r∆k−1. (8.53)

Lemma 8.3 along with the first half of Exercise 3.4 show that this field has
exponential upper tail above m2k . But this field differs from the one in the
statement by the term (1 + bk)ϕk(0) + (1 + bk+1)ϕk+1(0) which has even a
Gaussian tail. The claim follows from a union bound. ut

Remark 8.14. Once we prove the full tightness of the DGFF maximum, we will
augment (8.52) to an estimate on the maximal absolute value of the quantity
in (8.52), see Lemma 11.4. However, at this point we claim only a bound on the
upper tail in (8.52).

In light of χk(0) = 0, h′k(0) = 0 and bk(0) = 0 we have h∆
n

0 =
∑n
k=0 ϕk(0).

This leads to a representation of the field at the prospective maximum by the
(n+ 1)st member of the sequence

Sk :=

k−1∑
`=0

ϕ`(0) , (8.54)

which we think of as an analogue of the random walk in (7.30) albeit this time
with time inhomogeneous steps. The observation

h∆
n

0 = 0 ⇔ Sn+1 = 0 (8.55)

along with the fact that, for any k = 0, . . . , n− 1, neither bk nor the laws of ϕk
and h′k depend on n and DN then drive:
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Exercise 8.15 (Representation of pinned DGFF). The DGFF on Z2r{0}
can be represented as the a.s.-convergent sum

hZ
2r{0} law

=

∞∑
k=0

(
ϕk(0)bk + χk + h′k

)
, (8.56)

where the objects on the right are independent with the laws as above for the
sequence {∆k : k ≥ 0} from (8.36) with n :=∞. [Hint: Use Exercise 8.7.]

We remark that, besides the connection to the random walk from (7.30) as-
sociated with the Gaussian BRW, the random walk in (8.54) can also be thought
of as an analogue of circle averages of the CGFF; see Exercise 1.30. As we will
show next, this random walk will by and large determine the behavior of the
DGFF in the vicinity of a point where the field has a large local maximum.

8.4 Random walk representation

We will now move to apply the concentric decomposition in the proof of the
lower bound on EMN . A key technical step in this will be the proof of:

Proposition 8.16. For all ε ∈ (0, 1) there is c = c(ε) > 1 such that for all
naturals N > 2 and all sets DN ⊂ Z2 satisfying

[−εN, εN ]2 ∩ Z2 ⊆ DN ⊆ [−ε−1N, ε−1N ]2 ∩ Z2 (8.57)

we have

P
(
hDN ≤ mN

∣∣hDN0 = mN

)
≥ c−1

logN

[
1− 2P (MN > mN − c)

]
, (8.58)

where, abusing our earlier notation, MN := maxx∈DN h
DN
x .

In order to prove this, we will need to control the growth of the various
terms on the right-hand side of (8.41). This will be achieved using a single
control variable K that we define next:

Definition 8.17 (Control variable). For k, `, n positive integers denote

θn,k(`) :=
[
log(k ∨ (` ∧ (n− `)))]2. (8.59)

Then define K as the smallest k ∈ {1, . . . , bn2 c} such that for all ` = 0, . . . , n:

(1) |ϕ`(0)| ≤ θn,k(`),
(2) for all r = 1, . . . , `− 2,

max
x∈∆r

∣∣χ`(x)
∣∣ ≤ 2(r−`)/2θn,k(`) , (8.60)

(3)
max

x∈∆`r∆`−1

[
χ`(x) + χ`+1(x) + h′`(x)−m2`

]
≤ θn,k(`) . (8.61)
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If no such K exists, we set K := bn2 c+ 1. We call K the control variable.

Based on the above lemmas, one readily checks:

Exercise 8.18. For some c, c′ > 0, all n ≥ 1 and all k = 1, . . . , bn2 c+ 1,

P (K = k) ≤ c′ e−c(log k)2 , k ≥ 1. (8.62)

As we will only care to control events up to probabilities of order 1/n, this
permits us to disregard the situations when K is at least nε, for any ε > 0.
Unfortunately, for smaller k we will need to control the growth of the relevant
variables on the background of events whose probability is itself small (the said
order 1/n). The key step is to link the event in Proposition 8.16 to the behavior
of the above random walk. This is the content of:

Lemma 8.19 (Reduction to a random walk event). Assume hDN is re-
alized as the sum in (8.41). There is a numerical constant C > 0 such that,
uniformly in the above setting, the following holds for each k = 0, . . . , n:

{hDN0 = 0} ∩
{
hDN ≤ mN (1− gDN ) on ∆k r∆k−1

}
⊇ {Sn+1 = 0} ∩

{
Sk ≥ C[1 + θn,K(k)]

}
. (8.63)

Proof. Fix k as above and let x ∈ ∆k r ∆k−1. In light of (8.54–8.55), on the
event {hDN0 = 0} we can drop the “1” in the first term on the right-hand side
of (8.41) without changing the result. Noting that b`(x) = −1 for ` < k, on this
event we then get

hDNx −m2k = −Sk +

n∑
`=k

b`(x)ϕ`(0)

+

( n∑
`=k+2

χ`(x)

)
+
[
χk+1(x) + χk(x) + h′k(x)−m2k

]
. (8.64)

The bounds in the definition of the control variable permit us to estimate all
terms after −Sk by Cθn,K(k) from above, for C > 0 a numerical constant inde-
pendent of k and x. Adjusting C if necessary, (8.34) along with the approxima-
tion of the Green function using the potential kernel and invoking the downward
monotonicity of N 7→ log logN

logN for N large enough shows

mN

(
1− gDN (x)

)
≥ m2k − C. (8.65)

Hence,

mN (1− gDN )− hDN (x)

≥ m2k − hDN (x)− C ≥ Sk − C[1 + θn,K(k)]. (8.66)
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This, along with (8.55), now readily yields the claim. ut
We are ready to give:

Proof of Proposition 8.16. We first use Lemma 8.5 to write

P
(
hDN ≤ mN

∣∣hDN0 = mN

)
= P

(
hDNr{0} ≤ mN (1− gDN )

)
. (8.67)

Next pick a k ∈ {1, . . . , bn/2c} and note that, by the FKG inequality for the
DGFF (see Proposition 5.22),

P
(
hDNr{0} ≤ mN (1− gDN )

)
≥ P (A1

n,k)P (A2
n,k)P (A3

n,k) , (8.68)

where we used that

A1
n,k :=

{
hDNr{0} ≤ mN (1− gDN ) on ∆k

}
A2
n,k :=

{
hDNr{0} ≤ mN (1− gDN ) on ∆n−k r∆k

}
A3
n,k :=

{
hDNr{0} ≤ mN (1− gDN ) on ∆n r∆n−k} (8.69)

are increasing events. We will now estimate the three probabilities on the right
of (8.68) separately.

First we observe that, for any k fixed,

inf
n≥1

P (A1
n,k) > 0 (8.70)

in light of the fact that hDNr{0} tends in law to hZ
2r{0} (see Exercise 8.7), while

mN (1− gDN ) tends to 2√
ga, see (8.35). For A3

n,k we note (similarly as in (8.65))

that, for some c depending only on k,

mN (1− gDN ) ≥ mN − c on ∆n r∆n−k . (8.71)

Denoting MN := maxx∈DN h
DN
x and M0

N := maxx∈DN h
DNr{0}
x , Exercise 3.3

then yields

P (A3
n,k) ≥ P

(
M0
N ≤ mN − c) ≥ 1− 2P

(
MN > mN − c

)
. (8.72)

We may and will assume the right-hand side to be positive in what follows, as
there is nothing to prove otherwise.

It remains to estimate P (A2
n,k). Using Lemma 8.19 and the fact that k 7→

θn,k(`) is non-decreasing, we bound this probability as

P (A2
n,k) ≥ P

(
{K ≤ k} ∩

n−k−1⋂
`=k+1

{
S` ≥ C[1 + θn,k(`)]

} ∣∣∣∣Sn+1 = 0

)

≥ P
( n−k−1⋂
`=k+1

{S` ≥ C[1 + θn,k(`)]
}
∩

n⋂
`=1

{S` ≥ −1}
∣∣∣∣Sn+1 = 0

)

− P
(
{K > k} ∩

n⋂
`=1

{S` ≥ −1}
∣∣∣∣Sn+1 = 0

)
.

(8.73)

To estimate the right-hand side, we invoke the following lemmas:
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Lemma 8.20 (Entropic repulsion). There is a constant c1 > 0 such that for
all n ≥ 1 and all k = 1, . . . , bn/2c

P

( n−k−1⋂
`=k+1

{S` ≥ C[1 + θn,k(`)]
} ∣∣∣∣ n⋂

`=1

{S` ≥ −1} ∩ {Sn+1 = 0}
)
≥ c1. (8.74)

Lemma 8.21. There is c2 > 0 such that for all n ≥ 1 and all k = 1, . . . , bn/2c,

P

(
{K > k} ∩

n⋂
`=1

{S` ≥ −1}
∣∣∣∣Sn+1 = 0

)
≤ 1

n
e−c2(log k)2 . (8.75)

As noted before, we will not supply a proof of these lemmas as that would
take us on a detour into the area of “Inhomogenous Ballot Theorems;” instead,
the reader is asked to consult [27] where these statements are given a detailed
proof. We refer to Lemma 8.20 using the term “entropic repulsion” in reference
to the following observation from statistical mechanics: An interface near a bar-
rier appears to be pushed away as that increases the entropy of its available
fluctuations.

Returning to the proof of Proposition 8.16, we note that Lemmas 8.20 and 8.21
reduce (8.73) to a lower bound on the probability of

⋂n
`=1{S` ≥ −1} conditional

on Sn+1 = 0. We proceed by embedding the random walk into a path of the
standard Brownian motion {Bt : t ≥ 0} via

Sk := Btk where tk := Var(Sk) =

k−1∑
`=0

Var
(
ϕ`(0)

)
. (8.76)

This readily yields

P

( n⋂
`=1

{S` ≥ −1}
∣∣∣∣Sn+1 = 0

)
≥ P 0

(
Bt ≥ −1: t ∈ [0, tn+1]

∣∣∣Btn+1
= 0
)
. (8.77)

Lemma 8.10 ensures that tn+1 grows proportionally to n and the Reflection
Principle then bounds the last probability by c3/n for some c3 > 0 independent
of n; see Exercise 7.10. Lemmas 8.20–8.21 then show

P (A2
n,k) ≥ c1c3

n
− 1

n
e−c2(log k)2 . (8.78)

For k sufficiently large, this is at least a constant over n. Since n ≈ log2N , we
get (8.58) from (8.68), (8.70) and (8.72). ut

8.5 Tightness of DGFF maximum: lower tail

We will now harvest the fruits of our hard labor in the previous sections and
prove tightness of the maximum of DGFF. First we claim:
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Lemma 8.22. For the DGFF in VN , we have

inf
N≥1

P
(
MN ≥ mN ) > 0. (8.79)

Proof. We may and will assume N ≥ 10 without loss of generality. Let V ′N/2
denote the square of side bN/2c centered (roughly) at the same point as VN . For
each x ∈ V ′N/2 and denoting DN := −x + VN , the translation invariance of the
DGFF gives

P
(
hVNx ≥ mN , h

VN ≤ hVNx
)

= P
(
hDN0 ≥ mN , h

DN ≤ hDN0

)
=

∫ ∞
0

P
(
hDN0 −mN ∈ ds

)
P
(
hDN ≤ mN + s

∣∣hDN0 = mN + s
)
.

(8.80)

Rewriting the conditional probability using the DGFF on DN r {0}, the mono-
tonicity in Lemma 8.5 along with Proposition 8.16 show, for any s ≥ 0,

P
(
hDN ≤ mN + s

∣∣hDN0 = mN + s
)

≥ P
(
hDN ≤ mN

∣∣hDN0 = mN

)
≥ c−1

logN

[
1− 2P (MN ≤ mN − c)

]
. (8.81)

Plugging this in (8.80) yields

P
(
hVNx ≥ mN , h

VN ≤ hVNx
)

≥ c−1

logN
P
(
hVNx ≥ mN

)[
1− 2P (MN ≤ mN − c)

]
. (8.82)

If P (MN ≤ mN − c) > 1/2, we may skip directly to (8.85). Otherwise, invoking

P
(
hVNx ≥ mN

)
≥ c1(logN)N−2 (8.83)

with some c1 > 0 uniformly for all x ∈ V ′N/2, summing (8.82) over x ∈ V ′N/2 and

using that |V ′N/2| has order N2 vertices shows

P (MN ≥ mN ) ≥ c2
[
1− 2P (MN > mN − c)

]
(8.84)

for some c2 > 0. As c > 0, this implies

P (MN > mN − c) ≥ c2/(1 + 2c2). (8.85)

This is almost the claim except for the constant c in the event.
Consider the translate V ′N/2 of VbN/2c centered at the same point as VN and

use the Gibbs-Markov property to write hVN as hV
′
N/2 + ϕVN ,V

′
N/2 . Denoting

M ′N/2 := maxx∈V ′
N/2

h
V ′N/2
x , a small variation on Exercise 3.4 shows

P (MN ≥ mN ) ≥ P (M ′N/2 > mN/2 − c)

× min
x∈V ′

N/2

P
(
ϕ
VN ,V

′
N/2

x ≥ c+mN −mN/2

)
. (8.86)
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Since mN −mN/2 remains bounded as N →∞ and

inf
N≥10

min
x∈V ′

N/2

Var
(
ϕ
VN ,V

′
N/2

x

)
> 0 , (8.87)

the minimum on the right of (8.86) is positive uniformly in N ≥ 10. The claim
follows from (8.85). ut

As our final step, we boost (8.79) to a bound on the lower tail:

Lemma 8.23 (Tightness of lower tail). There is a > 0 and t0 > 0 such that

sup
N≥1

P
(
MN < mN − t

)
≤ e−at, t > t0. (8.88)

Before we delve into the proof, let us remark that the bound (8.88) is not
sharp even as far its overall structure is concerned. Indeed, Ding and Zeitouni [60]
showed that the lower tails of MN are in fact doubly exponential. However, the
proof of the above is easier and fully suffices for our later needs.

Proof of Lemma 8.23. Consider the setting as in the proof of Lemma 8.3. The
reasoning leading up to (8.24) plus the arguments underlying (8.25) show

P
(
M3KN < m3KN − t

)
≤ 2e−at + e−

1
4K

2P (MN≥m3NK−t+
√
t
√

logK). (8.89)

Now link K to t by setting t := c logK with c > 0 so large that m3NK − t +√
t
√

logK ≤ mN . With the help of (8.79), the second term on the right of (8.89)
is doubly exponentially small in t, thus proving the claim (after an adjustment
of a) for N ∈ (3K)N. The claim follows from the next exercise. ut

Exercise 8.24. Use a variation of Exercise 3.4 to show that if c relating K to t
is chosen large enough, then (8.88) for N ∈ (3K)N extends to a similar bound
for all N ∈ N. Hint: Note that max0≤r<3K [m3Kn+r −m3Kn] ≤ 2

√
g log(3K).

From here we finally get:

Proof of Theorem 7.3. The tightness of {MN −mN : N ≥ 1} follows from Lem-
mas 8.3 and 8.23. Alternatively, use these lemmas to infer EMN = mN + O(1)
and then apply Lemma 7.1. ut

Lecture 9

Extremal local extrema

Having established tightness of the DGFF maximum, we turn our attention to
the structure of the extremal level sets — namely, the sets of vertices where
the DGFF takes values within order unity of the absolute maximum. As for the
intermediate levels, we cast these in the form of a point process. In this lecture we
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state the main result proved in a sequence of joint papers with O. Louidor [25–
27] and then discuss one of the main ingredients of the proof: Liggett’s theory of
invariant measures for point processes evolving (or Dysonized) by independent
Markov chains. This characterizes the subsequential limits of the resulting point
process; uniqueness (and thus existence) of the limit will be addressed later.

9.1 Extremal level sets

In the previous lectures we showed that the maximum of the DGFF in VN is
tight around the sequence mN defined in (7.9). By Exercise 3.4, this applies
to any sequence {DN : N ≥ 1} of admissible discretizations of a continuum
domain D ∈ D. Once the tightness of the maximum is in place, additional
conclusions of interest can be derived concerning the structure of the extremal
level set

ΓDN (t) :=
{
x ∈ DN : hDNx ≥ mN − t

}
. (9.1)

We will need two theorems, both proved originally in Ding and Zeitouni [60]:

Theorem 9.1 (Size of extremal level set). There are constants c, C ∈ (0,∞)
such that

lim
t→∞

lim inf
N→∞

P
(
ect ≤ |ΓDN (t)| ≤ eCt

)
= 1. (9.2)

Theorem 9.2 (Geometry of extremal level set). For each t ∈ R,

lim
r→∞

lim sup
N→∞

P
(
∃x, y ∈ ΓDN (t) : r < |x− y| < N

r

)
= 0 . (9.3)

The upshot of these theorems is the following picture: With high probabil-
ity, the extremal level set ΓDN (t) is the union of a finite number of “islands” of
bounded size at distances of order N . For this reason, we like to think of Theo-
rems 9.1–9.2 as tightness results; the former for the size and the latter for the
spatial distribution of ΓDN (t). Our proofs of these theorems will follow a different
route than [60] and are therefore postponed to Lecture 12.

Our focus on scaling limits naturally suggests considering subsequential dis-
tributional limits of the scaled version of ΓDN (t), namely, the set {x/N : x ∈
ΓDN (t)} regarded as a random subset of the continuum domain D. As is common
in the area of extreme-order statistics, these are best encoded in terms of the
empirical point measure on D × R defined by

ηDN :=
∑
x∈DN

δx/N ⊗ δhDNx −mN
. (9.4)

Indeed, we have
ηDN
(
D × [−t,∞)

)
=
∣∣ΓDN (t)

∣∣ (9.5)

and so ηDN definitely captures at least the size of the level set. In addition, ηDN
also keeps track of how the points are distributed in the level set and what the
value of the field is there, very much like the measures discussed in Lectures 2–5.
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Fig. 17. A sample of the limit process obtained from ηDN in (9.4) in the
limit N → ∞. Each “leading” local maximum is accompanied by a cluster
of points that, in the limit, all line up over the same spatial location.

However, unlike for the intermediate level sets, no normalization needs to be
imposed here thanks to Theorem 9.1.

Notwithstanding all that was just said, ηDN are actually not the most natural
primary objects to work with. This is because each high value of the DGFF
comes along with a whole cluster of high values; namely, the values of the field
at the points of Z2 in close vicinity thereof. In the limit N → ∞, this whole
cluster collapses to a single spatial location; see Fig. 17. As the field-values
within a single cluster are heavily correlated (and remain so through N → ∞
limit) depending on their relative lattice positions, it is advantageous to track
them at the (original) lattice scale; i.e., without scaling space by N .

Thus, denoting (with a slight abuse of our earlier notation) by

Λr(x) :=
{
y ∈ Z2 : |x− y| < r

}
(9.6)

the r-neighborhood of x in (say) Euclidean norm, instead of ηDN we will consider
its structured version

ηDN,r :=
∑
x∈DN

1{hDNx =maxy∈Λr(x) h
DN
y } δx/N ⊗ δhDNx −mN

⊗ δ{hDNx −hDNx+z : z∈Z2} .

(9.7)
This measure picks one reference point in each “cluster” — namely, the “r-local
maximum” which is a point x where hDN dominates all values in Λr(x) — and
records the scaled position and reduced field-value at this point along with the
“shape” of the field thereabout.

Let us write PPP(µ) to denote the Poisson point process with (σ-finite)
intensity measure µ. Abbreviate R := R ∪ {+∞,−∞}. Our main result on the
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structured extremal point processes (9.7) is the following theorem, derived jointly
with O. Louidor in [25–27]:

Theorem 9.3 (DGFF extremal process). There is a probability measure ν

on [0,∞)Z
2

and, for each D ∈ D, a random Borel measure ZD on D with
ZD(D) ∈ (0,∞) a.s. such that the following holds for any sequence {DN : N ≥ 1}
of admissible approximations of D and any sequence {rN : N ≥ 1} of numbers
with rN → 0 and N/rN →∞:

ηDN,rN
law−→

N→∞
PPP

(
ZD(dx)⊗ e−αhdh⊗ ν(dφ)

)
, (9.8)

where the convergence in law is with respect to the vague convergence of Radon

measures on D × (R ∪ {∞})× RZd
and α := 2/

√
g.

A couple of remarks are in order:

(1) By Exercise 2.8 with X := D × (R ∪ {∞}) × RZd
, the statement (9.8) is

equivalent to the distributional convergence of the sequence of real-valued
random variables {〈ηDN,rN , f〉 : N ≥ 1} for all functions f ∈ Cc(X ), or even
just such f ’s that depend only on a finite number of the coordinates in the
third (i.e.,“cluster”) variable.

(2) The PPP process with a random intensity is to be understood as a random
sample from a class of Poisson processes. To generate PPP(µ) for µ random,
we thus first sample µ and then generate the Poisson process conditional
on µ. The term Cox process is sometimes used for this object as well.

(3) Somewhat surprisingly, the expression we saw in the limit of the intermediate
level sets appears in (9.8) as well, albeit now as the intensity measure of a
Poisson process. See Conjectures 16.5 and 16.7 for some explanation.

(4) Using local maxima as the reference points in (9.7) is the most natural choice
although other choices might presumably work as well. (For instance, one

could take x to be a sample from a suitably normalized measure z 7→ eβh
DN
z

on Λr(y) for y being an r-local maximum of hDN .)

Let us elaborate on remark (2) above by offering a more explicit way of

sampling the limit process in (9.8). Writing ZD(·) as ZD(D)ẐD(·), where

ẐD(A) :=
ZD(A)

ZD(D)
, (9.9)

the limit process in (9.8) can be sampled as follows: Let {h′i : i ∈ N} be points in
a sample of the Poisson point process R with (Gumbel) intensity e−αhdh. Given
an independent sample of the ZD measure, set

hi := h′i + α−1 logZD(D), i ∈ N, (9.10)

and, conditionally on ZD, sample independently:
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(1) {xi : i ∈ N} law
= i.i.d. with law ẐD,

(2) {φi : i ∈ N} law
= i.i.d. with law ν.

The point measure
∑
i∈N δxi ⊗ δhi ⊗ δφi then has the law on the right-hand side

of (9.8). See again Fig. 17.
We remark that a conclusion analogous to (9.8) is known to hold also for the

Branching Brownian Motion. This is thanks to the work of McKean [93], Bram-
son [35, 36], Lalley and Sellke [84] culminating in Arguin, Bovier and Kistler [10–
12], Aı̈dekon, Berestycki, Brunet and Shi [8] and Bovier and Hartung [34]; see also
the review by Bovier [33]. The corresponding problem was solved for the DGFF
in d ≥ 3 as well (Chiarini, Cipriani and Hazra [42–44]) although (since these
DGFFs are no longer log-correlated) there the limit process has a non-random
intensity. In fact, the same applies to the field of i.i.d. standard normals.

9.2 Distributional invariance

The proof of Theorem 9.3 will take the total of four lectures. (The actual proof
appears in Sections 10.2 and 11.3 with all needed technicalities settled only in
Lecture 12.) The basic strategy will be very much like that used for the inter-
mediate level sets although, chronologically, these ideas started with extremal
level sets. Namely, we extract a subsequential limit of the processes of interest
and then derive enough properties to identify the limit law uniquely.

We start by noting a tightness statement:

Exercise 9.4. Let f ∈ Cc(D×(R∪{∞})×RZ2

). Use Theorems 9.1–9.2 to show
that the sequence of random variables {〈ηDN,rN , f〉 : N ≥ 1} is tight.

The use of subsequential convergence is then enabled by:

Exercise 9.5. Suppose X is a locally compact, separable Hausdorff space and
let ηN be a sequence of random (non-negative) integer-valued Radon measures
on X . Assume {〈ηN , f〉 : N ≥ 1} is tight for each f ∈ Cc(X ). Prove that there
is a sequence Nk →∞ such that 〈ηNk , f〉 converges in law to a random variable
that takes the form 〈η, f〉 for some random Radon measure η on X . Prove that η
is integer valued.

In this lecture we go only part of the way to the full proof of Theorem 9.3
by showing that any (subsequential) limit of the measures {ηDN,rN : N ≥ 1}
must take the form on the right of (9.8). We will work only with the first two
coordinates of the process for a while so we will henceforth regard ηDN,rN as a
random measure on D × R. The main focus of this lecture is thus:

Theorem 9.6 (Poisson structure of subsequential limits). Any weak sub-
sequential limit ηD of the processes {ηDN,rN : N ≥ 1} restricted to just the first
two coordinates takes the form

ηD
law
= PPP

(
ZD(dx)⊗ e−αhdh

)
(9.11)

for some random Borel measure ZD on D with ZD(D) ∈ (0,∞) a.s.
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As we will demonstrate, this arises from the fact that every subsequential
limit measure ηD has the following distributional symmetry:

Proposition 9.7 (Invariance under Dysonization). For any ηD as above
(projected on the first two coordinates) and any function f ∈ Cc(D×R), we have

E
(
e−〈η,f〉

)
= E

(
e−〈η,ft〉

)
, t > 0, (9.12)

where
ft(x, h) := − logE0

(
e−f(x,h+Bt−α2 t)

)
(9.13)

with {Bt : t ≥ 0} denoting the standard Brownian motion.

Let us pause to explain why we refer to this as “invariance under Dysoniza-
tion.” Exercises 9.4-9.5 ensure that ηD is a point measure, i.e.,

ηD =
∑
i∈N

δxi ⊗ δhi . (9.14)

Given a collection {B(i)
t : t ≥ 0}∞i=1 of independent standard Brownian motions,

we then set
ηDt :=

∑
i∈N

δxi ⊗ δhi+B(i)
t −α2 t

. (9.15)

Of course, for t > 0 this may no longer be a “good” point measure as we cannot
a priori guarantee that ηDt (C) < ∞ for any compact set. Nonetheless, we can
use Tonelli’s theorem to perform the following computations:

E
(
e−〈ηt,f〉

)
= E

(∏
i∈N

e−f(xi,hi+B
(i)
t −α2 t)

)
= E

(∏
i∈N

e−ft(xi,hi)
)

= E
(
e−〈η,ft〉

)
,

(9.16)

where in the middle equality we used the Bounded Convergence Theorem to
pass the expectation with respect to each Brownian motion inside the infinite
product. Proposition 9.7 then tells us

E
(
e−〈ηt,f〉

)
= E

(
e−〈η,f〉

)
, t ≥ 0, (9.17)

and, since this holds for all f as above,

ηt
law
= η, t ≥ 0. (9.18)

Thus, attaching to each point of ηD an independent diffusion t 7→ Bt− α
2 t in the

second coordinate preserves the law of ηD. We call this operation “Dysonization”
in analogy to Dyson’s proposal [70] to consider dynamically-evolving random
matrix ensembles; i.e., those where the static matrix entries are replaced by
stochastic processes.
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Proof of Proposition 9.7 (main idea). The proof is based on the following ele-
mentary computation. Writing h for the DGFF on DN , let h′, h′′ be independent
copies of h. For any s ∈ [0, 1], we can then realize h as

h =
√

1− s h′ +
√
s h′′. (9.19)

Choosing s := t/(g logN), we get

h =

√
1− t

g logN
h′ +

√
t√

g logN
h′′ . (9.20)

Now pick x at or near a local maximum of h′ of value mN + O(1). Expanding
the first square-root into the first-order Taylor polynomial and using that h′x =
2
√
g logN +O(log logN) yields

hx = h′x −
1

2

t

g logN
h′x +

√
t√

g logN
h′′x +O

( 1

logN

)
= h′x −

t
√
g

+

√
t√

g logN
h′′x +O

( log logN

logN

)
.

(9.21)

As noted in (1.24), the covariance of the second field on the right of (9.20)
satisfies

Cov
( √

t√
g logN

h′′x,

√
t√

g logN
h′′y

)
=

{
t+ o(1), if |x− y| < rN ,

o(1), if |x− y| > N/rN .
(9.22)

Thus, the second field behaves as a random constant (with the law of N (0, t)) on
the whole island of radius rN around x, and these random constants on distinct
islands can be regarded as more or less independent.

The technical part of the proof (which we skip) requires showing that, if x
is a local maximum of h′x at height mN + O(1), the gap between h′x and the
second largest value in an rN -neighborhood of x stays positive with probability
tending to 1 as N → ∞. Once this is known, the errors in all approximations
can be fit into this gap and x will also be the local maximum of the field h —
and so the locations of the relevant local maxima of h and h′ coincide with high
probability.

The values of the field
√
t√

g logN
h′′x for x among the local maxima of h (or h′)

then act as independent copies of N (0, t), and so they can be realized as values of
independent Brownian motions at time t. The drift term comes from the linear
shift by t/

√
g by noting that 1/

√
g = α/2. ut

The full proof of Proposition 9.7 goes through a series of judicious approx-
imations for which we refer the reader to [25]. One of them addresses the fact
that ft no longer has compact support. We pose this as:

Exercise 9.8. Show that for each f ∈ Cc(D × R), each t > 0 and each ε > 0
there is g ∈ Cc(D × R) such that

lim sup
N→∞

P
(∣∣〈ηDN,rN , ft〉 − 〈ηDN,rN , g〉∣∣ > ε

)
< ε. (9.23)
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Hint: Use Theorem 9.1.

We will also revisit the “gap estimate” in full detail later; see Exercise 11.10.

9.3 Dysonization-invariant point processes

Our next task is to use the distributional invariance articulated in Proposition 9.7
to show that the law of ηD must take the form in Theorem 9.6. A first natural
idea is to look at the moments of ηD, i.e., measures µn on Rn of the form

µn(A1 × · · · ×An) := E
[
ηD(D ×A1) . . . ηD(D ×An)

]
. (9.24)

As is readily checked, by the smoothness of the kernel associated with t 7→
Bt − α

2 t, these would have a density f(x1, . . . , xn) with respect to the Lebesgue
measure on Rn and this density would obey the PDE

α(1, . . . , 1) · ∇f +∆f = 0. (9.25)

This seems promising since all full-space solutions of this PDE can be classified.
Unfortunately, the reasoning fails right at the beginning because, as it turns out,
all positive-integer moments of ηD are infinite. We thus have to proceed using
a different argument. Fortunately, a 1978 paper of T. Liggett [88] does all what
we need to do, so this is what we will discuss next.

Liggett’s interest in [88] was in non-interacting particle systems which he
interpreted as families of independent Markov chains. His setting is as follows:
Let X be a locally compact, separable Hausdorff space and, writing B(X ) for
the class of Borel sets in X , let P : X ×B(X )→ [0, 1] be a transition kernel of
a Markov chain on X . Denoting N? := N ∪ {0} ∪ {∞}, we are interested in the
evolution of point processes on X , i.e., random elements of

M :=
{
N?-valued Radon measures on (X ,B(X ))

}
, (9.26)

under the (independent) Markovian “dynamics.”
Recall that being “Radon” means that the measure is inner and outer regular

with a finite value on every compact subset of X . Calling the measures in M
“point processes” is meaningful in light of:

Exercise 9.9. Every η ∈M takes the form

η =

N∑
i=1

δxi , (9.27)

where N ∈ N? and where (for N > 0) {xi : i = 1, . . . , N} is a multiset of points
from X such that η(C) <∞ a.s. for every C ⊂X compact.

To describe the above “dynamics” more precisely, given η ∈ M of the form

(9.27), we consider a collection of independent Markov chains {X(i)
n : n ≥ 0}Ni=1

such that
P
(
X

(i)
0 = xi

)
= 1, i = 1, . . . , N. (9.28)
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Then we define

ηn :=

N∑
i=1

δ
X

(i)
n
, n ≥ 0, (9.29)

while noting that, due to the independence of the chains X(i), the law of this
object does not depend on the initial labeling of the atoms of η.

Note that we cannot generally claim that ηn ∈ M for n ≥ 1; in fact,
easy counterexamples can be produced to the contrary whenever N = ∞.
Nonetheless, for processes whose law is invariant under the above time evolution
η 7→ {ηn : n ≥ 0}, i.e., those in

I :=
{
η : random element of M such that η1

law
= η

}
, (9.30)

this is guaranteed ex definitio in light of

η ∈M and η1
law
= η ⇒ ηn ∈M a.s. ∀n ≥ 0. (9.31)

Let Pn denote the n-th (convolution) power of the kernel P defined, inductively,
by Pn+1(x, ·) =

∫
X P(x, dy)Pn(y, ·). The starting point of Liggett’s paper is

the following observation which, although attributed to folklore, is still quite
ingenious:

Theorem 9.10 (Folklore theorem). Suppose P obeys the following “strong
dispersivity” assumption

∀C ⊂X compact : sup
x∈X

Pn(x,C) −→
n→∞

0 . (9.32)

Then the set of invariant measures I defined in (9.30) is given as

I =
{

PPP(M) : M = (random) Radon measure on X s.t. M
law
= MP

}
,

(9.33)
where MP(·) :=

∫
M(dx)P(x, ·).

We refer to the condition (9.32) using the physics term “dispersivity” as that
is often used to describe the rate of natural spread (a.k.a. dispersion) of waves or
wave packets in time. Note that this condition rules out existence of stationary
distributions for the Markov chain.

Before we prove Theorem 9.10, let us verify its easier part — namely, that

all the Poisson processes PPP(M) with M
law
= MP lie in I . This follows from:

Lemma 9.11. Let M be a Radon measure on X . Then

η
law
= PPP(M) ⇒ ηn

law
= PPP(MPn), ∀n ≥ 0. (9.34)

Proof. We start by noting that η being a sample from PPP(M) for a given Radon
measure M is equivalent to saying that, for every f ∈ Cc(X ) with f ≥ 0,

E
(
e−〈η,f〉

)
= exp

{
−
∫
M(dx)(1− e−f(x))

}
. (9.35)
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The argument in (9.16) shows

E
(
e−〈ηn,f〉

)
= E

(
e−〈η,fn〉

)
, (9.36)

where
fn(x) := − log

[
(Pne−f )(x)

]
. (9.37)

This equivalently reads as e−fn = Pne−f and so from (9.35) for f replaced by fn
and the fact that Pn1 = 1 we get

E
(
e−〈η,fn〉

)
= exp

{
−
∫
M(dx)Pn(1− e−f )(x)

}
. (9.38)

Tonelli’s theorem identifies the right-hand side with that of (9.35) for M replaced
by MPn. Since (9.35) characterizes PPP(M), the claim follows from (9.36). ut

We are now ready to give:

Proof of Theorem 9.10. In light of Lemma 9.11 we only need to verify that

every element of I takes the form PPP(M) for some M satisfying M
law
= MP.

Let η ∈ I and pick f ∈ Cc(X ) with f ≥ 0. Since e−f equals 1 outside a
compact set, the strong dispersivity condition (9.32) implies

sup
x∈X

∣∣(Pne−f )(x)− 1
∣∣ −→
n→∞

0. (9.39)

Recalling the definition of fn(x) from (9.37), this and Pn1 = 1 yields the exis-
tence of an εn ↓ 0 such that

(1− εn)Pn(1− e−f )(x) ≤ fn(x) ≤ (1 + εn)Pn(1− e−f )(x), x ∈X . (9.40)

By the Intermediate Value Theorem there is a (random) ε̃n ∈ [−εn, εn] such that

〈η, fn〉 = (1 + ε̃n)
〈
η,Pn(1− e−f )

〉
. (9.41)

Denoting ηPn(·) :=
∫
η(dx)Pn(x, ·), from ηn

law
= η and (9.36) we get

E
(
e−〈η,f〉

)
= E

(
e−(1+ε̃n)〈ηPn,(1−e−f )〉) . (9.42)

Noting that every g ∈ Cc(X ) can be written as g = λ(1 − e−f ) for some
f ∈ Cc(X ) and λ > 0, we now ask the reader to solve:

Exercise 9.12. Prove that {〈ηPn, g〉 : n ≥ 0} is tight for all g ∈ Cc(X ).

Using this along with Exercise 9.5 permits us to extract a subsequence
{nk : k ≥ 1} with nk →∞ and a random Borel measure M on X such that

〈ηPnk , g〉 law−→
k→∞

〈M, g〉, g ∈ Cc(X ). (9.43)

As ε̃n → 0 in L∞, from (9.42–9.43) we conclude

E
(
e−〈η,f〉

)
= E

(
e−〈M,(1−e−f )〉), f ∈ Cc(X ). (9.44)
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A comparison with (9.35) proves that η
law
= PPP(M). Replacing n by n + 1 in

(9.42) shows that (9.44) holds with M replaced by MP. From (9.44) we infer
that MP is equidistributed to M . ut

9.4 Characterization of subsequential limits

By Proposition 9.7, for the case at hand — namely, the problem of the extremal
process of the DGFF restricted to first two coordinates — the relevant setting
is X := D × R and, fixing any t > 0, the transition kernel

Pt
(
(x, h), A

)
:= P 0

(
(x, h+Bt − α

2 t) ∈ A
)
. (9.45)

We leave it to the reader to verify:

Exercise 9.13. Prove that (for all t > 0) the kernel Pt has the strong disper-
sivity property (9.32).

Hence we get:

Corollary 9.14. Every subsequential limit ηD of processes {ηDN,rN : N ≥ 1}
(projected on the first two coordinates and taken with respect to the vague topology
on Random measures on D × R) takes the form

ηD
law
= PPP(M), (9.46)

where M = M(dxdh) is a Radon measure on D × R such that

MPt
law
= M, t > 0. (9.47)

Proof. Just combine Exercise 9.13 with Theorem 9.10. ut
Moving back to the general setting of the previous section, Theorem 9.10

reduces the problem of classifying the invariant measures on point processes
evolving by independent Markov chains to a question involving a single Markov
chain only:

Characterize (random) Radon measures M on X satisfying MP
law
= M .

Note that if M is a random sample from the invariant measures for the Markov

chain P, then MP = M a.s. and so, in particular, MP
law
= M . This suggests that

we recast the above question as:

When does MP
law
= M imply MP = M a.s.?

In his 1978 paper, Liggett [88] identified a number of examples when this is
answered in the affirmative. The salient part of his conclusions is condensed into:

Theorem 9.15 (Cases when MP
law
= M implies MP = M a.s.). Let M be

a random Radon measure on X . Suppose that
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(1) either P is an irreducible, aperiodic, Harris recurrent Markov chain, or
(2) P is a random walk on an Abelian group such that P(0, ·), where 0 is the

identity, is not supported on a translate of a proper closed subgroup.

Then MP
law
= M implies MP = M a.s.

Liggett’s proof of Theorem 9.15 uses sophisticated facts from the theory of
Markov chains and/or random walks on Abelian groups and so we will not re-
produce it in full generality here. Still, the reader may find it instructive to solve:

Exercise 9.16. Find examples of Markov chains that miss just one of the three
required attributes in (1) and for which the conclusion of the theorem fails.

Returning back to the specific case of extremal point process associated with
the DGFF, here the first alternative in Theorem 9.15 does not apply as our
Markov chain — namely, the Brownian motion with a constant negative drift
evaluated at integer multiplies of some t > 0 — is definitely not Harris recurrent.
Fortunately, the second alternative does apply and hence we get:

Corollary 9.17. For each t > 0, any M satisfying (9.47) obeys MPt = M a.s.

We will provide an independent proof of this corollary, and thus also highlight
the main ideas behind the second part of Theorem 9.15, by showing:

Lemma 9.18. Any M satisfying (9.47) takes the form

M(dxdh)
law
= ZD(dx)⊗ e−αhdh+ Z̃D(dx)⊗ dh, (9.48)

where (ZD, Z̃D) is a pair of random Borel measures on D.

Proof. Let M be a random Radon measure on D × R with MPt
law
=M and let

A ⊆ D be a Borel set. Since the Markov kernel Pt does not move the spatial
coordinate of the process, we project that coordinate out by considering the
measure

MA(C) := M(A× C), C ⊆ R Borel, (9.49)

and the kernel
Qt(h,C) := P 0

(
h+Bt − α

2 t ∈ C
)
. (9.50)

Note that the only invariant sets for Qt are ∅ and R and so Qt falls under
alternative (2) in Theorem 9.15. We will nevertheless give a full proof in this case.

By assumption, the sequence {MAQnt : n ≥ 0} is stationary with respect to
the left shift. The Kolmogorov Extension Theorem (or weak-limit arguments)
then permits us to embed it into a two-sided stationary sequence {MA

n : n ∈ Z}
such that

MA
n

law
= MA and MA

n+1 = MA
n Qt a.s. (9.51)

hold for each n ∈ Z. This makes {MA
n : n ∈ Z} a random instance of:
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Definition 9.19 (Entrance law). Given a Markov chain on S with transition
kernel P, a family of measures {πn : n ∈ Z} on S satisfying

πn+1 = πnP, n ∈ Z. (9.52)

is called an entrance law.

From Qt(h, ·) � Leb we infer MA
n � Leb for each n ∈ Z. Hence, there are

(random) densities h 7→ f(n, h) such that MA
n (dh) = f(n, h)dh. Denoting by

kt(h) :=
1√
2πt

e−
h2

2t (9.53)

the probability density of N (0, t), the second relation in (9.51) then reads

f(n+ 1, h) = f(n, ·) ? kt
(
h+ α

2 t
)
, (9.54)

where ? denotes the convolution of functions over R. Strictly speaking, this
relation holds only for Lebesgue a.e. h but this can be mended by solving:

Exercise 9.20. Show that, for each n ∈ N, h 7→ f(n, h) admits a continuous
version such that f(n, h) ∈ (0,∞) for each h ∈ R. The identity (9.54) then holds
for all h ∈ R.

A key observation underlying Liggett’s proof of (2) in Theorem 9.15 is then:

Exercise 9.21. Let X be a random variable on an Abelian group S. Prove that
every entrance law {πn : n ∈ Z} for the random walk on S with step distribu-
tion X is a stationary measure for the random walk on Z × S with step distri-
bution (1, X).

This is relevant because it puts us in the setting to which the Choquet-Deny
theory applies (see Choquet and Deny [45] or Deny [55]) with the following
conclusion: Every f : Z× R→ (0,∞) that obeys (9.54) takes the form

f(n, h) =

∫
λ(κ)n eκh ν(dκ) (9.55)

for some Borel measure ν on R and for

λ(κ) := e
1
2κ(κ+α)t . (9.56)

One important ingredient that goes in the proof is:

Exercise 9.22. Prove that the random walk on (the Abelian group) Z×R with
step distribution (1,N (t,−α2 t)) has no non-trivial closed invariant subgroup.

Underlying the Choquet-Deny theory is Choquet’s Theorem, which states
that every compact, convex subset of a Banach space is the closed convex hull of
its extreme points — i.e., those that cannot be written as a convex combination
of distinct points from the set. It thus suffices to classify the extreme points:
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Exercise 9.23. Observe that if f lies in

C :=
{
f : Z× R→ (0,∞) : (9.54) holds, f(0, 0) = 1

}
, (9.57)

then

fs(n, h) :=
f(n− 1, h+ s)

f(−1, s)
(9.58)

obeys fs ∈ C for each s ∈ R. Use this to prove that every extreme f ∈ C takes
the form f(n, h) = λ(κ)neκh for some κ ∈ R and λ(κ) as in (9.56).

With (9.55–9.56) in hand, elementary integration (and Tonelli’s theorem) gives

MA
n

(
[−1, 1]

)
=

∫
[−1,1]

f(n, h) dh =

∫
λ(κ)n

sinh(κ)

κ
ν(dκ) , (9.59)

where, in light of (9.55), ν is determined by (and thus a function of) the realiza-
tion of MA. Since {MA

n : n ∈ Z} is stationary, the last integral in (9.59) cannot
diverge to infinity as n→∞ or n→ −∞. This means that ν must be supported
on {κ ∈ R : λ(κ) = 1} which, via (9.56), forces ν to be of the form

ν = XAδ−α + Y Aδ0 (9.60)

for some non-negative XA and Y A. Hence we get

MA(dh) = XAe−αhdh+ Y Adh. (9.61)

But A 7→ MA is a Borel measure and so ZD(A) := XA and Z̃D(A) := Y A

defines two random Borel measures for which (9.48) holds. ut

Exercise 9.24. A technical caveat in the last argument is that (9.61) holds only
a.s. with the null set depending possibly on A. Prove that, thanks to the fact that
the Borel sets in R are countably generated, the conclusion does hold as stated.
(Remember to resolve all required measurability issues.).

We are now ready to establish the desired Poisson structure for any weak
subsequential limit of the processes {ηDN,rN : N ≥ 1}:
Proof of Theorem 9.6. First we note that, if f ∈ Cc(D× (R∪{∞})) is such that
f ≥ 0 and supp(f) ⊆ D × [t,∞], then{

max
x∈DN

hDNx < mN + t
}

=
{
ηDN,rN

(
D × [t,∞)

)
= 0
}

(9.62)

implies

P
(
〈ηDN,rN , f〉 > 0

)
≤ P

(
max
x∈DN

hDNx ≥ mN + t
)
. (9.63)

The upper-tail tightness of the centered maximum (cf Lemma 8.3) shows that
the right-hand side tends to zero as N →∞ and t→∞. As a consequence we get
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that every subsequential limit of {ηDN,rN : N ≥ 1} (in the first two coordinates)

is concentrated on D× R and so may focus on convergence in this space.
Consider a sequence Nk → ∞ such that ηDNk,rNk

converges in law with re-

spect to the vague topology on the space of Radon measures on D × R. By
Corollary 9.14 and Lemma 9.18, the limit is then of the form PPP(M) for some
Radon measure M on D × R of the form (9.48). The probability that PPP(M)
has no points in the set A is e−M(A). Standard approximation arguments and
(9.62) then show

P
(

max
x∈DNk

h
DNk
x < mNk + t

)
−→
k→∞

E
(

e−M(D×[t,∞))
)
. (9.64)

(The convergence a priori holds only for a dense set of t’s but, since we already
know that M has a density in the h variable, it extends to all t.) The upper-tail
tightness of the maximum bounds the left-hand side by 1 − e−ãt from below
once t > t0. Taking t→∞ thus yields

M
(
D × [t,∞)

)
−→
t→∞

0 a.s. (9.65)

which forces Z̃D(D) = 0 a.s.
To get that ZD(D) > 0 a.s. we instead invoke the lower-tail tightness of the

maximum (cf Lemma 8.23), which bounds the left-hand side of (9.64) by eat

from above once t is large negative. The right-hand side in turn equals

E
(
e−α

−1e−αtZD(D)
)
, (9.66)

which tends to zero as t→ −∞ only if ZD(D) > 0 a.s. ut
We will continue the proof of Theorem 9.3 in the upcoming lectures. To

conclude the present lecture we note that, although the subject of entrance
laws has been studied intensely (e.g., by Cox [49], the aforementioned paper of
Liggett [88] and also the diploma thesis of Secci [110]), a number of interesting
open questions remains; particularly, for transient Markov chains. Ruzmaikina
and Aizenman [109] applied Liggett’s theory to classify quasi-stationary states
for competing particle systems on the real line where the limiting distribution
ends up to be also of Gumbel extreme-order type.

Lecture 10

Nailing the intensity measure

In this lecture we continue the proof of extremal point process convergence in
Theorem 9.3. We first observe that the intensity measure associated with a
subsequential limit of the extremal point process is in close correspondence with
the limit distribution of the DGFF maximum. The existence of the latter limit
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is supplied by a theorem of Bramson, Ding and Zeitouni [37] which we will prove
in Lecture 12, albeit using a different technique. Next we state properties that
link the intensity measure in various domains; e.g., under the restriction to a
subdomain (Gibbs-Markov) and conformal maps between domains. These give
rise to a set of conditions that ultimately identify the intensity measure uniquely
and, in fact, link them to a version of the critical Liouville Quantum Gravity.

10.1 Connection to the DGFF maximum

On the way to the proof of Theorem 9.3 we have so far shown that any sub-
sequential limit of the measures {ηDN,rN : N ≥ 1}, restricted to the first two
coordinates, is a Poisson Point Process on D × R with intensity

ZD(dx)⊗ e−αhdh (10.1)

for some random Borel measure ZD on D. Our next task is to prove the existence
of the limit. Drawing on the proofs for the intermediate level sets, a natural
strategy would be to identify ZD through its properties uniquely. Although this
strategy now seems increasingly viable, it was not available at the time when
these results were first derived (see the remarks at the end of this lecture). We
thus base our proof of uniqueness on the connection with the DGFF maximum,
along the lines of the original proof in [25].

We start by formally recording an observation used in the last proof of the
previous lecture:

Lemma 10.1. Suppose Nk →∞ is such that

ηDNk,rNk
law−→
k→∞

PPP
(
ZD(dx)⊗ e−αhdh

)
. (10.2)

Then for each t ∈ R,

P
(

max
x∈DNk

h
DNk
x < mNk + t

)
−→
k→∞

E
(

e−Z
D(D)α−1e−αt

)
(10.3)

Proof. Apply (9.64) along with the known form of the intensity measure. ut
Hence we get:

Corollary 10.2. If maxx∈DN h
DN
x −mN converges in distribution, then the law

of ZD(D) is the same for every subsequential limit of {ηDN,rN : N ≥ 1}.

Proof. The function t 7→ α−1e−αt sweeps through (0,∞) as t varies through R.
The limit distribution of the maximum thus determines the Laplace transform
of the random variable ZD(D) which in turn determines the law of ZD(D). ut
In the original argument in [25], the premise of Corollary 10.2 was supplied by the
main result of Bramson, Ding and Zeitouni [37] (which conveniently appeared
while the first version of [25] was being written):
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N

KN

xi

VN

(i)

wN,i

Fig. 18. The decomposition of VNK into K2 translates of VN . The center
of (the shaded box) V (i)

N is denoted by xi; the lower-left corner thereof
by wN,i.

Theorem 10.3 (Convergence of DGFF maximum). As N →∞, the cen-
tered maximum maxx∈VN h

VN
x −mN of the DGFF in VN := (0, N)2∩Z2 converges

in law to a non-degenerate random variable.

The proof of Theorem 10.3 in [37] is (similarly as the proof of tightness
in [38]) based on an intermediate process between the BRW and the DGFF
called the modified Branching Random Walk. In Lecture 12 we will give a dif-
ferent proof that instead relies on the concentric decomposition and entropic-
repulsion techniques encountered already in our proof of tightness. Our proof
of Theorem 10.3 runs somewhat logically opposite to Corollary 10.2 as it yields
directly the uniqueness of the ZD measure; the limit of the DGFF maximum
then follows from Lemma 10.1. The following text highlights some of the main
ideas shared by both proofs.

Pick N,K ∈ N large and consider the DGFF on VKN . Building towards
the use of the Gibbs-Markov decomposition, identify within VKN the (unique)
collection of translates {V (i)

N : i = 1, . . . ,K2} of VN separated by “lines of sites”
in-between; cf Fig. 18. Realizing the DGFF hVKN on VKN by way of a binding
field and K2 independent copies of the DGFF on VN ’s, i.e.,

hVKN := hV
◦
KN + ϕVKN ,V

◦
KN with hV

◦
KN ⊥⊥ ϕVKN ,V

◦
KN , (10.4)

where V ◦KN :=
⋃K2

i=1 V
(i)

N , we will now study what the occurrence of the absolute
maximum of hVKN at some x ∈ V (i)

N means for the DGFF on V (i)

N .
We first observe that we may safely ignore the situations when x falls near

the said “lines of sites.” Indeed, in Lecture 12 we will prove:
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Lemma 10.4. There is a constant c > 0 such that for all N ≥ 1, all t with
0 ≤ |t| ≤ (logN)1/5 and all non-empty sets A ⊆ DN ,

P
(

max
x∈A

hDNx ≥ mN + t
)
≤ c(1 + t2)e−αt

|A|
N2

[
log
(

1 +
N2

|A|

)]5

. (10.5)

Remark 10.5. We note that, although we expect the fifth power to be subop-
timal, the example of A being a singleton shows that a logarithmic correction
cannot be eliminated completely. The prefactor t2 is suboptimal as well as it can
be omitted for t < 0 and reduced to t for t > 0; see Theorem 10.7 below.

Next we note that, once x is at least εN away from the boundaries of

boxes V
(i)
N , the binding field ϕVKN ,V

◦
KN is well behaved. This might suggest that

we could replace the whole binding field by its value at the center xi of V (i)

N .
However, this is correct only to the leading order as the field

x 7→ ϕ
VKN ,V

◦
KN

x − ϕVKN ,V
◦
KN

xi for x with dist(x, (V (i)

N )c) > εN, (10.6)

retains variance of order unity (after all, it scales to a non-trivial Gaussian field
with smooth, but non-constant, sample paths). Notwithstanding, the covariances
at the center points satisfy

Cov
(
ϕ
VKN ,V

◦
KN

xi , ϕ
VKN ,V

◦
KN

xj

)
= Cov

(
hVKNxi , hVKNxj

)
− Cov

(
h
V

(i)
N
xi , h

V
(j)
N
xj

)
(10.7)

from which, checking the cases i = j and i 6= j separately, we get

Cov
(
ϕ
VKN ,V

◦
KN

xi , ϕ
VKN ,V

◦
KN

xj

)
= g log

( KN

|xi − xj | ∨N

)
+O(1). (10.8)

In particular, {ϕVKN ,V
◦
KN

xi : i = 1, . . . ,K2} behaves very much like the DGFF
in VK . This is further corroborated by solving:

Exercise 10.6. Prove that for c > 0 small enough,

sup
N≥1

P
(

max
i=1,...,K2

ϕ
VKN ,V

◦
KN

xi > 2
√
g logK − c log logK

)
−→
K→∞

0 . (10.9)

The factor c log logK is quite important because, ignoring the variations of
the field in (10.6), the assumption hVKNx ≥ mKN+t for x ∈ V (i)

N at least εN away
from the boundary of the box implies (on the complementary event to (10.9))

h
V

(i)
N
x ≥ mKN − 2

√
g logK + c log logK + t

≥ mN + c log logK + t+O(1),
(10.10)

i.e., (for K large) hV
(i)
N takes an unusually high value at x. Since the binding

field has a well-defined (and smooth) scaling limit, it thus appears that, to prove
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convergence in law for the maximum the DGFF in a large box VKN as N →∞,
it suffices to prove the convergence in law of the maximum in VN conditioned to
exceed mN + t, in the limits as N →∞ followed by t→∞.

What we just described will indeed be our strategy except that, since the
spatial variations of the field (10.6) remain non-trivial in the said limits, we have
to control both the value of the maximum and the position of the maximizer of
the DGFF in VN . This is the content of the following theorem proved originally
(albeit in a different form) as [37, Proposition 4.1]:

Theorem 10.7 (Limit law for large maximum). There is c? > 0 such that

P
(

max
x∈VN

hVNx ≥ mN + t
)

=
[
c? + o(1)

]
te−αt , (10.11)

where o(1)→ 0 in the limit N →∞ followed by t→∞. Furthermore, there is a
continuous function ψ : (0, 1)2 → [0,∞) such that for all A ⊆ (0, 1)2 open,

P
(
N−1 argmax

VN

hVN ∈ A
∣∣∣ max
x∈VN

hVNx ≥ mN + t
)

= o(1) +

∫
A

ψ(x)dx , (10.12)

where o(1)→ 0 in the limit N →∞ followed by t→∞.

Our proof of Theorem 10.7 will come in Lecture 12, along with the proof of
Theorem 10.3 and the finishing touches for the proof of Theorem 9.3. We will
now comment on how Theorem 10.7 is used in the proof of Theorem 10.3 in [37].
A key point to observe is that (except for the o(1) term) the right-hand side
of (10.12) is independent of t; the position of the conditional maximum thus
becomes asymptotically independent of its value. This suggest that we define an
auxiliary process of triplets of independent random variables,{

(℘i, hi, Xi) : i = 1, . . . ,K2
}
, (10.13)

which encode the limiting centered values and scaled positions of the excessive
maxima in the boxes V (i)

N , as follows: Fix a “cutoff scale”

tK := (c/2) log logK (10.14)

with c as in (10.9). Noting that ψ is a probability density on (0, 1)2, set

(1) ℘i ∈ {0, 1} with P (℘i = 1) := c? tK e−αtK ,
(2) hi ≥ 0 with P (hi ≥ t) := tK+t

tK
e−αt for all t ≥ 0, and

(3) Xi ∈ [0, 1]2 with P
(
Xi ∈ A) :=

∫
A
ψ(x)dx.

The meaning of ℘i is that ℘i = 1 designates that the maximum of the DGFF
in V (i)

N is at least mN + tK . The excess of this maximum above mN + tK is then
distributed as hi while the position of the maximizer (scaled and shifted to a
unit box) is distributed as Xi. See (10.11–10.12).
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Writing wK,i for the lower-left corner of V (i)

N , from Theorem 9.2 (which en-
sures that only one value per V (i)

N needs to be considered) it follows that the
absolute maximum of hVKN −mNK is for N large well approximated by

2
√
g logK + tK

+ max
{
hi + ϕ

VKN ,V
◦
KN

wN,i+bNXic : i = 1, . . . ,K2, ℘i = 1
}
, (10.15)

where the very first term arises as the N →∞ limit of mNK−mN and where the
binding field is independent of the auxiliary process. The choice of tK guarantees
that, for N large, {i = 1, . . . ,K2 : ℘i = 1} 6= ∅ with high probability.

Next we note that all N -dependence in (10.15) now comes through the bind-
ing field which, for K fixed and N →∞, converges to

ΦS,S
◦
K := N (0, CS,S

◦
K ) , (10.16)

where

S := (0, 1)2 and S◦ :=

K2⋃
i=1

[ŵi + (0, 1/K)2] (10.17)

with ŵi denoting the position of the lower-left corner of the box that, for finite N ,
has the lower-left corner at wN,i. It follows that (10.15) approximates every
subsequential limit of the absolute maximum by

2
√
g logK + tK

+ max
{
hi + ΦS,S

◦
K (ŵi +Xi/K) : i = 1, . . . ,K2, ℘i = 1

}
, (10.18)

with all errors washed out when K →∞. The maximum thus converges in law
to the K → ∞ limit of the random variable in (10.18) (whose existence is a
by-product of the above reasoning).

10.2 Gumbel convergence

Moving back to the convergence of the two-coordinate extremal process, let us
explain on how the above is used to prove the uniqueness of the subsequen-
tial limit of the processes {ηDN,rN : N ≥ 1}. First off, all that was stated above
for square boxes VN extends readily to any admissible sequence DN of lattice
approximations of D ∈ D. Defining, for A ⊆ D with a non-empty interior,

hDNA,? := max
x∈DN
x/N∈A

hDNx . (10.19)

the methods underlying the proof of Theorem 10.3 also give:

Lemma 10.8. Let A1, . . . , Ak ⊆ D be disjoint open sets. Then the joint law of{
hDNAi,? −mN : i = 1, . . . , k

}
(10.20)

admits a non-degenerate weak limit as N →∞.
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This lemma was originally proved as [25, Theorem 5.1]; we will prove it in Lec-
ture 12 via the uniqueness of the limiting ZD measure. This will be aided by:

Lemma 10.9. For any subsequential limit ηD = PPP(ZD(dx) ⊗ e−αhdh) of
{ηDN,rN : N ≥ 1}, any disjoint open sets A1, . . . , Ak ⊆ D and any t1, . . . , tk ∈ R,

P
(
hDNAi,? < mN + ti : i = 1, . . . , k

)
−→
N→∞

E
(
e−

∑k
i=1 Z

D(Ai)α
−1e−αti

)
. (10.21)

Proof (sketch). The event on the left-hand side can be written as 〈ηDN,rN , f〉 = 0,

where f :=
∑k
i=1 1Ai ⊗ 1[ti,∞). Since the right-hand side equals the probability

that 〈ηD, f〉 = 0 the claim follows by approximating f by bounded continuous
functions with compact support in D × (R ∪ {∞}). The next exercise helps
overcome (unavoidable) boundary issues. ut

Exercise 10.10. Use Lemma 10.4 to prove that, for every subsequential limit ηD

of the processes of interest, the associated ZD measure obeys

∀A ⊆ D Borel : Leb(A) = 0 ⇒ ZD(A) = 0 a.s. (10.22)

In addition, we get ZD(∂D) = 0 a.s. so ZD is concentrated on D. (You should
not need to worry about whether Leb(∂D) = 0 for this.)

These observations permit us to give:

Proof of Theorem 9.3 (first two coordinates). Lemmas 10.8 and 10.9 imply
that the joint law of (ZD(A1), . . . , ZD(Ak)) is the same for every subsequential
limit ηD of our processes of interest. This means that we know the law of 〈ZD, f〉
for any f of the form f =

∑k
i=1 ai1Ai with Ai open disjoint and a1, . . . , ak > 0.

Every bounded and continuous f can be approximated by a function of the
form

∑k
i=1 ai1{ai−1≤f<ai} with Leb(f = ai) = 0 for every i = 1, . . . , k. With

the help of Exercise 10.10 we then get uniqueness of the law of 〈ZD, f〉 for
any f ∈ Cc(D × R). Thanks to Exercise 10.10, this identifies the law of ZD

on D uniquely. That ZD(D) ∈ (0,∞) a.s. was already shown in the proof of
Theorem 9.6. ut

The structure of the limit process gives rise to interesting formulas that are
worth highlighting at this point. First we ask the reader to solve:

Exercise 10.11 (Connection to Gumbel law). Let {(xi, hi) : i ∈ Z} label
the points in a sample of PPP(ZD(dx)⊗ e−αhdh). Show that∑

i∈N
δhi−α−1 logZD(D)

law
= PPP(e−αhdh). (10.23)

In particular, the absolute maximum maxi∈N hi has the law of a randomly shifted
Gumbel random variable. See also (9.10).



Extrema of 2D DGFF 133

By (10.23), the gap between the i-th and i + 1-st local maximum are dis-
tributed as those in PPP(e−αhdh). (This will largely be responsible for the simple
form of the limit in Corollary 11.22.) We remark that proving convergence of
the maximum to a randomly-shifted Gumbel random variable has been one of
the holy grails of the subject area (stimulated by the corresponding result for
the Branching Brownian Motion; cf McKean [93] and Lalley and Sellke [84]).
For the so called star-scale invariant Gaussian fields (in any spatial dimension),
this was proved by Madaule [91] very soon after [37] and [25] were posted. A
corresponding result for general Branching Random Walks is due to Aı̈dekon [7].

Another, perhaps more interesting, aspect to showcase is:

Lemma 10.12. Let XN be the (a.s.-unique) vertex where hDNXN = maxx∈DN h
DN
x .

Then for any A ⊆ D open with Leb(∂A) = 0 and any t ∈ R,

P
(

1
NXN ∈ A, max

x∈DN
hDNx < mN + t

)
−→
N→∞

E
(
ẐD(A)e−α

−1e−αtZD(D)
)
, (10.24)

where Ẑ is the measure from (9.9).

Proof. Let A ⊆ D be open with Leb(∂A) = 0 (which implies ZD(∂A) = 0 a.s.).
Lemma 10.8 along with a continuity argument based on Exercise 10.10 show(

hDNA,? −mN , h
DN
Ac,? −mN

) law−→
N→∞

(h?A, h
?
Ac) . (10.25)

The continuity of the law of the DGFF yields

P
(

1
NXN ∈ A, max

x∈DN
hDNx < mN + t

)
= P

(
hDNAc,? < hDNA,? , h

DN
A,? −mN < t

)
= P

(
hDNAc,? ≤ h

DN
A,? , h

DN
A,? −mN ≤ t

)
.

(10.26)

Since the event in the first line is open while that in the second line is closed, and
the limit distribution are continuous thanks to Theorem 9.6 and Exercise 10.13
below, the standard facts about the convergence in law imply

P
(

1
NXN ∈ A, max

x∈DN
hDNx < mN + t

)
−→
N→∞

P
(
h?Ac < h?A, h

?
A < t

)
. (10.27)

Now we invoke:

Exercise 10.13. Let A ⊆ D be open with Leb(∂A) = 0. Prove that

h?A
law
= inf

{
t ∈ R : ηD(A× [t,∞)) = 0} (10.28)

and that this in fact applies jointly to (h?A, h
?
Ac).
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This means that we can now rewrite the probability on the right of (10.27) in
terms of the maximal points in the sample of ηD. For η = PPP(M ⊗ e−αhdh)
with a fixed M , the point with the maximal h-value in A has probability density

α−1e−αhM(A)e−α
−1e−αhM(A) with respect to the Lebesgue measure, while the

probability that no point in Ac has h-value above h is e−α
−1e−αhM(Ac). The

underlying Poisson structure (conditional on ZD) therefore gives

P
(
h?Ac < h?A, h

?
A < t

)
=

∫ t

−∞
α−1e−αhE

(
ZD(A)e−α

−1e−αhZD(D)
)

dh. (10.29)

The result now follows by integration (and Tonelli’s Theorem). ut
Hereby we get:

Corollary 10.14. The measure A 7→ E(ẐD(A)) is the N → ∞ weak limit of
the marginal law of the (a.s.-unique) maximizer of hDN scaled by N .

10.3 Properties of ZD-measures

Once the convergence issue has been settled (modulo proofs deferred till later),
the next natural question is: What is ZD? Or, more precisely: Can the law
of ZD be independently characterized? As was the case of intermediate level
sets, although the laws of {ZD : D ∈ D} are defined individually, they are very
much interrelated. The following theorem articulates these relations explicitly:

Theorem 10.15 (Properties of ZD-measures). The family {ZD : D ∈ D}
satisfies the following:

(1) ZD(A) = 0 a.s. when A = ∂D and for any A ⊆ D with Leb(A) = 0,
(2) for any a ∈ C and any b > 0,

Za+bD(a+ bdx)
law
= b4ZD(dx), (10.30)

(3) if D ∩ D̃ = ∅, then

ZD∪D̃(dx)
law
= ZD(dx) + ZD̃(dx), ZD ⊥⊥ ZD̃, (10.31)

(4) if D̃ ⊆ D and Leb(D r D̃) = 0, then for ΦD,D̃ := N (0, CD,D̃) and
α := 2/

√
g,

ZD(dx)
law
= ZD̃(dx) eαΦ

D,D̃(x), ZD̃ ⊥⊥ ΦD,D̃, (10.32)

(5) there is ĉ ∈ (0,∞) such that for all open A ⊆ D,

lim
λ↓0

E(ZD(A)e−λZ
D(D))

log(1/λ)
= ĉ

∫
A

rD(x)2 dx, (10.33)

where rD(x) is the conformal radius of D at x.
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Before we get to the proof of this theorem, let us make a few remarks. First
off, with the exception of (5), these properties are shared by the whole family
of measures {ZDλ : D ∈ D} introduced in Lectures 2–5. The condition (5) is
different than for the measures ZDλ because (by (5)) EZD(A) =∞ for any non-
empty open A ⊆ D. Incidentally, this is also what stands in the way of proving
uniqueness of the law of ZD by the argument underlying Proposition 4.11.

Proof of Theorem 10.15, (1) and (3). Part (1) is proved by way of reference to
Exercise 10.10. For (3) we just observe that the DGFF on domains separated
by at least two lattice steps are independent. (This is one place where the first
condition (1.26) of admissible approximations is needed.) ut

Next we will establish the Gibbs-Markov property :

Proof of Theorem 10.15(4). Most of the argument can be borrowed from the proof
of Proposition 4.9 on the Gibbs-Markov property for the measures arising from
the intermediate level sets. Let D̃ and D as in the statement, pick f ∈ Cc(D̃×R)
with f ≥ 0 and recall the notation

fΦ(x, h) := f
(
x, h+ ΦD,D̃(x)

)
. (10.34)

Writing ηD and ηD̃ for the limit processes in the respective domains, the argu-
ment leading up to (4.27) then ensures

〈ηD, f〉 law
= 〈ηD̃, fΦ〉, ΦD,D̃ ⊥⊥ ηD̃ . (10.35)

The Poisson nature of the limit process then gives, via a routine change of
variables,

E
(
e−〈η

D̃,fΦ〉
)

= E
(

exp
{
−
∫
ZD̃(dx)e−αhdh

(
1− e−f(x, h+ΦD,D̃(x))

)})
= E

(
exp
{
−
∫
ZD̃(dx)eαΦ

D,D̃(x)e−αhdh
(
1− e−f(x,h)

)})
.

(10.36)
The claim follows by comparing this with the expression one would get for the
Laplace transform of 〈ηD, f〉. ut

With the help of the Gibbs-Markov property we then readily solve:

Exercise 10.16 (Support of ZD and its non-atomicity). Prove that ZD

charges every non-empty open subset of D with probability one. In particular,
we have suppZD = D a.s. Prove also that ZD is a.s. non-atomic. [Hint: Recall
that Theorem 9.2 rules out nearby occurrence of near-maximal local maxima.]

Next let us address the behavior under shifts and dilations:

Proof of Theorem 10.15(2) (sketch). The proof will require working with approx-
imations of the given domain. We thus first ask the reader to solve:
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Exercise 10.17. Let D ∈ D and assume that {Dn : n ≥ 1} ∈ D are such
that Dn ↑ D with CD,D

n

(x, y)→ 0 locally uniformly on D. Then

ZD
n

(dx)
law−→
n→∞

ZD(dx). (10.37)

Hint: Use the Gibbs-Markov property.

Thanks to this exercise we may assume that a ∈ Q2 and b ∈ Q. As aN
and bN will then be integer for an infinite number of N ’s, the existence of the
limit permits us to even assume that a ∈ Z2 and b ∈ N. The invariance of the law
of ZD under integer-valued shifts is a trivial consequence of the corresponding
invariance of the DGFF. Concerning the behavior under scaling, here we note
that if {DN : N ≥ 1} approximates D, then {DbN : N ≥ 1} approximates bD.
The only item to worry about is the centering sequence for which we get

mbN −mN = 2
√
g log b+ o(1). (10.38)

Following this change through the limit procedure yields

ZbD(bdx)
law
= eα2

√
g log bZD(dx). (10.39)

The claim follows by noting that α2
√
g = 4. ut

Proof of Theorem 10.15(5). The starting point is an extension of Theorem 10.7

to all D ∈ D. Considering two domains, D and D̃, with D̃ ⊆ D and D̃ a square;
i.e., D̃ = a+(0, b)2 for some a ∈ C and b > 0. We will for a while assume that D̃
is in fact a unit square (i.e., b = 1); by Exercise 10.17 this can be achieved by

redefining N . Pick approximating domains {DN} and {D̃N} respectively, and
couple the DGFFs therein via the Gibbs-Markov property to get

hDN = hD̃N + ϕDN ,D̃N where hD̃N ⊥⊥ ϕDN ,D̃N . (10.40)

We then claim the following intuitive fact:

Lemma 10.18. Conditional on the maximum of hDN to exceed mN + t, the
position of the (a.s.-unique) maximizer will, with probability tending to one
as N → ∞ and t → ∞, lie within o(N) distance of the position of the max-

imizer of hD̃N .

We will will not prove this lemma here; instead, we refer the reader to [26,
Proposition 5.2]. (The proof can also be gleaned from that for a closely-related,
albeit far stronger, Lemma 11.18 that we give in Lecture 12.) We now extract
the limit law of the scaled maximizer/centered maximum for both domains and

write (X?, h?) for the limiting pair for D and (X̃?, h̃?) for the limiting pair for D̃

(these exist by Lemma 10.12). Let A ⊂ D̃ be a non-empty open set with A ⊂ D̃
and Leb(∂A) = 0. Lemma 10.18 and Exercise 10.10 then give

P
(
X? ∈ A, h? > t

)
=
(
1 + o(1)

)
P
(
X̃? ∈ A, h? + ΦD,D̃(X̃?) > t

)
, (10.41)
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where o(1) → 0 in the limit t → ∞. Since D̃ is a unit square and ΦD,D̃ has
uniformly continuous sample paths on A, a routine approximation argument

combined with conditioning on ΦD,D̃ and Theorem 10.7 show

t−1eαtP
(
X̃? ∈ A, h̃? + ΦD,D̃(X̃?) > t

)
−→
t→∞

c?E
(∫

A

eαΦ
D,D̃(x)ψ(x)dx

)
. (10.42)

Hereby we get

t−1eαtP
(
X? ∈ A, h? > t

)
−→
t→∞

∫
A

ψD(x)dx , (10.43)

where

ψD(x) := c?ψ(x)e
1
2α

2 CD,D̃(x,x), x ∈ D̃. (10.44)

Note that, since D̃ is a unit square, we get ψD̃(x) := c?ψ(x) directly from
Theorem 10.7.

From 1
2α

2g = 2 and the relation between CD,D̃ and the conformal radius
(see Definition 1.24 and (4.2)) we then get

ψD(x)

rD(x)2
=
ψD̃(x)

rD̃(x)2
, x ∈ D̃. (10.45)

This was derived for D̃ a unit square but the following exercise relaxes that:

Exercise 10.19. Suppose that D̃ is a unit square centered at 0. Show that, for
any b ≥ 1, (10.43) holds for a domain D ∈ D with D̃ ⊆ D if and only if it holds
for domain bD. Moreover,

ψbD(bx) = b2ψD(x). (10.46)

Conclude that (10.45) holds if D̃ is a square of any size (of the form a+(0, b)2).

We now claim that, for all D̃,D ∈ D,

ψD(x)

rD(x)2
=
ψD̃(x)

rD̃(x)2
, x ∈ D ∩ D̃. (10.47)

Indeed, if x ∈ D ∩ D̃ then (as D ∩ D̃ is open) there is a square D̃′ ⊆ D ∩ D̃
containing x and so we get (10.47) by iterating (10.45). Using (10.47) for D̃ a
translate of D shows that x 7→ ψD(x)/rD(x)2 is constant on D; one more use of
(10.47) shows that this constant is the same for all admissible domains. So

ψD(x) = crD(x)2, x ∈ D, (10.48)

for some c > 0 independent of D.
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Fig. 19. A tiling of domain D by equilateral triangles of side-length K−1.

Having extended Theorem 10.7 to all D ∈ D, writing λ := α−1e−αt, (10.43),
Corollary 10.14 and (10.24) then show

E(ẐD(A)[1− e−λZ
D(D)])

λ log(1/λ)
−→
λ↓0

αc? c

∫
A

rD(x)2dx (10.49)

for any A ⊆ D open with Leb(∂A) = 0. The claim follows with ĉ := αc? c from
the next exercise. ut

Exercise 10.20. Prove that (10.49) implies (10.33).

We note that, in Lecture 12, we will establish the explicit relation between
the asymptotic density ψD and the square of the conformal radius directly.

10.4 Uniqueness up to overall constant

As our next item of business, we wish to explain that the properties listed in
Theorem 10.15 actually determine the laws of the ZD’s uniquely.

Given an integer K ≥ 1, consider a tiling of the plane by equilateral triangles
of side-length K−1. For a domain D ∈ D, let T 1, . . . , TmK be the triangles
entirely contained in D, cf Fig. 19. Abbreviate

D̃ :=

mK⋃
i=1

T i. (10.50)

Given δ ∈ (0, 1), label the triangles so that i = 1, . . . , nK , for some nK ≤
mK , enumerate the triangles that are at least distance δ away from Dc. Define



Extrema of 2D DGFF 139

T 1
δ , . . . , T

nK
δ as the equilateral triangles of side length (1 − δ)K−1 that have

the same orientation and centers as T 1, . . . , TnK , respectively. Recall that the
oscillation of a function f on a set A is given by

oscAf := sup
x∈A

f(x)− inf
x∈A

f(x). (10.51)

We then claim:

Theorem 10.21. Consider a family {MD : D ∈ D} of random Borel measures
satisfying (1-5) in Theorem 10.15 with some ĉ ∈ (0,∞). Define events AiK,R,
i = 1, . . . , nK by

AiK,R :=
{

oscT iδΦ
D,D̃ ≤ R

}
∩
{

max
T iδ

ΦD,D̃ ≤ 2
√
g logK −R

}
. (10.52)

Then for any D ∈ D, for D̃ related to K as in (10.50) and ΦD,D̃ := N (0, CD,D̃),
the random measure

αĉ rD(x)2
nK∑
i=1

1AiK,R

(
αVar(ΦD,D̃(x))− ΦD,D̃(x)

)
× eαΦ

D,D̃(x)− 1
2α

2Var(ΦD,D̃(x)) 1T iδ (x) dx (10.53)

tends in law to MD in the limit as K → ∞, R → ∞ and δ ↓ 0 (in this order).
This holds irrespective of the orientation of the triangular grid.

Before we delve into the proof we note that, by computations involving the

covariance kernel CD,D̃, we get

min
i=1,...,nK

inf
x∈T iδ

Var(ΦD,D̃(x)) ≥ g logK − c (10.54)

for some c = c(δ) > 0 and all K ≥ 1. Hence, for R sufficiently large (depending
only on δ > 0), αg = 2

√
g implies

αVar(ΦD,D̃(x))− ΦD,D̃(x) > 0 on AiK,R. (10.55)

In particular, (10.53) is a positive measure. We also note that, by combining
Theorems 10.15 and 10.21, we get:

Corollary 10.22 (Characterization of ZD-measures). The laws of the ran-
dom measures {ZD : D ∈ D} are determined uniquely by conditions (1-5) of
Theorem 10.15.

In order to avoid confusion about how the various results above depend on
each other, we put forward:
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Remark 10.23. Although Corollary 10.22 may seem to produce the desired
independent characterization of the ZD measures by their underlying properties,
we remind the reader that our derivation of these properties in Theorem 10.15
assumed (or came after proving, if we take Theorem 10.3 for granted) that the
limit of {ηDN,rN : N ≥ 1} exists, which already entails some version of their
uniqueness. We will amend this in Lecture 12 in our proofs of Theorems 10.7
and 10.3 which draw heavily on the proof of Theorem 10.21.

The main thrust of Theorem 10.21 is that it gives a representation of ZD as
the limit of the measures in (10.53) that are determined solely by the binding

fields ΦD,D̃ (where D̃ depends on K). By Exercise 4.15, we may think of ΦD,D̃ as
the orthogonal projection of the CGFF onto the subspace of functions in H1

0(D)

that are harmonic in each of the triangles constituting D̃. The representation
by measures in (10.53) is thus akin to that of the ZDλ -measures by way of the
measures in (4.28) except that instead of using

eβΦ
D,D̃(x)− 1

2β
2Var(ΦD,D̃(x)) (10.56)

as the density with respect to the Lebesgue measure, we use its derivative

− d

dβ
eβΦ

D,D̃(x)− 1
2β

2Var(ΦD,D̃(x))
∣∣∣
β=α

=
(
αVar(ΦD,D̃(x))− ΦD,D̃(x)

)
eαΦ

D,D̃(x)− 1
2α

2Var(ΦD,D̃(x)). (10.57)

Note that the key fact underlying the derivations in Lecture 4 is still true: the
expression in (10.57) is a martingale with respect to the filtration induced by

the fields ΦD,D̃ along nested subdivisions of D into finite unions of equilateral
triangles (i.e., with K varying along powers of 2). However, the lack of positivity
makes manipulations with this object considerably more difficult.

Proof of Theorem 10.21 (sketch). The proof is based on a number of relatively
straightforward observations (and some technical calculations that we will mostly

skip). Denote D̃δ :=
⋃nK
i=1 T

i
δ and, for f ∈ Cc(D), let fδ := f1D̃δ . Consider a

family {MD : D ∈ D} of measures in the statement. Property (1) then ensures

〈MD, fδ〉
law−→
δ↓0
〈MD, f〉 , (10.58)

and so we may henceforth focus on fδ. Properties (3-4) then give

1D̃δ(x)MD(dx)
law
=

nK∑
i=1

eαΦ
D,D̃(x)1T iδ (x)MT i(dx) , (10.59)

with MT 1

, . . . ,MTnK and ΦD,D̃ all independent. Let x1, . . . , xnK be the center
points of the triangles T 1, . . . , TnK , respectively. A variation on Exercise 10.9
then shows

lim sup
K→∞

P
(

max
i=1,...,nK

ΦD,D̃(xi) > 2
√
g logK − c log logK

)
= 0 (10.60)

for some c > 0. The first technical claim is the content of:
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Proposition 10.24. For any δ ∈ (0, 1) and any ε > 0,

lim
R→∞

lim sup
K→∞

P
( nK∑
i=1

∫
T iδ

MT i(dx)eαΦ
D,D̃(x)1{osc

Ti
δ
ΦD,D̃>R} > ε

)
= 0. (10.61)

Proof (main ideas). We will not give a detailed proof for which we refer the
reader to [26, Proposition 6.5]. Notwithstanding, we will give the main ideas and
thus also explain why we have resorted to triangle partitions.

For triangle partitions the subspace of functions in H1
0(D) that are piece-

wise harmonic on D̃ naturally decomposes into a direct sum of the space H4 of
functions that are affine on each T i and its orthogonal complement H⊥ in H1

0(D).
The projection onto H⊥ can be controlled uniformly in K thanks to:

Exercise 10.25. For D and D̃ (which depends on K) as above, let Φ⊥K denote

the orthogonal projection of ΦD,D̃ onto H⊥. Show that, for each δ > 0 small,

sup
K≥1

sup
x∈D̃δ

Var
(
Φ⊥K(x)

)
<∞. (10.62)

Hint: Use the observation (made already in Sheffield’s review [114]) that

Φ4K := ΦD,D̃ − Φ⊥K (10.63)

is piece-wise affine and so it is determined by its values at the vertices of the
triangles where it has the law of (a scaled) DGFF on the triangular lattice. See
the proof of [26, Lemma 6.10].

The uniform bound (10.62) implies (via Borell-TIS inequality and Fernique
majorization) a uniform Gaussian tail for the oscillation of Φ⊥K . This gives

εR := sup
K≥1

max
i=1,...,nK

sup
x∈T iδ

E
(
eαΦ

⊥
K(x)1{osc

Ti
δ
Φ⊥K>R}

)
−→
R→∞

0 (10.64)

(see [26, Corollary 6.11] for details). To get the claim from this, let M⊥K,R denote

the giant sum in (the event in) (10.61). The independence of Φ⊥K and Φ4K then

gives, for each λ > 0 and for Y a centered normal independent of Φ⊥K , Φ4K and

of MT i ’s, and thus of M⊥K,R,

Ee−λeαYM⊥K,R ≥ E
(

exp
{
−λ

n∑
i=1

∫
T iδ

MT i(dx)eαΦ
4
K(x)+Y εR

)})
. (10.65)

If Var(Y ) exceeds the quantity in (10.62), Kahane’s convexity inequality (cf

Proposition 5.6) permits us to replace αΦ4K(x) + Y by αΦD,D̃ + 1
2Var(Y ) and

wrap the result (as a further lower bound) into Ee−λcεRM
D(D), for some c > 0.

As εR → 0 when R→∞ we conclude that M⊥K,R → 0 in probability as K →∞
and R→∞. This gives (10.61). ut
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Returning to the proof of Theorem 10.21, (10.60–10.61) permit us to restrict
attention only to those triangles where AiK,R occurs. This is good because, in

light of the piece-wise harmonicity of the sample paths of ΦD,D̃, the containment
in AiK,R forces

x 7→ ΦD,D̃(x)− ΦD,D̃(xi) (10.66)

to be bounded and uniformly Lipschitz on T iδ , for each i = 1, . . . ,K . Let FTR,β,δ,
for R, β, δ > 0, denote the class of continuous functions φ : T → R on an equi-
lateral triangle T such that

φ(x) ≥ β and |φ(x)− φ(y)| ≤ R|x− y|, x, y ∈ Tδ. (10.67)

For such functions, property (5) in Theorem 10.15 we assume for MD yields:

Proposition 10.26. Fix β > 0 and R > 0. For each ε > 0 there are δ0 > 0 and
λ0 > 0 such that, for all λ ∈ (0, λ0), all δ ∈ (0, δ0) and all f ∈ FTR,β,δ,

(1− ε)ĉ
∫
Tδ

f(x)rT (x)2 dx ≤ logE(e−λM
T (f1Tδ ))

λ log λ

≤ (1 + ε)ĉ

∫
Tδ

f(x)rT (x)2 dx, (10.68)

where MT (f1Tδ) :=
∫
Tδ
MT (dx) f(x).

Proof (some ideas). This builds on Exercise 10.20 and a uniform approximation
of f by functions that are piecewise constant on small subtriangles of T . Thanks
to the known scaling properties of the ZD measure (see Theorem 10.15(2)) and
the conformal radius, it suffices to prove this just for a unit triangle. We refer
the reader to [26, Lemma 6.8] for further details and calculations. ut

As noted above, whenever f ∈ FR,β,δ and AiK,R occurs, Proposition 10.26
may be applied (with perhaps slightly worse values of R and β) to the test
function

x 7→ f(x)eα(ΦD,D̃(x)−ΦD,D̃(xi)) (10.69)

because the harmonicity of x 7→ ΦD,D̃(x) turns the uniform bound on oscillation

into a Lipschitz property. Thus, for λ := K−4eαΦ
D,D̃(xi), on AiK,R we then get

E

(
exp
{
−eαΦ

D,D̃(xi)MT i(f1T iδ eα(ΦD,D̃−ΦD,D̃(xi)))
} ∣∣∣∣ΦD,D̃)

= exp

{
ĉ(1 + ε̃) log

(
K−4eαΦ

D,D̃(xi)
) ∫

T iδ

dx f(x) eαΦ
D,D̃(x) rT i(x)2

}
(10.70)

for some random ε̃ ∈ [−ε, ε] depending only on ΦD,D̃, where we also used that, by
(10.60) and α2

√
g = 4, we have λ ≤ (logK)−αc which tends to zero as K →∞.
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Denote by ZDK,R,δ the measure in (10.53) and write MD
K,R,δ for the expression

on the right of (10.59) with the sum restricted to i where AiK,R occurs. Note

that, by (10.55) and standard (by now) estimates for CD,D̃,

log(K−4eαΦ
D,D̃(xi)) =

(
1 + ε̃′(x)

)
α
(
ΦD,D̃(x)− αVar(ΦD,D̃(x))

)
(10.71)

with ε̃′(x) ∈ [−ε, ε] for all x ∈ T iδ , provided R is large enough. Recalling also that

rT i(x)2 = rD(x)2e−
1
2α

2Var(ΦD,D̃(x)), x ∈ T i, (10.72)

from (10.70–10.71) we obtain

E
(
e−(1+2ε)ZDK,R,δ(f)

)
≤ E

(
e−M

D
K,R,δ(f)

)
≤ E

(
e−(1−2ε)ZDK,R,δ(f)

)
. (10.73)

Since MD
K,R,δ(f) tends in distribution to MD(f) in the stated limits, the law

of MD(f) is given by the corresponding limit law of ZDK,R,δ(f), which must
therefore exist as well. ut

As an immediate consequence of Theorem 10.21, we then get:

Corollary 10.27 (Behavior under rigid rotations). For each a, b ∈ C,

Za+bD(a+ bdx)
law
= |b|4 ZD(dx). (10.74)

Proof. By Theorem 10.15(2), we just need to prove this for a := 0 and |b| = 1.

This follows from Theorem 10.21 and the fact that both the law of ΦD,D̃ and the
conformal radius rD are invariant under the rigid rotations of D (and D̃). ut

Somewhat more work is required to prove:

Theorem 10.28 (Behavior under conformal maps). Let f : D → f(D) be
a conformal bijection between admissible domains D, f(D) ∈ D. Then

Zf(D) ◦ f(dx)
law
=
∣∣f ′(x)

∣∣4 ZD(dx). (10.75)

In particular, the law of rD(x)−4 ZD(dx) is invariant under conformal maps.

This follows, roughly speaking, by the fact that the law of ΦD,D̃ is confor-
mally invariant and also by the observation that a conformal map is locally the
composition of a dilation with a rotation. In particular, the triangles T i map to
near-triangles f(T i) with the deformation tending to zero with the size of the
triangle. See the proof of [26, Theorem 7.2].

10.5 Connection to Liouville Quantum Gravity

We will now move to the question of direct characterization of the law of ZD-
measures. As we will show, ZD has the law of a critical Liouville Quantum
Gravity associated with the continuum GFF. These are versions of the measures
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from Lemma 2.17 for a critical value of parameter β which in our case corre-
sponds to βc = α. At this value, the martingale argument from Lemma 2.17
produces a vanishing measure and so additional manipulations are needed to
obtain a non-trivial limit object.

One way to extract a non-trivial limit measure at βc is to replace the expo-
nential factor in (2.42) by its negative derivative; cf (10.56–10.57). The existence
of the corresponding limit was proved in [66]. Another possibility is to re-scale
the approximating measures so that a non-trivial limit is achieved. This goes by
the name Seneta-Heyde norming as discussed in a 2014 paper by Duplantier,
Rhodes, Sheffield and Vargas [67]. A technical advantage of the scaling over tak-
ing the derivative is the fact that Kahane’s convexity inequality (Proposition 5.6)
remains applicable in that case.

We will use approximating measures based on the white-noise decomposition
of the CGFF. The specifics are as follows: For {Bt : t ≥ 0} the standard Brownian
motion, let pDt (x, y) be the transition density from x to y before exiting D. More
precisely, letting τDc := inf{t ≥ 0: Bt 6∈ D} we have

pDt (x, y)dy := P x
(
Bt ∈ dy, τDc > t

)
. (10.76)

Writing W for the white noise on D × (0,∞) with respect to the Lebesgue
measure, consider the Gaussian process t, x 7→ ϕt(x) defined by

ϕt(x) :=

∫
D×[e−2t,∞)

pDs/2(x, z)W (dz ds). (10.77)

The Markov property of pD along with reversibility give

Cov
(
ϕt(x), ϕt(y)

)
=

∫
D×[e−2t,∞)

dz ⊗ ds pDs/2(x, z)pDs/2(y, z)

=

∫
[e−2t,∞)

ds pDs (x, y) −→
t→∞

ĜD(x, y)

(10.78)

and so ϕt tends in law to the CGFF.
Define the random measure (and compare with (2.42))

µD,αt (dx) :=
√
t 1D(x) eαϕt(x)− 1

2α
2Var[ϕt(x)] dx . (10.79)

The key point to show that the scale factor
√
t ensures that the t → ∞ limit

will produce a non-vanishing and yet finite limit object. This was proved in
Duplantier, Rhodes, Sheffield and Vargas [67]:

Theorem 10.29 (Critical GMC measure). There is a non-vanishing a.s.-
finite random Borel measure µD,α∞ such that for every Borel set A ⊆ D,

µD,αt (A) −→
t→∞

µD,α∞ (A), in probability. (10.80)

We call the measure µD,α∞ the critical GMC in D. It is a fact that EµD,α∞ (A) =∞
for any non-empty open subset of D so, unlike the subcritical cases β = λα
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Fig. 20. A sample of critical Liouville Quantum Gravity measure over
a square domain. Despite the occurence of prominent spikes, the mea-
sure is non-atomic although just barely so as it is (conjecturally) sup-
ported on a set of zero Hausdorff dimension.

for λ ∈ (0, 1), the overall normalization of this measure cannot be fixed by its
expectation.

Alternative definitions of µD,α∞ have appeared in the meantime which, through
the contributions of Rhodes and Vargas [105], Powell [104] and Junnila and Saks-
man [80], are now known to be all equal up to a multiplicative (deterministic)
constant. The measure in (10.53) is yet another example of this kind, although
the abovementioned uniqueness theorems do not apply to this case. Notwith-
standing, one is able to call on Theorem 10.15 instead and get:

Theorem 10.30 (Identification with critical LQG measure). The family
of measures

rD(x)2µD,α∞ (dx), D ∈ D , (10.81)

constructed in Theorem 10.29 obeys conditions (1-5) of Theorem 10.15 for some
ĉ > 0. In particular, there is a constant c ∈ (0,∞) such that

ZD(dx)
law
= c rD(x)2 µD,α∞ (dx), D ∈ D. (10.82)

This appears as [26, Theorem 2.9]. The key technical challenge is to prove that
the measure in (10.81) obeys the Laplace-transform asymptotic (10.33). This
is based on a version of the concentric decomposition and approximations via
Kahane’s convexity inequality. We refer the reader to [26] for further details.
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We conclude by reiterating that many derivations in the present lecture were
originally motivated by the desire to prove directly the uniqueness of the sub-
sequential limit of ηDN,rN (as we did for the intermediate level sets) based only

on the easily obtainable properties of the ZD-measure. This program will par-
tially be completed in our proof of Theorem 12.16 although there we still rely on
the Laplace transform tail (10.33) which also underpins the limit of the DGFF
maximum. We believe that even this step can be bypassed and the reference to
convergence of the DGFF maximum avoided; see Conjecture 16.3.

Lecture 11

Local structure of extremal points

In this lecture we augment the conclusions obtained for the point processes
associated with extremal local maxima to include information about the local
behavior. The proofs are based on the concentric decomposition of the DGFF and
entropic-repulsion arguments developed for the proof of tightness of the absolute
maximum. Once this is done, we give a formal proof of our full convergence
result from Theorem 9.3. A number of corollaries are presented that concern the
cluster-process structure of the extremal level sets, a Poisson-Dirichlet limit of
the Gibbs measure associated with the DGFF, the Liouville Quantum Gravity
in the glassy phase and the freezing phenomenon.

11.1 Cluster at absolute maximum

Our focus in this lecture is on the local behavior of the field near its near-maximal
local extrema. For reasons mentioned earlier, we will refer of these values as a
cluster. As it turns out, all that will technically be required is the understanding
of the cluster associated with the absolute maximum:

Theorem 11.1 (Cluster law). Let D ∈ D with 0 ∈ D and let {DN : N ≥ 1}
be an admissible sequence of approximating domains. Then for each t ∈ R and

each function f ∈ Cc(RZ2

) depending only on a finite number of coordinates,

E
(
f
(
hDN0 − hDN

) ∣∣∣hDN0 = mN + t, hDN ≤ hDN0

)
−→
N→∞

Eν(f) , (11.1)

where ν is a probability measure on [0,∞)Z
2

defined from φ := DGFF on Z2r{0}
via the weak limit

ν(·) := lim
r→∞

P

(
φ+

2
√
g
a ∈ ·

∣∣∣∣φx +
2
√
g
a(x) ≥ 0: |x| ≤ r

)
(11.2)

in which (we recall) a denotes the potential kernel on Z2.

The existence of the weak limit in (11.2) is part of the statement of the theo-
rem. Remarkably, the convergence alone may be inferred by much softer means:
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Fig. 21. A sample of the configuration of the DGFF in the vicinity of
its (large) local maximum.

Exercise 11.2. Let νr be the conditional measure on the right of (11.2). Prove
that r 7→ νr is stochastically increasing. [Hint: Under this type of conditioning,
the same holds true for any strong-FKG measure.]

The exercise shows that r 7→ νr(A) is increasing on increasing events and so the
limit in (11.2) exists for any event depending on a finite number of coordinates.

The problem is that νr is a priori a measure on [0,∞]Z
2

and the interpretation

of the limit as a distribution on [0,∞)Z
2

requires a proof of tightness. This
additional ingredient will be supplied by our proof of Theorem 11.1.

That the limit takes the form in (11.2) may be explained via a simple heuristic
calculation. Indeed, by Lemma 8.5, conditioning the field hDN on hDN0 = mN + t
effectively shifts the mean of hDN0 − hDNx by a quantity with the asymptotic

(mN + t)
(
1− gDN (x)

)
−→
N→∞

2
√
g
a(x). (11.3)

A variance computation then shows that the law of x 7→ hDN0 − hDNx tends, in
the sense of finite-dimensional distributions, to x 7→ φx+ 2√

ga(x), where φ is the

pinned DGFF; see Fig. 21. The conditioning on the origin being the maximum
then translates into the conditioning in (11.2). This would more or less suffice
to prove the desired result were it not for the following fact:

Theorem 11.3. There exists c? ∈ (0,∞) such that

P

(
φx +

2
√
g
a(x) ≥ 0: |x| ≤ r

)
=

c?√
log r

(
1 + o(1)

)
, r →∞. (11.4)

Since the right-hand side of (11.4) vanishes in the limit r →∞, the conditioning
in (11.2) is increasingly singular and so it is hard to imagine that one could
control the limit in (11.1) solely via manipulations based on weak convergence.
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11.2 Random walk based estimates

Our proof of Theorem 1.11 relies on the concentric decomposition of the DGFF
developed in Sections 8.2–8.4. As these sections were devoted to the proof of
tightness of the lower tail of the maximum, we were not allowed to assume any
bounds on the lower tails in estimates there. However, with the tightness settled,
Lemma 8.23 augments Lemma 8.13 to a two-sided estimate:

Lemma 11.4. There is a > 0 such that each k = 1, . . . , n and each t ≥ 0,

P

( ∣∣∣ max
x∈∆kr∆k−1

[
χk+1(x) + χk(x) + h′k(x)

]
−m2k

∣∣∣ ≥ t) ≤ e−at. (11.5)

This allows for control of the deviations of the field hDN from the random
walk −Sk in both directions which upgrades Lemma 8.19 to the form:

Lemma 11.5 (Reduction to random walk events). Assume hDN is realized
as the sum on the right of (8.41). There is a numerical constant C > 0 such
that uniformly in the above setting, the following holds for each k = 1, . . . , n and
each t ∈ R:

{Sn+1 = 0} ∩
{
Sk ≥ RK(k) + |t|

}
⊆ {hDN0 = 0} ∩

{
hDN ≤ (mN + t)(1− gDN ) on ∆k r∆k−1

}
⊆ {Sn+1 = 0} ∩

{
Sk ≥ −RK(k)− |t|

}
, (11.6)

where K is the control variable from Definition 8.17 with the absolute value signs
added around the quantity on the left of (8.61) and

Rk(`) := C[1 + θn,k(`)], (11.7)

with θn,k as in (8.59) and C as in Lemma 8.19. (We recall that, here and hence-
forth, n is the largest integer such that {x ∈ Z2 : |x|∞ ≤ 2n+1} ⊆ DN .)

Proof. From (8.64) we get, for all k = 0, . . . , n (and with ∆−1 := ∅),∣∣∣ max
x∈∆kr∆k−1

[
hDNx − (mN + t)(1− gDN (x))

]
+ Sk

∣∣∣
≤

n∑
`=k

max
x∈∆kr∆k−1

∣∣b`(x)
∣∣∣∣ϕ`(0)

∣∣+

( n∑
`=k+2

max
x∈∆kr∆k−1

∣∣χ`(x)
∣∣)

+
∣∣∣ max
x∈∆kr∆k−1

[
χk+1(x) + χk(x) + h′k(x)−m2k

]∣∣∣
+ max
x∈∆kr∆k−1

∣∣∣mN (1− gDN (x))−m2k

∣∣∣+ |t|. (11.8)

The definition of K then bounds the first three terms on the right by a quantity
of order 1 + θn,K(k). For the second to last term, here instead of (8.65) we need:
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Exercise 11.6. There is c > 0 such that for all n ≥ 1 and all k = 0, . . . , n,

max
x∈∆kr∆k−1

∣∣∣mN (1− gDN (x))−m2k

∣∣∣ ≤ c[1 + log(1 + k ∧ (n− k))
]
. (11.9)

The inclusions (11.6) follow readily from this. ut
We will now use the random walk {S1, . . . , Sn} to control all important aspects
of the conditional expectation in the statement of Theorem 11.1.

First note that the event
⋂n
k=1{Sk ≥ −RK(k)− |t|} encases all of the events

of interest and so we can use it as the basis for estimates of various undesir-
able scenarios. (This is necessary because the relevant events will have proba-
bility tending to zero proportionally to 1/n.) In particular, we need to upgrade
Lemma 8.21 to the form:

Lemma 11.7. There are constants c1, c2 > 0 such that for all n ≥ 1, all t
with 0 ≤ t ≤ n1/5 and all k = 1, . . . , bn/2c,

P

(
{K > k}∩

n⋂
`=1

{S` ≥ −Rk(`)− t}
∣∣∣∣Sn+1 = 0

)
≤ c1

1 + t2

n
e−c2(log k)2 . (11.10)

Since the target decay is order-1/n, this permits us to assume {K ≤ k} for k
sufficiently large but independent of n whenever need arises in the forthcoming
derivations. Lemma 8.20 then takes the form:

Lemma 11.8 (Entropic repulsion). For each t ≥ 0 there is c > 0 such that
for all n ≥ 1 and all k = 1, . . . , bn/2c

P

(
{Sk, Sn−k ≥ k1/6} ∩

n−k−1⋂
`=k+1

{S` ≥ Rk(`) + t
}

∣∣∣∣ n⋂
`=1

{S` ≥ −Rk(`)− t} ∩ {Sn+1 = 0}
)
≥ 1− ck− 1

16 . (11.11)

We will not give formal proofs of Lemmas 11.7–11.8 here; instead we refer the
reader to [27, Section 4].

Consider the expectation in the statement of Theorem 11.1. Lemma 8.5
permits us to shift the conditioning event to hDN0 = 0 at the cost of adding

(mN + t)gD
N

to all occurrences of the field. Abbreviating

mN (t, x) := (mN + t)(1− gDN (x)), (11.12)

the expectation in (11.1) can thus be written as

E
(
f
(
mN (t, ·)− hDN

)
1{hDN≤mN (t,·)}

∣∣∣hDN0 = 0
)

E
(
1{hDN≤mN (t,·)}

∣∣∣hDN0 = 0
) . (11.13)
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We will control this ratio by deriving, separately, asymptotic expressions for the
numerator and the denominator which (in light of Lemmas 11.4 and 11.7) will
both decay as a constant over n. As both the numerator and the denominator
have the same structure, it suffices to focus on the numerator. We claim:

Proposition 11.9. For each ε > 0 and each t0 > 0 there is k0 ≥ 1 such that
for all k with k0 ≤ k ≤ n1/6 and all t ∈ [−t0, t0],∣∣∣∣∣E( f(mN (t, ·)− hDN

)
1{hDN≤mN (t,·)}

∣∣∣hDN0 = 0
)

− E
(
f
(

2√
ga + φk

)
1{φk+ 2√

g a≥0 in ∆k}1{Sk,Sn−k∈[k1/6, k2]}

( n−k∏
`=k

1{S`≥0}

)
× 1{hDN≤mN (t,·) in DNr∆n−k}

∣∣∣∣hDN0 = 0

)∣∣∣∣∣ ≤ ε

n
, (11.14)

where we used the shorthand

φk(x) := h∆
k

0 − h∆
k

x . (11.15)

Proof (sketch). The proof is based on a sequence of replacements that gradually
convert one expectation into the other. First we separate scales by noting that,
given k ∈ {1, . . . , bn/2c}, we can write the “hard” event in the expectation as
the intersection of “inner”, “middle” and “outer” events,

1{hDN≤mN (t,·)} = 1{hDN≤mN (t,·) in ∆k}

× 1{hDN≤mN (t,·) in ∆n−kr∆k}1{hDN≤mN (t,·) in DNr∆n−k}. (11.16)

Plugging this in we can also use Lemma 11.7 to insert the indicator of {K ≤ k}
into the expectation. The inclusions in (11.6) permit us to replace the “middle”
event {

hDN ≤ mN (t, ·) in ∆n−k r∆k
}

(11.17)

by
n−k⋂
`=k

{S` ≥ ±(Rk(`) + |t|)} (11.18)

with the sign depending on whether we aim to get upper or lower bounds. Lem-
ma 11.8 then tells us that the difference between these upper and lower bounds
is negligible, and so we may further replace {S` ≥ ±(Rk(`) + |t|)} by {S` ≥ 0}.
In addition, by Lemma 11.8 we may also assume Sk, Sn−k ≥ k1/6. The bounds
Sk, Sn−k ≤ k2 then arise (for k large enough) from the restriction to {K ≤ k}
and the inequalities in Definition 8.17.



Extrema of 2D DGFF 151

At this point we have replaced the first expectation in (11.14) by 1+O(k−
1
16 )-

times the conditionalexpectation

E

(
f
(
mN (t, ·)− hDN

)
1{K≤k}1{hDN≤mN (t,·) in ∆k}1{Sk,Sn−k∈[k1/6, k2]}

×
(n−k∏
`=k

1{S`≥0}

)
1{hDN≤mN (t,·) in DNr∆n−k}

∣∣∣∣hDN0 = 0

)
(11.19)

plus a quantity of order 1+t2

n e−c2(log k)2 . Next we will use the continuity of f to
replace mN (t, ·) in the argument of f by its limit value 2√

ga. For this we assume

that k is much larger than the diameter of the set of vertices that f depends on.
Conditional on hDN0 = 0 we then have

hDNx = −φk(x) +
∑
`>k

[
b`(x)ϕ`(0) + χ`

]
, x ∈ ∆k. (11.20)

The bounds arising from the restriction K ≤ k then let us replace hDN in the
argument of f by −φk.

It remains to deal with the indicator of the “inner” event{
hDN ≤ mN (t, ·) in ∆k

}
(11.21)

which we want to replace by{
φk + 2√

ga ≥ 0 in ∆k
}
. (11.22)

Here continuity arguments cannot be used; instead, we have to show that en-
tropic repulsion creates a sufficiently large gap between hDN and mN (t, ·) in
the first expectation in (11.14), and between φk + 2√

ga and zero in the second

expectation, to absorb the sum on the right of (11.20) and the difference be-
tween mN (t, ·) and 2√

ga everywhere on ∆k. We refer to [27, Lemma 4.22] (and

Exercise 11.10 below) for details of this step.
Even after all the replacements above have been done, the quantity under

expectation remains concentrated on
⋂n
`=1{S` ≥ −Rk(`)−|t|}. Lemma 11.8 then

permits us to drop the restriction to {K ≤ k} and get the desired result. ut
The entropic repulsion step from [27, Lemma 4.22] relies on the following

general fact which constitutes a nice exercise for the reader:

Exercise 11.10 (Controlling the gap). Prove that, if φ is a field on a set Λ
with the strong-FKG property, then for all δ > 0 and all f : Λ→ R (and writing
{φ 6≥ f} for {φ(x) ≥ f(x) : x ∈ Λ}c)

P
(
φ 6≥ f + δ

∣∣φ ≥ f) ≤∑
x∈Λ

P
(
φ(x) < f(x) + δ

∣∣φ(x) ≥ f(x)
)
. (11.23)

For φ(x) = N (0, σ2) with σ2 > 0, and f(x) ≤ 0, show also that

P
(
φ(x) 6≥ f(x) + δ

∣∣φ(x) ≥ f(x)
)
≤ 2√

2π

δ

σ
≤ δ

σ
. (11.24)
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Thanks to (11.23–11.24), in order to show the existence of a gap it suffices to
prove a uniform lower bound on the variance of the relevant fields. (Note that
the gap can be taken to zero slowly with n→∞.)

Moving back to the main line of argument underlying the proof of Theo-
rem 11.1, next we observe:

Lemma 11.11. Conditionally on Sk and Sn−k and the event Sn+1 = 0,

(1) the “inner” field φk,
(2) the random variables {S` : ` = k, . . . , n− k}, and
(3) the “outer” field {hDNx : x ∈ DN r∆n−k}

are independent of one another whenever n > 2k.

Proof. Inspecting (11.15), φk is measurable with respect to

σ
(
ϕ1(0), . . . , ϕk(0), χ1, . . . , χk, h0, . . . , h

′
k

)
, (11.25)

while the random variables in (2) are measurable with respect to

σ
(
{Sk} ∪ {ϕ`(0) : ` = k + 1, . . . , n− k}

)
. (11.26)

The definition of the concentric decomposition in turn ensures that the random
variables in (3), as well as the event {Sn+1 = 0}, are measurable with respect to

σ
(
{Sn−k} ∪

n⋃
`=n−k

{ϕ`(0), χ`, h
′
`}
)
. (11.27)

The claim follows from the independence of the random objects constituting the
concentric decomposition. ut

We note that the Lemma 11.11 is the prime reason why we had to replace
h∆

n − h∆n0 by φk in the “inner” event. (Indeed, h∆
n − h∆n0 still depends on the

fields χ`, ` = n − k, . . . , n.) Our next step is to take expectation conditional
on Sk and Sn−k. Here we will use:

Lemma 11.12. For each t0 > 0 there is c > 0 such that for all 1 ≤ k ≤ n1/6,∣∣∣∣P( n−k⋂
`=k

{S` ≥ 0}
∣∣∣σ(Sk, Sn−k)

)
− 2

g log 2

SkSn−k
n

∣∣∣∣ ≤ ck4

n

SkSn−k
n

(11.28)

holds everywhere on {Sk, Sn−k ∈ [k1/6, k2]}.

Proof (idea). We will only explain the form of the leading term leaving the error
to a reference to [27, Lemma 5.6]. Abbreviating x := Sk and y := Sn−k, the
conditional probability in (11.28) is lower bounded by

P
(
Bt ≥ 0: t ∈ [tk, tn−k]

∣∣Btk = x,Btn−k = y
)
, (11.29)
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where we used the embedding (8.76) of the walk into a path of Brownian motion.
In light of Lemma 8.10, we know that

t` − tk =
(
g log 2 + o(1)

)
(`− k), ` ≥ k, (11.30)

with o(1)→ 0 as k →∞ uniformly in ` ≥ k. Exercise 7.10 then gives

P
( n−k⋂
`=k

{S` ≥ 0}
∣∣∣σ(Sk, Sn−k)

)
&

2SkSn−k
tn−k − tk

=
2

g log 2

SkSn−k
n

(
1 + o(1)

) (11.31)

on {Sk, Sn−k ∈ [k1/6, k2]} whenever k4 � n.
To get a similar upper bound, one writes the Brownian motion on interval

[t`, t`+1] as a linear curve connecting S` to S`+1 plus a Brownian bridge. Then we
observe that the entropic repulsion pushes the walk far away from the positivity
constraint so that the Brownian bridges do not affect the resulting probability
much. See [27, Lemma 4.15] for details. ut

The main consequence of the above observations is an asymptotic formula
for the numerator (and thus also the denominator) in (11.13). Indeed, denote

Ξ in
k (f) := E

(
f
(
φk + 2√

ga
)
1{φk+ 2√

g a≥ 0 in ∆k}1{Sk∈[k1/6, k2]}Sk

)
(11.32)

and

Ξout
N,k(t) := E

(
1{hDN≤mN (t,·) in DNr∆n−k}1{Sn−k∈[k1/6, k2]}Sn−k

∣∣∣∣hDN0 = 0

)
.

(11.33)
As a result of the above manipulations, we then get:

Lemma 11.13 (Main asymptotic formula). For o(1) → 0 in the limits
as N → ∞ and k → ∞, uniformly on compact sets of t and compact fami-

lies of f ∈ Cc(RZ2

) depending on a given finite number of variables,

E
(
f
(
mN (t, ·)− hDN

)
1{hDN≤mN (t,·)}

∣∣∣hDN0 = 0
)

=
2

n

Ξ in
k (f)Ξout

N,k(t)

g log 2
+
o(1)

n
. (11.34)

Proof. This follows by plugging Lemma 11.12 in the second expectation in (11.14)
and using the independence stated in Lemma 11.11. ut

In order to control the N → ∞ and k → ∞ limits of the right-hand side of
(11.34), we will also need to observe:
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Lemma 11.14. For each t0 > 0 there are c1, c2 ∈ (0,∞) such that for all t ∈
[−t0, t0], all N ≥ 1 and all k ≤ n1/6 (with N and n related as above),

c1 < Ξout
N,k(t) < c2 (11.35)

and

c1 < Ξ in
k (1) < c2. (11.36)

We postpone the proof of these bounds until the next section. Instead, we note
the following consequence thereof:

Corollary 11.15. Uniformly in f and t as stated in Lemma 11.13,

lim
N→∞

E
(
f
(
hDN0 − hDN

) ∣∣∣hDN0 = mN + t, hDN ≤ hDN0

)
= lim
k→∞

Ξ in
k (f)

Ξ in
k (1)

,

(11.37)
where, in particular, both limits exist.

Proof. The bounds (11.35) allow us to write the right-hand side of (11.34) as

2Ξout
N,k(t)

g log 2

Ξ in
k (f) + o(1)

n
. (11.38)

The ratio in (11.13) thus simplifies into the ratio of Ξ in
k (f) + o(1) and Ξ in

k (1) +
o(1). This depends on N only through the o(1) terms which tend to zero as
N →∞ and k →∞. Using the lower bound in (11.36), the claim follows. ut

11.3 Full process convergence

Moving towards the proof of of Theorem 11.1, thanks to the representation of the
pinned DGFF in Exercise 8.15, the above derivation implies, even in a somewhat
simpler form, also the limit of the probabilities in (11.2). The difference is that
here the random walk is not constrained to Sn+1 = 0 and also there is no t to
worry about. This affects the asymptotics of the relevant probability as follows:

Lemma 11.16. For f ∈ Cc(RZ2

) depending on a finite number of coordinates,

E
(
f
(
φ+ 2√

ga
)
1{φ+ 2√

g a≥0 in ∆r}

)
=

1√
log 2

Ξ in
k (f)√
r

+
o(1)√
r
, (11.39)

where o(1)→ 0 as r →∞ followed by k →∞.

Similarly to 1/n in (11.34) arising from the asymptotic of the probability that
a random-walk bridge of time length n to stay positive, the asymptotic 1/

√
r

stems from the probability that an (unconditioned) random walk stays positive
for the first r steps. Indeed, the reader will readily check:
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Exercise 11.17. Let {Bt : t ≥ 0} be the standard Brownian motion with P x

denoting the law started from B0 = x. Prove that for all x > 0 and all t > 0,√
2

π

x√
t

(
1− x2

2t

)
≤ P x

(
Bs ≥ 0: 0 ≤ s ≤ t

)
≤
√

2

π

x√
t
. (11.40)

We will not give further details concerning the proof of Lemma 11.16 as that
would amount to repetitions that the reader may not find illuminating. (The
reader may consult [27, Proposition 5.1] for that.) Rather we move on to:

Proof of Lemma 11.14. We begin with (11.36). We start by introducing a vari-

ant K̃ of the control variable K. Let θ̃k(`) := 1 + [log(k ∨ `)]2 and define K̃
to be the least positive natural k such that Definition 8.17(1,2) — with θn,k(`)

replaced by θ̃k(`) — as well as∣∣∣ min
x∈∆`r∆`−1

[
χ`(x) + χ`+1(x) + h′`(x)

]
+

2
√
g
a(x)

∣∣∣ ≤ θk(`) (11.41)

and ∣∣∣ max
x∈∆`r∆`−1

[
χ`(x) + χ`+1(x) + h′`(x)

]
− 2
√
g
a(x)

∣∣∣ ≤ θk(`) (11.42)

hold true for all ` ≥ k. (That K̃ <∞ a.s. follows by our earlier estimates and the
Borel-Cantelli lemma. The condition (11.42) is introduced for later convenience.)

Recall that Exercise 8.15 expresses the pinned DGFF using the objects in
the concentric decomposition. Hence we get

r⋂
k=1

{
Sk ≥ Cθ̃K̃(k)

}
⊆
{
φ+

2
√
g
a ≥ 0 in ∆r

}
⊆

r⋂
k=1

{
Sk ≥ −Cθ̃K̃(k)

}
, (11.43)

for some sufficiently large absolute constant C > 0. Ballot problem/entropy
repulsion arguments invoked earlier then show that the probability of both sides
decays proportionally to that of the event

⋂r
k=1{S` ≥ −1}. Lemma 11.16 and

Exercise 11.17 then give (11.36).
Plugging (11.36) to (11.34), the inclusions in Lemma 11.5 along with the

bounds in Lemmas 11.7–11.8 then imply (11.35) as well. ut
We are finally ready to give:

Proof of Theorem 11.1. From Lemmas 11.16 and 11.14 we have

lim
r→∞

E
(
f
(
φ+ 2√

ga
) ∣∣∣φx +

2
√
g
a(x) ≥ 0: |x| ≤ r

)
= lim
k→∞

Ξ in
k (f)

Ξ in
k (1)

. (11.44)

Jointly with Corollary 11.15, this proves equality of the limits in the statement.
To see that ν concentrates on RZ2

(and, in fact, on [0,∞)Z
2

) we observe that,

since ` 7→ θ̃k(`) from Lemma 11.14 grows only polylogarithmically while a is
order k on ∆k r∆k−1, once k is sufficiently large we get{

φ+
2
√
g
a 6≤ k2 on ∆k

}
⊆ {K̃ > k}. (11.45)
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(It is here where we make use of (11.42).) By an analogue of Lemma 11.7 for

random variable K̃, we have ν(K̃ > k) ≤ c1e−c2(log k)2 . The Borel-Cantelli lemma

then implies ν(RZ2

) = 1, as desired. ut
The above techniques also permit us to settle the asymptotic (11.4):

Proof of Theorem 11.3. Observe that after multiplying both sides of (11.39)
by
√
r, the left-hand side is independent of k while the right-hand side depends

on r only through the o(1)-term. In light of (11.36), r →∞ and k →∞ can be
taken independently (albeit in this order) to get that

Ξ in
∞(1) := lim

k→∞
Ξ in
k (1) (11.46)

exists, is positive and finite. Since r log 2 is, to the leading order, the logarithm
of the diameter of ∆r, the claim follows from (11.39) with c? := Ξ in

∞(1). ut
We are now finally ready to move to the proof of Theorem 9.3 dealing with

the weak convergence of the full, three coordinate process ηDN,r defined in (9.7). In
light of Theorem 11.1, all we need to do is to come up with a suitable localization
method that turns a large local maximum (in a large domain) to the actual
maximum (in a smaller domain). We will follow a different line of reasoning
than [27] as the arguments there seem to contain flaws whose removal would
take us through lengthy calculations that we prefer to avoid.

Proof of Theorem 9.3. Every f ∈ Cc(D × R × RZ2

) is uniformly close to a
compactly supported function that depends only on a finite number of “cluster”
coordinates. So let us assume that x, h, φ 7→ f(x, h, φ) is continuous and depends
only on {φy : y ∈ Λr(0)} for some r ≥ 1 and vanishes when |h|,maxx∈Λr |φy| ≥ λ
for some λ > 0 or if dist(x,Dc) < δ for some δ > 0.

The proof hinges on approximation of ηDN by three auxiliary processes. Given
an integer K ≥ 1, let {Si : i = 1, . . . ,m} be the set of all the squares of the form
z/K + (0, 1/K)2 with z ∈ Z2 that fit entirely into Dδ. For each i = 1, . . . ,m,
let SiN be the lattice box of side-length (roughly) N/K contained in NSi so that

every pair of neighboring squares SiN and SjN keep a “line of sites” in-between.
Given δ > 0 small, let SiN,δ := {x ∈ SiN : dist∞(x, SiN ) > δN}. For x ∈ DN such

that x ∈ SiN,δ for some i = 1, . . . ,m, set

ΘN,K,δ(x) :=
{
hDNx = max

y∈SiN
hDNy

}
(11.47)

and let ΘN,K,δ(x) := ∅ for x ∈ DN where no such i exists. Setting

ηD,K,δN :=
∑
x∈DN

1ΘN,K,δ(x) δx/N ⊗ δhDNx −mN
⊗ δ{hDNx −hDNx+z : z∈Z2}, (11.48)

Lemma 10.4 and Theorem 9.2 show that, for any f as above,

lim
δ↓0

lim sup
K→∞

lim sup
N→∞

∣∣∣E(e−〈η
D
N,rN

,f〉)− E(e−〈η
D,K,δ
N ,f〉)

∣∣∣ = 0. (11.49)
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Next we consider the Gibbs-Markov decomposition hDN = hD̃N+ϕDN ,D̃N , where
D̃N :=

⋃m
i=1 S

i
N . Denoting, for x ∈ D̃N and i = 1, . . . ,m such that x ∈ SiN,δ,

Θ̃N,K,δ(x) :=
{
hD̃Nx = max

y∈SiN
hD̃Ny

}
, (11.50)

we then define η̃D,K,δN by the same formula as ηD,K,δN but with ΘN,K,δ(x) replaced

by Θ̃N,K,δ(x) and the sum running only over x ∈ D̃N . The next point to observe
is that, for K sufficiently large, the maximum of hDN in SiN coincides (with

high probability) with that of hD̃N . (We used a weaker version of this already
in Lemma 10.18.) This underpins the proof of:

Lemma 11.18. For any f as above,

lim
δ↓0

lim sup
K→∞

lim sup
N→∞

∣∣∣E(e−〈η
D,K,δ
N ,f〉)− E(e−〈η̃

D,K,δ
N ,f〉)

∣∣∣ = 0. (11.51)

Postponing the proof to Lecture 12, we now define a third auxiliary process

η̂D,K,δN by replacing hDN in the cluster variables of η̃D,K,δN by hD̃N ,

η̂D,K,δN :=
∑
x∈D̃N

1Θ̃N,K,δ(x) δx/N ⊗ δhDNx −mN
⊗ δ
{hD̃Nx −hD̃Nx+z : z∈Z2}

. (11.52)

By the uniform continuity of f and the fact that ϕDN ,D̃N converges locally-

uniformly to the (smooth) continuum binding field ΦD,D̃ (see Lemma 4.4) the
reader will readily verify:

Exercise 11.19. Show that for each K ≥ 1, each δ > 0 and each f as above,

lim
N→∞

∣∣∣E(e−〈η̂
D,K,δ
N ,f〉)− E(e−〈η̃

D,K,δ
N ,f〉)

∣∣∣ = 0. (11.53)

Now comes the key calculation of the proof. Let Xi, for i = 1, . . . ,m, denote

the (a.s.-unique) maximizer of hD̃N in SiN . For the given f as above, x ∈ Si for
some i = 1, . . . ,m and any t ∈ R, abbreviate xN := bxNc and let

fN,K(x, t)

:= − logE
(

e
−f(x,t,h

D̃N
xN
−hD̃NxN+z : z∈Z2)

∣∣∣Xi = xN , hxN = mN + t
)
. (11.54)

Thanks to the independence of the field hD̃N over the boxes SiN , i = 1, . . . ,m,

by conditioning on the binding field ϕDN ,D̃N and using its independence of hD̃N

(and thus also of the Xi’s), and then also conditioning on the Xi’s and the

values hD̃NXi , we get

E(e−〈η̂
D,K,δ
N ,f〉) = E

( m∏
i=1

e
−f(Xi/N, h

D̃N
Xi
−mN+ϕ

DN,D̃N
Xi

,{hD̃NXi −h
D̃N
Xi+z

: z∈Z2})
)

= E

( m∏
i=1

e
−fN,K(Xi/N, h

D̃N
Xi
−mN+ϕ

DN,D̃N
Xi

)

)
= E(e−〈η̂

D,K,δ
N ,fN,K〉).

(11.55)
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Since Xi marks the location of the absolute maximum of hD̃N in SiN , recalling
the notation ν for the cluster law from (11.2), Theorem 11.1 yields

fN,K(x, t) −→
N→∞

fν(x, t) := − logEν(e−f(x,t,φ)) (11.56)

uniformly in t and x ∈
⋃m
i=1 S̃

i
δ, where S̃iδ is the shift of (0, (1− δ)/K)2 centered

the same point as Si. Using this in (11.55), the series of approximations invoked
earlier shows

E
(
e−〈η

D
N,rN

, f〉) = E
(
e−〈η

D
N,rN

, fν〉)+ o(1) (11.57)

with o(1) → 0 as N → ∞. As fν ∈ Cc(D × R), the convergence of the two-
coordinate process proved in Section 10.2 yields

E
(
e−〈η

D
N,rN

, fν〉)
−→
N→∞

E

(
exp
{
−
∫
D×R

ZD(dx)⊗ e−αhdh
(
1− e−fν(x,h)

)})
. (11.58)

To conclude, it remains to observe that∫
D×R

ZD(dx)⊗ e−αhdh
(
1− e−fν(x,h)

)
=

∫
D×R×RZ2

ZD(dx)⊗ e−αhdh⊗ ν(dφ)
(
1− e−f(x,h,φ)

)
(11.59)

turns (11.58) into the Laplace transform of PPP(ZD(dx)⊗e−αhdh⊗ν(dφ)). ut

11.4 Some corollaries

Having established the limit of the structured point measure, we proceed to state
a number of corollaries of interest. We begin with the limit of the “ordinary”
extreme value process (9.4):

Corollary 11.20 (Cluster process). For ZD and ν as in Theorem 9.3,∑
x∈DN

δx/N ⊗ δhDNx −mN
law−→

N→∞

∑
i∈N

∑
z∈Z2

δ
(xi, hi−φ(i)

z )
, (11.60)

where the right-hand side is defined using the following independent objects:

(1) {(xi, hi) : i ∈ N} := sample from PPP(ZD(dx)⊗ e−αhdh),
(2) {φ(i) : i ∈ N} := i.i.d. samples from ν.

The measure on the right is locally finite on D × R a.s.

We relegate the proof to:

Exercise 11.21. Derive (11.60) from the convergence statement in Theorem 9.3
and the tightness bounds in Theorems 9.1–9.2.
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The limit object on the right of (11.60) takes the form of a cluster process.
This term generally refers to a collection of random points obtained by taking a
sample of a Poisson point process and then associating with each point thereof
an independent cluster of (possibly heavily correlated) points. See again Fig. 17.
We note that a cluster process naturally appears in the limit description of the
extreme-order statistics of the Branching Brownian Motion [10–12].

Another observation that is derived from the above limit law concerns the
Gibbs measure on DN associated with the DGFF on DN as follows:

µDβ,N
(
{x}
)

:=
1

ZN (β)
eβh

DN
x where ZN (β) :=

∑
x∈DN

eβh
DN
x . (11.61)

In order to study the scaling limit of this object, we associate the value µDβ,N ({x})
with a point mass at x/N . From the convergence of the suitably-normalized

measure
∑
x∈DN eβh

DN
x δx/N to the Liouville Quantum Gravity for β < βc := α

it is known (see, e.g., Rhodes and Vargas [105, Theorem 5.12]) that

∑
z∈DN

µDβ,N
(
{z}
)
δz/N (dx)

law−→
N→∞

ZDλ (dx)

ZDλ (D)
, (11.62)

where λ := β/βc and where ZDλ is the measure we saw in the discussion of the
intermediate level sets (for λ < 1). The result extends (see [105, Therem 5.13],
although the proof details seem scarce) to the case β = βc, where thanks to

Theorem 10.30 we get ẐD(dx) from (9.9) instead.
The existence of the limit in the supercritical cases β > βc has been open for

quite a while (and was subject to specific conjectures; e.g., [66, Conjecture 11]).
Madaule, Rhodes and Vargas [92] first proved it for star-scale invariant fields
as well as certain specific cutoffs of the CGFF. For the DGFF considered here,
Arguin and Zindy [13] proved convergence of the overlaps of µDβ,N to those of
Poisson-Dirichlet distribution PD(s) with parameter s := βc/β. This only iden-
tified the law of the sizes of the atoms in the limit measure; the full convergence
including the spatial distribution was settled in [27]:

Corollary 11.22 (Poisson-Dirichlet limit for the Gibbs measure). For
all β > βc := α we then have∑

z∈DN

µDβ,N
(
{z}
)
δz/N (dx)

law−→
N→∞

∑
i∈N

pi δXi , (11.63)

where

(1) {Xi} are (conditionally on ZD) i.i.d. with law ẐD, while

(2) {pi}i∈N is independent of ZD and {Xi} with {pi}i∈N
law
= PD(βc/β).

We remark that PD(s) is a law on non-increasing sequences of non-negative
numbers with unit total sum obtained as follows: Take a sample {qi}i∈N from the



160 Marek Biskup

Poisson process on (0,∞) with intensity t−1−sdt, order the points decreasingly
and normalize them by their total sum (which is finite a.s. when s < 1).

Corollary 11.22 follows from the description of the Liouville Quantum Gravity
measure for β > βc that we will state next. For s > 0 and Q a Borel probability
measure on C, let {qi}i∈N be a sample from the Poisson process on (0,∞) with
intensity t−1−sdt and let {Xi}i∈N be independent i.i.d. samples from Q. Use
these to define the random measure

Σs,Q(dx) :=
∑
i∈N

qi δXi . (11.64)

We then have:

Theorem 11.23 (Liouville measure in the glassy phase). Let ZD and ν
be as in Theorem 9.3. For each β > βc := α there is c(β) ∈ (0,∞) such that∑

z∈DN

eβ(hz−mN )δz/N (dx)
law−→

N→∞
c(β)ZD(D)β/βc Σβc/β, ẐD

(dx), (11.65)

where Σβc/β, ẐD
is defined conditionally on ZD. Moreover,

c(β) = β−β/βc
[
Eν(Y β(φ)βc/β)

]β/βc
with Y β(φ) :=

∑
x∈Z2

e−βφx . (11.66)

In particular, Eν(Y β(φ)βc/β) <∞ for each β > βc.

Note that the limit laws in (11.63) and (11.65) are purely atomic, in contrast
to the limits of the subcritical measures (11.62) which, albeit a.s. singular with
respect to the Lebesgue measure, are non-atomic a.s.

Proof of Theorem 11.23 (main computation). We start by noting that the Laplace
transform of the above measure Σs,Q is explicitly computable:

Exercise 11.24. Show that for any measurable f : C→ [0,∞),

E
(
e−〈Σs,Q,f〉

)
= exp

{
−
∫
C×(0,∞)

Q(dx)⊗ t−1−sdt (1− e−tf(x))

}
. (11.67)

Pick a continuous f : C → [0,∞) with support in D and (abusing our earlier
notations) write MN to denote the measure on the left of (11.65). Through
suitable truncations, the limit proved in Theorem 9.3 shows that E(e−〈MN ,f〉)
tends to

E

(
exp
{
−
∫
ZD(dx)⊗ e−αhdh⊗ ν(dφ)(1− e−g(x,h,φ))

})
, (11.68)

where g(x, h, φ) := f(x) eβh Y β(φ). The change of variables t := eβh then gives∫
dh e−αh(1− e−g(x,h,φ)) =

∫ ∞
0

dt
1

βt
t−α/β

(
1− e−f(x)Y β(φ)t

)
=

1

β

(
Y β(φ)

)α/β ∫ ∞
0

dt t−1−α/β(1− e−tf(x)).

(11.69)
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The integral with respect to ν affects only the term (Y β(φ))α/β in the front;
scaling t by c(β)ZD(D)β/α then absorbs all prefactors and identifies the integral

on the right of (11.68) with that in (11.67) for Q := ẐD and f(x) replaced by
c(β)ZD(D)β/αf(x). This now readily gives the claim (11.65). (The finiteness of
the expectation of Y β(φ)βc/β requires a separate tightness argument.) ut

The reader might wonder at this point how it is possible that the rather
complicated (and correlated) structure of the cluster law ν does not at all appear
in the limit measure on the right of (11.65) — that is, not beyond the expectation
of Y β(φ)βc/β in c(β). This may, more or less, be traced to the following property
of the Gumbel law:

Exercise 11.25 (Derandomizing i.i.d. shifts of Gumbel PPP). Consider
a sample {hi : i ∈ N} from PPP(e−αhdh) and let {Ti : i ∈ N} be independent,
i.i.d. random variables. Prove that∑

i∈N
δhi+Ti

law
=
∑
i∈N

δhi+α−1 log c (11.70)

whenever c := EeαT1 <∞.

Our final corollary concerns the behavior of the function

GN,β(t) := E

(
exp
{
−e−βt

∑
x∈DN

eβh
DN
x

})
, (11.71)

which, we observe, is a re-parametrization of the Laplace transform of the nor-
malizing constant ZN (β) from (11.61). In their work on the Branching Brownian
Motion, Derrida and Spohn [53] and later Fyodorov and Bouchaud [74] observed
that, in a suitable limit, an analogous quantity ceases to depend on β once β
crosses a critical threshold. They referred to this as freezing. Our control above
is sufficient to yield the same phenomenon for the quantity arising from DGFF:

Corollary 11.26 (Freezing). For all β > βc := α there is c̃(β) ∈ R such that

GN,β
(
t+mN + c̃(β)

)
−→
N→∞

E
(
e−Z

D(D) e−αt
)
. (11.72)

Proof. Noting that e−βmNZN (β) is the total mass of the measure on the left of
(11.65), from Theorem 11.23 we get (using the notation of (11.64) and (11.66))

e−βmNZN (β)
law−→

N→∞
c(β)ZD(D)β/α

∑
i∈N

qi . (11.73)

The Poisson nature of the {qi}i∈N shows, for any λ > 0,

E
(
e−λ

∑
i∈N qi

)
= exp

{
−
∫ ∞

0

dt t−1−β/α(1− e−λt)
}

= exp
{
−λα/β

∫ ∞
0

dt t−1−β/α(1− e−t)
}
.

(11.74)
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Thanks to the independence of {qi}i∈N and ZD, the Laplace transform of the
random variable on the right of (11.73) at parameter e−βt is equal to the right-
hand side of (11.72), modulo a shift in t by a constant that depends on c(β) and
the integral on the second line in (11.74). ut

We refer to [27] for further consequences of the above limit theorem and
additional details. The (apparently quite deep) connection between freezing and
Gumbel laws has recently been further explored by Subag and Zeitouni [120].

Lecture 12

Limit theory for DGFF maximum

In this final lecture on the extremal process associated with the DGFF we apply
the concentric decomposition developed in Lectures 8 and 11 to give the proofs
of various technical results scattered throughout Lectures 9–11. We start by
Theorems 9.1-9.2 and Lemma 10.4 that we used to control the spatial tightness
of the extremal level sets. Then we establish the convergence of the centered
maximum from Theorem 10.3 by way of proving Theorem 10.7 and extracting
from this the uniqueness (in law) of the limiting ZD-measures from Theorem 9.6.
At the very end we state (without proof) a local limit result for both the position
and the value of the absolute maximum.

12.1 Spatial tightness of extremal level sets

Here we give the proofs of Theorems 9.1-9.2 and Lemma 10.4 that we relied
heavily on in the previous lectures. Recall the notation ΓDN (t) from (9.1) for
the extremal level set “t units below mN” and the definition Dδ

N := {x ∈
DN : dist∞(x,Dc

N ) > δN}. We start by:

Lemma 12.1. For each D ∈ D, δ > 0 and c′ > 0 there is c > 0 such that for
all N ≥ 1, all x ∈ Dδ

N and all t and r with |t|, r ∈ [0, c′(logN)1/5],

P
(
hDN ≤ mN + r

∣∣∣hDNx = mN + t
)
≤ c

logN

(
1 + r + |t|

)2
. (12.1)

Proof. Assume without loss of generality that 0 ∈ D and let us first address
the case x = 0. Lemma 8.5 shifts the conditioning to hDN0 = 0 at the cost of
reducing the field by (mN + t)gDN . Invoking the concentric decomposition and
Lemma 11.5, the resulting event can be covered as{

hDN ≤ mN (1− gDN ) + r − tgDN
}
⊆ {K = bn/2c+ 1}

∪
n⋂
k=1

({
Sk − Sn+1 ≥ −RK(k)− r − |t|

}
∩
{
K ≤ bn/2c

})
, (12.2)
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where we used 0 ≤ g∆
n ≤ 1. Summing the bound in Lemma 11.7 we then get

(12.1). (The restriction to t ≤ n1/5 can be replaced by t ≤ c′n1/5 at the cost of
changing the constants.) Noting that constant c depends only on k1 from (8.46),
shifting DN around extends the bound to all x ∈ Dδ

N . ut

With Lemma 12.1 at our disposal, we can settle the tightness of the cardi-
nality of the extremal level set:

Proof of Theorem 9.1 (upper bound). Building on the idea underlying Exer-
cises 3.3–3.4, we first ask the reader to solve:

Exercise 12.2. Let D̃ ⊆ D. Then, assuming D̃N ⊆ DN , for any n ∈ N,

P
(∣∣Γ D̃N (t)

∣∣ ≥ 2n
)
≤ 2P

(∣∣ΓDN (t) ∩ D̃N

∣∣ ≥ n). (12.3)

In light of this, it suffices to bound the size of ΓDN (t) ∩Dδ
N . Here we note that,

by the Markov inequality

P
(
|ΓDN (t) ∩Dδ

N | ≥ eCt
)
≤ P

(
max
x∈DN

hDNx > mN + t
)

+ e−Ct
∑
x∈DδN

P
(
hDN ≤ mN + t, hDNx ≥ mN − t

)
. (12.4)

The first probability is bounded by e−ãt using the exponential tightness of abso-
lute maximum; cf Lemma 8.3. The probability under the sum is in turn bounded
by conditioning on hDNx and applying Lemma 12.1 along with the standard Gaus-
sian estimate (for the probability of hDNx ≥ mN−t). This bounds the probability
by a quantity of order (1 + t)2teαt/N2. Since |Dδ

N | = O(N2), for C > α, we get
the upper bound in (9.2). ut

We leave the lower bound to:

Exercise 12.3. Use the geometric setting, and the ideas underlying the proof of
Lemma 8.3 to prove the lower bound on |ΓDN (t)| in (9.2) for any c < α/2.

We remark that the bound proposed in this exercise is far from optimal. Indeed,
once Theorem 9.3 has been established in full (for which we need only the upper
bound in Theorem 9.1), we get |ΓN (t)| = e(α+o(1))t. See Conjecture 16.5 for even
a more precise claim.

Next we will give:

Proof of Lemma 10.4. First we note that, thanks to Exercise 3.4 we may assume
that A ⊂ Dδ

N for some δ > 0 independent of N . Lemma 12.1, the union bound,
the definition of mN and the exponential tightness of the absolute maximum
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from Lemma 8.3 then shows, for all r, |t| ∈ [0, (logN)1/5],

P
(

max
x∈A

hDNx ≥ mN + t
)

≤ P
(

max
x∈DN

hDNx ≥ mN + r
)

+ P
(

max
x∈A

hDNx ≥ mN + t, max
x∈DN

hDNx ≤ mN + r
)

≤ e−ãr + c
|A|
N2

e−αt
(
1 + r + |t|

)2
.

(12.5)

Setting r := 5ã−1 log(1 + N2/|A|) + 2αã−1|t| then proves the claim for all A

such that |A| ≥ N2e−ã(logN)1/5 (as that ensures r ≤ c′(logN)1/5). For the
complementary set of A’s we apply the standard Gaussian tail estimate along
with the uniform bound on the Green function and a union bound to get

P
(

max
x∈A

hDNx ≥ mN + t
)
≤ ce−αt |A|

N2
logN. (12.6)

Then we note that logN ≤ c′′[log(1 +N2/|A|)]5 for c′′ > 0 sufficiently large. ut
Our next item of business is the proof of Theorem 9.2 dealing with spatial

tightness of the set ΓDN (t). Here we will also need:

Lemma 12.4. For each D ∈ D, each δ > 0 and each t ≥ 0 there is c > 0 such
that for all t′ ∈ [−t, t], all N ≥ 1, all x ∈ Dδ

N and all r with 1/δ < r < δN ,

P
(

max
y∈Ar,N/r(x)

hDNy ≥ hDNx , hDN ≤ mN + t
∣∣∣hDNx = mN + t′

)
≤ c (log r)−

1
16

logN
,

(12.7)
where we abbreviated Aa,b(x) := {y ∈ Z2 : a ≤ dist∞(x, y) ≤ b}.

Proof. Let us again assume 0 ∈ D and start with x = 0. The set under the maxi-
mum is contained in ∆n−kr∆k for a natural k proportional to log r. Lemma 8.5
shifts the conditioning to hDN0 = 0 at the cost of adding (mN + t′)gDN to all
occurrences of hDN . This embeds the event under consideration into⋃

y∈∆n−kr∆k

{
hDNy ≥ (mN + t′)(1− gDN (y))

}
∩
{
hDN ≤ (mN + t)(1− gDN ) + (t− t′)gDN

}
. (12.8)

For |t′| ≤ t, the event is the largest when t′ = −t so let us assume that from now
on. Using that gDN ≤ 1 and invoking the estimates underlying Lemma 11.5, the
resulting event is then covered by the union of

{K > k} ∩
n⋂
`=1

{S` ≥ −RK(`)− 2t} (12.9)
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and ( n−k⋃
`=k+1

{S` ≤ Rk(`) + t
})
∩

n⋂
`=1

{S` ≥ −Rk(`)− 2t} . (12.10)

By Lemma 11.7, the conditional probability (given Sn+1 = 0) of the event in

(12.9) is at most order e−c2(log k)2/ logN . Lemma 11.8 in turn bounds the cor-
responding conditional probability of the event in (12.10) by a constant times

k−
1
16 / logN . The constants in these bounds are uniform on compact sets of t

and over the shifts of DN such that 0 ∈ Dδ
N . Using the translation invariance of

the DGFF, the claim thus extends to all x ∈ Dδ
N . ut

With Lemma 12.4 in hand, we are ready to give:

Proof of Theorem 9.2. Given δ > 0 and s ≥ t ≥ 0, the event in the statement is
the subset of the union of{

ΓDN (t) rDδ
N 6= ∅

}
∪
{

max
x∈DN

hDNx > mN + s
}

(12.11)

and the event⋃
x∈DδN

{
max

y∈Ar,N/r(x)
hDNy ≥ hDNx ≥ mN − t, hDN ≤ mN + s

}
(12.12)

provided 1/δ < r < δN . Lemmas 10.4 and 8.3 show that the probability of the
event in (12.11) tends to zero in the limits N → ∞, δ ↓ 0 and s → ∞. The
probability of the event in (12.12) is in turn estimated by the union bound and
conditioning on hDNx = mN + t′ for t′ ∈ [−t, s]. Lemma 12.4 then dominates the

probability by an s-dependent constant times (log r)−
1
16 . The claim follows by

taking N →∞, r →∞ followed by δ ↓ 0 and s→∞. ut
The arguments underlying Lemma 12.4 also allow us to prove that large local

extrema are preserved (with high probability) upon application of the Gibbs-
Markov property:

Proof of Lemma 11.18. Let DN be a lattice approximation of a continuum do-
main D ∈ D and let D̃N be the union of squares of side length (roughly) N/K

that fit intoDδ
N with distinct squares at least two lattice steps apart. For x ∈ D̃N ,

let SN,K(x) denote the square (of side-length roughly N/K) in D̃N containing x
and let SδN,K(x) be the square of side-length (1− δ)(N/K) centered at the same

point as SN,K(x). Abusing our earlier notation, let D̃δ
N :=

⋃
x∈D̃N S

δ
N,K(x).

Consider the coupling of hDN and hD̃N in the Gibbs-Markov property. The
claim in Lemma 11.18 will follow by standard approximation arguments once we
prove that, for every t ≥ 0,

P

(
∃x ∈ ΓDN (t) ∩ D̃δ

N : max
y∈SN,K(x)

hDNy ≤ hDNx , max
y∈SN,K(x)

hD̃Ny > hD̃Nx

)
(12.13)

tends to zero as N → ∞ and K → ∞. For this it suffices to show that for
all t > 0 there is c > 0 such that for all N � K ≥ 1, all s ∈ [−t, t], all x ∈ D̃δ

N
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and all y ∈ SN,K(x),

P
(

max
y∈SN,K(x)

hDNy ≤ hDNx , max
y∈SN,K(x)

hD̃Ny > hD̃Nx ,

hDN ≤ mN + t
∣∣∣hDNx = mN + s

)
≤ c (logK)−

1
16

logN
. (12.14)

Indeed, multiplying (12.14) by the probability density of hDNx − mN , which is

of order N−2 logN , integrating over s ∈ [−t, t] and summing over x ∈ D̃δ
N , we

get a bound on (12.13) with ΓDN (t)∩ D̃N replaced by ΓDN (t)∩ D̃δ
N and the event

restricted to hDN ≤ mN + t. These defects are handled via Lemma 10.4, which
shows that P (ΓDN (t) r D̃δ

N = ∅) → 1 as N → ∞, K → ∞ and δ ↓ 0, and
Lemma 8.3, which gives P (hDN 6≤ mN + t) ≤ e−ãt uniformly in N ≥ 1.

In order to prove (12.14), we will shift the domains so that x is at the origin.
We will again rely on the concentric decomposition with the following caveat:
SN,K(0) is among the ∆i’s. More precisely, we take

∆j :=


{x ∈ Z2 : |x|∞ ≤ 2j}, if j = 0, . . . , r − 1,

SδN,K(0), if j = r,

{x ∈ Z2 : |x|∞ ≤ 2j+r̃−r}, if j = r + 1, . . . , n− 1,

DN , if j = n,

(12.15)

where

r := max
{
j ≥ 0: {x ∈ Z2 : |x|∞ ≤ 2j} ⊆ SδN,K(0)

}
,

r̃ := min
{
j ≥ 0: SN,K(0) ⊆ {x ∈ Z2 : |x|∞ ≤ 2j}

}
,

n := max
{
j ≥ 0: {x ∈ Z2 : |x|∞ ≤ 2j+m̃−m+1} ⊆ DN

}
.

(12.16)

We leave it to the reader to check that all the estimates pertaining to the con-
centric decomposition remain valid, albeit with constants that depend on δ.

Denoting k := n− r, we have k = log2(K) + O(1) and n = log2(N) + O(1).

Assuming {h∆j : j = 0, . . . , n} are defined via the concentric decomposition, the
probability in (12.14) becomes

P
(
h∆

n−k
6≤ h∆

n−k

0 , h∆
n

≤ h∆
n

0 in ∆n−k,

h∆
n

≤ mN + t
∣∣∣h∆n0 = mN + s

)
. (12.17)

Observe that, for all x ∈ ∆n−k,

h∆
n

x − h∆
n

0 = h∆
n−k

x − h∆
n−k

0 +

n∑
j=n−k+1

[
bj(x)ϕj(0) + χj(x)

]
. (12.18)

Assuming K ≤ k, the estimates in the concentric decomposition bound the j-th
term in the sum by (log(k ∨ j))2e−c(n−k−j) on ∆j for all j = 0, . . . , n − k − 1.
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This will suffice for j ≤ k; for the complementary j we instead get

n∑
j=n−k+1

[
bj(x)ϕj(0) + χj(x)

]
+mN (s, x) ≥ −Rk(j)− t (12.19)

for x ∈ ∆jr∆j−1, where we used that |s| ≤ t and invoked the shorthand (11.12).
The event in (12.17) is thus contained in the intersection of {h∆n ≤ mN + t}
with the union of three events: {K > k},{

h∆
n

0 ≥ h∆
n

on ∆k
}
∩
⋃
x∈∆k

{
h∆

n

x > h∆
n

0 − (log k)2e−c(2n−k)
}

(12.20)

and

{K ≤ k} ∩
⋃

x∈∆n−kr∆k

{
h∆

n

x − h∆
n

0 +mN (s, x) ≥ −Rk(j)− t
}
. (12.21)

Lemma 11.7 bounds the contribution of the first event by c1e−c2(log k)2/ logN .
For (12.20) we drop the event hD

n ≤ mN + t and then invoke the “gap es-
timate” in Exercise 11.10 to bound the requisite probability by a quantity of
order |∆k|(log k)2e−c(2n−k). For (12.21) we shift the conditioning to h∆

n

0 = 0,
which turns the event under the union to {h∆nx − h∆n0 ≥ −Rk(j) − t}. The re-
sulting event is then contained in (12.10) which has probability less than order

k−
1
16 / logN . As k ≈ log2(K) and n� k we get (12.14). ut

12.2 Limit of atypically large maximum

Our next item of business here is the proof of Theorem 10.7 dealing with the
limit law of the maximum (and the corresponding maximizer) conditioned on
atypically large values. This will again rely on the concentric decomposition of
the DGFF; specifically, the formula

P
(
hDN ≤ hDN0

∣∣∣hDN0 = mN + t
)

=
Ξ in
k (1)Ξout

N,k(t)

g logN

(
2 + o(1)

)
(12.22)

from Lemma 11.13, where the quantities Ξ in
k (1) and Ξout

N,k(t) are as in (11.32–
11.33) and where we incorporated the o(1)-term to the expression thanks to the
bounds in Lemma 11.14. The novel additional input is:

Proposition 12.5 (Asymptotic contribution of outer layers). Ξout
N,k(t) ∼ t

in the limit N →∞, k →∞ and t→∞. More precisely,

lim
t→∞

lim sup
k→∞

lim sup
N→∞

∣∣∣∣ Ξout
N,k(t)

t
− 1

∣∣∣∣ = 0. (12.23)

For each δ > 0, the limit is uniform in the shifts of DN such that 0 ∈ Dδ
N .



168 Marek Biskup

Deferring the proof of this proposition to later in this lecture, we will now
show how this implies Theorem 10.7. Recall that rD(x) denotes the conformal
radius of D from x and that Ξ in

∞(1) is the limit of Ξ in
k (1) whose existence was

established in the proof of Theorem 11.3; see (11.46). We start by:

Lemma 12.6. For any δ > 0 and any q > 1,

lim
t→∞

lim sup
N→∞

max
x∈DδN

∣∣∣∣N2 eαt

t
P
(
hDN ≤ hDNx , hDNx −mN ∈ [t, qt]

)
−
√
π

8
Ξ in
∞(1) rD(x/N)2

∣∣∣∣ = 0 . (12.24)

Proof. Denote by fN,x the density with respect to the Lebesgue measure of the
distribution of hDNx −mN and write

P
(
hDN ≤ hDNx , hDNx −mN ∈ [t, qt]

)
=

∫ qt

t

ds fN,x(s)P
(
hDN ≤ hDNx

∣∣∣hDNx = mN + s
)
. (12.25)

A calculation based on the Green function asymptotic in Theorem 1.17 now
shows that, with o(1)→ 0 as N →∞ uniformly in x ∈ Dδ and s ∈ [t, qt],

N2

logN
fN,bNxc(s) =

(
1 + o(1)

) 1√
2πg

e−αs rD(x)2. (12.26)

Combining this with (12.22), (12.23) and (11.46) gives

N2 eαt

t
P
(
hDN ≤ hDNx , hDNx −mN ∈ [t, qt]

)
=
(
1 + o(1)

) 2

g
Ξ in
∞(1)

1√
2πg

rD(x/N)2
[ eαt

t

∫ qt

t

ds e−αss
]
, (12.27)

where o(1) → 0 as N → ∞ followed by t → ∞ uniformly in x ∈ Z2 such that
x/N ∈ Dδ. The expression inside the square brackets tends to α−1 as t → ∞.
Since (2/g)(2πg)−1/2α−1 = (

√
2π g)−1 =

√
π/8, we get (12.24). ut

In order to rule out the occurrence of multiple close points with excessive
values of the field, and thus control certain boundary issues in the proof of
Theorem 10.7, we will also need:

Lemma 12.7. For each δ > 0 small enough there is c > 0 such that for all
N ≥ 1, all x ∈ DN and all 0 ≤ s, t ≤ logN ,

P
(

max
y∈DN

dist∞(x,y)>δN

hDNy ≥ mN + s
∣∣∣hDN ≤ hDNx = mN + t

)
≤ c e−ãs, (12.28)

where ã > 0 is as in Lemma 8.3.
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Proof. The FKG inequality for hDNx conditioned on hDNx = mN + t bounds the
desired probability by

P
(

max
y∈DN

dist∞(x,y)>δN

hDNy ≥ mN + s
∣∣∣hDNx = mN + t

)
. (12.29)

Lemma 8.5 along with Exercise 8.6 then permit us to rewrite this as the proba-
bility that there exists y ∈ DN with dist∞(x, y) > δN such that

hDNr{0}
y ≥ mN + s− (mN + t)g−x+DN (y − x). (12.30)

The Maximum Principle shows that A 7→ gA is non-decreasing with respect

to the set inclusion and so g−x+DN (·) ≤ gD̃N (·), where D̃N is a box of side
4 diam∞(DN ) centered at the origin. Under our assumptions on t, the term

(mN + t)gD̃N (y−x) is at most a constant times log(1/δ). The claim then follows
from the upper-tail tightness of the maximum in Lemma 8.3. ut

We are ready to give:

Proof of Theorem 10.7. We may as well give the proof for a general sequence of
approximating domains DN . Set

c̄ :=

√
π

8
Ξ in
∞(1). (12.31)

Let A ⊆ D be open and denote by X?
N the (a.s.-unique) maximizer of hDN

over DN . Abbreviate MN := maxx∈DN h
DN
x . Summing (12.24) then yields

lim
δ↓0

lim sup
t→∞

lim sup
N→∞

∣∣∣∣eαtt P
( 1

N
X?
N ∈ Dδ ∩A, MN −mN ∈ [t, qt]

)
− c̄

∫
A

dx rD(x)2

∣∣∣∣ = 0 . (12.32)

Assuming q > 1 obeys qã > 2α, for ã as in Lemma 8.3, the probability of
MN ≥ mN + qt decays as e−2αt and so (12.32) holds with MN −mN ∈ [t, qt]
replaced by MN ≥ mN + t. This would already give us a lower bound in (10.11)
but, in order to prove the complementary upper bound as well as (10.12), we
need to address the possibility of the maximizer falling outside Dδ

N .

Let D̃N be the square of side 4 diam∞(DN ) centered at an arbitrary point
of DN . Exercise 3.4 then gives

P
(

max
x∈DNrDδN

hDNx > mN + t
)
≤ 2P

(
max

x∈DNrDδN
hD̃Nx > mN + t

)
. (12.33)

Denote BδN := {x ∈ D̃N : dist∞(x,DN r Dδ
N ) < δN} and write (X̃?

N , M̃N )

for the maximizer and the maximum of hD̃N in D̃N . The probability on the
right-hand side of (12.33) is then bounded by the sum of

P
(
X̃?
N ∈ BδN , M̃N > mN + t

)
(12.34)
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and∑
x∈D̃N

P

(
hD̃N ≤ hD̃Nx , hD̃Nx > mN + t, max

y∈D̃N
dist∞(x,y)>δN

hDNy > mN + t

)
. (12.35)

Once δ is sufficiently small, we have BδN ⊂ D̃δ′

N for some δ′ > 0 and so we may
bound (12.34) using (12.32) by a quantity of order te−αt|BδN |/N2. Since |BδN |/N2

is bounded by a constant multiple of Leb(D rDδ), this term is o(te−αt) in the
limits N →∞, t→∞ and δ ↓ 0.

The term in (12.35) is bounded using Lemma 12.7 by ce−ãt times the proba-

bility P (M̃N > mN + t). By Lemma 10.4, this probability is (for t ≥ 1) at most
a constant times t2e−αt and so (12.35) is o(te−αt) as well. Hence, for o(1) → 0
as N →∞ and t→∞,

P
( 1

N
X?
N ∈ A, MN ≥ mN + t

)
= te−αt

(
o(1) + c̄

∫
A

dx rD(x)2
)
. (12.36)

This yields the claim with ψ equal to the normalized conformal radius squared
(and c? := c̄

∫
S

dx rS(x)2 for S := (0, 1)2). ut
As noted earlier, our proof identifies ψ with (a constant multiple of) rD(x)2

directly; unlike the proof of part (5) of Theorem 10.15 which takes the existence
of some ψ as an input and infers equality with the conformal radius squared using
the Gibbs-Markov property of the ZD-measures (whose uniqueness we have yet
to prove). For future use, we pose a minor extension of Theorem 10.7:

Exercise 12.8. For any bounded continuous f : D → [0,∞),

P
(
hDNx ≤ mN + t− α−1 log f(x/N) : x ∈ DN

)
= exp

{
−te−αt

(
o(1) + c̄

∫
D

dx rD(x)2 f(x)
)}

, (12.37)

where o(1) → 0 in the limits as N → ∞ and t → ∞ uniformly on compact
families of non-negative f ∈ C(D).

12.3 Precise upper tail asymptotic

We now move to the proof of Proposition 12.5. We begin by removing the con-
ditioning on hDN0 = 0 from the quantity of interest. To this end we note that

hDN − hDN0 gDN
law
= hDNr{0} (12.38)

which (by Exercise 8.6) also has the law of hDN conditioned on hDN0 = Sn+1 = 0.
Since gDN (x) ≤ c/ logN on DN r ∆n−k with some c = c(k) while (by a first
moment bound) P (hDN0 ≥ ε logN) → 0 as N → ∞, the term hDN0 gDN can be
absorbed into a negligible change of t. Since Ξout

N,k(t) is non-decreasing in t, this
gives the main idea how to solve:
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Exercise 12.9. Abbreviate m̃N (x, t) := mN (1− gDN (x)) + t and let

Ξ̃out
N,k(t) := E

(
1{hDN≤m̃N (t,·) in DNr∆n−k}1{S̃k∈[k1/6, k2]}S̃k

)
, (12.39)

where we abbreviated

S̃` := Sn−` − Sn+1, ` = 0, . . . , k. (12.40)

Prove that if, for some δ > 0,

lim
t→∞

lim sup
k→∞

lim sup
N→∞

∣∣∣∣ Ξ̃out
N,k(t)

t
− 1

∣∣∣∣ = 0 (12.41)

holds uniformly in the shifts of DN such that 0 ∈ Dδ
N , then the same applies to

Ξout
N,k(t) — meaning that (12.24) holds.

We thus have to prove the claim for Ξ̃out
N,k(t) instead of Ξout

N,k(t). A key point is

that the removal of the conditioning on Sn+1 = 0 makes the increments of S̃ inde-

pendent (albeit still slightly time-inhomogeneous) and so we can analyze Ξ̃out
N,k(t)

using the ballot problem/entropic-repulsion methods used earlier.
Recall the basic objects ϕj , χj and h′j from the concentric decomposition and

define a (new) control random variable L as the minimal index in {1, . . . , k− 1}
such that for all j = 0, . . . , k,∣∣ϕn−j(0)

∣∣ ≤ [log(L ∨ j)]2, (12.42)

max
j+1≤r≤k

max
x∈∆n−r

∣∣χn−j(x)
∣∣2(j−r)/2 ≤ [log(L ∨ j)]2 (12.43)

and∣∣∣ max
x∈∆n−jr∆n−j−1

[
χn−j(x) + χn−j+1(x) + h′n−j(x)

]
−m2n−j

∣∣∣ ≤ [log(L ∨ j)]2.

(12.44)
If no such index exists, we set L := k. We then have:

Lemma 12.10. There is an absolute constant C ∈ (0,∞) such that for all
t ∈ R, all n ≥ 1, all k = 1, . . . , n obeying

0 ≤ tk/n ≤ 1 (12.45)

and all ` = 0, . . . , k, on the event {L < k} we have∣∣∣ max
x∈∆n−`r∆n−`−1

[
hDNx − m̃N (t, x)

]
+ (S̃` + t)

∣∣∣ ≤ ζ(` ∨ L), (12.46)

where
ζ(s) := C

[
1 + log(s)]2. (12.47)
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Proof. From (8.41), (8.48) and the fact that h′j is supported on∆jr∆j−1 while χj
is supported on ∆j we get, for all ` = 0, . . . , k and all x ∈ ∆n−` r∆n−`−1,

hDNx = Sn+1 − Sn−` + h′n−`(x) +

n∑
j=n−`−1

(
bj(x)ϕj(0) + χj(x)

)
. (12.48)

The definition of L along with the decay of j 7→ bj(x) in (8.49) bound the sum by
a quantity proportional to 1 + log(L∨ `)2. The claim follows from the definition
of m̃N (t, ·), the tightness of the absolute maximum and Exercise 11.6. ut

As in our earlier use of the concentric decomposition, Lemma 12.10 permits
us to squeeze the event of interest between two random-walk events:

Exercise 12.11. Prove that, under (12.45),

{L < k} ∩
k⋂
`=0

{
S̃` ≥ ζ(` ∨ L)− t

}
⊆ {L < k} ∩

{
hDN ≤ m̃N (t, ·) in DN r∆n−k}

⊆
k⋂
`=0

{
S̃` ≥ −ζ(` ∨ L)− t

}
. (12.49)

Notice that, unlike in Lemma 8.19, the t-dependent term has the same form
and sign on both ends of this inclusion. The next item to address are suitable
estimates on the relevant probabilities for the control variable L and the random
walk S̃. First, a variation on Exercise 8.18 shows

P
(
L = `) ≤ c1e−c2(log `)2 , ` = 1, . . . , k, (12.50)

for some c1, c2 > 0. In addition, we will need:

Lemma 12.12. There is c > 0 such that for all `, k ∈ N with ` ≤ k
1
12 and k ≤

n/2 and all 0 ≤ t ≤ k1/6,

P

( k⋂
j=`

{
S̃j − S̃` ≥ −ζ(j)− t− `2

})
≤ c`

2 + t√
k
. (12.51)

This is showed by invoking again estimates on the inhomogeneous ballot prob-
lem encountered earlier in these lectures. We refer to [27] for details. We use
Lemma 12.12 to prove:

Lemma 12.13 (Controlling the control variable). There are c1, c2 > 0

such that for all `, k, n ∈ N satisfying k ≤ n/2 and 1 ≤ ` ≤ k
1
12 , and for

all 1 ≤ t ≤ k1/6,

E
(

(S̃k ∨ k1/6)1{L=`}

k∏
j=`

1
{S̃j≥−ζ(j)−t

}) ≤ c1(`2 + t)e−c2(log `)2 (12.52)
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and also

E
(
S̃k1{0≤S̃k≤k1/6} 1{L≤`}

k∏
j=`

1
{S̃j≥−ζ(j)−t

}) ≤ c1(`2 + t)k−1/3. (12.53)

Proof. Since |S̃`| ≤ `2 when L = `, we have

S̃k ∨ k1/6 ≤ `2 + (S̃k − S̃`) ∨ k1/6, on {L = `} (12.54)

and
1{L=`}1{S̃j≥−ζ(j)−t} ≤ 1{L=`}1{S̃j−S̃`≥−ζ(j)−t−`2} (12.55)

Substituting these in (12.52), the indicator of {L = `} is independent of the rest
of the expression. Invoking (12.50), to get (12.52) we thus have to show

E
( (

(S̃k − S̃`) ∨ k1/6
) k∏
j=`

1{S̃j−S̃`≥−ζ(j)−t−`2}

)
≤ c(`2 + t) (12.56)

for some constant c > 0. Abbreviate

Ŝj := S̃`+j − S̃`. (12.57)

We will need:

Exercise 12.14. Prove that the law of {Ŝj : j = 1, . . . , k− `} on Rk−` is strong
FKG. Prove the same for the law of the standard Brownian motion on R[0,∞).

Exercise 12.15. Prove that if the law of random variables X1, . . . , Xn is strong
FKG, then for any increasing function Y ,

a1, . . . , an 7→ E
(
Y |X1 ≥ a1, . . . , Xn ≥ an

)
(12.58)

is increasing in each variable.

Embedding the random walk into the standard Brownian motion {Bs : s ≥ 0}
via Ŝj := Bsj , where sj := Var(Ŝj), and writing P 0 is the law of the Brow-
nian motion started at 0 and E0 is the associated expectation, Exercise 12.15
dominates the expectation in (12.56) by

E0
(

(Bsk−` ∨ k1/6) 1{Bs≥−1: s∈[0,sk−`]}

)
×
P
(⋂k−`+1

j=0 {Ŝj ≥ −ζ(j + `)− t− `2}
)

P 0
(
Bs ≥ −1: s ∈ [0, sk−`]

) . (12.59)

The expectation in (12.59) is bounded by conditioning on Bt and invoking Ex-
ercise 7.10 along with the bound 1− e−a ≤ a to get

E0
(
(Bsk−` ∨ k1/6) 1{Bs≥−1: s∈[0,sk−`]}

)
≤ E0

(
(Bsk−` ∨ k1/6)

2(Bsk−` + 1)

sk−`

)
. (12.60)
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As sk−` is of the order of k−`, the expectation on the right is bounded uniformly
in k > ` ≥ 0. Thanks to Lemma 12.12 and Exercise 11.17 (and the fact that
ζ(`) ≤ `2 and that j 7→ ζ(j+`)−ζ(`) is slowly varying) the ratio of probabilities
in (12.59) is at most a constant times `2 + t.

The proof of (12.53) easier; we bound S̃k by k1/6 and thus estimate the

probability by passing to Ŝj and invoking Lemma 12.12. ut

The above proof shows that the dominating contribution to Ξ̃out
N,k(t) comes

from the event when S̃k is order
√
k. This is just enough to cancel the factor 1/

√
k

arising from the probability that S̃ stays above a slowly varying curve for k steps.
This is what yields the desired asymptotic as t→∞ as well:

Proof of Proposition 12.5. Note that Lemma 12.13 and the fact that |Sk| ≤ k2

on {L < k} permits us to further reduce the computation to the asymptotic of

Ξ̂out
N,k(t) := E

(
1{hDN≤m̃N (t,·) in DNr∆n−k}(S̃k ∨ 0)

)
. (12.61)

Indeed, writing ε`(t) for the right-hand side of (12.52), this bound along with
(12.49) yield

E
(

(S̃k ∨ 0)

k∏
j=0

1{S̃j≥ζ(j∨`)−t}

)
− ε`(t)

≤ Ξ̂out
N,k(t) ≤ E

(
(S̃k ∨ 0)

k∏
j=0

1{S̃j≥−ζ(j∨`)−t}

)
+ ε`(t). (12.62)

Similarly as in (12.59), and denoting s̃k := Var(Ŝk), Exercise 12.15 bounds the
expectation on the right of (12.62) by

E0
(
(Bs̃k ∨ 0)1{Bs≥−t : s∈[0,s̃k]}

)
(12.63)

times the ratio
P
(⋂k+1

j=1{S̃j ≥ −ζ(j ∨ `)− t
)

P 0
(
Bs ≥ −t : s ∈ [0, s̃k]

) (12.64)

and that on the left by (12.63) times

P 0
(
Bs ≥ ζ̃(s ∨ s̃`)− t : s ∈ [0, s̃k]

)
P 0
(
Bs ≥ −t : s ∈ [0, s̃k]

) , (12.65)

where ζ̃ is a piecewise-linear (non-decreasing) function such that ζ̃(s̃j) = ζ(j)
for each j ≥ 1. The precise control of inhomogeneous Ballot Theorem (cf [27,
Proposition 4.7 and 4.9]) then shows that the ratios (12.64–12.65) converge to
one in the limits k → ∞ followed by t → ∞. Exercise 7.10 shows that the
expectation in (12.63) is asymptotic to t and so the claim follows. ut
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12.4 Convergence of the DGFF maximum

We are now ready to address the convergence of the centered DGFF maximum
by an argument that will also immediately yield the convergence of the extremal
value process. The key point is the proof of:

Theorem 12.16 (Uniqueness of ZD-measure). Let D ∈ D and let ZD be
the measure related to a subsequential weak limit of {ηDN,rN : N ≥ 1} as in Theo-

rem 9.3. Then ZD is the weak limit of slight variants of the measures in (10.53).
In particular, its law is independent of the subsequence used to define it and the
processes {ηDN,rN : N ≥ 1} thus converge in law.

The proof will follow closely the proof of Theorem 10.21 that characterizes
the ZD-measures by a list of natural conditions. These were supplied in Theo-
rem 10.15 for all domains of interest through the existence of the limit of pro-
cesses {ηDN,rN : N ≥ 1}. Here we allow ourselves only subsequential convergence
and so we face the following additional technical difficulties:

(1) We can work only with a countable set of domains at a time, and so the
Gibbs-Markov property needs to be restricted accordingly.

(2) We lack the transformation rule for the behavior of the ZD measures under
dilations of D in property (3) of Theorem 10.15.

(3) We also lack the Laplace transform asymptotic in property (5) of Theo-
rem 10.15.

The most pressing are the latter two issues so we start with them. It is the
following lemma where the majority of the technical work is done:

Lemma 12.17. Fix R > 1 and D ∈ D and for any positive n ∈ N abbrevi-
ate Dn := n−1D. Suppose that (for a given sequence of approximating domains
for each n ∈ N), there is Nk →∞ such that

ηD
n

Nk,rNk

law−→ ηD
n

, n ≥ 1. (12.66)

Let ZD
n

be the measure related to ηDn as in Theorem 9.6. Then for any choice
of λn > 0 satisfying

λnn
−4 −→

n→∞
0 (12.67)

and any choice of Rn-Lipschitz functions fn : Dn → [0, R], we have

logE
(
e−λn〈Z

Dn ,fn〉
)

= −λn log(n4/λn)

[
o(n−4) + c̄

∫
Dn

dx rDn(x)2fn(x)

]
, (12.68)

where n4o(n−4) → 0 as n → ∞ uniformly in the choice of the fn’s. The con-
stant c̄ is as in (12.31).
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Proof. We start by some observations for a general domain D. Let % : D → [0,∞)
be measurable and denote A% := {(x, h) : x ∈ D, h > −α−1 log %(x)}. Then for
any a > 0, any subsequential limit process ηD obeys

(1− e−a)P
(
ηD(A%) > 0

)
≤ 1− E

(
e−aη

D(A%)
)
≤ P

(
ηD(A%) > 0

)
. (12.69)

Assuming the probability on the right-hand side is less than one, elementary
estimates show∣∣∣ logE

(
e−aη

D(A%)
)
− logP

(
ηD(A%) = 0

)∣∣∣ ≤ e−a

P (ηD(A%) = 0)
. (12.70)

We also note that, setting

f(x) := (1− e−a)α−1%(x), (12.71)

implies

E(e−aη
D(A%)) = E(e−〈Z

D,f〉) (12.72)

thanks to the Poisson structure of ηD proved in Theorem 9.6.

Given D ∈ D, for each n ∈ N let Dn := n−1D and let fn : Dn → [0, R] be an
Rn-Lipschitz function. Fix an auxiliary sequence {an} of numbers an ≥ 1 such
that an → ∞ subject to a minimal growth condition to be stated later. Define
%n : Dn → [0,∞) so that

fn(x) = (1− e−an)α−1%n(x) (12.73)

holds for each n ∈ N and note that %n(x) is R′n-Lipschitz for some R′ depend-
ing only on R. Let {λn : n ≥ 1} be positive numbers such that (12.67) holds
and note that, by (12.70) and (12.72), in order to control the asymptotic of

E(e−λn〈Z
Dn ,fn〉) in the limit as n → ∞ we need to control the asymptotic of

P (ηD
n

(Aλn%n) = 0).

Writing {Dn
N : N ≥ 1} for the approximating domains for Dn, the assumed

convergence yields

P
(
ηD

n

(Aλn%n) = 0
)

= lim
k→∞

P
(
h
DnN
x ≤ mN − α−1 log

(
λn%n(x/N)

)
: x ∈ Dn

N

)∣∣∣
N=Nk

. (12.74)

A key point is that, by Theorem 10.7 (or, more precisely, Exercise 12.8) the limit
of the probabilities on the right of (12.74) exists for all N ; not just those in the
subsequence {Nk}. We may thus regard Dn

N as an approximating domain of D
at scale bN/nc and note that, in light of 2

√
g = 4α−1,

mN − α−1 log λn = mbN/nc + α−1 log(n4/λn) + o(1), (12.75)
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where o(1) → 0 as N → ∞. Note also that %̃n : D → R defined by %̃n(x) :=
%n(x/n) is R′-Lipschitz for some R′ depending only on R. Using (12.67), Exer-
cise 12.8 with t = α−1 log(n4/λn) + o(1) shows

logP
(
h
DnN
x ≤ mN − α−1 log λn − α−1 log %n(x/N) : x ∈ Dn

N

)
= −α−1λn n

−4 log(n4/λn)

[
o(1) + c̄

∫
D

dx rD(x)2%̃n(x)

]
, (12.76)

where o(1)→ 0 as N →∞ and n→∞. Changing the variables back to x ∈ Dn

absorbs the term n−4 into the integral and replaces %̃n by %n, which can be then
related back to fn via (12.73). Since an →∞, we get

logP
(
ηD

n

(Aλn%n) = 0
)

= − λn log(n4/λn)

1− e−an

[
o(n−4) + c̄

∫
Dn

dx rDn(x)2fn(x)

]
, (12.77)

where o(n−4)n4 → 0 as n → ∞ uniformly in the choice of {fn} with the above
properties.

In remains to derive (12.68) from (12.77). Note that the boundedness of fn(x)
ensures that the right-hand side of (12.77) is of order λnn

−4 log(n4/λn) which
tends to zero by (12.67). In particular, the probability on the left of (12.77)
tends to one. If an grows so fast that

eanλnn
−4 log(n4/λn) −→

n→∞
∞, (12.78)

then (12.70) and (12.72) equate the leading order asymptotic of the quantities
on the left-hand side of (12.68) and (12.77). The claim follows. ut

We are now ready to give:

Proof of Theorem 12.16. Let D0 ⊆ D be a countable set containing the do-
main of interest along with the collection of all open equilateral triangles of side
length 2−n, n ∈ Z, with (at least) two vertices at points with rational coordi-
nates, and all finite disjoint unions thereof. Let {Nk : k ≥ 1} be a subsequence
along which ηDN,rN converges in law to some ηD for all D ∈ D0. We will never

need the third coordinate of ηDN,rN so we will henceforth think of these measures
as two-coordinate processes only.

Let ZD, for each D ∈ D0, denote the random measure associated with the
limit process ηD. Pick f ∈ C(D) and assume that f is positive and Lipschitz. As
we follow closely the proof of Theorem 10.21, let us review it geometric setting:
Given a K ∈ N, which we will assume to be a power of two, and δ ∈ (0, 1/100)
and let {T i : i = 1, . . . , nK} be those triangles in the tiling of R2 by triangles
of side length K−1 that fit into Dδ. Denote by xi the center of T i and let T iδ
be the triangle of side length (1 − δ)K−1 centered at xi and oriented the same

way as T i. Write D̃δ :=
⋃nK
i=1 T

i
δ and let χδ : D → [0, 1] be a function that is one

on D̃2δ, zero on D r D̃δ and is (2Kδ−1)-Lipschitz elsewhere.
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Set fδ := fχδ. In light of Lemma 10.4 (proved above) and Exercise 10.10,
we then have (10.58) and so it suffices to work with 〈ZD, fδ〉. First we ask the
reader to solve:

Exercise 12.18. Prove that the measures {ZD̃ : D̃ ∈ D0} satisfy the Gibbs-
Markov property in the form (10.59) (for MD replaced by ZD).

Moving along the proof of Theorem 10.21, next we observe that (10.60) and
Proposition 10.24 apply because they do not use any particulars of the mea-
sures MD there. Letting c > 0 is the constant from (10.60) and writing

ÃiK,R :=
{

oscT iδΦ
D,D̃ ≤ R

}
∩
{
ΦD,D̃(xi) ≤ 2

√
g logK − c log logK

}
. (12.79)

for a substitute of event AiK,R from (10.52), we thus have

〈ZD, fδ〉 = o(1)

+

nK∑
i=1

1ÃiK,R
eαΦ

D,D̃(xi)

∫
T i
ZT

i

(dx) eα[ΦD,D̃(x)−ΦD,D̃(xi)] fδ(x), (12.80)

where o(1) → 0 in probability as K → ∞ and R → ∞ and where the family

of measures {ZT i : i = 1, . . . , nK} are independent on one another (and equidis-

tributed, modulo shifts) and independent of ΦD,D̃.
Proceeding along the argument from the proof of Theorem 10.21, we now

wish to compute the negative exponential moment of the sum on the right of

(12.80), conditional on ΦD,D̃. The indicator of ÃiK,R enforces that

λK := eαΦ
D,D̃(xi) obeys K4λK ≤ (logK)−αc (12.81)

while, in light of the regularity assumptions on f and χδ and the harmonicity

and boundedness of oscillation of ΦD,D̃,

fK(x) := f(x)χδ(x) eα[ΦD,D̃(x)−ΦD,D̃(xi)] (12.82)

is R′K-Lipschitz for some R′ depending only on R. Lemma 12.17 (which is our
way to by-pass Proposition 10.26) then yields the analogue of (10.70): For any

i = 1, . . . , nK where ÃiK,R occurs,

E

(
exp
{
−eαΦ

D,D̃(xi)ZT
i

(fK)
} ∣∣∣∣ΦD,D̃)

= exp

{
log
(
K−4eαΦ

D,D̃(xi)
)
c̄

∫
T i

dx fδ(x) eαΦ
D,D̃(x) rT i(x)2

}
× exp

{
ε̃KK

−4eαΦ
D,D̃(xi) log

(
K−4eαΦ

D,D̃(xi)
)}
,

(12.83)

where ε̃K is a random (ΦD,D̃-measurable) quantity taking values in some [εK , εK ]
for some deterministic εK with εK → 0 as K →∞.
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Fig. 22. Empirical plots of x 7→ ρD(x, t) obtained from a set of about
100000 samples of the maximum of the DGFF on a 100×100 square. The
plots (labeled left to right starting with the top row) correspond to t
increasing by uniform amounts over an interval of length 3 with t in the
fourth figure set to the empirical mean.

Assuming (at the cost of a routine limit argument at the end of the proof)

that f ≥ δ on D, the bound on the oscillation of ΦD,D̃ permits us to absorb the
error term into an additive modification of f by a term of order εKeαR. Invoking
(10.71–10.72), we conclude that the measure

αc̄ rD(x)2
nK∑
i=1

1ÃiK,R

(
αVar(ΦD,D̃(x))− ΦD,D̃(x)

)
× eαΦ

D,D̃(x)− 1
2α

2Var(ΦD,D̃(x)) 1T iδ (x) dx (12.84)

tends to ZD in the limit K → ∞, R → ∞ and δ ↓ 0. In particular, the law
of ZD is independent of the subsequence {Nk : k ≥ 1} used to define it and the
processes {ηDN,rN : N ≥ 1} thus converge in law. ut

Theorem 12.16 implies, via Lemma 10.1, the convergence of the centered
maximum from Theorem 10.3 and, by Lemma 10.9, also the joint convergence
of maxima in disjoint open subsets as stated in Lemma 10.8. The convergence
statement of the full extremal process in Theorem 9.3 is now finally justified.

12.5 The local limit theorem

Our way of control of the absolute maximum by conditioning on its position can
be used to give also a local limit theorem for both the position and value of the
maximum:
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Theorem 12.19 (Local limit theorem for absolute maximum). Using the
setting of Theorem 9.3, for any x ∈ D and any a < b,

lim
N→∞

N2P
(

argmax
DN

hDN = bxNc, max
x∈DN

hDNx −mN ∈ (a, b)
)

=

∫ b

a

ρD(x, t)dt ,

(12.85)
where x 7→ ρD(x, t) is the Radon-Nikodym derivative of the measure

A 7→ e−αtE
(
ZD(A)e−α

−1e−αtZD(D)
)

(12.86)

with respect to the Lebesgue measure on D.

We only state the result here and refer the reader to [27] for details of the proof.
Nothing explicit is known about ρD except its t → ∞ asymptotics; see (16.3).
Empirical plots of ρD for different values of t are shown in Fig. 22.

Lecture 13

Random walk in DGFF landscape

In this lecture we turn our attention to a rather different problem than discussed
so far: a random walk in a random environment. The connection with the main
theme of these lectures is through the specific choice of the random walk dynam-
ics which we interpret as the motion of a random particle in a DGFF landscape.
We first state the results, obtained in a recent joint work with Jian Ding and
Subhajit Goswami [23], on the behavior of this random walk. Then we proceed
to develop the key method of the proof, which is based on recasting the prob-
lem as a random walk among random conductances and applying methods of
electrostatic theory.

13.1 A charged particle in an electric field

Let us start with some physics motivation. Suppose we are given the task to
describe the motion of a charged particle in a rapidly varying electric field. A
natural choice is to fit this into the framework of the theory of random walks
in random environment (RWRE) as follows. The particle is confined to the
hypercubic lattice Zd and the electric field is represented by a configuration
h = {hx : x ∈ Zd} with hx denoting the electrostatic potential at x. Given a
realization of h, the charged particle then performs a “random walk” which,
technically, is a discrete-time Markov chain on Zd with the transition probabili-
ties

Ph(x, y) :=
eβ(hy−hx)∑

z : (x,z)∈E(Zd)

eβ(hz−hx)
1(x,y)∈E(Zd), (13.1)
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Fig. 23. Runs of 100000 steps of the random walk with transition prob-
abilities (13.1) and β equal to 0.2, 0.6 and 1.2 multiples of β̃c. Time runs
upwards along the vertical axis. Trapping effects are quite apparent.

where β is a parameter playing the role of the inverse temperature. We will
assume β > 0 which means that the walk is more likely to move in the direction
where the electrostatic potential increases. Alternatively, we may think of β as
the value of the charge of the moving particle.

Let X = {Xn : n ≥ 0} denote a sample path of the Markov chain. We will
write P xh for the law of X with P xh (X0 = x) = 1, use Exh to denote expectation
with respect to P xh and write P to denote the law of the DGFF on Z2 r {0}. As
usual in RWRE theory, we will require that

{Ph(x, ·) : x ∈ Zd} is stationary, ergodic under the shifts of Zd (13.2)

as that is typically the minimal condition needed to extract a limit description
of the path properties. However, since Ph(x, ·) depends only on the differences
of the field, in our case (13.2) boils down to the requirement:{
hx − hy : (x, y) ∈ E(Zd)

}
is stationary, ergodic under the shifts of Zd . (13.3)

A number of natural examples may be considered, with any i.i.d. random field or,
in fact, any stationary and ergodic random field obviously satisfying (13.3). How-
ever, our desire in the lectures is to work with the fields that exhibit logarithmic
correlations. A prime example of such a field is the two-dimensional DGFF.

The motivation for our focus on log-correlated fields comes from the 2004
paper of Carpentier and Le Doussal [39], who discovered, on the basis of physics
arguments, that such environments exhibit the following phenomena:

(1) trapping effects make the walk behave subdiffusively with the diffusive
exponent ν, defined via |Xn| = nν+o(1), depending non-trivially on β, and
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(2) β 7→ ν(β) undergoes a phase transition (i.e., a change in analytic depen-
dence) as β varies through a critical point β̃c.

Log-correlated fields are in fact deemed critical for the above phase transition to
occur (with weaker correlations generically corresponding to β ↓ 0 regime and
stronger correlations to β → ∞) although we will not try to make this precise.
The purpose of these lectures it to demonstrate that (1-2) indeed happen in at
least one example; namely, the two-dimensional DGFF.

We will thus henceforth focus on d = 2. To get around the fact that the
DGFF on Z2 does not exist, we will work with

h := DGFF in Z2 r {0} (13.4)

as the driving “electric” field for the rest of these lectures. This does fall into
the class of systems introduced above; indeed, we have:

Exercise 13.1 (Pinned DGFF has stationary gradients). Show that h
from (13.4) obeys (13.3).

13.2 Statement of main results

Having elucidated the overall context of the problem at hand, we are now ready
to describe the results for the particular choice (13.4). These have all been proved
in a joint 2016 paper with J. Ding and S. Goswami [23]. Our first result concerns
the decay of return probabilities (a.k.a. the heat kernel):

Theorem 13.2 (Heat-kernel decay). For each β > 0 and each δ > 0,

P
(

1

T
e−(log T )1/2+δ ≤ P 0

h (X2T = 0) ≤ 1

T
e(log T )1/2+δ

)
−→
T→∞

1. (13.5)

A noteworthy point is that the statement features no explicit dependence
on β. (In fact, it applies even to β = 0 when X is just the simple random walk
on Z2.) Hence, as far as the leading order of the return probabilities is con-
cerned, the walk behaves just as the simple random walk. Notwithstanding, the

e±(log T )1/2+δ terms are too large to let us decide whether X is recurrent or tran-
sient, a question that we will eventually resolve as well albeit by different means.

Although the propensity of the walk to move towards larger values of the
field does not seem to affect the (leading order) heat kernel decay, the effect on
the path properties is more detectable. For each set A ⊂ Z2, define

τA := inf
{
n ≥ 0: Xn ∈ A

}
. (13.6)

Denote also

B(N) := [−N,N ]2 ∩ Z2. (13.7)

Then we have:
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Theorem 13.3 (Subdiffusive expected exit time). For each β > 0 and
each δ > 0,

P
(
Nθ(β)e−(logN)1/2+δ ≤ E0

h(τB(N)c) ≤ Nθ(β)e(logN)1/2+δ
)
−→
N→∞

1 , (13.8)

where, for β̃c :=
√
π/2 ,

θ(β) :=

{
2 + 2(β/β̃c)2, if β ≤ β̃c,

4β/β̃c, if β ≥ β̃c.
(13.9)

The functional dependence of θ(β) on β actually takes a rather familiar form:
Denoting λ := β/β̃c, for λ ∈ (0, 1) we have θ(β) = 2 + 2λ2, which is the scaling
exponent associated with the intermediate level set at height λ-multiple of the
absolute maximum. The dependence on β changes at β̃c, just as predicted by
Carpentier and Le Doussal [39]. Moreover, for β > 0, we have θ(β) > 0. The
walk thus takes considerably longer (in expectation) to exit a box than the simple
random walk. This can be interpreted as a version of subdiffusive behavior.

The standard definition of subdiffusive behavior is via the typical spatial
scale of the walk at large times. Here we can report only a one-way bound:

Corollary 13.4 (Subdiffusive lower bound). For all β > 0 and all δ > 0,

P 0
h

(
|XT | ≥ T 1/θ(β)e−(logN)1/2+δ

)
−→
N→∞

1 , in P-probability. (13.10)

Unfortunately, the more relevant upper bound is elusive at this point (although
we believe that our methods can be boosted to include a matching leading-order
upper bound as well).

Our method of proof of the above results relies on the following elementary
observation: The transition probabilities from (13.1) can be recast as

Ph(x, y) :=
eβ(hy+hx)

πh(x)
1(x,y)∈E(Zd) , (13.11)

where

πh(x) :=
∑

z : (x,z)∈E(Zd)

eβ(hz+hx). (13.12)

This, as we will explain in the next section, phrases the problem as a random
walk among random conductances, with the conductance of edge (x, y) ∈ E(Zd)
given by

c(x, y) := eβ(hy+hx). (13.13)

As is readily checked, πh is a reversible, and thus stationary, measure for X.
Over the past couple of decades, much effort went into the understanding of

random walks among random conductances (see, e.g., a review by the present



184 Marek Biskup

author [22] or Kumagai [83]). A standing assumption of these is that the con-
ductance configuration, {

c(x, y) : (x, y) ∈ E(Zd)
}
, (13.14)

is stationary and ergodic with respect to the shifts of Zd. For Zd in d ≥ 3,
the full-lattice DGFF (with zero boundary conditions) is stationary and so the
problem falls under this umbrella. The results of Andres, Deuschel and Slowik [9]
then imply scaling of the random walk to a non-degenerate Brownian motion.

When d = 2 and h = DGFF on Z2 r {0} the conductances (13.13) are no
longer stationary. Thus we have a choice to make: either work with stationary
transition probabilities with no help from reversibility techniques or give up on
stationarity and earn reversibility. (A similar situation occurs for Sinai’s RWRE
on Z [117].) It is the latter option that has (so far) led to results.

The prime benefit of reversibility is that it makes the Markov chain amenable
to analysis via the methods of electrostatic theory. This is a standard technique;
cf Doyle and Snell [61] or Lyons and Peres [89]. We thus interpret the underlying
graph as an electric network with resistance r(x, y) := 1/c(x, y) assigned to
edge (x, y). The key notion to consider is the effective resistance Reff(0, B(N)c)
from 0 to B(N)c. We will define this quantity precisely in the next section;
for the knowledgeable reader we just recall that Reff(0, B(N)c) is the voltage
difference one needs to put between 0 and B(N)c to induce unit (net) current
through the network. Using sophisticated techniques, for the effective resistance
we then get:

Theorem 13.5 (Effective resistance growth). For each β > 0,

lim sup
N→∞

logReff(0, B(N)c)

(logN)1/2(log logN)1/2
<∞, P-a.s. (13.15)

and

lim inf
N→∞

logReff(0, B(N)c)

(logN)1/2/(log log logN)1/2
> 0, P-a.s. (13.16)

Both conclusions of Theorem 13.5 may be condensed into one (albeit weaker)
statement as

Reff(0, B(N)c) = e(logN)1/2+o(1) , N →∞. (13.17)

In particular, Reff(0, B(N)c) → ∞ as N → ∞, a.s. The standard criteria of
recurrence and transience of Markov chains (to be discussed later) then yield:

Corollary 13.6. For P-a.e. realization of h, the Markov chain X is recurrent.

With the help of Exercise 13.1 we get:

Exercise 13.7. Show that the limits in (13.15–13.16) depend only on the gra-
dients of the pinned DGFF and are thus constant almost surely.
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The remainder of these lectures will be spent on describing the techniques
underpinning the above results. Several difficult proofs will only be sketched or
outright omitted; the aim is to communicate the ideas rather then give a full
fledged account that the reader may just as well get by reading the original paper.

13.3 A crash course on electrostatic theory

We begin by a review of the connection between Markov chains and electrostatic
theory. Consider a finite, unoriented, connected graph G = (V,E) where both
orientations of edge e ∈ E are identified as one. An assignment of resistance
re ∈ (0,∞) to each edge e ∈ E then makes G an electric network. An alternative
description uses conductances {ce : e ∈ E} where

ce :=
1

re
. (13.18)

We will exchangeably write r(x, y) for re when e = (x, y), and similarly for c(x, y).
Note that these are symmetric quantities, r(x, y) = r(y, x) and c(x, y) = c(y, x)
whenever (x, y) = (y, x) ∈ E.

Next we define some key notions of the theory. For any two distinct u, v ∈ V,
let

F(u, v) :=
{
f function V→ R : f(u) = 1, f(v) = 0

}
. (13.19)

We interpret f(x) as an assignment of a potential to vertex x ∈ V; each f ∈
F(u, v) then has unit potential difference (a.k.a. voltage) between u and v. For
any potential f : V→ R, define its Dirichlet energy by

E(f) :=
∑

(x,y)∈E

c(x, y)
[
f(y)− f(x)

]2
, (13.20)

where, by our convention, each edge contributes only once.

Definition 13.8 (Effective conductance). The infimum

Ceff(u, v) := inf
{
E(f) : f ∈ F(u, v)

}
(13.21)

is the effective conductance from u to v.

Note that Ceff(u, v) > 0 since G is assumed connected and finite and the con-
ductances are assumed to be strictly positive.

Next we define the notion of (electric) current as follows:

Definition 13.9 (Current). Let E denote the set of oriented edges in G, with
both orientations included. A current from u to v is an assignment i(e) of a real
number to each e ∈ E such that, writing i(x, y) for i(e) with e = (x, y),

i(x, y) = −i(y, x), (x, y) ∈ E (13.22)

and ∑
y : (x,y)∈E

i(x, y) = 0, x ∈ V r {u, v}. (13.23)
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The first condition reflects on the fact that the current flowing along (x, y) is
the opposite of the current flowing along (y, x). The second condition then forces
that the current be conserved at all vertices except u and v. Next we observe:

Lemma 13.10 (Value of current). For each current i from u to v,∑
x : (u,x)∈E

i(u, x) =
∑

x : (x,v)∈E

i(x, v) . (13.24)

Proof. Conditions (13.22–13.23) imply

0 =
∑

(x,y)∈E

i(x, y) =
∑
x∈V

∑
y : (x,y)∈E

i(x, y)

=
∑

y : (u,y)∈E

i(u, y) +
∑

y : (v,y)∈E

i(v, y).
(13.25)

Employing (13.22) one more time, we then get (13.24). ut
A natural interpretation of (13.24) is that the current incoming to the net-

work at u equals the outgoing current at v. (Note that this may be false in
infinite networks.) We call the common value in (13.24) the value of current i,
with the notation val(i). It is natural to single out the currents with unit value
into

I(u, v) :=
{
i : current from u to v with val(i) = 1

}
. (13.26)

For each current i, its Dirichlet energy is then given by

Ẽ(i) :=
∑
e∈E

rei(e)
2 , (13.27)

where we again note that each edge contributes only one term to the sum.

Definition 13.11 (Effective resistance). The infimum

Reff(u, v) := inf
{
Ẽ(i) : i ∈ I(u, v)

}
(13.28)

is the effective resistance from u to v.

Note that I(u, v) 6= ∅ and thus also Reff(u, v) < ∞ thanks to the assumed
finiteness and connectivity of G.

It is quite clear that the effective resistance and effective conductance must
somehow be closely related. For instance, by (13.18) they are the reciprocals
of each other in the network with two vertices and one edge. To address this
connection in general networks, we first observe:

Lemma 13.12. For any two distinct u, v ∈ V,

E(f)Ẽ(i) ≥ 1, f ∈ F(u, v), i ∈ I(u, v). (13.29)

In particular, Reff(u, v)Ceff(u, v) ≥ 1.
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Proof. Let f ∈ F(u, v) and i ∈ I(u, v). By a symmetrization argument and the
definition of unit current,

∑
(x,y)∈E

i(x, y)
[
f(x)− f(y)

]
=

1

2

∑
x∈V

∑
y : (x,y)∈E

i(x, y)
[
f(x)− f(y)

]
=
∑
x∈V

f(x)
∑

y : (x,y)∈E

i(x, y) = f(u)− f(v) = 1. (13.30)

On the other hand, (13.18) and the Cauchy-Schwarz inequality yield∑
(x,y)∈E

i(x, y)
[
f(x)− f(y)

]
=

∑
(x,y)∈E

√
r(x, y) i(x, y)

√
c(x, y)

[
f(x)− f(y)

]
≤ Ẽ(i)1/2E(f)1/2. (13.31)

This gives (13.29). The second part follows by optimizing over f and i. ut
We now claim:

Theorem 13.13 (Electrostatic duality). For any distinct u, v ∈ V,

Ceff(u, v) =
1

Reff(u, v)
. (13.32)

Proof. Since I(u, v) can be identified with a closed convex subset of RE and

i 7→ Ẽ(i) with a strictly convex function on RE that has compact level sets, there
is a unique minimizer i? of (13.28). We claim that i? obeys the Kirchhoff cycle
law : For each n ≥ 1 and each x0, x1, . . . , xn = x0 ∈ V with (xi, xi+1) ∈ E for
each i = 0, . . . , n− 1,

n∑
k=1

r(xk, xk+1)i?(xk, xk+1) = 0. (13.33)

To show this, let j be defined by j(xk, xk+1) = −j(xk+1, xk) := 1 for k = 1, . . . , n
and j(x, y) := 0 on all edges not belonging to the cycle (x0, . . . , xn). Then
i? + aj ∈ I(u, v) for any a ∈ R and so, since i? is the minimizer,

Ẽ(i? + aj) = Ẽ(i?) + a

n∑
k=1

r(xk, xk+1)i?(xk, xk+1) + a2Ẽ(j) ≥ Ẽ(i?). (13.34)

Taking a ↓ 0 then shows “≥” in (13.33) and taking a ↑ 0 then proves equality.
The fact that e 7→ rei?(e) obeys (13.33) implies that it is a gradient of a

function. Specifically, we claim that there is f : V→ R such that f(v) = 0 and

f(y)− f(x) = r(x, y)i?(x, y), (x, y) ∈ E. (13.35)
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To see this, consider any path x0 = v, x1, . . . , xn = x with (xk, xk+1) ∈ E for
each k = 0, . . . , n − 1 and let f(x) be the sum of −rei?(e) for edges along this
path. The condition (13.33) then ensures that the value of f(x) is independent
of the path chosen. Hence we get also (13.35).

Our next task is to compute f(u). Here we note that (13.35) identifies Ẽ(i?)
with the quantity on the left of (13.30) and so

Reff(u, v) = Ẽ(i?) = f(u)− f(v) = f(u). (13.36)

The function f̃(x) := f(x)/Reff(u, v) thus belongs to F(u, v) and since, as is

directly checked, E(f) = Ẽ(i?) = Reff(u, v), we get

Ceff(u, v) ≤ E(f̃) =
1

Reff(u, v)2
E(f) =

1

Reff(u, v)
. (13.37)

This gives Ceff(u, v)Reff(u, v) ≤ 1, complementing the inequality from Lemma 13.12.
The claim follows. ut

The above proof is based on optimizing over currents although one can also
start from the minimizing potential. That this is more or less equivalent is at-
tested by:

Exercise 13.14 (Ohm’s law). Prove that if f? is a minimizer of f 7→ E(f)
over f ∈ F(u, v), then

i(x, y) := c(x, y)
[
f?(y)− f?(x)

]
, (x, y) ∈ E, (13.38)

defines a current from u to v with val(i) = Ceff(u, v). (Compare (13.38) with
(13.35).)

There is a natural extension of the effective resistance/conductance from pairs
of vertices to pairs of sets. Indeed, for any pair of disjoint sets A,B ⊂ V, we define
Reff(A,B) to be the effective resistance Reff(〈A〉, 〈B〉) in the network where all
edges between the vertices in A as well as those between the vertices in B have
been dropped and the vertices in A then merged into a single vertex 〈A〉 and
those in B merged into a vertex 〈B〉. (The outgoing edges from A then emanate
from 〈A〉.) Similarly, we may define Ceff(A,B) as Ceff(〈A〉, 〈B〉) or directly by

Ceff(A,B) := inf
{
E(f) : f |A = 1, f |B = 0

}
. (13.39)

Note that we simply set the potential to constants on A and B. In the engineering
vernacular, this amounts to shorting the vertices in A and in B; see Fig. 24 for
an illustration. The electrostatic duality still applies and so we have

Ceff(A,B) =
1

Reff(A,B)
(13.40)

whenever A,B ⊂ V with A ∩B = ∅.
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Fig. 24. An example of shorting three vertices in a network (the one
on the left) and collapsing them to one thus producing a new, effective
network (the one on the right). All the outgoing edges are kept along
with their original resistances.

13.4 Markov chain connections and network reduction

With each electric network one can naturally associate a Markov chain on V
with transition probabilities

P(x, y) :=
c(x, y)

π(x)
1(x,y)∈E where π(x) :=

∑
y : (x,y)∈E

c(x, y). (13.41)

The symmetry condition c(x, y) = c(y, x) then translates into

π(x)P(x, y) = π(y)P(y, x) (13.42)

thus making π a reversible measure. Since G is connected, and the conductances
are strictly positive, the Markov chain is also irreducible. Writing P x for the law
of the Markov chain started at x, we then have:

Proposition 13.15 (Connection to Markov chain). The variational prob-
lem (13.21) has a unique minimizer f which is given by

f(x) = P x(τu < τv) (13.43)

where τz := inf{n ≥ 0: Xn = z}.

Proof. Define an operator L on `2(V) by

Lf(x) :=
∑

y : (x,y)∈E

c(x, y)
[
f(y)− f(x)

]
. (13.44)

(This is an analogue of the discrete Laplacian we encountered earlier in these
lectures.) As is easy to check by differentiation, the minimizer of (13.21) obeys
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Lf(x) = 0 for all x 6= u, v, with boundary values f(y) = 1 and f(v) = 0. The
function x 7→ P x(τu < τv) obeys exactly the same set of conditions; the claim
thus follows from the next exercise. ut

Exercise 13.16 (Dirichlet problem & Maximum Principle). Let U ( V
and suppose f : V→ R obeys Lf(x) = 0 for all x ∈ U, where L is as in (13.44).
Prove that

f(x) = Ex
(
f(XτVrU

)
)
, x ∈ U, (13.45)

where τVrU := inf{n ≥ 0: Xn 6∈ U}. In particular, we have

max
x∈U

∣∣f(x)
∣∣ ≤ max

x∈VrU

∣∣f(y)
∣∣ (13.46)

and f is thus uniquely determined by its values on V r U.

We note that the above conclusion generally fails when U is allowed to be
infinite. Returning to our main line of thought, from Proposition 13.15 we im-
mediately get:

Corollary 13.17. Denoting τ̂x := inf{n ≥ 1: Xn = x}, for each u 6= v we have

1

Reff(u, v)
= π(u)Pu(τ̂u > τv). (13.47)

Proof. Let f be the minimizer of (13.21). In light of Lf(x) = 0 for all x 6= u, v,
symmetrization arguments and f ∈ F(u, v) show

E(f) = −
∑
x∈V

f(x)Lf(x) = −f(u)Lf(u)− f(v)Lf(v) = −Lf(u). (13.48)

The representation (13.43) yields

−Lf(u) = π(u)−
∑

x : (u,x)∈E

c(u, x)P x(τx < τv)

= π(u)
[
1−

∑
x : (u,x)∈E

P(u, x)P x(τx < τv)
]

= π(u)Pu(τ̂u > τv) ,

(13.49)
where we used the Markov property and the fact that u 6= v implies τ̂u 6= τv.
The claim follows from the Electrostatic Duality. ut

The representation (13.47) leads to a criterion for recurrence/transience of
a Markov chain X on an infinite, locally finite, connected electric network with
positive resistances. Let B(x, r) denote the ball in the graph-theoretical metric
of radius r centered at x. (The local finiteness ensures that B(x, r), as well as
the set of all edges emanating from it, are finite.) First we note:

Exercise 13.18. Denote by Ceff(x,B(x, r)c), resp., Reff(x,B(x, r)c) the effec-
tive conductance, resp., resistance in the network where B(x, r)c has been col-
lapsed to a single vertex. Prove, by employing a shorting argument, that r 7→
Ceff(x,B(x, r)c) is non-increasing.
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Fig. 25. Examples of the situations handled by (left) the Series Law from
Exercise 13.21 and (right) the Parallel Law from Exercise 13.22.

This and the Electrostatic Duality ensure that

Reff(x,∞) := lim
r→∞

Reff

(
x,B(x, r)c

)
(13.50)

is well defined, albeit possibly infinite. The quantity Reff(x,∞), which we call
effective resistance from x to infinity, depends on x, although (by irreducibility)
if Reff(x,∞) diverges for one x, then it diverges for all x. We now have:

Corollary 13.19 (Characterization of recurrence/transience).

X is recurrent ⇔ Reff(·,∞) =∞. (13.51)

Proof. By Corollary 13.17, P x(τ̂x > τB(x,r)c) is proportional to Ceff(u,B(x, r)c).
Since τB(x,r)c ≥ r, P x(τ̂x =∞) is proportional to Reff(x,∞)−1. ut

The advantage of casting properties of Markov chains in electrostatic lan-
guage is that we can manipulate networks using operations that do not always
have a natural counterpart, or type of underlying monotonicity, in the context
of Markov chains. We will refer to these operations using the (somewhat vague)
term network reduction. Shorting part of the network serves as an example.
Another example is:

Exercise 13.20 (Restriction to a subnetwork). Let V′ ⊂ V and, for any
function f : V′ → R, set

E ′(f) := inf
{
E(g) : g(x) = f(x) ∀x ∈ V′

}
. (13.52)

Prove that E ′(f) is still a Dirichlet energy of the form

E ′(f) =
1

2

∑
x,y∈V′

c′(x, y)
[
f(y)− f(x)

]2
, (13.53)

where

c′(x, y) := π(x)P x
(
Xτ̂V′ = y

)
(13.54)

with τ̂A := inf{n ≥ 1: Xn ∈ A}.
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Fig. 26. The “triangle” and “star” networks from Exercise 13.23.

We remark that the restriction to a subnetwork does have a counterpart for
the underlying Markov chain; indeed, it corresponds to observing the chain only
at times when it is at V′. (This gives rise to the formula (13.54).) The simplest
instance is when V′ has only two vertices. Then, for any u 6= v, we have

V′ = {u, v} ⇒ c′(u, v) = Ceff(u, v). (13.55)

A another relevant example is the content of:

Exercise 13.21 (Series law). Suppose G contains a string of vertices x0, . . . , xn
such that (xi−1, xi) ∈ E for each i = 1, . . . , n and such that, for i = 1, . . . , n− 1,
the vertex xi has no other neighbors than xi−1 and xi+1. Prove that in the re-
duced network with V′ := V r {x1, . . . , xn−1} the string is replaced by an edge
(x0, xn) with resistance

r′(x0, xn) :=

n∑
i=1

r(xi−1, xi) . (13.56)

There are other operations that produce equivalent networks which are not
of the type discussed in Exercise 13.20:

Exercise 13.22 (Parallel law). Suppose G contains n edges e1, . . . , en between
vertices x and y with ei having conductance c(ei). Prove that we can replace these
by a single edge e with conductance

c′(e) :=

n∑
i=1

c(ei). (13.57)

Here is another operation that does fall under the scheme of Exercise 13.20:

Exercise 13.23 (Star-triangle transformation). Consider an electric net-
work that contains (among others) three nodes {1, 2, 3} and an edge between every
pair of these nodes. Write cij for the conductance of edge (i, j). Prove that an
equivalent network is produced by replacing the “triangle” on these vertices by a
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“star” which consists of four nodes {0, 1, 2, 3} and three edges {(0, i) : i = 1, 2, 3},
and no edges between the remaining vertices. See Fig. 26. [We call this replace-
ment the “star-triangle transformation.”]

The start-triangle transformation is a very powerful tool in network theory. Same
tools as in the previous exercise can be used to conclude:

Exercise 13.24. For the network with V := {1, 2, 3} and E := {(i, j) : 1 ≤ i <
j ≤ 3}, let cij denote the conductance of edge (i, j). Denoting Rij := Reff(i, j),
prove that

c12

c12 + c13
=
R13 +R23 −R12

2R23
. (13.58)

The network reduction ideas will continue to be used heavily through the re-
maining lectures.

Lecture 14

Effective resistance control

The aim of this lecture is to develop further methods to control effective re-
sistance/conductance in networks related to the DGFF as discussed above. We
start by proving geometric representations which allow us to frame estimates of
these quantities in the language of percolation theory. We then return to the
model at hand and employ duality considerations to control the effective resis-
tance across squares in Z2. A Russo-Seymour-Welsh (type of) theory permits
similar control for the effective resistance across rectangles. Finally, we use these
to control the upper tail of the effective resistance between far-away points.

14.1 Path-cut representations

The network reduction ideas mentioned at the end of the previous lecture natu-
rally lead to representations on the effective resistance/conductance by quantities
involving geometric objects such as paths and cuts. As these representations are
the cornerstone of our approach, we start by explaining them in detail.

A path P from u to v is a sequence of edges e1, . . . , en, which we think of
as oriented for this purpose, with e1 having the initial point at u and en the
terminal endpoint at v and with the initial point of ei+1 equal to terminal point
of ei for each i = 1, . . . , n − 1. We will often identify P with the set of these
edges; the notation e ∈ P thus means that the path P crosses the unoriented
edge e. The following lemma is classical:

Lemma 14.1. Suppose P is a finite set of edge disjoint paths — i.e., those for
which P 6= P ′ implies P ∩ P ′ = ∅ — from u to v. Then

Reff(u, v) ≤
[∑
P∈P

1∑
e∈P re

]−1

. (14.1)
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Proof. Dropping loops from paths decreases the quantity on the right of (14.1),
so we may and will assume that each path in P visits each edge at most once.
The idea is to route current along the paths in P to arrange for a unit net current
to flow from u to v. Let R denote the quantity on the right of (14.1) and, for
each P ∈ P, set iP := R/

∑
e∈P re. Define i(e) := iP if e lies in, and is oriented

in the same direction as P (recall that the paths are edge disjoint and each edge
is visited by each path at most once) and i(e) := 0 if e belongs to none of the
paths in P. From

∑
P∈P iP = 1 we then infer i ∈ I(u, v). A calculation shows

Ẽ(i) = R and so Reff(u, v) ≤ R. ut
A natural question to ask is whether the upper bound (14.1) can possibly be

sharp. As it turns out, all that stands in the way of this is the edge-disjointness
requirement. This is overcome in:

Proposition 14.2 (Path representation of effective resistance). Let Pu,v

denote the set of finite collections of paths from u to v. Then

Reff(u, v) = inf
P∈Pu,v

inf
{re,P : P∈P, e∈P}∈RP

[ ∑
P∈P

1∑
e∈P re,P

]−1

, (14.2)

where RP is the set of all collections of positive numbers {re,P : P ∈ P, e ∈ P}
such that ∑

P∈P

1

re,P
≤ 1

re
, e ∈ E . (14.3)

The infima in (14.2) are (jointly) achieved.

Proof. Pick a collection of paths P ∈ Pu,v and positive numbers {re,P : P ∈ P}
satisfying (14.3). Then split each edge e into a collection of edges {eP : P ∈ P}
and assign resistance re,P to eP . If the inequality in (14.3) is strict, introduce
also a dummy copy ẽ of e and assign conductance cẽ := 1/re −

∑
P∈P 1/re,P

to ẽ. The Parallel Law shows that this operation produces an equivalent network
in which, by way of interpretation, the paths in P are mutually edge disjoint.
Lemma 14.1 then gives “≤” in (14.2).

To get equality in (14.2), let i? ∈ I(u, v) be such that Ẽ(i?) = Reff(u, v).
We will now recursively define a sequence of currents ik (not necessarily of unit
value) and paths Pk from u and v. First solve:

Exercise 14.3. Suppose e 7→ i(e) is a current from u to v with val(i) > 0. Show
that there is a simple path P from u to v such that i(e) > 0 for each e ∈ P (which
we think of as oriented in the direction of P ).

We cast the recursive definition as an algorithm: INITIATE by setting i0 := i?.
Assuming that ik−1 has been defined for some k ≥ 1, if val(ik−1) = 0 then
STOP, else use Exercise 14.3 to find a path Pk from u to v where ik−1(e) > 0
for each e ∈ Pk oriented along the path. Then set αk := mine∈Pk |ik−1(e)|, let

ik(e) := ik−1(e)− αk sgn(ik−1(e))1{e∈Pk} (14.4)
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and, noting that ik is a current from u to v with val(i) ≥ 0, REPEAT.
The construction ensures that {e ∈ E : ik(e) 6= 0} is strictly decreasing in k

and so the algorithm will terminate after a finite number of steps. Also k 7→
|ik(e)| and k 7→ val(ik) are non-increasing and, as is checked from (14.4),

∀e ∈ E :
∑

k : e∈Pk

αk ≤ |i?(e)| and
∑
k

αk = val(i?) = 1. (14.5)

We now set re,Pk := |i?(e)|re/αk and note that (14.5) shows
∑
k 1/re,Pk ≤ 1/re

for each e ∈ E. Moreover, from (14.5) we also get

Reff(u, v) =
∑
e∈E

rei?(e)
2 ≥

∑
e∈E

re|i?(e)|
∑

k : e∈Pk

αk

=
∑
e∈E

∑
k : e∈Pk

re,Pkα
2
k =

∑
k

α2
k

(∑
e∈Pk

re,Pk

)
.

(14.6)

Denoting the quantity in the large parentheses by Rk, among all positive αk’s

satisfying (14.5), the right-hand side is minimized by αk := 1/Rk∑
j 1/Rj

. Plugging

this in, we get “≥” in (14.2) and thus the whole claim. ut
As it turns out, the effective conductance admits an analogous geometric

variational characterization as well. Here one needs the notion of a cut, or a
cutset form u to v which is a set of edges in E such that every path from u to v
must contain at least one edge in this set. We again start with a classical bound:

Lemma 14.4 (Nash-Williams estimate). For any collection Π of edge-disjoint
cutsets from u to v,

Ceff(u, v) ≤
[∑
π∈Π

1∑
e∈π ce

]−1

. (14.7)

Proof. Let i ∈ I(u, v). The proof is based on:

Exercise 14.5. For any cutset π from u to v,
∑
e∈π |i(e)| ≥ 1.

Indeed, the Cauchy-Schwarz inequality and (13.18) tell us

1 ≤
[∑
e∈π
|i(e)|

]2
≤
[∑
e∈π

rei(e)
2
][∑
e∈π

ce

]
. (14.8)

The assumed edge-disjointness of the cutsets in Π then yields

Ẽ(i) ≥
∑
π∈Π

∑
e∈π

rei(e)
2 ≥

∑
π∈Π

1∑
e∈π ce

. (14.9)

The claim follows by the Electrostatic Duality. ut



196 Marek Biskup

Remark 14.6. Lemma 14.4 is easy to prove by network reduction arguments
when the cutsets are nested meaning that they can be ordered in a sequence
π1, . . . , πn such that πi separates πi−1 (as well as u) from πi+1 (as well as v).
However, as the above proof shows, this geometric restriction is not needed (and,
in fact, would be inconvenient to carry around).

The bound (14.7) was first proved by Nash-Williams [102] as a tool for prov-
ing recurrence of an infinite network. Indeed, to get Ceff(0,∞) := 1/Reff(0,∞) =
0, it suffices to present a disjoint family of cutsets whose reciprocal total conduc-
tances add up to infinity. However, as far as the actual computation of Ceff(u, v)
is concerned, (14.7) is generally not sharp; again, mostly due to the requirement
of edge-disjointness. The following proposition provides the needed fix:

Proposition 14.7 (Cutset representation of effective conductance). Let
Su,v be the set of all finite collections of cutsets between u and v. Then

Ceff(u, v) = inf
Π∈Su,v

inf
{ce,π : π∈Π, e∈π}∈CΠ

[ ∑
π∈Π

1∑
e∈π ce,π

]−1

, (14.10)

where CΠ is the set of all families of positive numbers {ce,π : π ∈ Π, e ∈ π} such
that ∑

π∈Π

1

ce,π
≤ 1

ce
, e ∈ E . (14.11)

The infima in (14.10) are (jointly) achieved.

Proof. Let Π be a family of cutsets from u to v and let {ce,π} ∈ CΠ . We
again produce an equivalent network as follows: Replace each edge e involved
in these cutsets by a series of edges eπ, π ∈ Π. Assign resistance 1/ce,π to eπ
and, should the inequality in (14.11) be strict for e, add a dummy edge ẽ with
resistance rẽ := 1/ce −

∑
π∈Π 1/ce,π. The cutsets can then be deemed edge-

disjoint; and so we get “≤” in (14.10) by Lemma 14.4.
To prove equality in (14.10), we consider the minimizer f? of the variational

problem defining Ceff(u, v). Using the operator in (13.44), note that Lf?(x) = 0
for x 6= u, v. This is an important property in light of:

Exercise 14.8. Let f : V→ R be such that f(u) > f(v) and abbreviate

D :=
{
x ∈ V : f(x) = f(u)

}
. (14.12)

Assume Lf(x) = 0 for x 6∈ D ∪ {v}. Prove that π := ∂D defines a cutset π
from u to v such that f(x) > f(y) holds for each edge (x, y) ∈ π oriented so
that x ∈ D and y 6∈ D.

We will now define a sequence of functions fk : V → R and cuts πk by the
following algorithm: INITIATE by f0 := f?. If fk−1 is constant then STOP,
else use Exercise 14.8 with Dk−1 related to fk−1 as D is to f in (14.12) to
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define πk := ∂Dk−1. Noting that fk−1(x) > fk−1(y) for each edge (x, y) ∈ π
(oriented to point from u to v), set αk := min(x,y)∈π |fk−1(x)− fk−1(y)| and let

fk(z) := fk−1(z)− αk 1Dk−1
(z). (14.13)

Then REPEAT.
As is checked by induction, k 7→ Dk is strictly increasing and k 7→ fk is

non-increasing with fk = f? on V rDk. In particular, we have Lfk(x) = 0 for
all x 6∈ Dk ∪ {v} and so Exercise 14.8 can repeatedly be used. The premise of
the strict inequality fk(u) > fk(v) for all but the final step is the consequence
of the Maximum Principle.

Now we perform some elementary calculations. Let Π denote the set of the
cutsets πk identified above. For each edge (x, y) and each πk ∈ Π, define

ce,πk :=
|f?(y)− f?(x)|

αk
ce. (14.14)

The construction and the fact that f?(u) = 1 and f?(v) = 0 imply∑
k

αk = 1 . (14.15)

For any e = (x, y), we also get∑
k : e∈πk

αk =
∣∣f?(y)− f?(x)

∣∣. (14.16)

In particular, the collection {ce,π : π ∈ Π, e ∈ π} obeys (14.11). Moreover,
(14.14) also shows, for any e = (x, y),∑

k : e∈πk

ce,πkα
2
k = ce

∣∣f?(y)− f?(x)
∣∣ ∑
k : e∈πk

αk = ce
∣∣f?(y)− f?(x)

∣∣2. (14.17)

Summing over e ∈ E and rearranging the sums yields

Ceff(u, v) = E(f?) =
∑
e∈E

∑
k : e∈πk

ce,πkα
2
k =

∑
k

α2
k

( ∑
e : e∈πk

ce,πk

)
. (14.18)

Denoting the quantity in the large parentheses by Ck, among all non-negative αk’s

satisfying (14.15), the right-hand side is minimal for αk := 1/Ck∑
j 1/Cj

. This shows

“≥” in (14.10) and thus finishes the proof. ut
We note that the above derivations are closely related to characterizations

of the effective resistance/conductance based on optimizing over random paths
and cuts. These are rooted in T. Lyons’ random-path method [90] for proving
finiteness of the effective resistance. Refined versions of these characterizations
can be found in Berman and Konsowa [21].

14.2 Duality and effective resistance across squares
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Although the above derivations are of independent interest, our main reason for
giving their full account is to demonstrate the duality ideas that underlie the
derivations in these final lectures. This is based on the close similarity of the
variational problems (14.2–14.3) and (14.10–14.11). Indeed, these are identical
provided we somehow manage to

(1) swap paths for cuts, and
(2) exchange resistances and conductances.

Here (2) is achievable readily assuming symmetry of the underlying random field:
For conductances (and resistances) related to a random field h via (13.13),

h
law
= − h ⇒ {ce : e ∈ E} law

= {re : e ∈ E}. (14.19)

For (1) we can perhaps hope to rely on the fact that paths on planar graphs
between the left and right sides of a rectangle are in one-to-one correspondence
with cuts in the dual graph separating the top and bottom sides of that rectangle.
Unfortunately, swapping primal and dual edges seems to void the dependence
(13.13) on the underlying field which we need for (14.19). We will thus stay
on the primal lattice and implement the path-cut duality underlying (1) only
approximately.

Consider a rectangular box S of the form

B(M,N) := ([−M,M ]× [N,N ]) ∩ Z2 (14.20)

and let ∂leftS, ∂downS, ∂rightS, ∂upS denote the sets of vertices in S that have a
neighbor in Sc to the left, downward, the right and upward thereof, respectively.
Regarding S, along with the edges with both endpoints in S, as an electric
network with conductances depending on a field h as in (13.13), let

RLR

S (h) := Reff

(
∂leftS, ∂rightS

)
(14.21)

and
RUD

S (h) := Reff

(
∂upS, ∂downS

)
(14.22)

denote the left-to-right and up-down effective resistances across the box S, re-
spectively. To keep our formulas short, we will also abbreviate

B(N) := B(N,N). (14.23)

A key starting point of all derivations is the following estimate:

Proposition 14.9 (Effective resistance across squares). There is ĉ > 0
and, for each ε > 0, there is N0 ≥ 1 such that for all N ≥ N0 and all M ≥ 2N ,

P
(
RLR

B(N)(h
B(M)) ≤ eĉ log logM

)
≥ 1

2
− ε, (14.24)

where hB(M) := DGFF in B(M).
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The proof will involve a sequence of lemmas. We begin by a general statement
that combines usefully the electrostatic duality along with approximate path-cut
duality. Consider a finite network G = (V,E) with resistances {re : e ∈ E}. A dual,
or reciprocal, network is that on the same graph but with resistances {r?e : e ∈ E}
where

r?e :=
1

re
, e ∈ E. (14.25)

We will denote to the dual network as G?. We will write R?eff, resp., C?eff to denote
the effective resistances in G?. We also say that edges e and e′ are adjacent, with
the notation e ∼ e′, if they share exactly one endpoint. We then have:

Lemma 14.10. Let (A,B) and (C,D) be pairs of non-empty disjoint subsets
of V such that every path from A to B has a vertex in common with every path
from C to D. Then

Reff(A,B)R?eff(C,D) ≥ 1

4d2ρmax
, (14.26)

where d is the maximum vertex degree in G and

ρmax := max
{
re/re′ : e ∼ e′

}
. (14.27)

Proof. The proof relies on the fact that every path P between C and D defines
a cutset πP between A and B by taking πP to be the set of all edges adjacent
to the edges in P , but excluding the edges in (A×A) ∪ (B ×B). In light of the
Electrostatic Duality, we need to show

Ceff(A,B) ≤ 4d2ρmaxR
?
eff(C,D) . (14.28)

Aiming to use the variational characterizations (14.2–14.3) and (14.10–14.11),
fix a collection of paths P ∈ PC,D and positive numbers {r′e,P : P ∈ P, e ∈ P}
such that ∑

P∈P

1

r′e,P
≤ 1

r?e
=

1

ce
, e ∈ E , (14.29)

where the equality is a rewrite of (14.25). For each e ∈ E and each P ∈ P,
consider the cut πP defined above and let

ce,πP := 2dρmax

( ∑
e′∈P : e′∼e

1

r′e′,P

)−1

. (14.30)

Then, for each e ∈ E, (14.29) along with the definitions of ρmax and d yield∑
P∈P

1

ce,πP
=

1

2dρmax

∑
P∈P

∑
e′∈P : e′∼e

1

r′e′,P

≤ 1

2dρmax

∑
e′∼e

1

ce′
≤ 1

2d

∑
e′∼e

1

ce
≤ 1

ce
.

(14.31)
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Using that (
∑
i xi)

−1 ≤
∑
i 1/xi for any positive xi’s in turn shows∑

e∈πP

ce,πP ≤ 2dρmax

∑
e∈πP

∑
e′∈P : e′∼e

r′e′,P ≤ 4d2ρmax

∑
e′∈P

r′e′,P . (14.32)

In light of (14.31), from (14.10) we thus have

Ceff(A,B) ≤
( ∑
P∈P

1∑
e∈πP ce,πP

)−1

≤ 4d2ρmax

( ∑
P∈P

1∑
e′∈P r

′
e′,P

)−1

. (14.33)

This holds for all P and all positive {r′e,P : P ∈ P, e ∈ P} subject to (14.29) and
so (14.28) follows from (14.2). ut

We also have the opposite inequality, albeit under somewhat different condi-
tions on (A,B) and (C,D):

Lemma 14.11. For d and ρmax as in Lemma 14.10, let (A,B) and (C,D) be
pairs of non-empty disjoint subsets of V such that for every cutset π between C
and D, the set of edges with one or both vertices in common with some edge in π
contains a path from A to B. Then

Reff(A,B)R?eff(C,D) ≤ 4d2ρmax . (14.34)

Proof (sketch). For any cutset π between C and D, the assumptions ensure the
existence of a path Pπ from u to v that consists of edges that have one or both
endpoints in common with some edge in π. Pick a family of cutsets Π between C
and D and positive numbers {c′e,π : π ∈ Π, e ∈ Pπ} such that∑

π∈Π

1

c′e,π
≤ 1

c?e
=

1

re
. (14.35)

Following the exact same sequence of steps as in the proof of Lemma 14.10, the
reader will readily construct {re,Pπ : π ∈ Π, e ∈ Pπ} satisfying (14.3) such that

Reff(A,B) ≤
( ∑
π∈Π

1∑
e∈Pπ re,Pπ

)−1

≤ 4d2ρmax

( ∑
π∈Π

1∑
e∈π c

′
e,π

)−1

, (14.36)

where the first inequality is by Proposition 14.2. As this holds for all Π and all
positive {c′e,π : π ∈ Π, e ∈ π} satisfying (14.35), we get (14.34). ut

The previous lemma shows that, in bounded degree planar graphs, primal
and dual effective resistances can be compared as long as we can bound the
ratio of the resistances on adjacent edges. Unfortunately, this would not work
for resistances derived from the DGFF in B(M) via (13.13); indeed, there ρmax

can be as large as a power of M due to the large maximal local roughness of the
field. We will resolve this by decomposing the DGFF into a smooth part, where
the associated ρmax is sub-polynomial in M , and a rough part whose influence
can be controlled directly. This is the content of:
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Lemma 14.12 (Splitting DGFF into smooth and rough fields). Recall
that hB(N) denotes the DGFF in B(N). There is c > 0 and, for each N ≥ 1,
there are Gaussian fields ϕ and χ on B(N) such that

(1) ϕ and χ are independent with ϕ+ χ
law
= hB(N),

(2) Var(χx) ≤ c log logN for each x ∈ B(N), and
(3) Var(ϕx − ϕy) ≤ c/ logN for every adjacent pair x, y ∈ B(N/2).

Moreover, the law of ϕ is invariant under the rotations of B(N) by multiples
of π/2.

Proof. Let {Yn : n ≥ 0} denote the discrete time simple symmetric random walk
on Z2 with holding probability 1/2 at each vertex and, given any finite Λ ⊂ Z2,
let τΛc be the first exit time from Λ. Writing P x for the law of the walk started
at x and denoting

Q(x, y) := P x(Y1 = y, τΛc ≥ 1), (14.37)

we first ask reader to solve:

Exercise 14.13. Prove the following:

(1) the n-th matrix power of Q obeys Qn(x, y) = P x(Yn = y, τΛc ≥ n),
(2) the matrices {Qn(x, y) : x, y ∈ Λ} are symmetric and positive semi-definite,
(3) the Green function in Λ obeys

GΛ(x, y) =
∑
n≥0

1

2
Qn(x, y). (14.38)

We now apply the above for Λ := B(N). Writing C1(x, y) for the part of the sum
in (14.38) corresponding to n ≤ blogNc2 and C2(x, y) for the remaining part of
the sum, Exercise 14.13(2) ensures that the kernels C1 and C2 are symmetric
and positive semidefinite with GD = C1 + C2. The fields

χ := N (0, C1) and ϕ := N (0, C2) with χ ⊥⊥ ϕ (14.39)

then realize (1) in the statement. To get (2), we just sum the standard heat-
kernel bound Qn(x, x) ≤ c/n (valid uniformly in x ∈ B(N)). For (3) we pick
neighbors x, y ∈ B(N/2) and use the Strong Markov Property to estimate∣∣∣E[ϕx(ϕx − ϕy)

]∣∣∣
≤

∑
n>blogNc2

∣∣∣P x(Yn = y, τB(N)c > n)− P x(Yn = x, τB(N)c > n)
∣∣∣

≤
∑

n>blogNc2

∣∣∣P x(Yn = y)− P x(Yn = x)
∣∣∣

+
∑
n≥1

Ex
∣∣∣PXτB(N)c (Yn = y)− PXτB(N)c (Yn = x)

∣∣∣.
(14.40)
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By [85, Theorem 2.3.6] there is c > 0 such that for all (x′, y′) ∈ E(Z2) and
all z ∈ Z2, ∣∣P z(Yn = y′)− P z(Yn = x′)

∣∣ ≤ cn−3/2. (14.41)

This shows that the first sum is O(1/ logN) and that, in light of x, y ∈ B(N/2),
the second sum is O(1/

√
N). This readily yields the claim. ut

Let Reff,h(u, v) mark the explicit h-dependence of the effective resistance
from u to v in a network with conductances related to a field h as in (13.13). In
order to control the effect of the rough part of the decomposition of the DGFF
from Lemma 14.12, we will also need:

Lemma 14.14. For any fields ϕ and χ,

Reff,ϕ+χ(u, v) ≤ Reff,ϕ(u, v) max
(x,y)∈E

e−β(χx+χy). (14.42)

Moreover, if ϕ ⊥⊥ χ then also

E
(
Reff,ϕ+χ(u, v)

∣∣ϕ) ≤ Reff,ϕ(u, v) max
(x,y)∈E

E
(
e−β(χx+χy)

)
. (14.43)

Proof. Let i ∈ I(u, v). Then (13.28) and (13.13) yield

Reff,ϕ+χ(u, v) ≤
∑

e=(x,y)∈E

e−β(ϕx+ϕy)e−β(χx+χy)i(e)2. (14.44)

Bounding the second exponential by its maximum and optimizing over i yields
(14.42). For (14.43) we first take the conditional expectation given ϕ and then
proceed as before. ut

Lemma 14.14 will invariably be used through the following bound:

Exercise 14.15 (Removal of independent field). Suppose ϕ and χ are in-
dependent Gaussian fields on V. Denote σ2 := maxx∈V Var(χx). Show that then
for each a > 0 and each r > 0,∣∣∣P(Reff,ϕ+χ(u, v) ≤ ar

)
− P

(
Reff,ϕ(u, v) ≤ r

)∣∣∣ ≤ a−1e2β2σ2

. (14.45)

We are ready to give:

Proof of Proposition 14.9. Lemma 14.12 permits us to realize hB(M) as the sum
of independent fields ϕ and χ where, by the union bound and the standard
Gaussian tail estimate (see Exercise 2.2), for each ε > 0 there is c1 > 0 such that

sup
M≥1

P
(

max
x,y∈B(M/2)
|x−y|1≤2

|ϕx − ϕy| > c1

)
< ε. (14.46)

Hence, ρmax associated with field ϕ in the box B(N) ⊆ B(M/2) via (13.13)
obeys P(ρmax ≤ ec1β) ≥ 1 − ε. Next we observe that, abbreviating S := B(N),
the pairs

(A,B) := (∂leftS, ∂rightS) and (C,D) := (∂upS, ∂downS) (14.47)
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obey the conditions in Lemma 14.11. Since d = 4, (14.25) and (14.34) give

P
(
RLR

B(N)(ϕ)RUD

B(N)(−ϕ) ≤ 64ec1β
)
≥ 1− ε. (14.48)

The rotational symmetry of B(N), B(M) and ϕ along with the distributional

symmetry ϕ
law
= − ϕ imply

RUD

B(N)(−ϕ)
law
= RLR

B(N)(ϕ). (14.49)

A union bound then gives

P
(
RLR

B(N)(ϕ) ≤ 8ec1β/2
)
≥ 1− ε

2
. (14.50)

Exercise 14.15 with r := 8ec1β/2 and a := eĉ log logM (8ec1β/2)−1 for any choice
of ĉ > 2β2c in conjunction with Lemma 14.12 then imply the claim for N
sufficiently large. ut

14.3 RSW theory for effective resistance

The next (and the most challenging) task is to elevate the statement of Propo-
sition 14.9 from squares to rectangles. The desired claim is the content of:

Proposition 14.16 (Effective resistance across rectangles). There are
c, C ∈ (0,∞) and N1 ≥ 1 such that for all N ≥ N1, all M ≥ 16N and any
translate S of B(4N,N) satisfying S ⊂ B(M/2),

P
(
RLR

S (hB(M)) ≤ Ceĉ log logM
)
≥ c. (14.51)

The same holds for RUD

S (hB(M)) and translates S of B(N, 4N) with S ⊂ B(M/2).
(The constant ĉ is as in Proposition 14.9.)

The proof (which we will only sketch) is rooted in the Russo-Seymour-Welsh
(RSW) argument for critical percolation, which is a way to to bootstrap uniform
lower bounds on the probability of an occupied crossing for squares to those for
an occupied crossing for rectangles (in the “longer” direction) of a given aspect
ratio. The technique was initiated in Russo [107], Seymour and Welsh [111] and
Russo [108] for percolation and later adapted to dependent models as well (e.g.,
Duminil-Copin, Hongler and Nolin [65], Beffara and Duminil-Copin [15]). We
will follow the version that Tassion [123] developed for Voronoi percolation.

Proposition 14.2 links the effective resistance to crossings by collections of
paths. In order to mimic arguments from percolation theory, we will need a
substitute for the trivial geometric fact that, if a path from u to v crosses a path
from u′ to v′, then the union of these paths contains a path from u to v′. For
this, given a set A of paths, let Reff(A) denote quantity in (14.2) with the first
infimum restricted to P ⊆ A (not necessarily a subset of Pu,v). We then have:



204 Marek Biskup

Lemma 14.17 (Subadditivity of effective resistance). Let A1, . . . ,An be
sets of paths such that for each selection Pi ∈ Ai, i = 1, . . . , n, the graph union
P1 ∪ · · · ∪ Pn contains a path from u to v. Then

Reff(u, v) ≤
n∑
i=1

Reff(Ai). (14.52)

Another property we will need can be thought of as a generalization of the
Parallel Law: If we route current from u to v along separate families of paths,
then Ceff(u, v) is at most the sum of the conductances of the individual families.
This yields:

Lemma 14.18 (Subadditivity of effective conductance). Let A1, . . . ,An
be sets of paths such that every path from u to v lies in A1 ∪ · · · ∪ An. Then

Ceff(u, v) ≤
n∑
i=1

Reff(Ai)−1. (14.53)

We will not supply proofs of these lemmas as that amounts to further variations
on the calculations underlying Propositions 14.2 and 14.7; instead, we refer the
reader to [23]. The use of these lemmas will be facilitated by the following ob-
servation:

Exercise 14.19. Show that, for any collection of paths A and for resistances
related to field h as in (13.13), h 7→ Reff,h(A) is decreasing (in each coordi-
nate). Prove that, for h given as DGFF and each a > 0, under the setting of
Lemma 14.17 we have

P
(
Reff(u, v) ≤ a

)
≥

n∏
i=1

P
(
Reff(Ai) ≤ a/n

)
(14.54)

while under the setting of Lemma 14.18 we have

max
i=1,...,n

P
(
Reff(Ai) ≤ a

)
≥ 1−

[
1− P

(
Reff(u, v) ≤ a/n

)]1/n
. (14.55)

Hint: Use the FKG inequality.

Tassion’s version of the RSW argument proceeds by considering crossings
of B(N) from the left-side of B(N) to (only) a portion of the right side —
namely that corresponding to the interval [α, β]; see Fig. 27 for the geometric
setting. Writing AN,[α,β] for the set of all such crossing paths, we abbreviate

RLR

N,[α,β](h) := Reff,h(AN,[α,β]). (14.56)

We then have:

Lemma 14.20. For each ε > 0 and all M ≥ 2N with N sufficiently large,

P
(
RLR

N,[0,N ](h
B(M)) ≤ 2eĉ log logM

)
≥ 1− 1√

2
− ε. (14.57)
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α

β

N B(N)

Fig. 27. A path in the set AN,[α,β] underlying the definition of the ef-
fective resistivity RLR

N,[α,β](h) between the left side of the square and the
portion of the right-side marked by the interval [α, β].

Proof. Lemma 14.18 and the Electrostatic Duality show

1

RLR

B(N)(h)
≤ 1

RLR

N,[0,N ](h)
+

1

RLR

N,[−N,0](h)
(14.58)

and the rotation (or reflection) symmetry yields

RLR

N,[0,N ](h
B(M))

law
= RLR

N,[−N,0](h
B(M)). (14.59)

The bound (14.55) along with Proposition 14.9 then show (14.57). ut
Equipped with these techniques, we are ready to give:

Proof of Proposition 14.16 (rough sketch). Since α 7→ RLR

N,[α,N ](h) is increasing

on [0, N ] with the value at α = N presumably quite large, one can identify (with
some degree of arbitrariness) a value αN where this function first exceeds a large
multiple of eĉ log log(2N) with high-enough probability. More precisely, set

φN (α) := P
(
RLR

N,[α,N ](h
B(2N)) > Ceĉ log log(2N)

)
(14.60)

for a suitably chosen C > 2 and note that, by (14.57), φN (0) < 0.99. Then set

αN := bN/2c ∧min
{
α ∈ {0, . . . , bN/2c} : φN (α) > 0.99

}
. (14.61)

We now treat separately the cases αN = bN/2c and αN < bN/2c using the
following sketch of the actual proof, for which we refer to the original paper:

CASE αN = bN/2c: Here the fact that φN (αN − 1) ≤ 0.99 implies (via pertur-
bation arguments that we suppress) that φN (αN ) < 0.999 and so

P
(
RLR

N,[αN ,N ] ≤ Ceĉ log log(2N)
)
≥ 0.001. (14.62)
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Pi

Pi ′

Pi″

Pi+1

Pi+1′

Pi+1″

N

Fig. 28. An illustrations of paths Pi, P
′
i and P ′′i , all of the form in Fig. 27

with α := bN/2c and β := N (or just left-to-right crossing for Pi)
that ensure the existence a left-right crossing of the 4N × N rectan-
gle when αN = bN/2c. The effective resistance in the rectangle is then
bounded by the sum of (suitably shifted) copies of RLR

N,[0,N ](h).

Invoking suitable shifts of the box B(N), Lemma 14.17 permits us to bound
the left-to-right effective resistance RLR

B(4N,N) by the sum of seven copies of ef-

fective resistances of the form RLR

N,[αN ,N ] (and rotations thereof) and four copies

of RLR

B(N) (and rotations thereof); see Fig. 28. The inequalities (14.54), (14.62)

and (14.24) then yield (14.51). A caveat is that these squares/rectangles are
(generally) not centered at the same point as B(M), which we need in order to
apply Proposition 14.9 and the definition of αN . This is remedied by invoking the
Gibbs-Markov decomposition and removing the binding field via Exercise 14.15.

CASE αN < bN/2c: In this case φN (αN ) > 0.99. Since, by Lemma 14.18,

1

RLR

N,[0,N ]

≤ 1

RLR

N,[αN ,N ]

+
1

RLR

N,[0,αN ]

(14.63)

Lemma 14.20 (and C > 2) show that RLR

N,[0,αN ] ≤ C
′eĉ log log(2N) with a uniformly

positive probability. Assuming in addition that

αN ≤ 2αL for L := b4N/7c (14.64)

another path crossing argument (see Fig. 29) is used to ensure a left-to-right
crossing of the rectangle B(2N −L,N). This is then readily bootstrapped to the
crossing of B(4N,N), and thus a bound on the effective resistance, by way of
Lemma 14.17 and the inequality (14.54).

It remains to validate the assumption (14.64). Here one proceeds by induc-
tion assuming that the statement (14.51) already holds for N and proving that,
if αL ≤ N , then the statement holds (with slightly worse constants) for L as
well. This is based on a path-crossing argument whose geometric setting is de-
picted in Fig. 30. This permits the construction of a sequence {Nk : k ≥ 1} such
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L

α
N 2α

L

P
1

P
3

P
4

P
5

P
2

P
6

P
7

Fig. 29. Arranging a left-to-right crossing of B(2N − L,N), with L :=
b4N/7c, under the assumption that αN ≤ 2αL. Some of the paths have
been drawn in gray to make parsing of the connections easier.

that αNk+1
≤ Nk and such that Nk+1/Nk is bounded as k →∞. (Another path

crossing argument is required here for which we refer the reader to the original
paper.) The claim is thus proved for N ∈ {Nk : k ≥ 1}; general N are handled
by monotonicity considerations. ut

14.4 Upper tail of effective resistance

With Proposition 14.16 in hand, we are now ready to give the proof of:

Theorem 14.21 (Effective resistance, upper tail). Given integers M ≥
N ≥ 1, let Reff(u, v) denote the effective resistance from u to v in the network
on B(N) with conductances related to h = hB(M) via (13.13). There are c1, c2 ∈
(0,∞) such that

max
u,v∈B(N)

P
(
Reff(u, v) ≥ c1(logM)et

√
logM

)
≤ c1(logM)e−c2t

2

(14.65)

holds for all N ≥ 1, all M ≥ 32N and all t ≥ 1.

As we shall see, the proof is based on the following concentration estimate for
the effective resistance:

Lemma 14.22. For any collection of paths A, let f(h) := logReff,h(A) (which
entails that the resistances depend on h via (13.13)). Then

sup
h

∑
x

∣∣∣ ∂f
∂hx

(h)
∣∣∣ ≤ 2β. (14.66)



208 Marek Biskup

αL
N

L

P1 P2P1′

P2′

P3′

P4′

Fig. 30. A collection of paths that enforce a left-to-right crossing of
B(4L,L). The paths P ′1, . . . , P

′
4 arise from our assumption that (14.51)

holds for N and the corresponding quantity RLR
B(4N,N) is moderate. The

paths P1 and P2 arise from the assumption αL ≤ N . Note that since
bL/2c > N ≥ αL, we know that also RLR

L,[0,αL] is moderate.

Proof. We will prove this under the simplifying assumption that A is the set
of all paths from u to v and, therefore, Reff,h(A) = Reff,h(u, v). Let i? be the
current realizing the minimum in (13.28). Then (13.13) yields

∂

∂hx
logReff,h(u, v) =

1

Reff,h(u, v)

∑
e∈E

i?(e)
2 ∂

∂hx
re

= − β

Reff,h(u, v)

∑
y : (x,y)∈E

i?(x, y)2 re .
(14.67)

Summing the last sum over all x yields 2Reff,h(u, v). The claim thus follows. ut

Exercise 14.23. Use the variational representation of Reff(A) as in (14.2) to
prove Lemma 14.22 in full generality.

As a consequence we get:

Corollary 14.24. There is a constant c > 0 such that, for any M ≥ 1, any
collection A of paths in B(M) and any t ≥ 0,

P
(∣∣logReff,hB(M)(A)− E logReff,hB(M)(A)

∣∣ > t
√

logM
)
≤ 2e−ct

2

. (14.68)

Proof. Lemma 14.22 implies the premise (6.16) (with M := 2β) of the general
Gaussian concentration estimate in Corollary 6.6. The claim follows by the union
bound and the uniform control of the variance of the DGFF (cf, e.g., (2.3)). ut

In order to localize the value of the expectation in (14.68), we also need:
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u

v

Fig. 31. An illustration of a sequence of 4K×K rectangles (for K taking
values in powers of 2) such that the occurrence of a crossing of each of
these rectangles implies the existence of a path from u to v. For vertices
within distance N , order-logN rectangles suffice.

Lemma 14.25 (Effective resistance across rectangles, lower bound).
There are constants c′, C ′ > 0 such that for all N ≥ 1, all M ≥ 16N and any
translate S of B(4N,N) with S ⊂ B(M/2),

P
(
RLR

S (hB(M)) ≥ C ′e−ĉ log logM
)
≥ c′. (14.69)

The same holds for RUD

S (hB(M)) and translates S of B(N, 4N) with S ⊂ B(M/2).
(The constant ĉ is as in Proposition 14.9.)

Proof (sketch). By swapping resistances for conductances (and relying on Lem-
ma 14.10 instead of Lemma 14.11), we find out that (14.69) holds for S := B(N).
Invoking the Gibbs-Markov property, Exercise 14.15 yields a similar bound for
all translates of B(N) contained in B(M/4). Since every translate S of B(4N,N)
with S ⊂ B(M/2) contains a translate S′ of B(N) contained in B(M/4), the
claim follows from the fact that RLR

S′ ≤ RLR

S . ut
With Lemma 14.25 in hand, we can finally prove the upper bound on the

point-to-point effective resistances:

Proof of Theorem 14.21. Using Corollary 14.24 along with Proposition 14.16 and
Lemma 14.25 (and the fact that log logM ≤

√
logM for M large) we get that

E
∣∣logRLR

S (hB(M))
∣∣ ≤ c̃√logM (14.70)

and
P
(

logRLR

S (hB(M)) ≥ c̃(1 + t)
√

logM
)
≤ e−c̃

′t2 , t ≥ 0, (14.71)
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hold with the same constants c̃, c̃′ ∈ (0,∞) for all translates S of B(4N,N) or
B(N, 4N) contained in B(M/2), uniformly in N ≥ 1 and M ≥ 32N .

Next we invoke the following geometric fact: Given u, v ∈ B(N), there are
at most order-logN translates of B(4K,K) or B(K, 4K) with K ∈ {1, . . . , N}
such that the existence of a crossing (in the longer direction) in each of these
rectangles implies the existence of a path from u to v; see Fig. 31. Assuming that
the corresponding resistance (left-to-right in horizontal rectangles and top-to-

bottom in vertical ones) is at most ec̃(1+t)
√

logM , Lemma 14.17 bounds Reff(u, v)

by a constant times (logM)ec̃(1+t)
√

logM . The claim then follows from (14.71)
and the union bound. ut

Theorem 14.21 now in turn implies the upper bound on the growth rate of
resistances from 0 to B(N)c in an infinite network on Z2:

Proof of (13.15) in Theorem 13.5 (sketch). First note that Reff(0, B(N)c) ≤
Reff(0, v) for any vertex v ∈ ∂B(N). The Gibbs-Markov property along with
Exercise 14.15 allow us to estimate the tail of Reff(0, B(N)c) for h := DGFF
in Z2 r {0} by essentially that for h := DGFF in B(2N). Theorem 14.21 gives

P
(

logReff(0, B(N)c) ≥ a(logN)1/2(log logN)1/2
)
≤ c(logN)1−c2a2 (14.72)

for all a > 0 as soon as N is sufficiently large. Once a is sufficiently large, this is
summable for N ∈ {2n : n ∈ N}. The claim thus follows from the Borel-Cantelli
lemma and the monotonicity of N 7→ Reff(0, B(N)c). ut

The lower corresponding lower bound (13.16) requires the use of the concen-
tric decomposition and is therefore deferred to the next lecture.

Lecture 15

From resistance to random walk

We are left with the task to apply the technology for controlling the resistance
to establish the desired conclusions about the random walk in DGFF landscape.
It is here where we will tie the random walk problem to the overall theme of
these lectures: the large values of the DGFF. We commence by some elementary
identities from Markov chain theory which readily yield upper bounds on the
expected exit time and the heat kernel. The control of the corresponding lower
bounds is considerably more involved. We again focus on conveying the main
ideas while referring the reader to the original paper for specific technical details.

15.1 Hitting and commute-time identities

We begin by considerations that apply to a general discrete-time Markov chain X
on a countable state space V with transition probability P and a reversible mea-
sure π. This problem always admits the electric network formulation by setting
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the conductances to c(x, y) := π(x)P(x, y) — whose symmetry is equivalent to
reversibility of π — and defining the resistances accordingly. The set of edges E
is then the set of pairs (x, y) where c(x, y) > 0. Our main tool will be:

Lemma 15.1 (Hitting time identity). Let A ⊂ V be finite and let us denote,
as before, τAc := inf{n ≥ 0: Xn 6∈ A}. Then for each x ∈ A,

Ex(τAc) = Reff(x,Ac)
∑
y∈A

π(y)φ(y) , (15.1)

where φ(y) := P x(τx < τAc) has the interpretation of the potential (a.k.a. volt-
age) that minimizes the variational problem defining Ceff(x,Ac).

Proof. The Markov property ensures that the Green function associated with the
Markov chain, defined by the formula (1.3) or via GA := (1−P)−1, is P-harmonic
in the first coordinate. The uniqueness of the solution to the Dirichlet problem
in finite sets (see Exercise 13.16) implies

φ(y) =
GA(y, x)

GA(x, x)
. (15.2)

Reversibility then yields∑
y∈A

π(y)φ(y) = GA(x, x)−1
∑
y∈A

π(y)GA(y, x)

= GA(x, x)−1π(x)
∑
y∈A

GA(x, y)

= GA(x, x)−1π(x)Ex(τAc).

(15.3)

The claim follows from

GA(x, x) = π(x)Reff(x,Ac) (15.4)

as implied by Corollary 13.17 and (1.17). ut
The above lemma is well known particularly in the form of the following

corollaries. The first one of these is folklore:

Corollary 15.2 (Hitting time estimate). For all finite A ⊂ V and all x ∈ A,

Ex(τAc) ≤ Reff(x,Ac)π(A). (15.5)

Proof. Apply φ(y) ≤ 1 for all y ∈ A in (15.1). ut
The second corollary, which we include mostly for completeness of exposition,
appeared first in Chandra et al [40]:

Corollary 15.3 (Commute-time identity). For all V finite and all distinct
vertices u, v ∈ V,

Eu(τv) + Ev(τu) = Reff(u, v)π(V). (15.6)
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Proof. Let φ be the minimizer of Ceff(u, v) and φ′ the minimizer of Ceff(v, u).
Noting that φ(x) + φ′(x) = 1 for all x = u, v the uniqueness of the solution to
the Dirichlet problem implies that φ(x) + φ′(x) = 1 all x ∈ V. The claim follows
from (15.1). ut

15.2 Upper bounds on expected exit time and heat kernel

The upshot of the above corollaries is quite clear: In order to bound the expected
hitting time from above, we only need tight upper bounds on the effective re-
sistance and the total volume of the reversible measure. Drawing heavily on our
earlier work in these notes, this now permits to give:

Proof of Theorem 13.3, upper bound in (13.8). Let δ > 0 and let h be the DGFF
in Z2 r {0}. The upper bound in Theorem 13.5 ensures

Reff,h

(
0, B(N)c

)
≤ e(logN)1/2+δ (15.7)

with probability tending to one as N →∞. The analogue of (2.16) for the DGFF
in Z2 r {0} along with Markov inequality and Borel-Cantelli lemma yields

πh
(
B(N)

)
≤ Nθ(β)e(logN)δ (15.8)

with probability tending to one as N →∞ when β ≤ β̃c; for β > β̃c we instead
use the Gibbs-Markov property and the exponential tails of the maximum proved
in Lemma 8.3. Corollary 15.2 then gives

E0
h(τB(N)c) ≤ Nθ(β)e2(logN)1/2+2δ

(15.9)

with probability tending to one as N →∞. ut
Next we will address the decay of the heat kernel:

Proof of Theorem 13.2, upper bound in (13.5). For T > 0 define the set

ΞT := {0} ∪
{
x ∈ B(2T ) rB(T ) : R̃eff(0, x) ≤ e(log T )1/2+δ

}
, (15.10)

where R̃eff stands for the effective resistance in the network on B(2T ). From
Theorem 14.21 and the Markov inequality we conclude that |ΞT | will contain an

overwhelming fraction of all vertices in the annulus B(2T )rB(T ). Let X̃ be the
Markov chain on B(4T ) defined by the same conductances as X except those
corresponding to the jumps out of B(4T ) which are set to zero (and these jumps
are thus suppressed) and write π̃h for the correspondingly modified measure πh.

Let Yk be the position of the k-th visit of X̃ to ΞT , set τ0 := 0 and let τ1, τ2,
etc be times of the successive visits of X̃ to 0. Let

σ̂ := inf
{
k ≥ 1: τk ≥ T

}
. (15.11)

We ask the reader to verify:
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Exercise 15.4. Prove that Y := {Yk : k ≥ 0} is a Markov chain on ΞT with
stationary distribution

ν(x) :=
π̃h(x)

π̃h(ΞT )
. (15.12)

Prove also that σ̂ is a stopping time for the natural filtration associated with Y
and that Exh(σ̂) <∞ (and thus σ̂ <∞ P xh -a.s) hold for each x ∈ ΞT .

We also recall an exercise from a general theory of reversible Markov chains:

Exercise 15.5. Prove that T 7→ P 0(X̃2T = 0) is non-increasing.

This permits us to write, for T even (which is all what matters),

1

2
TP 0

h (X̃T = 0) ≤ E0
h

( T−1∑
n=0

1{X̃n=0}

)
≤ E0

h

( T−1∑
k=0

1{Yk=0}

)
≤ E0

h

( σ̂−1∑
k=0

1{Yk=0}

)
,

(15.13)

where the second inequality relies on the fact that 0 ∈ ΞT . Next we observe:

Exercise 15.6. Given a Markov chain Y with stationary distribution ν and a
state x, suppose σ is a stopping time for Y such that Yσ = x a.s. Then for each y

Ex
( σ−1∑
k=0

1{Yk=y}

)
= Ex(σ)ν(y). (15.14)

Hint: The left-hand side is, as a function of y, a stationary measure for Y .

By conditioning on YT we now have

E0
h(σ̂) ≤ T + E0

h

(
EX̃T (τ1)

)
≤ T + max

u∈ΞT
Euh(τ1) (15.15)

and the commute-time identity (Corollary 15.3) and the definition of ΞT give

Euh(τ1) ≤ π̃h(ΞT )R̃eff(u, 0) ≤ πh(ΞT )e(log T )1/2+δ . (15.16)

The nearest-neighbor nature of the walk permits us to couple X and X̃ so that X
coincides with X̃ at least up to time 4T . The above then bounds P 0

h (XT = 0)

by 2πh(0)T−1e(log T )1/2+δ . ut
We can now also settle:

Proof of Corollary 13.4. Using the Markov property, reversibility and the Cauchy-
Schwarz inequality we get

P 0
h (X2T = 0) ≥

∑
x∈B(N)

P 0
h (XT = x)P xh (XT = 0)

= πh(0)
∑

x∈B(N)

P 0
h (XT = x)2

πh(x)
≥ πh(0)

P 0
h

(
XT ∈ B(N)

)2
πh
(
B(N)

) .

(15.17)
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Invoking the (already proved) upper bound on the heat-kernel and the bound
(15.8) we get that, with high probability,

P 0
h

(
XT ∈ B(N)

)
≤
[ 1

T
e(log T )1/2+δ Nθ(β)e(logN)δ

]1/2
. (15.18)

Setting T := Nθ(β)e(logN)1/2+2δ

gives the desired claim. ut

15.3 Bounding voltage from below

We now turn to the lower bounds in Theorems 13.2 and 13.3. As an inspection of
(15.1) shows, this could be achieved by proving a lower bound on the potential
difference (a.k.a. voltage) minimizing Ceff(0, B(N)c). This will be based on:

Lemma 15.7. In the notation of Lemma 15.1, for all x ∈ A and y ∈ Ar {x},

2Reff(x,Ac)φ(y) = Reff(x,Ac) +Reff(y,Ac)−RA,eff(x, y) , (15.19)

where RA,eff denotes the effective resistance in the network with Ac collapsed to
a point.

Proof. We will apply the network reduction principle from Exercise 13.20 and
reduce the problem to the network with three nodes 1, 2 and 3 corresponding to
x, y and Ac, respectively. Since φ is harmonic, so is its restriction to the reduced
network. But φ(y) also has the interpretation of the probability that the reduced
Markov chain at 2 jumps to 1 before 3. Writing the conductance between the ith
and the jth node as cij , this probability is given as c12

c12+c23
. Exercise 13.24 equates

this to the ratio of the right-hand side of (15.19) and 2Reff(0, Ac). ut

For the setting at hand, the quantity on the right-hand side of (15.19) be-
comes:

DN (x) := Reff

(
0, B(N)c

)
+Reff

(
x,B(N)c

)
−RB(N),eff(0, x) . (15.20)

We claim:

Proposition 15.8. For any δ ∈ (0, 1)

lim
N→∞

P
(

min
x∈B(Ne−(logN)δ )

DN (x) ≥ logN
)

= 1. (15.21)

We will only give a sketch of the main idea which is also key for the proof
of the lower bound in Theorem 13.5 that we will prove in some more detail.
The proof relies on the concentric decomposition of the pinned DGFF from
Exercise 8.15 which couples the field to the Gaussian random walk {Sn : n ≥ 0}
defined in (8.54) and some other Gaussian fields. We claim:
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Proposition 15.9. Let h := DGFF in Z2 r {0} and let {Sn : n ≥ 1} be the
Gaussian random walk related to h via Exercise 8.15. There is a constant c > 0
such that

Reff,h

(
0, B(N)c

)
≥ max
k=1,...,blog4Nc

e2βSk−c(log logN)2 (15.22)

fails for at most finitely many N ’s, P-a.s.

For the proof, recall the definition of ∆k from (8.36) and write

Ak := ∆k r∆k−1, k ≥ 1, (15.23)

for the annuli used to define the concentric decomposition. Invoking, in turn, the
notation B(N) from (13.7), define also the thinned annuli

A′k := B(3 · 2k−2) rB(2k−2) (15.24)

and note that A′k ⊆ Ak with dist∞(A′k, A
c
k) ≥ 2k−2. Network reduction argu-

ments (underlying the Nash-Williams estimate) imply

Reff,h

(
0, B(N)c

)
≥ Reff,h

(
∂inA′k, ∂

outA′k
)
, (15.25)

where ∂inA, resp., ∂outA denote the inner, resp., outer external boundary of the
annulus A. We first observe:

Lemma 15.10. There are c, C > 0 such that for each k ≥ 1,

P
(
Reff, hAk

(
∂inA′k, ∂

outA′k
)
≥ Ce−ĉ log log(2k)

)
≥ c , (15.26)

where hAk := DGFF in Ak.

Proof. Let N := 2k−1 and let U1, . . . , U4 denote the four (either 4N × N or
N × 4N) rectangles that fit into A′k. We label these in the clockwise direction
starting from the one on the right. Since every path from the inner boundary
of A′k to the outer boundary of A′k crosses (and connects the longer sides of) one
of these rectangles, Lemma 14.18 and the variational representation (14.2–14.3)
imply

Reff, h

(
∂inA′k, ∂

outA′k
)
≥ 1

4
min

{
RLR

U1
(h), RUD

U2
(h), RLR

U3
(h), RUD

U4
(h)
}
. (15.27)

(Note that the resistances are between the longer sides of the rectangles.) In-
voking also the Gibbs-Markov property along with Lemma 14.14, it suffices to
prove that, for some C, c > 0 and all N ≥ 1,

P
(
RLR

U (hB(16N)) ≥ Ce−ĉ log logN
)
≥ c (15.28)

for any translate U of B(N, 4N) contained in B(8N).
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We will proceed by the duality argument underlying the proof of Proposi-
tion 14.9. Abbreviate M := 16N and consider the decomposition of hB(M) =
ϕ+ χ from Lemma 14.12. Then for each r, a > 0, Exercise 14.15 yields

P
(
RLR

U (hB(M)) ≥ r
)
≥ P

(
RLR

U (ϕ) ≥ r/a
)
− a−1eĉ log logM . (15.29)

The path-cut approximate duality shows

P
(
RLR

U (ϕ)RUD

U (−ϕ) ≥ e−2βc1/64
)
≥ 1− ε. (15.30)

For any r′ > 0, Exercise 14.15 also gives

P
(
RUD

U (ϕ) ≤ r′
)
≥ P

(
RUD

U (hB(M)) ≤ r′/a
)
− a−1eĉ log logM . (15.31)

Setting r′/a := eĉ log logM with a := C ′eĉ log logM for some C ′ > 0 large enough,
Lemma 14.25 bounds the probability on the right of (15.31) by a positive con-
stant. Via (15.30) for ε small, this yields a uniform lower bound on P(RLR

U (ϕ) ≥
r/a) for r/a := (e−2βc1/64)/r′. The bound (15.29) then gives (15.28). ut

Proof of Proposition 15.9. Using the representation of h := DGFF in Z2 r {0}
from Exercise 8.15, the estimates from Lemmas 8.10, 8.11, 8.12 and 11.4 on the
various “bits and pieces” constituting the concentric decomposition yield

h ≤ −Sk + (log n)2 + h′k on A′k (15.32)

for all k = 1, . . . , n as soon as n := blog4Nc is sufficiently large. The inequality
(15.25) then gives

Reff,h

(
0, B(N)c

)
≥ e2β[Sk−(logn)2]Reff, h′k

(∂inA′k, ∂
outA′k). (15.33)

The fields {h′k : k ≥ 1} are independent and hence so are the events

Ek :=
{
Reff, h′k

(∂inA′k, ∂
outA′k) ≥ Ce−ĉ log log(2k)

}
, k ≥ 1. (15.34)

Moreover, h′k
law
= hAk and so Lemma 15.10 shows P(Ek) ≥ c for all k ≥ 1.

A standard use of the Borel-Cantelli lemma implies that, almost surely for n
sufficiently large, the longest interval of k ∈ {1, . . . , n} where Ek fails is of length
at most order log n. The Gaussian nature of the increments of Sk permits us to
assume that max1≤k≤n |Sk+1 − Sk| ≤ log n for n large and so the value of Sk
changes by at most another factor of order (log n)2 over any interval of k’s
where Ek fails. Since log log(2n) � (log n)2 for n large, this and the fact that
log n = log logN +O(1) readily implies the claim. ut

We are now ready to complete our proof of Theorem 13.5:

Proof of (13.16) in Theorem 13.5. Since {Sk : k ≥ 1} is a random walk with
Gaussian increments of bounded and positive variance, Chung’s Law of the It-
erated Logarithm (see [50, Theorem 3]) implies that, for some constant c > 0,

lim inf
n→∞

maxk≤n Sk√
n/ log log n

≥ c, P-a.s. (15.35)
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0

x

Fig. 32. A path-crossing event underlying the estimate (15.37). Notice
that the existence of a path from 0 to the outer square, another path
from x to the outer square and the crossings of the four rectangles as
shown imply the existence of a path from 0 to x within the outer square.

As log n = log logN +O(1), the claim follows from Proposition 15.9. ut
It remains to give:

Proof of Proposition 15.8, main idea. Consider the annuli Ak as above and notice
the following consequences of the network reduction arguments discussed earlier.
Fix n large and denote N := 2n. A shorting argument then implies that for any
k? ∈ {1, . . . , n} such that x ∈ ∆k?−1,

Reff

(
x,B(N)c

)
≥ Reff

(
x, ∂inA′k?

)
+Reff(∂inA′k? , ∂

outA′k?). (15.36)

Next consider the four rectangles constituting the annulus A′k and let R(i)

A′k
denote the effective resistance between the shorter sides of the i-th rectan-
gle. Lemma 14.17 and the path-crossing argument from Fig. 32 show that, for
each k? ∈ {1, . . . , n} such that x ∈ ∆k?−1,

Reff,B(N)(0, x) ≤ Reff

(
0, ∂outA′k?

)
+Reff

(
x, ∂outA′k?

)
+

4∑
i=1

R(i)

A′k?
. (15.37)

Assuming that k? < k?, also have

Reff

(
x, ∂inA′k?

)
≥ Reff

(
x, ∂outA′k?

)
(15.38)

and so

Reff

(
x,B(N)c

)
−Reff,B(N)(0, x) ≥ Reff(∂inA′k? , ∂

outA′k?)−
4∑
i=1

R(i)

A′k?
. (15.39)
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The point is now to show that, with probability tending to one as n → ∞, one
can find integers k?, k

? with

(log n)δ < k? < k? ≤ n (15.40)

such that the first resistance on the right of (15.39) significantly exceeds the sum
of the four resistances therein. For this we note that, thanks to Lemma 15.10
and Proposition 14.16, the overall scale of these resistances is determined by the
value of the random walk Sk at k := k? (for the first resistance) and k := k?
(for the remaining resistances). In light of the observations made in the proof of
Proposition 15.9, it will suffice to find k?, k

? obeying (15.40) such that

Sk? ≥ 2(log n)2 and Sk? ≤ −2(log n)2 (15.41)

occur with overwhelming probability. This requires a somewhat more quantita-
tive version the Law of the Iterated Logarithm for which we refer the reader to
the original paper. ut

15.4 Wrapping up

We will now finish by presenting the proofs of the desired lower bounds on the
expected exit time and the heat kernel.

Proof of Theorem 13.3, lower bound in (13.8). Let δ ∈ (0, 1). The hitting-time
identity in Lemma 15.1 along with Proposition 15.8 imply

E0
h(τB(N)c) ≥ πh

(
B(Ne−(logN)δ)

)
logN (15.42)

with probability tending to one as N →∞. Theorem 2.7 on the size of the inter-
mediate level sets and Theorem 7.3 on the tightness of the absolute maximum
yield

πh
(
B(Ne−(logN)δ)

)
≥ Nθ(β)e−(logN)2δ (15.43)

with probability tending to one as N →∞. The claim follows. ut
It remains to show:

Proof of Theorem 13.2, lower bound in (13.5). Let Ξ?T be the union of {0}∪B(N)c

with the set of all x ∈ B(Ne−(logN)δ) such that

Reff,B(N)(0, x) ∨Reff

(
x,B(N)c

)
≤ e(logN)1/2+δ (15.44)

Abusing our earlier notation slightly, let Yk be the k-th visit of X to Ξ?T (counting
the starting point as k = 0 case). Denote τ̂ := inf{k ≥ 0: Yk ∈ B(N)c}. Then

E0
h(τ̂) ≤ TP 0

h (τ̂ ≤ T ) + P 0
h (τ̂ > T )

(
T + max

x∈ΞN
Exh(τ̂)

)
= T + P 0

h (τ̂ > T ) max
x∈ΞN

Exh(τ̂).
(15.45)
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The hitting time estimate (Corollary 15.2) ensures

Exh(τ̂) ≤ πh
(
Ξ?T ∩B(N)

)
e(logN)1/2+δ , x ∈ Ξ?T , (15.46)

implying

P 0
h (τ̂ > T ) ≥ πh

(
Ξ?T ∩B(N)

)−1
e−(logN)1/2+δ

[
E0
h(τ̂)− T

]
. (15.47)

By our choice of Ξ?T , the lower bound on the voltage from Proposition 15.8
applies to all x ∈ Ξ?T ∩B(N) and so

E0
h(τ̂) ≥ πh

(
Ξ?T ∩B(N)

)
logN. (15.48)

We now need to solve:

Exercise 15.11. Prove that

P
(
πh
(
Ξ?N ∩B(N)

)
≤ Nθ(β)e−(logN)2δ

)
−→
N→∞

0. (15.49)

Hint: Estimate Eπh(B(Ne(logN)δ) rΞ?N ) using the FKG inequality and the fact
that h 7→ Reff,h(u, v) is decreasing.

For N := T 1/θ(β)e(log T )δ this implies E0
h(τ̂) ≥ 2T and via (15.47–15.48) also

P 0
h (τ̂ > T ) ≥ e−(logN)1/2+δ . (15.50)

But τ̂ ≤ τB(N)c := inf{k ≥ 0: Xk ∈ B(N)c} and so

P 0
(
XT ∈ B(N)

)
≥ P 0(τB(N)c > T

)
≥ e−(logN)1/2+δ . (15.51)

Plugging this in (15.17) and invoking (15.8) then gives the claim. ut

Lecture 16

Questions, conjectures and open problems

In this final lecture we discuss conjectures and open problems. These are all
considerably harder than the exercises scattered throughout these notes. In fact,
most of the problems below constitute non-trivial projects for future research.
The presentation is at times (and sometimes deliberately) vague on detail and
may even require concepts that lie outside the scope of these lecture notes.

16.1 DGFF level sets

We open our discussion by questions that are related to the description of the
DGFF level sets. Let hDN be the DGFF in DN , for a sequence {DN : N ≥ 1} of
admissible lattice approximation of domain D ∈ D. We commence by:
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Problem 16.1 (Joint limit of intermediate level sets). Find a way to
extract a joint distributional limit of the level sets{

x ∈ DN : hx ≥ 2
√
gλ logN

}
(16.1)

or their associated point measures (2.29), simultaneously for all λ ∈ (0, 1). Use
this to design a coupling of the corresponding ZDλ ’s and show that they all arise
(via the construction of the LQG measure) from the same underlying CGFF.

We remark that we see a way to control any finite number of the level sets by
building on the moment calculations underpinning Theorem 2.7. The problem
is that, the more level sets we wish to include, the higher moments we seem
to need. The key is to find a formulation that works simultaneously for all λ’s
and to show that that the limit measures can be linked to the same copy of
the CGFF.

The insistence on connecting the limit process to the CGFF may in fact
suggest a solution: Use the same sample of CGFF to define the DGFF on DN

for all N ≥ 1 and thus all level sets simultaneously. Then show that this CGFF is
what one gets (via the construction of Gaussian Multiplicative Chaos) as a limit
measure. The same strategy will perhaps also make the next question accessible:

Problem 16.2 (Fluctuations and deviations). Describe the rate of conver-
gence in, e.g., Corollary 2.9. Identify the limit law of the fluctuations of the
level set away from its limit value. Study (large) deviations estimates for the
intermediate level sets.

By “large deviations” we mean, intentionally vaguely, any kind of deviation
whose probability tends to zero as N → ∞. We note that this may be relevant
for instance already in attempts to connect the limit law of the intermediate level
sets to the construction of the LQG measure. Indeed, one is effectively asking to
integrate the process ηDN against the function

f(x, h) := eβh where β := λα. (16.2)

Plugging this formally into the limit (which is of course not mathematically
justified) yields a diverging integral. This indicates that the problem requires
some control of the deviations and/or the support of the LQG measure.

16.2 At and near the absolute maximum

Moving to the extremal values, we start by a conjecture which, if true, might
greatly simplify the existing proof of the uniqueness of the subsequential limits
ηD of {ηDN,rN : N ≥ 1}. Indeed, in the version of the proof presented in Lecture 12,
a great deal of effort is spent on the verification of the Laplace transform tail
(10.33) for the measures ZD extracted from ηD via Theorem 9.6. This would
not be necessary if we could resolve affimatively:

Conjecture 16.3 (By-passing the Laplace transform tail). Prove that any
family of non-trivial random measures {ZD : D ∈ D} obeying (1-4) in Theo-
rem 10.15 satisfies also property (5) for some ĉ > 0.
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The reason why we believe this to be possible stems (somewhat vaguely) from
the analogy of the Gibbs-Markov property along, say, partitions of squares into
smaller squares, with fixed-point equations for the so-called smoothing transfor-
mations. These have been classified in Durrett and Liggett [69].

Our next point of interest is Theorem 12.19 which, we recall, states the local
limit theorem for the absolute maximum. The limiting position (scaled by N) for
the maximum restricted above mN+t is then distributed according to the density
x 7→ ρD(x, t) in (12.86). From the estimate (10.33) we are able to conclude

ρD(x, t) ∼ c?te−αtrD(x)2, t→∞, (16.3)

but we have not been able to characterize ρD explicitly for any finite t. Still, ρD

is determined by ZD, which should be universal (up to a constant multiple) for a
whole class of logarithmically correlated fields in d = 2. By analogy with the role
of the KPP equation plays in the analysis of the Branching Brownian Motion
(cf Bramson [35]), we hope the following is perhaps achievable:

Problem 16.4 (Nailing density explicitly). Determine ρD explicitly or at
least characterize it via, e.g., a PDE that has a unique solution.

Another question related to the extremal values is the crossover between the
regime of intermediate level sets and those within order-unity of the absolute
maximum. We state this as:

Conjecture 16.5 (Size of deep extremal level set). There is c ∈ (0,∞)
such that, for each open A ⊆ D (with Leb(∂A) = 0)

1

t
e−αt #

{
x ∈ ΓDN (t) : x/N ∈ A

} law−→
N→∞
t→∞

cZD(A), (16.4)

with convergence in law valid even jointly for any finite number of disjoint open
sets A1, . . . , Ak ⊆ D (with Leb(∂Aj) = 0 for all j).

Note that this constitutes a stronger version of Theorem 9.1 because (16.4)
implies

lim
r↓0

lim inf
t→∞

lim inf
N→∞

P
(
rteαt ≤ |ΓDN (t)| ≤ r−1teαt

)
= 1. (16.5)

Writing ΓN (A, t) for the set on the left-hand side of (16.4), Theorem 9.2 and
truncation of the absolute maximum to lie below mN+

√
t implies, for each λ > 0,

E
(
e−λ|Γ

D
N (A,t)|)

= E

(
exp
{
−ZD(A)eαt

∫ t+
√
t

0

dh e−αhEν(1− e−λfh(φ))
})

+ o(1) , (16.6)

where o(1)→ 0 as N →∞ followed by t→∞ and

fh(φ) :=
∑
z∈Z2

1[0,h](φz). (16.7)

Using the above for λ := t−1e−αt, Conjecture 16.5 seems closely linked to:
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Conjecture 16.6. For fh as above,

lim
h→∞

e−αhEν(fh) exists in (0,∞) . (16.8)

Note that that (16.4) is similar to the limit law for the size of Daviaud’s level
sets proved in Corollary 2.9.

Another conjecture concerning deep extremal level sets is motivated by the
question on at what levels is the critical LQG measure mainly supported and
how is the DGFF distributed thereabout. The Seneta-Heyde normalization in-
dicates that this happens at levels order

√
logN below the absolute maximum.

Discussions of this problem with O. Louidor during the summer school led to:

Conjecture 16.7 (Profile of near-extremal level sets). There is a con-
stant c > 0 such that (writing h for the DGFF in DN ),

ηDN :=
1

logN

∑
x∈DN

eα(hx−mN ) δx/N ⊗ δmN−hx√
logN

, (16.9)

where mN is as in (7.9), obeys

ηDN
law−→

N→∞
cZD(dx)⊗ 1[0,∞)(h)h e−

h2

2g dh . (16.10)

Here ZD is the measure in Theorem 9.3.

In particular, the density

h 7→ 1[0,∞)(h)h e−
h2

2g (16.11)

gives the asymptotic “profile” of the values of the DGFF that contribute to the
critical LQG measure at scales order-

√
logN below mN .

16.3 Universality

A very natural question to ask is to what extent are the various results reported
here universal with respect to various changes of the underlying setting. As a
starter, we pose:

Problem 16.8 (Log-correlated Gaussian fields in d = 2). For each N ≥ 1,
consider a Gaussian field in DN whose covariance matrix CN scales, in the sense
described in Theorem 1.17, to the continuum Green function in the underlying
(continuum) domain and such that for all z ∈ Z2, the limit

lim
N→∞

[
CN (x, x+ z)− CN (x, x)

]
(16.12)

exists, is independent of x and is uniform in x with dist∞(x,Dc
N ) > εN , for

every ε > 0. Prove the analogues of Theorems 2.7 and 9.3.
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Some instances of this can be resolved based on the results already presented
here. For instance, if CN is given as

CN (x, y) = GN (x, y) + F (x− y), (16.13)

where F : Z2 → R a bounded, positive semi-definite function that decays fast to
zero (as the argument tends to infinity), one can realize N (0, CN ) as the sum of
the DGFF plus a Gaussian field with fast-decaying correlations. The effect of the
additional Gaussian field can be handled within the structure of Theorems 2.7
and 9.3. The point is thus to go beyond such elementary variations.

Another question is that of generalizations to log-correlated Gaussian pro-
cesses in dimensions d 6= 2. Naturally, here the choice of the covariance is consid-
erably less canonical. Notwithstanding, convergence of the centered maximum to
a non-degenerate limit law has already been established in a class of such fields
(in any d ≥ 1) by Ding, Roy and Zeitouni [59]. (This offers some headway on
Problem 16.8 as well.) The next goal is an extension to the full extremal process
as stated for the DGFF in Theorem 9.3.

The question of universality becomes perhaps even more profound once we
realize that there are other non-Gaussian models where one expects the results
reported in these notes to be relevant. The first one of these is the class of
Gradient Models. These are random fields with law in finite sets V ⊂ Z2 given by

P (hV ∈ A) :=
1

norm.

∫
A

e−
∑

(x,y)∈E(Zd) V(hx−hy)
∏
x∈V

dhx
∏
x 6∈V

δ0(dhx) , (16.14)

where V : R → R is the potential which is assumed even, continuous, bounded
from below and with superlinear growth at infinity. As an inspection of (1.1)
shows, the DGFF is included in this class via

V(h) :=
1

4d
h2. (16.15)

The formula (16.14) defines the field with zero boundary conditions, although
other boundary conditions can be considered as well (although they cannot be
easily reduced to zero boundary conditions outside the Gaussian case).

Much is known about these models when V is uniformly strictly convex (i.e.,
for V ′′ positive and bounded away from zero and infinity). Here through the
work of Funaki and Spohn [73], Naddaf and Spencer [101], Giacomin, Olla and
Spohn [76] we know that the field tends to a linear transform of CGFF in the
thermodynamic limit (interpreted in the sense of gradients in d = 1, 2), and by
Miller [94] also in the scaling limit in d = 2. Recently, Belius and Wu [18] have
proved the counterpart of Theorem 2.1 by identifying the leading-order growth of
the absolute maximum. Wu and Zeitouni [125] have then extended the Dekking-
Host subsequential tightness argument from Lemma 7.1 to this case as well.

The situation seems ripe to tackle more complicated questions such as those
discussed in these notes. We believe that the easiest point of entry is via:
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Problem 16.9 (Intermediate level sets for gradient fields). Prove the
scaling limit of intermediate level sets for gradient models with uniformly strictly
convex potentials.

This should be manageable as the main technical input in these are moment
calculations that lie at the heart of [18] which deals with the case where they
should, in fact, be hardest to carry out.

Perhaps even closer to the subject of these notes is the problem of DGFF gen-
erated by a Random Conductance Model (see [22]): Assign to each edge e in Z2

a non-negative conductance c(e). We may in fact assume that the conductances
are uniformly elliptic, meaning that

∃λ ∈ (0, 1) ∀e ∈ E(Z2) : c(e) ∈ [λ, λ−1] a.s. (16.16)

Given a realization of the conductances, we can define an associated DGFF in
domain D ( Z2 as N (0, GD) where GD := (1 − P)−1 is, for P related to the
conductances as discussed at the beginning of Section 15.1, the Green function
of the random walk among random conductances. We then pose:

Problem 16.10 (DGFF over Random Conductance Model). Assume
that the conductances are uniformly elliptic and their law is invariant and er-
godic with respect to the shifts of Z2. Prove that for almost every realization of
the conductances, the analogues of Theorems 2.7 and 9.3 hold.

This could in principle be easier than Problem 16.9 due to the underlying
Gaussian nature of the field. Notwithstanding, the use of homogenization theory,
a key tool driving many studies of gradient models, can hardly be avoided.
Incidentally, Problem 16.10 still falls under the umbrella of gradient models,
albeit with non-convex interactions. The connection to the DGFF over random
conductances yields much information about the corresponding gradient models
as well; see the papers of the author with R. Kotecký [24] and H. Spohn [29].

Another problem of interest that should be close to the DGFF is that of local
time of the simple random walk. The connection to the DGFF arises via the
Dynkin isomorphism (usually attributed to Dynkin [63] though going back to
Symanzik [121]) or, more accurately, the second Ray-Knight theorem (see, e.g.,
Eisenbaum et al [71]). This tool has been useful in determining the asymptotic
behavior of the cover time (namely, in the studies of the leading-order behavior
by Dembo, Peres, Rosen and Zeitouni [52], Ding [57], Ding, Lee and Peres [58],
in attempts to nail the subleading order in Belius and Kistler [16] and Abe [2]
and, very recently, in a proof of tightness under proper centering in Belius, Rosen
and Zeitouni [17]).

We wish to apply the connection to the study of the local time `t for a
continuous-time (constant-speed) random walk on N×N torus TN in Z2 started
at 0. We choose the parametrization by the actual time the walk spends at 0;
i.e., `t(0) = t for all t ≥ 0. For θ > 0, define the time scale

tθ := θ[g logN ]2. (16.17)
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Then the total time of the walk,
∑
x `tθ (x), is very close to a θ-multiple of the

cover time. It is known that (`t − t)/
√
t scales to a DGFF on TN r {0} in the

limit t → ∞. This motivated Abe [1] to show that, as N → ∞, the maximum
of `tθ scales as

maxx∈TN `tθ (x)− tθ√
tθ

=
(

1 +
1

2
√
θ

+ o(1)
)

2
√
g logN . (16.18)

He also studied the cardinality of the level set{
x ∈ TN :

`tθ (x)− tθ√
tθ

≥ 2η
√
g logN

}
(16.19)

and proved a result analogous, albeit with different exponents, to Daviaud’s [51]
(see Theorem 2.3). Some correspondence with the DGFF at the level of inter-
mediate level sets and maxima thus exists but is far from straightforward.

The proofs of [1] are based on moment calculations under a suitable trun-
cation, which is also the method used for proving (2.7). It thus appears that a
good starting point would be to solve:

Problem 16.11. Show that a suitably normalized level set in (16.19), or a point
measure of the kind (2.29), admits a scaling limit for all 0 < η < 1 + 1

2
√
θ

.

We remark that Abe [2] studied the corresponding problem also for the ran-
dom walk on a homogeneous tree of depth n. By embedding the tree ultra-
metrically into a unit interval, he managed to describe the full scaling limit of
the process of extremal local maxima, much in the spirit of Theorem 9.6. Re-
markably, the limit process coincides (up to a constant multiple of the intensity
measure) with that for the DGFF on the tree. A description of the cluster process
is in the works [3].

Update in revision: As shown in a recent posting by Abe and the author [4],
the intermediate level sets for the local time have now been shown to have
the same scaling limit as the DGFF, albeit in a different (and considerably
more convenient) parametrization than suggested in (16.19). Concerning the
distributional limit of the cover time; this has recently been achieved for the
random walk on a homogeneous tree by Cortines, Louidor and Saglietti [48].

16.4 Random walk in DGFF landscape

The next set of problems we wish to discuss deals with the random walk driven by
the DGFF. Here the first (and obvious) follow-up question is the complementary
inequality to that stated in Corollary 13.4:

Problem 16.12 (Subdiffusive upper bound). Using the notation from (13.9),
show that, for each β > 0 and each δ > 0,

P 0
h

(
|XT | ≤ T 1/ψ(β)e(log T )1/2+δ

)
−→
T→∞

1 , in P-probability. (16.20)
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Fig. 33. Runs of 100000 steps of the Liouville random walk with β equal
to 0.2, 0.6 and 1.2 multiples of βc. Time runs upwards along the vertical
axis. For β > βc the walk becomes trapped for a majority of its time.

A key issue in here is to show that the exit time τB(N)c is (reasonably) concen-
trated around its expectation. We believe that this can perhaps be resolved by
having better control of the concentration of the effective resistance.

Another question concerns a possible scaling limit of the random walk. Heuris-
tic considerations make it fairly clear that the limit process cannot be the Li-
ouville Brownian Motion (LBM), introduced in Berestycki [19] and Garban,
Rhodes and Vargas [75]. Indeed, this process exists only for β ≤ βc (with the
critical version constructed by Rhodes and Vargas [106]) and simulations of the
associated Liouville Random Walk, which is a continuous-time simple symmet-
ric random walk with exponential holding time with parameter eβhx at x, show
a dramatic change in the behavior as β increases through βc; see Fig. 33. (The
supercritical walk is trapped for a majority of its time with transitions described
by a K-process; cf Cortines, Gold and Louidor [46].) No such dramatic change
seems to occur for the random walk with the transition probabilities in (13.1),
at any β > 0.

The reason why (we believe) the LBM is not the limit process is because
its paths, once stripped of their specific parametrization, are those of the two-
dimensional Brownian motion. In particular, their law is completely decoupled
from the underlying CGFF. On the other hand, the limit of our random walk
must feel the drift towards larger “values” of the CGFF which will in turn couple
the law of the paths (still regarded as geometric objects) to the (limiting) CGFF.

We thus have to define the limit process through the important features of
the discrete problem. Here we observe that the random walk is reversible with
respect to the measure πh defined in (13.12). As πh(x) ≈ e2βhx , whose limit is
(for β < β̃c = βc/2) a LQG measure, one might expect that the resulting process
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should be reversible with respect to the LQG measure. Although this remains
problematic because of the restriction on β, we can perhaps make sense of this
by imposing reversibility only for a regularized version of the CGFF and taking
suitable limits.

Consider a sample of a smooth, centered Gaussian process {hε(x) : x ∈ D}
such that, for N := bε−1c,

Cov
(
hε(x), hε(y)

)
= GDN

(
bNxc, bNyc

)
+ o(1), ε ↓ 0. (16.21)

Then hε tends in law to the CGFF as ε ↓ 0. Define a diffusion Xε via the
Langevin equation

dXε
t = β∇hε(Xε

t )dt+
√

2 dBt , (16.22)

where {Bt : t ≥ 0} is a standard Brownian motion. The (unnormalized) Gibbs
measure eβhε(x)dx is then stationary and reversible for Xε. Moreover, under a
suitable time change, the process Xε mimics closely the dynamics of the above
random walk on boxes of side-length ε−1 (and β replaced by 2β). We then pose:

Problem 16.13 (Liouville Langevin Motion). Under a suitable time change
for Xε, prove that the pair (hε, X

ε) converges as ε ↓ 0 jointly in law to (h,X),
where h is a CGFF and X is a process with continuous (non-constant) paths
(correlated with h).

We propose to call the limit process X the Liouville Langevin Motion, due
to the connection with the Langevin equation (16.22) and LQG measure. One
strategy for tackling the above problem is to prove characterizing all possible
limit processes through their behavior under conformal maps and/or restrictions
to subdomain via the Gibbs-Markov property.

16.5 DGFF electric network

The final set of problems to be discussed here concern the objects that we used
to control the random walk in DGFF landscape. Consider first the effective re-
sistivity Reff(x,B(N)c). Proposition 15.9 suggests that, for x := 0, the logarithm
thereof is to the leading order the maximum of the random walk Sn associated
with the concentric decomposition. Upon scaling by

√
n, this maximum tends in

law to absolute value of a normal random variable. The question is:

Problem 16.14. For any sequence {DN : N ≥ 1} of admissible approximations
of domain D ∈ D, characterize the limit distribution of

x 7→ (logN)−1/2 logReff(bxNc, Dc
N ) (16.23)

as N →∞.

In light of the concentric decomposition, a natural first guess for the limit process
is the CGFF but proving this explicitly seems far from clear.

Next consider the problem of computing Reff(u, v) for the network in a square
[−N,N ]2 ∩ Z2, the resistances associated to the DGFF via (13.13) and u and v
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Fig. 34. Samples of the current minimizing the effective resistance be-
tween two points on the diagonal of the square (the dark spots in the
left figure), for the network on the square with conductances related to
the DGFF on the square as in (13.13) at inverse temperatures β = 0.4βc

(left) and β = βc (right). The shade of each pixel is proportional to in-
tensity of the current. The current seems to be carried along well defined
paths, particularly, in the figure on the right.

two generic points in the square. The question we ask: Is there a way to describe
the scaling limit of the minimizing current i?? Tackling this directly may end up
to be somewhat hard, because (as seen in Fig. 34) the current is supported on a
sparse (fractal) set.

A possible strategy to address this problem is based on the path-representation
of the effective resistance from Proposition 14.2. Indeed, the proof contains an
algorithm that identifies a set of simple paths P? from u to v and resistances
{r?e,P : e ∈ E, P ∈ P?} that achieve the infima in (14.2). Using these objects, i?
can be decomposed into a family of currents {iP : P ∈ P?} from u to v, such
that iP (e) = 0 for e 6∈ P and with iP (e) equal to

iP :=
Reff(u, v)∑
e∈P r

?
e,P

(16.24)

on each edge e ∈ P oriented in the direction of P (recall that P is simple).
Noting that ∑

P∈P?
iP = val(i?) = 1 , (16.25)

this recasts the computation of, say, the net current flowing through a linear
segment [a, b] between two points a, b ∈ D as the difference of the probability
that a random path crosses [a, b] in the given direction and the probability that it
crosses [a, b] in the opposite direction, in the distribution where path P (from u
to v) is chosen with probability iP . We pose:
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Fig. 35. Two samples of the voltage realizing the effective conductances
Ceff(u, v) in a box of side 100 and u and v two points on the diagonal.
The conductances are related to the DGFF in the box via (13.13).

Problem 16.15 (Scaling limit of minimizing current). Prove that the joint
law of the DGFF and the random path P admits a non-degenerate scaling limit
as N →∞.

We envision tackling this using the strategy that we have used already a few
times throughout these notes: First prove tightness, then extract subsequential
limits and then characterize the limit law uniquely by, e.g., use of the Gibbs-
Markov property and/or conformal maps. We suspect that the limit path law (in
Problem 16.15) will be closely related to the scaling limit of the actual random
walk process (in Problem 16.13); e.g., through a suitable loop erasure.

Once the continuum version of the above picture has been elucidated, the
following additional questions (suggested by J. Ding) come to mind:

Problem 16.16. What is the Hausdorff dimension of the (continuum) random
path? And, say, for the electric current between opposite boundaries of a square
box, what is the dimension of the support for the energy?

Similar geometric ideas can perhaps be used to address the computation of the
voltage minimizing the effective conductance Ceff(u, v); see Fig. 35 for some
illustrations. There collections of paths will be replaced by collections of nested
cutsets (as output by the algorithm in the proof of Proposition 14.7).

An alternative approach to the latter problem might thus be based on the
observation that the cutsets are nested, and thus can be thought of as time
snapshots of a growth process. The use of Loewner evolution for the description
of the kinematics of the process naturally springs to mind.
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