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Abstract. – We study the classical 120-degree and related orbital models. These are the
classical limits of quantum models which describe the interactions among orbitals of transition-
metal compounds. We demonstrate that at low temperatures these models exhibit a long-range
order which arises via an “order by disorder” mechanism. This strongly indicates that there
is orbital ordering in the quantum version of these models, notwithstanding recent rigorous
results on the absence of spin order in these systems.

Introduction. – The properties of transition-metal (TM) compounds are a topic of long-
standing interest. In these materials, the fractional filling of the 3d-shells in the TM ion
provides a novel facet: The splitting of the t2g and eg orbitals by the crystal field can pro-
duce situations with a single dynamical electron (or a hole) on each site along with multiple
orbital degrees of freedom [1–3]. Pertinent examples are found among the vanadates (e.g.,
V2O3 [4], LiVO2 [5], LaVO3 [6]), cuprates (e.g., KCuF3 [2]) and derivatives of the colossal
magnetoresistive manganite LaMnO3 [7]. The presence of the extra degrees of freedom raises
the theoretical possibility of global, cooperative effects; i.e., orbital ordering. Such ordering
may be observed via associated orbital-related magnetism and lattice distortions or, e.g., by
resonant X-ray scattering techniques in which the 3d orbital order is detected by its effect on
excited 4p states [8].

The case for orbital ordering has been bolstered by detailed calculations and various other
considerations [9]. However, alternate perspectives and various conceptual doubts have been
raised concerning the entire picture of long-range orbital ordering [10,11]. In particular, at the
theoretical level, a satisfactory justification of orbital ordering has not yet been provided [12].
The goal of this Letter is to present arguments which irrefutably demonstrate that orbital
ordering indeed occurs. We will discuss primarily the so-called 120◦-model which describes
the situations when the eg orbitals are occupied by a single electron.
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In the TM-compounds, the initial point of all derivations is to neglect the strain-field in-
duced interactions among orbitals. Starting from the appropriate itinerant electron model, a
standard super-exchange calculation leads to the Kugel-Khomskii model [2] with the Hamil-
tonian given by

H =
∑

〈r,r′〉

H
r,r′

orb

(
sr · sr′ + 1

4

)
. (1)

Here sr denotes the spin of the electron at site r and H
r,r′

orb are operators acting on the orbital
degrees of freedom. For the TM-atoms arranged in a cubic lattice, these take the form

H
r,r′

orb = J(4π̂α
r
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r′ − 2π̂α
r
− 2π̂α

r′ + 1), (2)

where the π̂α
r

denote orbital pseudospin operators acting on the appropriate orbital multiplet
and α = x, y, z is the direction of the bond 〈r, r′〉. In the eg compounds, we have
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= 1
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and
π̂z

r = 1
2σz

r. (4)

which defines the 120◦-model on the level of a quantum spin system.
In the t2g compounds (e.g., LaTiO3) the general form of Eqs. (1-2) is preserved but the

appropriate choice of the π̂α
r ’s is now π̂α

r = 1
2σα

r for α = x, y, z, see [13]. This is called the
orbital compass model. It is worth noting that an accounting of the strain field in the eg

compounds leads directly to orbital interactions of the 120◦-type, see [14], while if the strain
fields are introduced in the t2g cases, the upshot is yet another orbital-only term akin to those
discussed so far. Notwithstanding, in the t2g cases our analysis is largely incomplete and so
we will confine the bulk of our attention to the 120◦-model.

Throughout this Letter we will only discuss the orbital-only models in which the spin
degrees of freedom are suppressed. This approach may be presumed to capture the essential
orbital physics of the systems at hand, cf Refs. [7,15]. We remark that in all of these models,
ordering among the spins is not necessarily a question of pertinence. In particular, in the
itinerant-electron version of the orbital compass model, the elegant Mermin-Wagner argument
of Ref. [11] apparently precludes this possibility. However, the results in Ref. [11] do not

preclude the physically relevant possibility of orbital ordering which, as we show in this Letter,
is realized at least in the classical versions of these systems.

Henceforth, we will deal only with the orbital pseudo-spins which we denote by Sr instead
of π̂r. In the context of the orbital-only models, we consider the standard S → ∞ finite
temperature limit. As is well known [16], this results in the classical analogues of the respective
Hamiltonians, where the quantum variables are replaced by classical two or three-component
spins. We proceed with a concise definition.

Classical orbital-only models. – We start with the 120◦-model which is the most promi-
nent of all of the above. The model is defined on the usual cubic lattice where at each site r

there is a unit-length two-component spin (associated with the two dimensional eg subspace)

denoted by Sr. Let â, b̂ and ĉ denote three evenly-spaced vectors on the unit circle separated
by 120 degrees. To be specific let us have â point at 0◦ with b̂ and ĉ pointing at ±120◦,

respectively. We define the projection S
(â)
r = Sr · â, and similarly for S

(̂b)
r and S

(ĉ)
r . Then the

120◦ orbital model Hamiltonian is given by

H = −J
∑
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S
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S
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)
, (5)
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Fig. 1 – The four possible ground states for the 120◦-model on a cube with one spin fixed. The
stratification structure of any (global) ground state is demonstrated by checking for consistency
between all neighboring cubes.

where the classical nature of the interaction always allows us to set J > 0 [17].
The Hamiltonian of the orbital compass model has an identical form, i.e., we can still write

H = −J
∑

r,α

S(α)
r

S
(α)
r+êα

, (6)

only now Sr are three-component spins and the superscripts represent the corresponding
Cartesian components. The seminal feature of both models is an infinite degeneracy of the
ground state. In particular, any constant spin-field, Sr ≡ S, will be a ground state in both

cases. This is established by noting that
∑

α[S
(α)
r ]2 is constant in both problems. Thus, up

to an irrelevant constant, the general Hamiltonian of Eq. (6) is

H =
J

2

∑

r,α

(
S(α)

r − S
(α)
r+êα

)2
, (7)

which is obviously minimized when Sr is constant. We emphasize that the continuous sym-
metries which underscore these ground states are just symmetries of the states and not of the
Hamiltonian itself. Therefore, at least in the classical orbital-only models, we are not in a
setting where a Mermin-Wagner argument can be applied.

Matters are further complicated because, as it turns out, the constant spin fields are not

the only ground states. Indeed, in the 120◦-model, starting from some constant-field ground
state, another ground state may be obtained, e.g., by reflecting all spins in the xy-plane
through the vector ĉ. This new state can be further mutated by introducing more flips of this
type in other planes parallel to the xy-plane. Obviously, similar alterations of the “pristine”
states can take place in the other two coordinate directions. What is not so obvious, but
nevertheless true [18], is that the abovementioned exhaust all the possible ground states for
the 120◦-model: There is one direction of stratification (layering); the corresponding projection
of Sr is constant throughout the system, leaving two possibilities for the other projections.
In the various planes orthogonal to the stratification direction either of these choices can be
independently implemented. This classification is proved by considering all possibilities of an
elementary cube with a single spin fixed, and ensuring consistency in the tiling of the lattice;
see Fig. 1. The ground state situation for the orbital compass model is far more complicated
and it will not be discussed till the end of this Letter.

Spin-wave calculations. – Let us now investigate the effects of finite temperature. Here,
in general, we will see there is a fluctuation driven stabilization—sometimes known as “order
by disorder” [19]—that selects only a few of the ground states. The present arguments differ
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from the established standards, in part due to the complications caused by the stratified
ground states. We will focus on the 120◦-model. Here we can parameterize each spin Sr

by the angle θr with the x-axis. In this language, let us consider the finite-temperature
fluctuations about the “pristine” ground states where each θr = θ? (we will worry about the
other ground states later). At low temperatures, nearby spins will tend to be aligned, so we
can work with the variables ϑr = θr − θ?. Neglecting terms of order higher than quadratic
in ϑr, the Hamiltonian (7) becomes

HSW =
J

2

∑

r,α

qα(θ?)(ϑr − ϑr+êα
)2, (8)

where α = x, y, z while qx(θ?) = sin2(θ?), qy(θ?) = sin2(θ?+120◦) and qz(θ
?) = sin2(θ?−120◦).

Our preliminary goal is to compute the free energy as a function of θ?. Let us assume that
we are on a finite torus of linear dimension L. Interpreting θ? as the average of θr on the
torus, we let ZL(θ?) to denote the partition function

ZL(θ?) =

∫
δ
(∑

r

ϑr = 0
)

e−βHSW

∏

r

dϑr√
2π

. (9)

A standard Gaussian calculation then yields

log ZL(θ?) = −1

2

∑

k6=0

log
{∑

α

βJqα(θ?)Eα(k)
}

, (10)

where k = (kx, ky, kz) is a vector in the reciprocal lattice and Eα(k) = 2 − 2 cos kα. The
right-hand side divided by L3 produces in the limit L →∞ the (dimensionless) spin-wave free
energy F (θ?) for deviations around direction θ?. A tedious and rather unenlightening bit of
analysis [18] now shows that the spin-wave free energy F (θ?) has strict minima at θ? = 0◦,
60◦, 120◦, 180◦, 240◦ and 300◦.

Let us now briefly discuss how the stratified states are handled. The key facts are as
follows: (i) A single interface between two types of “pristine” states generates an effective
surface tension. (ii) The cumulative cost of many interfaces is effectively additive. (iii) The
surface tension may be bounded by by the bulk free energy difference between the “pristine”
state and period-two states; i.e., one in which there are as many interfaces as possible. A full
mathematical justification of all of the above would lead us too far astray—details are to be
found in [18]—let us just compute the free energy of the period-two states. Specifically, let us
consider the state which alternates between θ ≡ θ? and θ ≡ −θ? in the planes perpendicular
to the x direction. In this case the limiting free energy is given by

F̃ (θ?) =
1

4

∫

[−π,π]3

dk

(2π)3
log det

(
βJΠk(θ?)

)
, (11)

where Πk(θ?) is the matrix

Πk(θ?) =

(
q1E1 + q+E+ q−E−

q−E− q1E
?
1 + q+E+

)
. (12)

Here we have let qα = qα(θ?) and Eα = Eα(k) be as above, and we have abbreviated

E?
α(k) = Eα(k + πêα), q± =

1

2
(q2 ± q3) and E± = E2 ± E3. (13)
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An elementary convexity analysis shows that F̃ (θ?) > F (0◦) for θ? 6= 0◦, 180◦ (while, as is

readily checked, F̃ (0◦) equals F (0◦)).
Thus, at the level of spin-wave approximation, it is clear that finite-temperature effects will

select six ground states above all others. Of course, this is only the beginning of a complete
mathematical analysis: One must account for all other possible thermal disturbances and their
interactions, the interactions of said additional disturbances with the spin waves and, not to
mention, the interaction of spin waves with one another. Any such approach is, of course,
hopeless even at the level of perturbation theory. Indeed, as can be readily verified, the latter
is beset with infrared divergences even at the lowest non-vanishing order.

Sketch of rigorous proof. – Our approach [18], which automatically circumvents these
(and other unnamed) difficulties, proceeds as follows: First, we partition the lattice into
blocks of side B, generically denoted by ΛB, where B is a scale to be determined later. Then
we pick a small number κ > 0 and call a block ΛB good if the spin configuration on the
block is everywhere within κ of one of six ground states mentioned above. We will use G
to denote the event that the block is good. Clearly, for κ � 1, there are six disjoint good-
block events G0,G60, . . . ,G300. Blocks that are not good will be referred to as bad and the
corresponding event will be denoted by B.

The goal of our analysis is to show that (i) most blocks are good and (ii) it is unlikely that
any given pair of good blocks—no matter their separation—are of distinct types of goodness.
For (i) it suffices to show that the event B has very small probability. Here we introduce yet
another scale ∆ (with ∆ � κ) and decompose B according to the pertinent reason for the
badness of the corresponding block. Specifically, we write B as the disjoint union

B = BE ∪ BSW. (14)

Here BE marks the situation in which an “energetic disaster” has occurred inside the block,

i.e., there is a nearest-neighbor pair of spins such that |S(α)
r − S

(α)
r+êα

| > ∆, while BSW is
the event that the energetics is good—which implies that the configuration in the block is
near some ground state—but the spin-wave entropy is not as good as for the “good” ground
states. To estimate the probability of B we now show that Pβ(BE) is suppressed like B3e−β∆2

while Pβ(BSW) is suppressed exponentially in powers of B. (We will get to the details of these
estimates momentarily.) Both of these are small if B is large and β∆2 � log B.

The aforementioned arguments establish that bad blocks are unlikely to appear; but a
variant of these estimates also proves that the type of goodness will be uniform throughout
the system. Indeed, suppose two blocks are of distinct type of goodness. A moment’s thought
now shows that to get from one block to the other along any path we must either pass
through an energetically charged block or visit a block with non-ideal spin-wave entropy. We
conclude that the two good blocks are separated by a “barrier” of bad blocks. As it turns
out, the probability of any given barrier is bounded by the product of probabilities to get the
constituting blocks. Thus, a barrier is suppressed exponentially in its size and, ultimately, we
can appeal to a standard Peierls’ argument to finish the proof.

Having sketched the backbone of our argument, let us pause to explain how the bad-block
estimates are technically implemented. Here we call upon the standard technique of chessboard

estimates [20]. These go roughly as follows: To each (reflection-symmetric) event A which can
take place in the block ΛB we may define the quantity zβ(A) which is the partition function
per site computed under the constraint that A occurs in every translate of ΛB by integer
multiples of B. Then the thermal-state probability of observing A is bounded by

Pβ(A) ≤
(

zβ(A)

zβ

)B3

(15)
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where zβ is the unconstrained partition function per site. Moreover, the probability of the
simultaneous occurrence of n ≥ 1 translates of the event A is bounded by the right-hand side
of Eq. (15) raised to the n-th power.

An application of the above technology to the event A = BE directly yields the bound
Pβ(BE) ≤ c1B

de−β∆2

where c1 is a constant. As for the event BSW, if the corresponding
block is “pristine” then, in the computation of zβ(A), we may assume that the harmonic
approximation is “good” and the spin-wave calculations from the previous sections (up to

small errors) may be applied. Thus, terms of this form are suppressed like e−c2B3

. If the bad
block has interfaces, more refined chessboard-type arguments are employed and the upshot is
a suppression of the form e−c3B2

. Combining these bounds, the desired estimates are readily
proved.

The situation in the orbital-compass model is considerably more complicated due to the
profusion of additional ground states. Here, starting from a homogeneous ground state, the
spins in an entire plane can be continuously rotated about the axis perpendicular to that plane
without any disruption of the energetics. Thus, unlike in the 120◦-model, an elementary cube
with one spin fixed has a continuum of distinct ground states. Notwithstanding, it has been
established [21] that even in this case orbital ordering occurs. However, the nature of the
thermal states differs, in certain details, from that of the 120◦-model. For instance, 〈Sr〉
vanishes at each site with the ordering being something along the lines of a nematic type.

Conclusion. – We have demonstrated that the classical 120◦-model exhibits long-range
order at sufficiently low temperatures. The key feature is that the degeneracy of the ground
states is broken at positive temperatures via a kind of “order-by-disorder” mechanism. A
complete argument, on a level of mathematical theorems, has already been constructed for
the 120◦-model [18] and similar (albeit less explicit) results hold for the orbital compass
model [21]. All of this strongly indicates that there is orbital ordering in the full-blown
quantum/itinerant-electron versions of these orbital models, wherein zero point fluctuations
might further stabilize this orbital order.
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