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Abstract: We study the classical version of the 22@odel. This is an attractive nearest-neighbor
system in three dimensions with XY (rotor) spins and interaction such that only a particular pro-
jection of the spins gets coupled in each coordinate direction. Although the Hamiltonian has only
discrete symmetries, it turns out that every constant field is a ground state. Employing a combi-
nation of spin-wave and contour arguments we establish the existence of long-range order at low
temperatures. This suggests a mechanism for a type of ordering in certain models of transition-

metal compounds where the very existence of long-range order has heretofore been a matter of
some controversy.
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1. INTRODUCTION

1.1 Overview.

For attractive classical spin systems with ground states related by an internal symmetry, ordering
usually occurs by one of two mechanisms: The existencgeudfice tensiorbetween thermal
perturbations of the ground states or condensati@piof-wave deviationaway from the ground
states. The former is most common in models where the internal symmetry is discrete, while
the latter circumstances are best exhibited in systems with continuous symmetries. This paper
will be concerned with an attractive spin system—the so cdl@@-modet—which displays
characteristics reminiscent of both phenotypes. A related model of this sort—the sachitat
compass modetwill be the subject of a continuation of this paper [4]. A common feature of both
systems is that the presence/absence of long-range order is all but readily apparent.

To underscore the above (admittedly vague) allegations, let us introduce the formal Hamilton-
ian of the 120-model:

H = %Z{(Sr(é) ~ 89,7+ (8- §9,)7 + (59 - Sfi)éz)z}. (1.1)

Herer is a site on the cubic latticg®, the S;’s are the usual XY-spins, namely two-dimensional
vectors of unit length, and,, & andé, are the lattice unit vectors in the three coordinate direc-

tions. To define the quantitied®, SP and S, leta, b andé denote three vectors on the unit

circle evenly spaced by 120ThenS® = S - 4 and similarly forS® andS®. We have > 0
so the interaction is ferromagnetic.

As is manifestly obvious from (1.1), arppnstantspin field is a ground state and since we are
dealing with continuous spins, no contour-based argument readily suggests itself. (As we shall
see later, there are also other ground states, but these need not concern us at the moment.) On
the other hand, due to the directional bias of the coupling, a naive spin-wave argument based
on the use oinfrared boundd20, 22, 23, 25] results in divergent momentum-space integrals. In
particular, as we later show, the spherical version of this model has a free energy that is analytic
at all temperatures. Worse yet, the rigorous version of a disorder-by-spin-wave argument, the
Mermin-Wagner theorem, requires the continuous symmetry to be present at the level of the
Hamiltonian, which here is simply not the case. Thus, the system in (1.1) is right on the margin.

The main goal of this paper will be to establish long-range order in this model. (Precise defi-
nitions will appear at the end of this section; precise statements of the theorems will appear in the
next section.) The mechanism for ordering involves the combination of different aspects taken
from both of the classic types of arguments. Specifically, on the basis of a realistic spin-wave
calculation we show that, for all intents and purposes, most of the ground states are destabilized,
leaving us with only a manageable number of contenders. Among the survivors, a surface ten-
sion (with some unusual features) is established. Thereafter, via arguments which are relatively
standard, the existence of multiple states at low temperatures can be concluded.

The described reduction of the ground state degeneracy by accounting for the free energy of
the excitations is reminiscent of the problems analyzed previously in [7, 16, 29]. (In our cases,
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the role of excitations is taken by the spin waves.) However, the model studied in this paper
presents us with several novel features. For instance, unlike in [7, 16, 29] which focused on
discrete spin systems with “stratified” ground states, here we are dealing withtimuumof
homogeneous ground states related by a continuous internal symmetry. Incidentally, “stratified”
ground states also exist in our systems, see Sect. 1.3. Here these must be ruled out on the basis of
a modified spin-wave calculation which accounts for the free energy carried by deviations from
inhomogeneous background.

Although the authors would have been proud to stake the claim of having concocted a model
system with such an esoteric mechanism of ordering, it turns out that interest in thenthdél—
as well as the closely related orbital compass model—is not entirely academic. Indeed, both
systems arise naturally in the study of transition-metal compounds. Here magnetic order of some
type has been firmly established by experimental methods, but the nature and the mechanism
for the order is unclear. The problem persists up to the theoretical level; the question whether
anyinteracting model based on the physics of transition-metal orbitals is capable of supporting
long-range order has heretofore been a matter of controversy. From the present paper we now
know that, at the level of finite-temperature classical spin systems, ordering indeed occurs for
the 120-model. This strongly suggests (but of course does not prove) that a similar ordering is
exhibited in the quantum and itinerant-electron versions of these models.

The rest of this paper is organized as follows. In Sect. 1.2 we describe the physical origins
of these problems. A precise definition of the classical°4®0del is given and the ground
states are discussed in Sect. 1.3. In Sect. 2.1 we state our main result concerning the existence
of phase transition in the 120nodel while in Sect. 2.2 we outline the principal ideas of the
proof of long-range order. The actual proofs are given in Sect. 3. The techniques we employ are
contour methods based on chessboard estimates but the infinite degeneracy of the ground states
also requires us to perform some intricate spin-wave calculations. These technical details are the
subject of Sects. 4—6. Sect. 7 collects some observations concerning the spherical version of the
model at hand.

1.2 Quantum origins.

In the standard description of electrons in solids, it is often the case that the accumulation of
itinerant charges is heavily disfavored. This (presumably) results in localized electrons which
interact only via spin exchange. In the circumstances which are most often studied,simy a
gle orbital is available at each site, which produces an effective antiferromagnetic interaction.
However, intransition-metal compound®.g., vanadates, manganites, titanates, cuprates, etc.)
there are multiple essentially-degenerate orbitals any of which could be occupied. In particular,
if the transition metal ion interacts with a local environment which is of octahedral symmetry,
the 3d-quintet of the transition-metal ion is split into a low-lying triplet—the orbitals—and a
pair—thee, orbitals—of considerably higher energy.

In the absence of any other significant effects, one circumstance which is amenable to further
approximation is when there is but a single electronic degree of freedom per site. The two ob-
vious distinguished cases are #)eandt,, compounds. The former will come about under two
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conditions: First, if ther,, orbitals are filled and there is one extra electron per site to occupy
the e, orbitals. Second, same as above but here there are three electrons (out of possible total of
four) in thee, orbitals and the role of the single electronic degree of freedom is played by the
hole. The latter cases, thg compounds, occur if the, orbitals are empty and there is a single
electron or a hole in the, orbitals. It appears that the situations leadinggdype compounds

are far more prevalent.

In any of the above circumstances, one can write down the inevitable itinerant electron model
describing the spins and orbitals. After the standard superexchange calculation/approximation—
analogous to that which relates the single-orbital models to the Heisenberg antiferromagnets—we
arrive at a problem which involves “only” quantum spins. Of course, in these models there will be
two types of quantum states. Namely, those corresponding to the actual (electronic) spin degrees
of freedom and those corresponding to the occupation numbers of the dynamical orbitals. The
resulting system is described by the Kugel-Khomskii [34] Hamiltonian

H=3D D ({7l — 37 — 370, +3) (00 Orie, +1). (1.2)
a r

Here the interaction takes place at the neighboring sites of the cubic &tticspresenting the
positions of the transition-metal ions, the objectis the triple of the usual Pauli matrices acting
on the spin degrees of freedom at the sit@nd thez* are pseudospin operators acting on the
orbital degrees of freedom at the siteAs usual, the vectorg, & andé, are the unit vectors in
the principal lattice directions.

Depending on which of the orbitals play the seminal role, the two choices for the orbital pseu-
dospins are

1 .
e (-7 4+ /30%), if a =X,Y,
2l = [‘l‘ . _ (1.3)
507, ifa =z
for the e,-compounds, while
2l = 0%, for a=x,y,z (1.4)

for thet,,-compounds. The former choice gives rise to12€’-modeland the latter to therbital
compass model

The question of obvious importance is to prove/disprove the case for ordering of the spins
or orbitals in these models. In this vain, it should be remarked that the orbital-compass version
of the Kugel-Khomskii Hamiltonian—if reformulated back in the language of itinerant-electron
model—has some unapparent symmetries. For instance, as pointed out byeHalf8], the
total spin of electrons im-orbitals at sites of any plane orthogonal to the direction represented
by a is a conserved quantity. On the basis of these symmetries, a Mermin-Wagner argument has
been used [28] to show that, in the three-dimensional system, the spin variables represented by
in (1.2) cannotorder.

Notwithstanding the appeal of this “no-go” result, we note that the absence of spin order does
not preclude the more interesting possibility of orbital ordering in these systems. Indeed, on
the experimental/theoretical front, it appears that there is a reasonable consensus “for” orbital
ordering; the references [9,11,12,21, 30, 39,41] constitute works which support this picture while



LONG-RANGE ORDER IN 120-MODEL 5

the references [1, 31, 35, 46] offer arguments that dispute or down-play the role of orbital order
in the magnetic properties of transition-metal compounds. We refer to (slightly biased) review
articles [8, 47] for more information.

In order to study the phenomenon of orbital ordering in the context of Kugel-Khomskii mod-
els, the interactions are often further reduced. Neglecting all sorts of terms including all terms
pertaining to intrinsic spin, the resultirgbital-only model has the Hamiltonian

H=3D D 7Rl (1.5)
o r

Here, as beforer are as in (1.3) for the 12émodel and (1.4) for the orbital compass model.
Full physical justification of these approximations goes beyond the scope of this paper.

Interestingly enough, the Hamiltonian (1.5) for the 1-2@se can be arrived at by entirely
different means. In particular, among the other “competing” mechanisms so far omitted from the
discussion is thdahn-Teller effectvhich refers to further distortion of octahedral geometry of
the “crystal field” surrounding the transition-metal ions. On the basis of symmetry considerations
it has been argued [32] that, in thgcompounds, this will lead to an effective interaction among
the nearby orbitals which turns out to be exactly of the type (1.5). In the rare casestgfthe
compoundswith Jahn-Teller effects, it turns out that yet another Hamiltonian emerges. In the
t,,-cases the interplay of the two interactions must be properly accounted for; in contrast to
theeg-situations where, no matter what, we get the’t@@del. For these and other reasons—the
latter mostly concerning the “degree” of difficulty—the remainder of this paper will be focused
on the 120-model.

1.3 The classical models.

The classical versions of the above orbital models can be obtained from their quantum counter-
parts by replacing the operatat§ by appropriate projections of the classical spin varialies
which live on the unit sphere iR". A standard justification for the classical approximation is
via the “S — oo” limit; cf [18, 36, 45] and also [19, 37, 38] for some results in this direction. As
was the case for the quantum systems, there are two major types of models under consideration:
Classical 120-model and classical orbital compass model. We proceed with formal definitions.
Let 73 denote the three-dimensional cubic lattice andSetwherer e Z2, be unit vectors
in R2. We leta, b andé denote three evenly-spaced vectors on the unit circle, for instance,

a=(1,0), b=(-1%L) and &= (-1,-%), (1.6)

and define the projectior&® = S - &, where the dot denotes the usual dot product, and similarly
for S andS©. In this notation, the (formal) Hamiltonian of the 2Model is given by

# =-3(5¥5% + 5757, +595%). (1.7)

with againJ > 0. For convenience we will sometimes label the lattice direction and the spin
direction with the same index; i.eS%, a = 1,2, 3, meaning, e.g.8” for a = 2, etc. Then
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(1.7) can be written

H=-1> §98%, . (1.8)

We remark in passing that (1.8) is also the form of the orbital compass Hamiltonian, only in this
case thes,, r e Z3, are genuine (three-component) Heisenberg spins and the upper index of the
spin stands for it€artesiancomponent.

Remark 1 The 120-model (as well as its orbital compass counterpart) can be generalized to
hypercubic lattices in other dimensions as well as to other graphs. For instance, in four spatial
dimensions the spins are from the unit spheréiand the interaction in the various lattice
directions is via the projections of the spins onto the vectors pointing from the origin to the
vertices of an appropriately centered tetrahedron. However, these variant situations are fairly
difficult geometrically and since they do not always correspond to the structure of the original
guantum-spin model, we will not consider them in this paper.

The salient feature of the 120nodel (as well as the orbital compass model) is that the ground-
state space of the Hamiltonianiidinitely degenerateThis is manifest if we write the Hamilton-
ian in the form (1.1) which follows immediately from (1.7) by the fact that for &yrom the
unit circle inR2,

[SPIPHSPP+SOT= - 19

It is now apparent that any constant vector field receives the minimum possible energy—namely
zero—from the Hamiltonian in (1.1).

Unfortunately, as we remarked before, the ground state situation is further complicated by the
fact that the constant configurations are certainly not the only minimum-energy states available
in this system. For instance, it is easy to verify that, starting from a constant configuration, the
reflection of all spins in ay-plane “through” vecto€ preserves the overall energy. (Here, the
¢-projection is not affected by this procedure andarmdb-projections just swap their roles.)
Hence, plenty of other ground states can be obtained from the constant ones by reflecting all spins
in a collection of parallel lattice planes; see Fig. 1 for some examples. Notwithstanding, as will
be proved later, these non-translation invariant ground states are disfavored by the onslaught of
positive temperatures.

Remark 2 The ground state situation is yet more intricate in the orbital compass model which is
foremost among the reasons that our analysis of this system was postponed.

1.4 Gibbs measures.

The (still formal) Hamiltonian in (1.1) can be used to define the Gibbs measures for the corre-
sponding spin system. Explicitly, let c Z* be a finite set and letA denote the set of sites

in Z3\ A that have an edge with one endpointAn Given a spin configuratio8, in A and

a boundary conditiois;, on oA, we let 7, (Sp|S;a) be the restriction of the sum in (1.1) to

ando such thar € A orr + &, € A (or both). Then the finite-volume Gibbs measure\invith
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FIGURE 1. A picture demonstrating the discrete symmetries of the ground states in the 120
model on a cube with one spin fixed. Here the horizontal and vertical directions correspond to
the y and z-axes, respectively; the front face of the cubes is perpendicular ta-thés. The
upper-left cube is simply the homogeneous ground state, the upper-right cube has a spin reflection
in the a-direction as one moves in tlég-direction across thgzmidplane. The bottom cubes

have analogouia andc-reflections. The structure of any (global) ground state is demonstrated by
checking for consistency between all neighboring cubes.

boundary conditiors;, is a measure on the configuratid®s = (S )rea given by

@ BHA(SalSen)
UV @Sy = ——o—[[2Es). (1.10)

ApB reA

HereQ is the Lebesgue measure on the unit circle (in other wdgds, thea priori spin distri-
bution) andzif?; is the corresponding normalization constant.

Regarding these measures as the so-called specifications, the DLR-formalism can be used to
define the infinite-volume Gibbs measures (aka Gibbs states). Explicitly, the latter are probability
measures on configuratioBsfor r € Z4, whose conditional probability in a finite volume given
a boundary conditiors;, is the measure (1.10), for almost evesy,. We refer to [26] for a
comprehensive treatment of these concepts. To adhere with mathematical-physics terminology,
we will denote expectation with respect to the infinite-volume Gibbs measurgs)by
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2. MAIN RESULTS

Here we state the main theorem of this paper and provide heuristic reasoning for the existence of
long-range order in the system at hand. We also provide some more discussion and remarks on
literature concerning the related problems that have previously been studied.

2.1 Long-range order in the 120-degree model.

Letw,, 7 = 1,2, ..., 6, denote the six vectors on the unit circleRA corresponding to the six
sixth-roots of unity. Explicitly, we define

W, = (cog%7), sin(%7)), t=12,...,6. (2.1)
The principal result of this paper is then as follows:

Theorem 2.1 Consider the 1280model with a fixed coupling constant=) 0. Then there exits
a numberfy € (0, o) and a functions — ¢(B) € [0, 1) with e(8) —» 0asf — oo such that
the following is true: For allp > fo there exist six distinct, infinite-volume, translation-invariant
Gibbs stateg—)5 ;, witht =1, 2, ..., 6, such that

W, S5, 21—€(f), t=12...,86 2.2)
is valid for all r € Z3.

We note that oncéw, -Sr)j.5 # 0, we must have thd6);, ; # 0. Consequently, (2.2) implies
the existence of a long-range order becauge &t 1, the standard high-temperature expansions
(or Dobrushin uniqueness techniques, see [44, Theorem V.1.3]), implyShat; = 0in any
Gibbs staté—) ;. Moreover, ag — oo, the measure corresponding(te) ; ; gets increasingly
concentrated aroundl, .

Theorem 2.1 is proved in Sect. 3.2 subject to some technical claims whose proof is postponed
to Sect. 6.3.

2.2 Spin-wave heuristics.

Here we provide a heuristic outline of the spin-wave reasoning which ultimately leads to the proof
of the above theorem. The precise version of the argument is given in Sects. 4 and 5.

The starting point of our analysis differs in perspective from the usual sort of spin-wave ar-
guments which have previously been the subject of mathematical theorems. In the standard ap-
proaches, one attempts to rewrite fa# Hamiltonian as a “spin-wave” Hamiltonian, carry out
a calculation and control the errors later (if at all). An extreme example of this ispierical
modelwhose working definition is “the spin system for which the spin-wave approximation is
exact.” However, as alluded to previously, this sort of spin-wave approximation is inadequate to
capture the essential features of the problem at hand. (See Sect. 7 for more details.)

The present perspective, which is standard in condensed matter physics but has not yet been
the subject of detailed mathematical analysis, can be summarized as follows: We will collect the
important excitations about the various ground states into spin-wave modes. These modes form
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the basis of an approximate low-temperature expansion which via the standard arguments yields
the existence of several low-temperature states.

Let us start by expressing all spins in terms of angular variables$j.es,(cosé;, sing,). The
(homogeneous) ground states are thenfust const= 0*. We defineZ; = 6, — 6* so that, in
thex direction, the interaction is given byﬁ\])[cos(e* +&) — cog0* + & 4a,)]% With analogous
formulas in they andz directions. Thus, to leading order §'s, we have

J, 5 J .
%(Sﬁa’ -5%,)°~ % SIP(O") (& — érve)? (2.3)
and, similarly,
J, i J .

%(Sﬂ” - §%,)° ~ % SIP(120° — 0*)(& — &),

53 53 (2.4)

(59— §9,)" & S sif(120 467G = e

We will encode the&)*-dependence into effective coupling parametegs= sir?(6*), g, =

Sirf(0* — 120°) andgs = sirf(9* 4+ 120°). Then the effective interaction for deviations about
thed*-state can be written as

. J
B (&) = % S Gl — Gre)? (2.5)

Therefore, in some approximate sense, the partition function for deviations about the state where
the spins are pointing in the directién can be written as

200" ~ [ dge o (26

where & denotes the product Lebesgue measure.

As we will see, the integral is, as it stands, somewhat ill defined because the Hamiltonian pro-
vides no decay for the zero Fourier mod&oHowever, itis recalled that for the above derivation
to be meaningful, thé;’s had to be fairly small. So, one way out—which is what we will do in
our proofs—is to restrict the integration measure in (2.6) only to (the Cartesian product of) small
intervals centered at zero. Another way out, which leads to more transparent calculations, is to
define the full objecZ_ 4(6*) as the partition functiosonstrainedo configurations where, say,
the average spiaquals(cosf*, sind*). (As we will see, inserting the appropriaigunction on
the right-hand side of (2.6) permits us to integratedt®over all real values.) In this language,
the said constraint reads, & = 0, i.e., no “zero mode.” For future reference, we denote the
right-hand side of (2.6) with this constraint enforced by

3
(Z_E)L Ferno, @.7)
53

The reason for the prefactor will become clear momentarily.
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The translation-invariant structure of the effective Hamiltonian (and the constraint) prompts us
to use the Fourier-transformed variables,

~ 1 .
¢k = 3z Zfr gkr, (2.8)
r

wherek takes values i} = {27 L=1(ny, N2, n3): — L /2 < ng, Ny, n3 < L/2} which is known
as the reciprocal volume (or the Brillouin zone). In terms of these variables, and the various other
guantities defined, an appropriate spin-wave Hamiltonian can be constructed:

pran®="5 3 EP(Sai-ehr), @9

keT} {0}

where we have made explicit the absence of the contribution from the “zero mode.”
The calculation is now standard and we get

2 \L%/2 3 o 2% 1/2
Go) o= L s aiae] (220
€ L\

Thus, taking logs and letting — oo, we arrive at the limiting version df,

N dk e
F(0*) = 5/[—n,n13 oy Iog{;qau elka] } (2.11)

This is thespin-wave free enerdwpr fluctuations about the directidit.

Itis apparent thad* — F(6*) is invariant under the shift* — 6* +60°. Far less obvious (but
nevertheless true) is the fact that the absolute mininfaoécur att* = 0°, 60°, 120, ..., 300.
Thus we must conclude that, when finite temperature effects are accounted for, six ground states
are better off than any of the others. Sects. 4-5 will be devoted to a rigorous proof of this heuristic.
A similar calculation allows us to estimate the spin-wave free energy for the inhomogeneous
ground states and show that these are always less favorable than the homogeneous ones.

Notwithstanding the appeal of the spin-wave heuristic, the above is just one step of the proof.
In order to make use of spin-wave calculations, we resort to some (rather standard) contour esti-
mates. Informally, we partition the “world” (by which we mean the torus) into blocks and mark
those blocks where the spin configuration either features too much energy or has the character-
istics of an environment without enough entropy. By adjusting the block scale we can make the
penalty for marked blocks sufficient to carry out a Peierls argument. The principal tool for de-
coupling the correlations between various boxes is provided by the chessboard estimates (which
allow, via Cauchy-Schwarz type inequalities, to estimate the probabilities of various block events
by their associated constrained partition functions). Explicit details are to be found in Sect. 6.

Remark 3 It is noted that if the reader is willing to preaccept the forthcoming treatment as fact,
an interesting feature concerning tharface tensioris bound to arise. Indeed, let us imagine
that the system is forced, e.g., via boundary conditions, to exhibit two favored states in the same
vessel. The price for these circumstances will be the region—the interfacial region—where spins
are bad. Ifg > 1, the energetic form of “badness” can be ruled aubrtiori, but now we
emphasize that the free enedjfferencebetween the most and least favored states is independent
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of the temperature indicating that the cost of the interface will be temperature independent. Hence
we anticipate that the stiffness (and also the correlation length) stays uniformly bounded away
from zero and infinity ag — oo.

2.3 Discussion.

The model under consideration exhibits infinitely many ground states, a problem which for math-
ematical physics has surfaced but a few times in the past. When these situations arise, the finite-
temperature fate of each ground state is typically decided by its capacity to harbor excitations.
Here, the dominant excitations are exactly the spin waves from the last section—the spin-wave
calculation shows that only a finite number from the initial continuum of ground states survive
at positive temperatures. Unfortunately, an extra complication arises due to the inhomogeneous
ground states discussed in Sect. 1.3. Here chessboard estimates allobousdthe relevant
spin-wave contribution by the spin-wave free energy against a periodic background. We remark
that there are systems for which the spin-wave analysis featured herein may be performed with-
out the complication of inhomogeneous ground states. One such example is the subject of the
forthcoming paper [3].

As already noted, the “entropic-selection” mechanisms for long-range order are not new. In-
deed, there have been some previous studies of the ANNNI models and other systems exhibiting
infinite degeneracy of the ground state [7, 16, 29]. However, the techniques involved in [7, 16, 29]
are based on the premise that there is a substantial gap in the energy spectrum which separates the
excitations resolving the ground state degeneracy from the remaining ones. Due to the continu-
ous nature of the spins, and the symmetry of the ground states, no such gap is of course present
for the 120-model. Instead, a decisive contribution to the entropic content comes from long
wave-length excitations, i.e., the aforementioned spin waves.

Another set of problems which are related to the present paper are the models with continuous
spins studied in [17,49]. There the spins angriori Gaussian random variables with covariance
given by the inverse lattice Laplacian and with an on-site (anharmonic) potential. However, this
potential is required to have only a finite number of nearly-quadratic minima (all of which have a
uniformly positive curvature) which necessarily implies only a finite number of low temperature
states. Notwithstanding, the work in [17,49] exemplifies situations where a ground state degener-
acy is lifted by spin-wave-like excitations resulting in a reduced number of Gibbs states at positive
temperatures. It is quite possible that the Pirogov-Sinai techniques used in [7,16,17,29,49] can
after some work be adapted to our cases. However, at present the arguments via chessboard
estimates seem considerably easier.

As noted in Sect. 1.2, the motivation to study these systems comes from the observed magnetic
behavior of transition metal compounds. A complete understanding of these systems may there-
fore require a full guantum-mechanical treatment. We expect a similar mechanism for ordering
to be present also in the quantum-mechanical version of therhddel (as well as the orbital
compass model). However, the only method of proof that seems promising in this context is the
Pirogov-Sinai expansion of some sort. A general theory of these expansions for quantum systems
exists, both for the situations with [15, 33] or without [6, 14] infinite degeneracy of the ground
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state. But, as is the case for the classical systems, some fairly non-trivial generalizations of the
existing tools would probably be necessary.

3. PROOFS OF MAIN RESULTS

In this section we will give the proof of our main theorem, subject to some technical results
which will be proved later. In particular, in Sect. 3.1 we define the notion of a “bad” box and
state without a proof the principal bound concerning the simultaneous occurrence of several bad
boxes; see Theorem 3.1. This will be sufficient material for the proof of Theorem 2.1. The proof
of Theorem 3.1 is the subject of Sects. 4-6; the actual proof comes in Sect. 6.3.

3.1 Good and bad events.

Here we will provide some mathematical foundations for our notions of the stable states and the
contours that separate them. We will need three different scales—two of them spin-deviation
scales and one a scale for the blocks which will be the setting of our various events.

We will start with the fundamental spin-deviation scale which we denotE.bljere we are
seeking d" (which is small) such that &ll neighboring pairs of spins are within a distaricef
each other, the harmonic approximation is “good” while if a neighboring pair violates this con-
dition the energetic cost is drastic. On the basis of naive Taylor expansions—which is ultimately
all we will do—it is clear that the latter is achievedff™? > 1 and the former iffT3 « 1.
Thus, of course, we neetlto be large and we can envisidnto scale as any inverse power of
between 13 and 12.

The second deviation scale will be denoteddynd will serve to define sets of configurations
which are effectively in one of the stable ground states. The third scale is the nBwhigich
will be used to define the spatial size of our block events. For fixeitlappears that the only
necessary requirement is thaf? > log B which will always hold eventually. Unfortunately,
there is some spurious interplay between the paramBtersandI” which could, in principle, be
removed in a more refined analysis. But, for this work, we will keep the “smallness’irothe
realm of the existential and requiBeto get large, but only very slowly, gsgoes to infinity.

In order to make our main technique, tbkessboard estimateavailable we have to con-
fine ourselves to systems with periodic boundary conditions. Let Thuslenote the three-
dimensional torus of scale, i.e., T, = Z3/(LZ)3. In general, we will be dealing with certain
events taking place in blocks of a specific scaland we will be using the chessboard estimates
to bound probabilities of these events. These blocks will be translates of the Alpek T\
which we define as the cube @ + 1)3 sites with the “lowest left-most” site at the origin. It will
be convenient (although presumably not strictly necessary) to assume that the linear scale of our
finite-volume systeml,., when divided byB results in a power of two.

Now we are ready to state the definition of a “good” block:

Definition 1 Let B denote a positive integer and ket- 0 andI” > 0 be sufficiently small. We
will say that the spin configuration in the blogkg (or the block itself) iggoodif the following
two conditions are met:
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(a) Foreachn € {1, 2, 3} and any neighboring pairandr + &, in Ag,

1S9 - §%, 1 <T. (3.1)
(b) All spins in Ag make an angle which is less thax ffom one of the preferred six directions.
Explicitly, if S = (cosé,, sing;) then, for some = 1,...,6, we havgé, — %”ﬂ < 2« for
allr € Ag. Here, of coursey; is only determined moduloz2

We denote by = Gg .1 the event that the blockg is good. The complementary event,
marking the situation when the blocklisd, will be denoted by inevitablg. Our goal will be
to bound various probabilities involving bad events. The main tool for these bounds will be the
chesshoard estimates whose basic setup and principal result we will now describe.

LetP_ s and(—)_ s denote the (Gibbs) probability measure, respectively, the corresponding
expectation according to the Hamiltonian (1.1) at inverse temperAtoreT, . Lett denote a
vector with integer coefficients identified modulg B—in formal notationt € T, ,g—and letB3
be an event discussed above. Then we}{€B) denote the everif translated by the vectdst.

(For general eventgl defined on the configurations ing we will need an enhanced definition

of ¥ (A); cf the definition prior to Theorem 6.2.) Note thatif(3) anddy (B) are “neighboring”
translates of3, then these two events both depend on the spin configuration on the shared face of
the corresponding translates &g.

The principal result of this section, which is the starting point for all subsequent results of this
work, is the following theorem:

Theorem 3.1 Consider the 120model as defined b§L.10) For each sufficiently smald > 0
and eachy e (0, 1) there exist Iy € (0, o) and ffy € (0, co) and, for any anys > fo, there
exist numberd” € (0,1) and B € (0, c0) such that the following holds: IB is the event—

defined using, I' and B—that the configuration ing is bad and, . .., ty, are distinct vectors
from T\ /g, then for any L> L,
PL g (ﬁtl(B) n---N ﬂtm(l’)’)) <™. (3.2)

This result provides a way to estimate the probability of simultaneous occurrence of several
bad events. The non-trivial part of the proof of Theorem 3.1 boils down to the spin-wave calcu-
lations outlined in Sect. 2.2. The rigorous version of these calculations requires some substantive
estimations and the actual proof is therefore deferred to Sect. 6.3.

3.2 Proof of long-range order.

Now we are ready to prove our main theorems. We note that there are six disjoint ways to exhibit
a good block for the 126model, each corresponding to one of the vectiors We will denote
the corresponding events By, withz = 1, 2, ..., 6. Explicitly,

G.=GN{S:S -W, > cog2x), r € Ag}. (3.3)
The core of the proof is the following (almost direct) consequence of Theorem 3.1.:

Lemma 3.2 Consider the 120model onT, and suppose that <« 1. There exists a function
h: [0,1) — [0, co) satisfying {#) — 0as# J, 0, such that for each sufficiently smalt- 0 and
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eachg, I and B as allowed by Theorem 3.1 the following is true: For &ny, € T ;g and any
type of goodness, we have

PL g (94(G) N 94,(G9)) < h(n), (3.4)
provided L> Lg, where lg = Lo(x, ) is as in Theorem 3.1.

Proof. Noting thatG, N G¢ = @, let us assume that # t,. Now, for the intersection, (G;) N

U, (GY) to occur, either the block dt, is bad, which has probability at mogt or it is good but
not of the typer. We claim that, in the latter case, there must be a “surface” consisting of bad
blocks which separates the blockBit; from that in Bt,. Indeed, letS € ¥:,(G,) and consider
the connected componefi, of good blocks irfll', /g containing the block aBt;. We claim that
the type of goodness is constant throughdfit i.e., it is of typez. To see this, suppose that a
block in ¥ has the type of goodness which is distinct fremBy the fact thats is connected,
there must exist a pair afeighboringblocks with distinct types of goodness. But neighboring
blockssharethe sites on their separating face and (since 1) the spins on this face cannot
simultaneously be in thexk2neighborhood of twav,’s—that is, not without the spins busting
apart. Hence, oy, (G,) N 9, (G?), the block atBt; is not part of¢” and we have it separated
from Bt; by a (x-connected) “surface” of bad blocks.

To estimate the probability of such a “surface” we will use Theorem 3.1: The probability
that a “surface” involving altogethen givenbad blocks occurs is bounded BY. The rest of the
proof parallels the standard Peierls argument which hinges upon the fact that the iNgdier
connected “surfaces” comprisimgblocks and containinggiven blockgrows only exponentially
with m, i.e., N, < c™ for somec € (1, o). To count the number of ways how to choose the
particular block in the “surface,” we have to be a bit cautious about the toroidal geometry: If
m < L /B, then the “surface” encloses either the blockB&t or that atBt, on all sides and there
are at most & ways to choose one particular block. On the other haneh ¥ L/B, then the
surface can be topologically non-trivial but, siri€g g is a finite graph, the number of choices of
one particular block is at most /B)3 < m3. This shows that (3.4) holds with

h(n) =n+2D_ m*cp™, (3.5)
m>6
uniformly in L > Lo. Clearly,h(y) - Oasy | 0. g

Now we are ready to prove the existence of long-range order if-a@@el, subject to the
validity of Theorem 3.1:

Proof of Theorem 2.1.Let » > 0 and letf, and Ly be as in Theorem 3.1. Fix & > S

and chooseB andI" accordingly. For finiteL > Lg, it follows by (3.2) that, with probability
exceeding 1~ 5, any given block is in a good state. Since the distinct types of goodness are
disjoint and related by symmetry, we have

PL((G0) 2 51— ) (3.6)

for anyt € T g and anyr = 1,2, ...,6. Next, we may condition the block farthest from the
origin (i.e., the one at the “back” of the torus) to be of a particular type of goodnes§, s@ife



LONG-RANGE ORDER IN 120-MODEL 15

resulting measure still satisfies the DLR-condition in any subset of the torus not intersecting the
far-away block. Passing to the thermodynamic limit alsognesequence ok's, we arrive at an
infinite-volume Gibbs state for the interaction (1.1).

Clearly, by (3.6) and Lemma 3.2, we have the uniform bound
h(»)

Po (04 (GO |04, (G0)) < 61—’7 3.7)

Hence, ify « 1, we have constructed six infinite-volume Gibbs states in thé-iftiel which

are distinguished by the statistical properties§individual spin. In particular, the bound (2.2)
holds withe(f) directly related toy, h(n) andx. Of course, it is not automatically the case

that the resulting states are translation-invariant; however, this is easily handled by considering a
translation average of the abovementioned and noting that the “distinctness” of the states via the
single spin observables is preserved by this averaging. O

4. SPIN-WAVE ANALYSIS

This section provides rigorous justification for the heuristic spin-wave calculations from Sect. 2.2.
Beyond the fact that these calculations settle the pertinent questions concerning long-range order
at the non-rigorous level, such results, as refined here, serve as the cornerstone for the proof of
Theorem 3.1. The principal results of this section are Theorems 4.1 and 4.5.

4.1 Homogeneous ground states.

Our goal is to evaluate the free energy of the spin configurations where all spins are more or
less aligned with a given vector on the unit circle. Let us represent all of the SpindS;)
by their corresponding angle variab®s= (6,)—vis-a-vis the usuab = (cosf;, sinf,)—and
let * denote the particular direction towards which we wish the spins to aligny L.et@) be
the indicator of the event thid, — *| < A, with the difference, — 6* interpreted modulo 2,
holds for allr € T_. HereA is closely related to the quantity from Sect. 3.1.
In this representation we define the constrained free energy by the formula

1 p3 o1 "
R0 =500 5 = Flog [ €710 ,,0) [] o (“-1)
I’ETL

where 77 (@) denotes the torus Hamiltonian expressed in terms of the angle varélied
where the first term on the right-hand side has been added for later convenience. Our goal is
to show that, under specific conditiorﬁf}(@*) can be well approximated by the functién
defined in (2.11). (As is easy to check, the integral in (2.11) converges for. all

Recall the abbreviationg, = sir?(6*), g, = sinf(0* — Z) andgz = sirf(@* + Z) from
Sect. 2.2. The precise statement concerning the above approximation is as follows:

Theorem 4.1 For eache > 0 there exists a number= d(¢) > 0such thatiffJ and A obey
(BNHA2>1/6 and (BI)A® <, (4.2)
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then
limsup|F{) @) — F(0")] < e (4.3)
L—>oo

for all 6* € [0, 27).

As the first step of the proof, we will pass to the harmonic approximation of the Hamiltonian,
which is given by

pJ
AO) =" 2 > %l —bhie)? (4.4)
reT, «
The next lemma provides an estimate of the error in this approximation.

Lemma 4.2 There exists a constanf & (0, co) such that for allp € (0, c0), all A € (0, 1), all
L > 1and all6* € [0, 27) the following holds: Ifyx (@) = 1, then

|BA0) — FLO)] < cr(BI)A°LE. (4.5)

Proof. Let us first consider the nearest-neighbor bénd + &;) and note tha§? = cos;.
Since|6, — 0*] < A, Taylor's Theorem gives us the bound

1SV — §Y5, +SiN@) G — 10| < A (4.6)

But|6; — 6re,| < 2A and thu(§Y — §7, )2 andau (6, — 6r+¢,)? differ by less than a numerical

constant timesA®. The situation in the other directions is similar, one just has to note that

S? = cog0 — Z) andS® = cog0 + % ). Adding up the contribution of all three components,

multiplying by #J and summing over € T, the result directly follows. g
Having converted the Boltzmann weigt?”t®S into the Gaussian weigle 1@ in (4.1),

our next task is to estimate the effect of the indicat@r, . Let

" J\L32
QY = (ﬂ—) /e_‘]L(”’xA,L(B) [T o 4.7)

2
I‘ETL

Then we have:

Lemma 4.3 Forall g € (0, 00), all A € (0,1) and all6* € [0, 27),

0*
Q( 2B

lim sup

L 5 < —FO). (4.8)

Proof. We will use the exponential Chebyshev inequality. et 0. Then the indicatog | is
bounded via

£0.0) = 0 el 218 30—, “9)
I‘ETL

Plugging the right-hand side into (4.7) instead of |, we get a Gaussian integral witke-
dimensional covariance matr® = (8J)~1(A1 + D)~%, wherel is the unit matrix and is a
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generalized Laplacian implicitly defined by (4.4). Integrating out the variablasd invoking
Fourier transform to diagonalizg, we get

log Q(€ B

1 |
5 E/I(ﬂJ)AZ——— > Iog{l+2q 11— ka2 } (4.10)

213
keTp
whereT; denotes the reciprocal volume (or the Brillouin zone). Passing to thellimit co, we

find out that the left-hand side of (4.8) is boundediiyfJ) A% — F (0%, ), where

FO*,)) = ;/”3 (zdk)3 og{i+an|1 g2}, (4.11)

But the integrand is a monotone function bf and so the Monotone Convergence Theorem
guarantees that (6%, 1) | F(8*) asi | 0. Thence the result follows by takirigto zero. a

Let F(6*, 1) be the quantity defined in (4.11). The lower bound is then as follows:

Lemma 4.4 Forall g € (0,00), all A € (0,1), all 9 € [0,2x), and all 1 > 0O satisfying
(BI)A%A > 1,

. log QY 11

I f >—F@*, 1) +log{l— ——-). 4.12
imin — 0 @, 1) + og( ﬁJAZ/l) ( )

L—oo

Proof. Let A > 0 and consider the Gaussian mead@yrgiven by

P,(d8) = (%)L/Zexp[ JL(H)——/I(ﬁJ)Z(G,—Q* ]Hder, (4.13)

QL ,0* reT, reT,

whereQ_ - is the corresponding normalization factor, which modulo the “log” and the factor
equals the final term on the right-hand side of (4.10). Let usijg® denote the corresponding
expectation. Then

QU = Quo Exlxa.0)- (4.14)
Now y . . is simply the product of indicators of the tyfi@s, —g+|<a;. We claim that
E:(xa,L) = E;(H 1{|(9r—6*|<A}) > H P, (16 — 6% < A). (4.15)
YETL FETL

This follows from the fact that the moduli of these sorts of Gaussian fields are FKG-positively
correlated, see e.qg. [5]. It can also be established on the basis of the “esoteric” version of reflection
positivity (using reflections between sites), which is described at the beginning of Sect. 6.1. The
estimate thus boils down to a lower bound on the probabilitgof 6*| < A.

Now, let us note that the Fourier componefitof the fieldsd, — 8* haveE; @) = 0 and,
for k’ # %k, the random variable§< andd are independent with

E; (16kI?) = 3 (/1+an|1 e ) e ﬁ% (4.16)
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Thus, invoking the Chebyshev inequality the complementary probability is bounded by

Ei(16: —6"1%) E) (|9k|2) 1
P, (16 — 0" > A) < ———— 4.17
(16— 0% = A) < - LSkZT‘: < FIAT L (4.17)
Combining (4.14—4.15) with (4.17), invoking the explicit expression@ery- and passing to the
limit L — oo, the desired bound is proved. O

Now we are ready to prove the error bound in (4.3):

Proof of Theorem 4.1By the Monotone Convergence Theorem we have Bh@t, 1) | F(9*)
asl | 0. Moreover, the continuity of* — F(#*) and the fact that the unit circle R? is
compact imply that this convergence is actually uniforn®tn Hence, for eacla > 0, there
exists a numbek > 0 such that

F@O".2)—F©)] <3 (4.18)

for * € [0, 27). Letc; be the constant from Lemma 4.2 and choésgich thatc;o < €/3.
Suppose also that < 4 and

0 €
Iog(l - I> > - (4.19)
Fix an angleg* € [0, 27 ). Lemma 4.2 along with our choice éfimply
Q((’ B)
lim sup — =0+ R0 < (4.20)
L—>oo L
On the other hand, Lemmas 4.3—-4.4, the choicgiof(4.18) and our choice af ensure that
©*.5)
limsup L + F@@)| < = (4.21)
L—oo L3
Combining these two estimates, the bound (4.3) is proved. d

4.2 Stratified ground states.

As mentioned previously, constant configurations are only the overture for the set of all possible
ground states. As a consequence, the knowledge of the spin-wave free energy about homogeneous
background configurations is not sufficient for the proofs of our main results. Fortunately, as we
shall see in Sect. 6, the chessboard estimates allow us to reduce the (potentially quite large)
number of remaining cases to configurations which are translation-invariant in two directions and
alternating in the third direction.

To avoid parity problems, throughout this section we will assumelthaian even integer. Fix
anindexa € {1, 2, 3}, pick a directiord* € [0, 27) and letd* denote the reflection @ through
thea-th of the vectod, b oré. Consider again the angle variabfgsnd lety, | be the indicator
that|g, —0*| < A forr € T with an evenz-th component while for with an odda-component
we require thatd, — 6*| < A. Let

F%7 00 = %Iogi—; — = log / e @7, 0) [] db. (4.22)

FETL
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The quantitylfﬁ/;“)(a*) represents the spin-wave free energy for (period-two) stratified states

perpendicular to direction and spins alternating between directiohisandd*.

As before, our goal is to approximaﬁé?ﬁ’“)(@*) by an appropriate momentum-space integral.
Fora € {1, 2, 3}, let us abbreviate

E,=E,k)=|1-€%?> and E; =E (k) =1+ €&*|? (4.23)

wherek, is thea-th component of the vectdr e [—x, z]3, and recall, once again, the meaning
of the quantitieg), (cf Sect. 2.2). We will define three 2 2-matriceslI, (k), a = 1, 2, 3. First
leto = 1 and abbreviatg, = (g + gs) andg- = 1(qz — gs). Then

_ (®mE1+94(Ezx+ E3) 0-(E2 — E3)
k) = ( 0-(E2— Es)  QEj+qy(Eo+ Es)) : (4.24)

The quantitiedI, andII3 are defined by cyclically permuting the roles bf, E, and E3 and
similarly for theq,’s. (In the physically relevant quantitieg, will appear only in terms of its
square, so the order used for the definition of this quantity is for all intents and purposes arbitrary.)
Then we define a functioR, assigning to each* e [0, 2z ) and each: € {1, 2, 3} the value

- 1 dk
F,(0%) = 21/[_”]3 21)? log detIT, (k). (4.25)

The fact that now we have a quarter in front of the integral comes from the fact that the determi-
nant actually represents the combined contribution ofkwnodes.

The main result of this section concerning the t&tbdel is now as follows:
Theorem 4.5 For eache > 0 there exists a numbeér= d(¢) > 0 such that iffJ and A obey
(BIHA® <6, (4.26)
then
liminf F%"©@%) > F,(0%) — ¢ (4.27)
L—>oo >
forall 6* € [0, 27) and alla € {1, 2, 3}.

As we have seen in the previous sections, the first step is to pass to the quadratic approximation
of the torus Hamiltonian. L& = (6;) be a configuration of angle variables. Then we define

~ J
Ta@="23 3 400 -0 (429
reT, y=1,2,3

Hereqﬁ is the usuab, if the a-th component of is even while for the complementarywe
have to interchange the roles of the tggowith y" # a. (In particular,qéf‘r) =q, forallr.)
Ouir first item of concern is the error caused by this approximation:

Lemma 4.6 There exists a constant & (0, o) such that for all € (0, c0), all A € (0, 1),
all L > 1and all8* € [0,2r) the following holds: Ify,.L(@) = 1 and if@ = (6;) is the
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configuration obtained by reflecting through thea-th of the vectorsy, b or ¢ for r with an
odda-component, then

|BAO) — A, 0)] < ca(BI)ASLE. (4.29)

Proof. Once we have accounted for the inhomogeneity of the setup, the proof is essentially
identical to that of Lemma 4.2. Without much loss of generality, let us focus on thexcasg.
Letd be such thaf, (@) =1 and let® be as described.

We will concentrate on the interaction of two spins in freoordinate direction. If the:-
component of is even, then the expansion arouhd= 0, ~ 6* gives that co@, — %”) is well

approximated by cqg* — %”) —sin(@*— 2?”)(5, —6*). Accounting better for the errors we thus get
|Sf2) - Sr(i)ez + sin(&* - 2?ﬂ)(ér - ér+é2)| < A% (4.30)

On the other~hand, far with an odda-th component we haved, = §, ~ 0* which means that
S? = cog—6; — %) = cogf + %) and thus

1S — §2, —sin(0" + Z) (@ — fryep)| < A2 (4.31)

After plugging into.7] (@), thed, in the everr planes are coupled kg while in the odd planes
they are coupled bggs, in accord with (4.28).

A completely analogous argument handles the case of two siteszrctiardinate direction. In
the x-direction the reflection has no effect because the minus sign fram&in disappears after
we take the square. The ensuing errors are estimated exactly as in the proof of Lemma4.2.

Sinceya.L (@) = ya.L(@), where@ and@ are related as in Lemma 4.6, a simple change of
variables shows that the proper analogue of the quantity from (4.7) for the present setup is

(g J\ %2 A
QI(_H,’A,)ﬂ _ (ﬁ_) /e—jL,a(a)XA’L(a) H do,. (4.32)

2z
reT,

Note that here the inhomogeneity of the domain of integration in (4.22) has how been moved to
the Gaussian weight. Next we apply:

Lemma4.7 Forall g € (0,00),all A € (0,1),all6* € [0,27) and alla € {1, 2, 3},

_ log Q")
limsup = ~L4f

< —F, (6. 4.33
msu KR @) (4.33)

Proof. Fix o and letA > 0. The proof again commences by invoking the exponential Chebyshev
inequality in the form of (4.9). The resulting®-dimensional Gaussian integral has covariance
matrix C, = (5#J)(A1 + D®), where3$ID® is the matrix corresponding to the quadratic
form (4.28) in the variable§;. The difference compared to Lemma 4.3 is that o is no
longer translation-invariant in the-th direction, but only periodic with period two. As a result,
thek andk + 7 &, modes will mix together and the Fourier transformGfwill result in 2 x 2-
block-diagonal matrix. The blocks are parametrized by pairs of moménta+ 7 €&,). (Note

that, sincel is evenk + 7 &, € T} whenevek € Ty .)
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A calculation—which is best performed by taking the Fourier transformﬁ_qg—reveals that
the block corresponding to the pak, k + 7 &,) is exactlyIl, (k). Hence we get

log Q) 1 , 11
— 5 SN - kZT; log det(/1 + 11,,(K)), (4.34)
el

wherel is the 2x 2-unit matrix and where the usual factof2lin front of the sum is replaced
by a 1/4 to account for the fact th&tandk + 7 &, are treated as independent entities in the sum.
(We are using th& < k + z&, symmetry of the determinant.) Passing to linlits» oo and

Al 0, the bound (4.33) is proved. a

Proof of Theorem 4.8y Lemma 4.6 and the definition & *;* (0*) we know that

~
log Q(L,A“,)ﬂ
L

F%7 00 = - 58— cp(BI)AR (4.35)

Hence, ifd is such that,o < ¢, (4.27) follows by taking- — oo and invoking Lemma 4.7. [

5. SPIN-WAVE FREE ENERGY MINIMA

The purpose of this section is to show that the spin-wave free efgi@y, which emerges from

the analysis in Sect. 4.1, is minimized in the “directions” as stated in Theorems 2.1. Similarly,
we will also show that the free ener@y, (9*) corresponding to the inhomogeneous ground states

is always strictly larger than its homogeneous counterpéit), unless9* is “aligned” (or “an-
tialigned”) with thea -th of the vectoré, b oré. These findings constitute the essential ingredients

for the proof of Theorem 3.1 in Sect. 6.3. The principal estimates are based on Jensen’s inequality
combined with a non-trivial bit of “function analysis.”

5.1 Homogeneous ground states.

Our task is to identify the minima of the functigit — F(6*) defined in (2.11). However,
noting that the product structure of the measikg(@xr ) makes the random variablgs— e« |2
independent, we might as well analyze an entire class of functions of this type.

Let X be a random variable taking values ir1, 1] and, for any triple of number&, b, ¢),
define the function
F(a,b,c) = E(Iog(a2(1 — Xq) + b1 = Xp) + A1 — xg))), (5.1)
where X;, X, and X3 are independent copies of. Suppose in addition that the distributi@n
of X has the following properties

(1) « has a density with respect to the Lebesgue meagufox) = f (x)dx.
(2) f(x) = f(=x)forallx e [-1,1].
(3) f(x)is strictly increasing on [01].

Then we have the following general result:
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Theorem 5.1 Leta b,c— F(a, b, c) be as above with X satisfying the properties (1-3). Then
for any nonzeror € R and any gb, ¢ satisfying

a+b+c=0 and &+b%+c?=2 (5.2)

we have
F(a b,c) > F(0, s, —s). (5.3)
Moreover, the inequality is strict wheneverta c £ 0 and F(0, sz, —) > —o0.
The particular case of the 12@hodel can now be easily extracted:

Corollary 5.2 The functiorg* — F (6*) achieves its minimum only at the points

9*:%1, t=12...,6 (5.4)
Proof. We just have to identify the quantities b, c and the random variablX in the case
of the 120-model. First, sincel — €*«|2 = 2(1 — cosk,), we let X be the random variable
distributed as cos in measure K/(2z) on [z, z]. A simple calculation shows thaX has
a density f (x) = (1 — x?)~Y2/(2x) with respect to the Lebesgue measure e1,[1], which
manifestly satisfies the requirements (2—3) above.

Now, settinga = +/2sin6*), b = v2sin@* — &) andc = +/2sin@* + Z), we have
that F(a,b,c) = 2F(@*). Moreover, a trivial calculation shows that+ b + ¢ = 0, while
a® + b? + ¢ = 3 and (5.2) thus holds witk> = 3/2. As a consequencé; — F(#*) is
minimized only by6&* such that one of the numbeasb, ¢ vanishes. This is easily checked to
give just the values in (5.4) a

The rest of this section is devoted to the proof of Theorem 5.1. The proof is based on two
observations: First, a lemma due to Pearce [40]:

Lemma 5.3 Let X be a random variable of1, 1] satisfying properties (1-3) above. For
eachl € R, let (—), denote the expectation with respect to the probability measufdx) =
N, f (x)e’*dx, where f is the probability density of X and I an appropriate normalization
constant. Then the function— (X); is strictly concave off0, c0).

Proof. See [40]. The conditions (1-3) represent one of the general situations in which one can
prove the GHS inequality in lattice spin systems, see [44, Theorem 11.13.5(iii)]. a

The second observation is that the constraints (5.2) reproduce themselves, rather unexpectedly,
at the level of quartic polynomials i, b andc:

Lemma 5.4 Leta b, c be numbers satisfying.2). Then
a*+ b* + ¢t = 2,4 (5.5)
Proof. Sincea = —(b + c¢), eliminatinga from the second constraint in (5.2) results in

b2 4+ ¢ + bc= »°. (5.6)



LONG-RANGE ORDER IN 120-MODEL 23

Squaring we get

b* + c* + b%c? + 2b%c? + 2bc(b? 4 ¢?) = »*, (5.7)

which can be recast into the form
2b* + 2¢* 4 6b?c? + 4b’c + 4bc® = 2%, (5.8)
Splitting off the termb* 4+ ¢#, the rest of the left hand side is cleatly+ ¢)* = a*. O

With these lemmas in the hand, the proof of Theorem 5.1 is relatively straightforward:

Proof of Theorem 5.1Since we can scale, b andc by any constant at the cost of changing
F(a, b, c) only by an additives~-dependent factor, let us suppose without loss of generality that
s = 1/4/2. Moreover, if one of, b, cis zero, say = 0, thenb = —c = +sr and (5.3) is trivial.
Hence, we only need to focus on the situations wédn ¢ # 0.

The first step of the proof is to convert the expectation of the logarithm into the expectation of
an exponential. This can be done for instance by invoking the identity

1 [e'e] —S
—log(1 — X) =/ dt/ dseT(eS‘X— 1),  x<1, (5.9)
0 0

where the double integral on the right-hand side is well defined because everything is positive.
Let us now plug inZX; +b%X,+ c2 X5 for x and take expectation with respectXe, X, andXs.
Applying Fubini’'s theorem (and the fact that, almost surafX; + b?X, + ¢?X3 < 1), the

result is

1 (o) —S
Fa,b,c) = / dt / dseT(l — G(st;a, b, 0), (5.10)
0 0
where
G(4; &, b, ¢) = B (& @XitbXe+eXa)) (5.11)
We will show that, whenevea, b, ¢ # 0, we haveG(/;a, b,c) < G(1;0,1/+/2, —1/+/2) for

all 2 > 0, from which (5.3) and the ensuing conclusion directly follow.
Consider the functiorh — R(1) defined by

G(4;a,b,c)
G(40,1/v2,—1/v/2)
Our goal is to prove thaR(4) < 0 whenevert > 0. First we note thaR(0) = O so it suffices to
show thatR'(1) < O for all A > 0. Invoking the independence &f;, X, and X3, we have

R(1) = @%(X) a2 + b*(X) 02 + (X2 = (X) 12, (5.13)

where we adhere to the notation from Lemma 5.3. Now, by Lemma 5.3 and our assumptions on
the random variablé, the functionl — (X)), is strictly concave. Sinca? + b? + ¢? = 1 and,

as guaranteed by Lemma 5.4, atdor b* + ¢* = 1/2, the boundR'(1) < 0 for 2 > 0 is a direct
consequence of Jensen'’s inequality. O

R(1) = log (5.12)

Remark 4 The previous proof has one (arguably) unnatural feature; namely, the conversion
“from logs to exponentials” via the identity (5.9). It would of some interest (at least for the
authors) to see whether a more direct argument can be constructed.
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5.2 Stratified ground states.

Having identified the absolute minima of the spin-wave free energies for homogeneous back-
ground configurations we turn our attention to the free energies corresponding to inhomogeneous
ground states. Specifically, we will show that (truly) stratified states have always worse free
energy than the corresponding homogeneous ones.

Let F (6*) denote the spin-wave free-energy from Sect. 4.1 ani,Jét*) be the corresponding
quantity for the stratified states as defined in Sect. 4.2. Then we have:

Theorem 5.5 For eachx > 0 there exists a constang &= cz3(x) > 0 such thatifa € {1, 2, 3}
and if the angle betweett € [0, 27) and thea-th of the vector$, band€is in (x, # — x), then

F.(0%) > F(6") + Cs. (5.14)

Proof. Recall the notationg, = [1—€*|?, E} = |1+€*|2 andq; = sin?(6*), 0z = sinf(0—%

andgs = sirf(@ + %”) and the definition oflT, (k) in (4.25). We will write deflI, (k) as a
convex combination of two terms each of which produces the same free energy. Without loss of
generality, let us assume that= 1. We claim that for alk € [—x, 7]3, the quantityIT;(k)

admits the decomposition

1
detlly (k) = 5 (1E1 + 02E2 + 03E3) (Ef + G3E2 + 02E3)

1 *
+ 5(Q1E1 + 03E2 + Q2 E3) (1 BT + G2E2 + G3Es). (5.15)

To prove this let us abbreviatp. = %(qz + g3) andE. = E, + E3. Focusing on the first term
on the right-hand side, we write

QiE1 + 2E2 + QsEs = hE1 + 0+ E4 +0-E_,
hE] + 03Bz + 2Es = uE] + 9+ Ey —q-E_,

and similarly for the other two terms. Multiplying these two lines tells us that the first term on
the right-hand side of (5.15) equals a half of

(E1 + A+ EL) (@B + 0+ E) — 2E2 + qug-(E; — Ep)E_. (5.17)

The sole effect of the second product on the right-hand side of (5.15) is to cancel the very last
term of (5.17)—note that the sign gf changes when, andgs are interchanged. Now the first
two terms in (5.17) is exactly the determinantldf(k). Hence (5.15) follows.

If we plug in any of the four linear factors iB;, E,, E3 on the right-hand side of (5.15) into
the logarithm in (4.25), integrate and apply the symmetries of the meakutkedresult will be
%F(@*). Suppose now thd#t* # 0°, 180° and note that this implies thgt # gs. Theng:E, +
03Es # g3E2 + q2E3 on a set of positive measurd&.dHence, the two terms on the right-hand
side of (5.15) are not equal almost surely which by the strict concavity of the logarithm and
Jensen’s inequality implies th&t (0*) > F(#*). But both functions are continuousdn, and so
F1(0*) — F(6*) is uniformly positive on any compact subset of the unit circle not containing 0
and 180. The existence of a desireg follows. O

(5.16)
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6. PROBABILITIES OF BAD EVENTS

Our goal here is to prove the estimate in Theorem 3.1 concerning the probability of a simultaneous
occurrence of several bad events. While some of the details may still appear to be rather intricate,
the principal input into the forthcoming argument has already been established in Sects. 4-5.

6.1 Reflection positivity and chessboard estimates.

In this section we will glean from the classic theoryreflection positivitythose items that are
needed at hand. Recall our notatiBn for the Gibbs probability measure @h defined by the
Hamiltonian (1.1) at inverse temperatyteReflection positivity is a property of the measikie,

with respect to reflections of the torus which are defined as follows: Suppose thatven and

let us split the torus symmetrically into the “left” and “right” part, and T/, such that the

two reflection-symmetric halves either share two planes of sites (reflections “through sites”) or
not (reflections “through bonds”). Le® be the formal notation for the “plane of reflection”
and let.7 2, resp.,.%5 denote ther-algebra of events that depend only on the portion of the
configuration inT}", resp.,T{. Introduce the reflection operatde on configurations il ,

which induces a corresponding mép: .7 — .#5. Then we have:

Lemma 6.1 (Reflection positivity) Consider the plane P, the-algebra.#3 and the mea-
surelP_ 4 as specified above. L&, ; denote the expectation with respectRp ;. Then the
following holds for all bounded?: -measurable random variables X and Y:

Ei 5 (X9p(Y)) = EL s(YOp(X)) (6.1)

and

Heredp(Y) denotes the random variable¥p, and similarly fordp (X).

Proof. This is the standard reflection positivity proved in [22—24], which for reflections “through
sites” follows simply by the fact that the interaction is exclusively via nearest neighbors, while
for reflections “through bonds” it follows from this and the fact that the coupling is both quadratic
and attractive. O

Remark 5 We remark that in the present work we use only the more robust version of reflection
positivity—poor man’s RP—which only requires nearest-neighbor interactions. (An exception
to this “rule” is perhaps the argument leading to (4.15); but there we also offer an alternative
approach via [5].)

Our use of reflection positivity will come through the so calldtessboard estimatesTo
motivate the forthcoming definitions, let us briefly recall the principal idea. Using the expression
on the left-hand side of (6.2), one can define an inner product oFtheneasurable functions,
which then satisfies the Cauchy-Schwarz inequality

Ppg(ANIp(A))° < PLy(ANIp(A))PL4(A NIp(A)), (6.3)
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for any A, A’ € Z3. The interpretation of this inequality is that two given events, one on the
“left” and the other on the “right” ofT, can be separated within the expectation at the cost of
reflecting both of them througPR. Iterating this bound further one can eventually disseminate
each event all over the torus. The resulting quantity is often amenable to further analysis.

To state the chessboard estimates formally, let us consider a rectanguldr 4oR? of di-
mensionsy; x a, x ag, where theg;’s are positive integers. For simplicity, here and throughout
this work, we assume that all of tteg are related td. by powers of two, i.e.qy = 2™ L for
some integers;. Consider the tiling of the (continuous) torus with dimensiang L x L by
translates olV. We will parametrize these translates by vectoes T whereT is the (discrete)
torus with dimension& /a; x L/a; x L/as.

Let .4 be an event which depends only on configuration¥ in T . First we note that the
eventA can be reflected (multiply) through the various midplane¥ pfeading to seven new
ostensibly different versions of the eve#it [Labeling the resulting events lay= (o1, 02, 03) €
{0, 1)3, wheres, = 1 denotes whether the reflection in theh direction is implemented, we
thus have altogethasight events: onedggo = A, three order-1 reflectiondgo, Ag10 and.Agor
through the midplanes &f orthogonal tax, y andz lattice directions, respectively, three order-2
reflectionsAi10, A101, Ao11 @and one order-3 reflectiad;;1.] Now if t € T, let us defina} (A),
the appropriate notion of “translation by as follows: Fort’s with all even coordinates, this is
simply the usual translation ky Fort’'s with some odd coordinates, we select from the other
seven versions afl the one with reflections corresponding to all the odd coordinatés tbe
eventy;(A) is then the translation byof that version of A.

Let Z, 4(A) denote the constrained partition function defined by

Z 5(A) = zL,ﬂ< Hlﬂt(A)>L , (6.4)
teT~I‘ ’
where Z, ; is the usual partition function offf, and1y,.4) denotes the indicator function of
eventy; (A). We are now ready for:

Theorem 6.2(Chessboard estimate) et the eventsl,, ..., Ay and the partition functions Zg
and Z_;(Ax) be as above and lét, . . ., ty, be distinct vectors of the type described. Then

P é 9 (A0) = f[l(%(jk))”'ﬁ', 65)

where|T]| is the volume of the factor tortk

Proof. This is the standardhessboard estimaf@goved in [22—24], see also [43]. These estimates
follow, in general, whenever the interactionrflection positive-here using both reflections
through sites and bonds depending on whether the corresponding coordinate of the\side of
integer of half-integer. 0

Remark 6 We observe that due to the self-imposed evenness constraint on the dimensions of the
tori, the objectsZ z(A) andZ,_ 4(:(A)) are identical for alk. This will reduce the need for
various provisos in the future derivations.
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In the forthcoming derivations the estimate (6.5) will be used to bound the probability of a
single bad event but, more importantly, to decouple various bad events. However, it will not be
always advantageous to estim@ig (Ax) directly—often we will have to further decompogi
into smaller events. Then we will use the well-known subadditivity property:

Lemma 6.3 (Subadditivity) Consider the eventd and (Ay)ke.» that depend only on configu-
rations in a box VN T where V is as specified above Afc J, ., Ax, then

_\ [T
Zp(A) < (Z ZL,,B(-Ak)l/lTl) : (6.6)

ket

Proof. The claim is (presumably) standard; we provide a short proof for reader’s convenience.
Clearly, Z 4(A) is equal to theZ, z-multiple of the expectation df,.7 1,(4). Now, using the
boundLy, ) < 2 ke Locan We get

ZLp(A) < Zig Z< H119t(Akt)>Lﬁ, (6.7)

k) teT

where the collectioltk,),.+ € # T provides the assignment okae .# for each of the translates

of the A-events and where the sum is over all such assignments. Applying Theore# §:2,
times the expectation on the right-hand side of (6.7) is bounded by the prodactsofd, )™

over allt e T. But then eaclk can be independently summed over whereby the desired relation
(6.6) follows. O

6.2 Distinct types of badness.

The estimate of the probability of bad events—defined right after Definition 1 in Sect. 3.1—uwiill
require partitioning this event into further categoridspriori, we will distinguish two types of
badness according to which violation of the aforementioned conditions in Definition 1 is high-
lighted. Specifically, we define the events

Be = {S: 1§ — Sr(j)éa| > I for somer,r + &, € Ag} (6.8)

and

Bsw = B\ Be. (6.9)
HereAg is the cube of B + 1)3 sites with the “lowest left-most” site at the origin (this is where
the prototype bad eveftwas defined). The idea behind this splitting is that for the configurations
in Be there is an energetic “disaster” while for those3g,, the spin-wave approximation is still
good but we are not particularly close to any free-energy minimum.

Unfortunately, the everifsyy is still too complex to be estimated directly because after dissem-
ination all over the torus, the resulting partition functidp s(Bsw) does not end up being the
type featured in Sects. 4-5. This is directly related to the fact—eluded to earlier—that there are a
myriad of ground states in these models. Thus we will have to work a bit in order to hggel
into events which after eventual dissemination over the torus lead to partition functions of a type
discussed in the previous sections.
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In order to motivate the forthcoming definitions, let us categorize, somewhat more precisely
than in Sect. 1.3, the ground states of the model (1.1). To avoid intricacies due to boundary
conditions, we will restrict ourselves to toroidal geometry. First, all constant spin configurations
minimize the energy. Second, more ground states can be generated from a homogeneous config-
uration by picking a lattice directiom,, and a sequence of planes orthogond,tcand reflecting
all spins in these planes throughth of the vectors, b, &. These statements are more or less
fully justified by Proposition 6.5 below. Of course, when we sB#ty into the homogeneous and
inhomogeneous parts, we will not try to keep track of all planes of reflection that can occur—one
will be sufficient (this is the basis of the eveifsﬁ) below).

The decomposition of the eveBity will mvolve all of our basic scales: For a given> 0,

I' > 0andB > 0 we let

_ 12BT

K

(6.10)

(As we will see in Sect. 6.3, this will be th& for which we will use the results of spin-wave
analysis from Sect. 4.) Let us parametrize the spins using the angle vafiablgg an integer
s > 1and letd], ..., 6 bes points uniformly spaced on the unit circle. The first part we want
to identify from Bsy are the nearly homogenous configurations: For éacHil, ..., s}, let BS)
denote the event that the blodks is bad and thaf, — 6| < A holds for allr € As.

The complementary part dsy will feature a particular kind of inhomogeneity: Fix ane
{1,2,3} and letj € {1,2,..., B} and letH; denote the plane ifi', where allr have thex-th
componentequal tp. Fixi € {1, ..., s}. Ifthe angle betweef} and thex-th of the vectors, b, ¢
is within (—x, k) or (r — x, T + K) then we seBB), = 4. For the othei we let B! denote
the set of all configurationS € Bsy such thatg, — 6| < A holds for allr € Ag N IHI _1and
|6 — 07| < Aforallr e AgNH;. Hered* denotes the angle reflected through the- th of the
vectorsa,B ande.

Remark 7 Let us reiterate thaby definition we have3’ c B for all i andlS’Sfj = ¢ for all i
whose4 is too “near” thex-th of the vectorsy, B, €. These facts will be useful when we estimate
the associated partition functiods »(8y") andZ, 4(B",) in Sect. 6.3,

It remains to show that the union of these events contains #&@f

Theorem 6.4 Consider the 120model and let the eveniSsy, Bg) and BS,)J- be as defined
above. Suppose that «, B and s are such that BT <« x < 1and sA > 4z. Then

Baw C U(B“ iy UB ) (6.11)

a=1,2,3 j=1

Remark 8 Inthe above and in what is to follow (and to a certain extent retroactively) we employ
the symbol “«” in our hypotheses according to the standard fashiona“& b...” means “if

the ratioa/b is bounded by a sufficiently small numerical constant which is uniform in any of the
other parameters mentioned...."
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Remark 9 The inclusion (6.11) justifies our previous claim that the only spin-wave calculations
we need to do are against either homogeneous or stratified background. Indeed, by Lemma 6.3,
to estimate the probability dfsy we will only need to estimate the constrained partition func-
tions Z 4(BY’) and Z 4(BY)). The former leads directly to homogeneous spin-wave calcu-
lations from Sect. 4.1; the latter will require further disemination of the paifjof 1, j)-th

planes in thex-direction which results in exactly the stratified background configuration treated

in Sect. 4.2. See Lemmas 6.9 and 6.10 for details.

The proof of Theorem 6.4 commences by considering an elementary cihe sayK =
{0, 1)3, and classifying all spin configurations &hthat are “nearly” a ground state but which
are not near any of the six “priviledged” directiofis; see (2.1) for the corresponding definition.
The precise statement is as follows:

Proposition 6.5 LetI andx be such that/T « x <« 1. Let @ = () be a configuration of
angle variables orK such that the corresponding spiSssatisfy the energy constrain{3.1) for
all pairs of nearest neighbors dl but such that not all of the spins are within anglef one
particular W, . Letr € K. Then (exactly) one of the following is true:
Q) 16 — 6] <4I'/k forall r’ e K.
(2) There exists an € {1, 2, 3} such thalf,, —6,| < 4I" /«x holds for allr’ € K withr —r" 1 &,,
while for the remaining € K we haveg, — ;| < aT' /x, whered, is obtained fron®, by
reflection through the:-th of the vector$, b, &

Remark 10 Settingl’ = 0 (andx = 0) in this statement justifies Fig. 1, which shows four exam-
ples of ground state configurations on an elementary cube. The reason why we explicitly exclude
the “almost” constant configurations which point near on& ofs that, for these situations, the
energy constraint would permit fluctuations that are of okder

The proof of Proposition 6.5 will involve a couple of lemmas. First, let us characterize the
consequence of the energy constraint (3.1) for a single bond:

Lemma6.6 Leta € {1, 2, 3} and consider a nearest-neighbor bordr’) parallel to&,. Let6,
andé, be two angle variables such that the corresponding spins sag§fy— S| < I'. Then
either |6, — 0,/| < z/T/20r |6, — /| < n/T/2, whered, is obtained fron®, by reflection
through thex-th of the vectorg, b, ¢.

Proof. Without loss of generality, we will assume that= 1. Now, if 8,6’ € [0, =] are two
angles with|@ — 6’| = ¢, then the trig identity cosd — cosf’| = 2| sin(e;;”)| sin(“Tg/) and some
optimization show that

|cost) — cosd'| > 2sint(§) > 2¢?/x?, (6.12)

where we used that/2 e [0,z/2]. But the left hand side is exacthg? — S| which by
assumption is less than A simple algebra now shows that then= |0 — 0’| < =/T/2. This
proves the claim in the case when bétandéd’ have the same sign; the opposite case is handled
by reflection through th& axis. g

Next we will extend this to a similar control of lattice plaguettes:
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Lemma 6.7 LetL be a lattice plaquette and let & 6z /+/2. LetI' <« 1and letd,.,r’ € L
denote angle variables such that the energy constr@rit) holds for all four bonds. Then, for
any particularr € L, either allg,/, r’ € L, are within C/T from#, or one neighbor of satisfies
this condition while, on the other side of the plaquette, the other two spins are within f@&m
the corresponding reflection 6f.

Proof. The proof is based on Lemma 6.6. To make the reference to this lemma easier, let us say
that areflectionoccurs for the paitr, r’) if the latter possibility in Lemma 6.6 applies. Lietbe a

lattice plaquette. Since permutations of coordinate directions can be matched with permuting the
roles of&, b, &, we can as well assume tHais anxy-plaquette, i.elL = {r,r +&.,r +8&,r +

&+ &}. The analysis proceeds by checking various cases of increasing level of complexity. To
simplify the formulas, let us abbreviate the error constant from Lemma 6;6byr /T /2.

CASE 1: No reflection occurs for both of the bonds emanating frohemma 6.6 then implies
that both¢, 1, andé; s, are withing from 6;. Now if a reflection does not occur on either of
the two remaining bonds, then the spirrat & + &y is within 27 of 6, and we are done. The
remaining possibility would be a reflection on both of these bonds. Butihgn e, is within 27

of both—6; and(—% — 6;) which is impossible once< 2.

CASE 2: Reflection occurs for exactly one bond emanating frorsay the horizontal bond
from r. The only case we need to consider is when reflection occurs for the “other” vertical
bond and does not for the “other” horizontal bond. But tien, ;& is within 2 of both 6;
and(—% + 6;) which is again impossible onceg 4 2.

CASE 3: Reflection occurs for both bonds emanating fror@€learly, following the path through
r +& tell us that) &, 1e, is within 2 of either—6; or (—%” +6;) while the passage through-&,
tells us that 4,14, is within 2 of i(%’f +6;). Checking the cases shows that,df 4 %” thisis
only possible when reflection occurs falt bonds around the plaguette and witers within 2
of one of the angles G5, = or %”. Let us check the case whén~ 0. Thené, s, is within 5
of 6 and bothY; s, andf; ¢, +¢, are within § from (—%” — 6;). A similar argument handles the
remaining cases.

Inspecting the above derivations, we see that the worst-case fluctuation from one of the two
situations described in the statement of the lemma iy & /T This finishes the proof. O

Now we are ready to characterize the “near” ground states on elementary cubes:

Proof of Proposition 6.5.Lemma 6.7 immediately implies that any configurat®satisfying

the energy constraints (3.1) &his one of the types featured in the statement of the proposition
(resp., Fig. 1) to within error€’+/T for some numerical consta@. Indeed, either all angle
variables are withirC’+/T of some particular angle or not. If not, then there must be a pair of
nearest neighbor@, r’), say parallel t&;, where a reflection occurred. Thén is within C/T

of —6,. Moreover, choosing’ > C allows us to assume that bdth| and|z —6, | exceed £+T

and thus both plaquettes it containing the bondr, r’) will have to be of a “mixed” type. But,
again by Lemma 6.7, the two perpendicuiarplaguettes cannot be of a “mixed” type. This
implies the characterization in the statement of the proposition with the errors boun@é¢'by
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It remains to show that the errors are in fact only proportiondr tfcf Remark 10). Here
we will use the following refinement of Lemma 6.6: 49’ < [0, =) satisfy the energy con-
straint| cosf# — cos#’| < T but are not within angle « 1 of thex-ground states, then

10— 0| < T/x. (6.13)

Indeed, the Mean Value Theorem gives us tltaist — cost’| = 2sin6”) (@ — 0’) whered” lies
betweerd andd’. Hence sii¥”) > sink which forx « 1 exceeds /2. Using that| cosf —
cost’| < T', the bound (6.13) directly follows.

The improved error bound is now a simple consequence of (6.13). Let us first consider the
“nearly” homogeneous situations. Since all angle variables are to be away from the ground state,
(6.13) implies that for each bond tidgs will differ only by at mostI’/x. Hence, alB;’s on the
cube must be withinI3/x of one of them which proves the claim in this case. The “mixed” con-
figurations whose both types point away from any of the ground states are handled analogously,
so we only have to consider the case when each type is within argbé 2 different ground
state. A generic situation of this kind is when the “bottory-plaquette ofK is occupied by a
configurationd ~ 0 while the “top” xy-plaquette is occupied by a conflgurau@m . Then
the observation (6.13) constrains the size of the fluctuations to les§ tra@long the foIIowmg
bonds: Thedy-bonds in the “bottom’y-plaquette, all of the vertical bonds and #ebonds in
the “top” xy-plaguette. It is easy to check that, framone can get to all sites @ in at most
four steps, so all,, are within less than®/x of 6, or the corresponding reflection. d

Finally, we are ready to prove Theorem 6.4:

Proof of Theorem 6.4Consider a spin configuratid®on Ag such that3sy occurs and lef; be
the corresponding angle variables. Suppose first that one éf thmakes an angle at least 2
with all of thew,, = = 1,..., 6. Applying Lemma 6.6 along with the fact thBt/T < x, we
find out thatall 6,’s will be make an angle at leastwith any of thew,. Proposition 6.5 then
guarantees that any elementary cube has a layered structure witfsstheore or less constant
in both layers. Since the maximal fluctuation in each elementary cube is at mostitis not
more than B-times that—i.e. A in (6.10)—for any pair of spins i g.

Now the boundsA > 4z ensures that the consecutife(which we used to define the events
Bg) andBSfj) are within less tham /2 from each other. Thus, if all spins point in about the same

direction they must all be withil\ of some#*—which implies thatS BS)—or there are two
consecutive layers, sgy— 1 andj, in thea-th lattice direction where a reflection froffi to éi*
occurs. In the latter case we haSe= B(') This proves (6.11) for thos® € Bgyy for which at
least one of the spins is farther than Qn the angular distance) from any of the six preferred
directionsw, .

It remains to deal with the situations in whieli spins are within 2 of somew, (possibly
different ¢ for different spins). Clearly, the latter cannot be the same for all spins because of
the inclusionBsyw C B, and so there must be a pair of spins where the type of ground state is
different at the endpoints. But then we can still use Proposition 6.5 for the elementary cubes
containing this bond, and then the cubes next to these and so on. In this way we conclude that
the endpoints of this bond belong to two parallel planes of sites where the spins do not fluctuate
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by more than B times 4" /x about a single direction in one plane and its reflection in the other.
HenceS belongs to one of thllsgz")j 'S. O

6.3 Proof of Theorem 3.1.
We begin with an estimate of the partition function for evBgt

Lemma 6.8 Letx > be fixed. There exist constants € (0, co) andd > 0 such that if3J,
A = 12BT/x and¢ satisfy the bound@!.2)then

<ZL,/3(BE) ) (B/L)3

< B3(csf )P /26728377, (6.14)
ZL g

limsup

L—oo
Proof. We will derive an upper bound_ »4(Bg) and a lower bound oZ, z. The former is
essentially an immediate consequence of the definitiofizoflndeed, onB3g at least one of the

pairs of nearest neighbors g contributes at Ieas%(ﬁJ)l“2 to the total energy. Thus, after
dissemination of5g all over the torus, the spin configurations are constrained to satisfy

1 ,/L\3
BALS) = ST (g) . (6.15)

It follows that
Z, 5 (Be)®'Y’ < 6B3(21) e 31, (6.16)

where the factor B bounds the number of places where the “excited” bond can occur wAtgin
and(27r)E‘3 is the total “phase volume” of all configurations As.

Next we need to derive a lower bound @p ;. Here we will write the partition function as
an integral ole~#”; a lower bound can then be obtained by inserting the indicator that all angle
variables are withim\ of 0°. This yields

27[ L3/2 —LSF(A)(OO)
il Lp
ZL > (ﬁJ) e , (6.17)
whereF(“)(0°) is the quantity from (4.1). Choosing> 0 and letting? be such that Theorem 4.1
holds, we thus get

. /L3 2_” Y2 F0)-c

liminf (Z, )" > ([”) e , (6.18)
whereF denotes the spin-wave free energy (2.11). Combining (6.15) and (6.18) and ttting
absorb all factors independentBfandf J, the desired bound (6.14) is proved. O

Remark 11 Since the evenBe depends only o, the appearance af in the assumptions of
Lemma 6.8 may seem unnecessary. However, some conditiofis®Brand s J are still needed

to derive the lower bound in (6.18) and the advantage of the present form is that now all lemmas
in this section are proved under more or less the same assumptions.

Next we will attend to the everi#sy. In light of Theorem 6.4 and Lemma 6.3, we can focus
directly on the events;’ andB.,. We will begin with the former of the two:
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Lemma 6.9 Letx > O be fixed. There exist numbesg(x) > 0andd > 0 such that if5J
and A = 12BT /«x satisfy the bound@l.2) with this¢ and if BI' « ¥ « 1, then

. ZL 5(BYY\ L3 .
lim SUP(#) <en®  j=1..,s (6.19)
L.

L—oo

Proof. To summarize the situation, dﬁf)”, all angle variableg|, in the blockAg are within A

of . If we now consider the multiply reflected event associated Wgth the same will be true
about all spins off', . Lete > 0 and lets > 0 be as in Theorem 4.1. Then

) ; 2w \1/2 "
Ilan supZ, p(BIHVY < (ﬁ_i\r]) e P+, (6.20)
— 00
Using (6.18) we thus conclude
. Z, s(BY)\ L2 .
lim sup(#) < e FO)+FO)+2¢ (6.21)
L—oo L,p

It remains to adjust so that the exponent is negative. Here we first notelﬂgéﬁs empty un-
lessé* is at leastc away from any of the ground state (indeed, otherwise the configuration fails
to be in3, which by definition contain§8>). Applying Corollary 5.2 F (6*) exceedd-(0°) by a
uniformly positive amount, denoted bydx), whenevep* is at least away from the minimiz-

ing angles. Now choose < %pl(}c) and leto be the corresponding quantity from Theorem 4.1.
Then the right-hand side of (6.21) is indeed less =™, proving the desired claim. O

Similarly, we have to derive a corresponding bound for the evﬁiﬁs

Lemma 6.10 Letx > O be fixed. There exist numbets(x) > 0andé > 0 such that ifsJ
and A = 12BT /« satisfy the boun.26)with thisd and if BI' « k¥ « 1, then

Z. 5(BY. 1/L3
|imsup M < e—PZ(’C)/B, (622)
Z
L—oo L.

holds foralla € {1,2,3},all j € {1,2,...,B}andallie {1, ...,s}.

Remark 12 We assure the reader that th&Blin the exponent is no cause for alarm; in accord
with (6.6), the relevant object from Lemma 6.10 is the right-hand side raised to @iwver

Proof of Lemma 6.1(Recall that, ong,)j , all g, for r in the planeA g NH ;1 are within a constant
timesBI'/x of 67, while those in the neighboring plargs N H; are within the same distance of

the reflected angléi*. After dissemination over the torus, which is what gives rise to the quan-
tity ZL,/;(BS,} ), the same will be true about the spins in #rgireplanesH; 1, resp.H;, and also

about their translates by integer multiples®fn the orthogonal direction. However, we cannot

yet use the spin-wave calculation; instead, we have to use Theorem 6.2 again to disseminate the
two-plane alternating pattern all over the torus. This yields

ZL,[)’(BS,)J') 3 (ZL,/J(BVS,)J' ) )Z/B

6.23
Z, (6.23)

ZL,ﬂ
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whereB(') is the event inAg that thef, are withinA of 7 in even translates dfl;_, and of«9
in odd translates affj 1.
Now the partition function can be estimated using Theorem 4.5 and we thus get

Z g (ES,)- )

1/L3 5
Ilm Sup( Z J ) < e_[Fa(Hi*)_F(OO)_zf]’ (624)
L’ﬁ

L—>oo
But Theorem 5.5 shows thﬁg(@i*) — F(0°) > ¢z > 0 for somecz = cs(x) for all i for which
is at leastc-away from any of the minimizing angles associated with “stratification” direetion
while, by definition, B(') = ¢ for thosei that fail this condition. Hence, if we choose> 0 so
small thatp,(x) = 2(c3 — 2¢) > 0 and lets be the corresponding constant from Theorem 4.5,
then (6.23-6.24) imply (6.22) as desired. a

Proof of Theorem 3.1Letx > 0 and leté > 0 be the minimum of the corresponding num-
bers from Lemmas 6.8-6.10. Fix ane (0, 1). We claim that for each sufficiently large,
there exist numberB andI" such that the bounds (4.2) and (4.26) for= 12BTI'/x hold, the
inequalityB+/T « x can be achieved and the bound

247 B
ED B(e) n (6.25)

B3(C4ﬂ3)53/2e—%ﬁ’JF2 + %e_Bapl(K) +
is true. Indeed, we can for instance tdke= log f andl' = ﬂ‘l% and note that, for these choices,
the left-hand side will eventually decrease wfth

Now chooses such thasA > 4z butsA < 8z. Then the definitions (6.8—6.9) of everfis
and Bsw, the decomposition dBsyy from Theorem 6.4, the chessboard estimate and the (subad-
ditivity) Lemma 6.6 imply thai?, g (J;,(B) N - - - N, (B)) will be bounded by, where

= (M)(B/L)S—i_ s (M)(B/L)a

ZLp ZLp

Z.3(B 3
+Z Z Z( L. ( aJ))(B/L)' (6.26)

Z
i=1 a=1,2,3 j=1 L.

By Lemmas 6.8-6.10, the fact that< 8z /A and (6.25), it follows that limsyp, . 7. < 7.
Hence there exists a numbkg € (0, oo0) such thaty, < pforall L > Lo. ButforL > Ly,

the probabilityP z(J, (B) N - -- N 9, (B)) is bounded by;™ uniformly in m and the choice of

the vectord, ..., tn. This proves the desired claim and thus also finishes the proof of our main
result (Theorem 2.1). O

7. SPHERICAL MODELS

Here we present the proof that the spherical version of thé-aftlel has no phase transition
at any positive temperature. This demonstrates the failure of the naive spin-wave arguments and,
particularly, the infrared bounds.
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Spherical models, very popular in the 1950-60, were conceived of by Berlin-Kac [2] as conve-
nient approximations of the statistical mechanical systems which are more amenable to explicit
computations. (On the mathematics side, the topic received a new wave of interest in the 1980's
through the rigorous versions of A expansion.) To construct a spherical version of a given spin
system, we use the same Hamiltonian but ascribe different meaning to the spin variables. In par-
ticular, the locah priori constraints on the spin variables are relaxed and are replaced by a global
constraint. For instance, for the Ising model with Hamiltoni#h = — > , sror we have
or = £1 and thuss2 = 1 for allr. The spherical version has the same interaction Hamiltonian
but now we only require thatl/N) 3", 2 = 1, whereN denotes the total number of spins.

Often enough, these models are further simplified by stipulating that the constraint only needs
to be satisfied in theneanand may thus be enforced by Langrange multipliers. The latter type is
often referred to as thmean spherical modelThis version usually turns out to be pretty much
the same in most aspects, see [27] for some discussion. Here we will go the mean-spherical route
partially because the resulting analysis is simpler, but also because the analogy to pure spin-wave
theory is more pronounced in this case. We refer to [44, Section 11.11] for more references and
further discussion.

Thus, we will take (1.10) as our basic Hamiltonian along with an additional term to enforce
the required constraints. However now it is understood that the spin variables are no-longer con-
strained to the unit circle; the integration takes place over al%fThe constraining term reads
-1 Y. ,(§%)% but now (unfortunately§* refers to theCartesiancomponent of the spin. This
means that we will have to rewrite the Hamiltonian in terms of the Cartesian componé&hts of

The key to the mean-spherical approximation is that for arbitrary O the partition function
can be solved exactly by translations to spin-wave variables. Thsersupposed to be adjusted
so that the relevant constraint is enforced. As we shall see, if there is an infrared divergence,
this adjustment is easy and everything is analytigginin the opposite case, there may be a
condensation at largé and if so, one may conclude—with a lot of apologies—that a phase
transition has occurred. The primary conclusion of this section is that the latter possibility does
not materialize in the model at hand.

Now we are ready to describe the spherical version of thé-iritidel. The Hamiltonian on
torusT, is given by

poti =15 | (89— S0+ (£ - 35 -(£50, - 35|

I’ETL

R N 0] N Y

where S and SY are now unrestricted real variablaspriori distributed according to the
Lebesgue measure @ The constraint is represented by the quantity

M= (82 + (8. (7.2)

TETL
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The associated Gibbs measure is given in terms of the Radon-Nikodym derivative with respect to
the Lebesgue measure @R?)Tt, which is simply a properly normalizeg#74 -+t We will
denote the expectation with respect to the resulting thermal state)pys , .

Theorem 7.1 Consider the spherical 12amodel with the Hamiltoniaif7.1) and let(—), 4 ,
denote the corresponding thermal state for the chemical potentialhen there exists a pos-
itive, real-analytic functionu,: [0, co) — (0, o) such that for eacl € (0, co)—andu set
to u.(f)—the following is true: The constraint is satisfied on average,

. 1
L||_r>noo F(JVL)L,ﬁ,u*(ﬁ) =1, (7.3)
there is no long range order,
2
> _o, (7.4)
LB 1 (B)

and the limiting measure exhibits a clustering property,

lim  lim (S9S) s =0, (7.5)

[r=r’|>o00 L—>0o0

foranya, a’ € {X, y}. Moreover, the limiting free energy is a (real) analytic functiorgof

Proof. As usual, our first goal will be to calculate the limiting free energy as a functigh of
andu. Let Z, (B, 1) denote the integral o #”—# with respect to the Lebesgue measure
on (R?)™t. In order to comput&, (8, 1) we transform to the Fourier modes in which case the
spin-wave Hamiltonian (including the constraint) is seen to be given by

J .
BAL + uM = % Z [ISEX)IZ[EH 2(Ex+ E3) + 4]
keTt

+ 18" P[3(E2 + Eo) + 4] + 2 (§8% + SR &) [Ez - Esl}- (7:6)

Here 8% is just the complex conjugate &“, the symbolE, abbreviates the usudl, (k) =

|1 — €% |2 and 4 is defined by8J1/2 = . In terms of the two-component variaklg, §),
the right-hand side (without th@J/2 prefactor, of course) can be written as a quadratic form
with matrix A1 + @ (k), where

Ei+ H(E2+ Es) 2(E,—E
(B2 — E3) 7(E2+ E3)

In this notation the integrals are readily performed with the limiting free enEigy 4)—which

to within a sign is the limit lim_, o L~2log Z, (8, J4/2)—given by

J 1 dk
F(B, 1) = log g—n +5 /[-7; @y logde{11 + O (k)]. (7.8)

Here the integral converges as longilas 0.
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Our next goal is to find the function, for which (7.3) holds. Using standard relation between
free energy and expectation, the constraint equation becomes

0 B3 dk B
GFen=5 [ aress0=" (79)
where
Ssp(k) = lim (1S5, = (BT THAL+ O] (7.10)

is the so-calledstructure factor As long asi > 0, the derivative‘%F(ﬁ, A) is finite and inde-
pendent off and thus (7.9) defines a functidn— S.(1). A moment’s thought shows that this
function is strictly decreasing and hence locally invertible. However, before we plug the inverse
back into (7.8), we need to establish the range of valuesstiiaj can take. In particular, we ask
whetherg, (1) diverges ad | O.

Examining the constraint equation in detail, the crucial issue boils down to convergence/diver-
gence of the momentum-space integral of the structure factor

Ei+Ex+Es
E1E; + E1Es + ExE3’

It turns out that the integral afsp(k) divergesalthough this is not apparent by naive power
counting. Indeed, the primary source of the divergence is not the origin but the coordinate axes.
This is seen by an easy lower bound 8sp(k): Fix k3 to a non-zero number and note that we
can discard thée; and E; from the numerator. Second, the teEqE, in the denominator is
bounded above by a constant tintes+ E,. Hence, the calculations boil down to the integral of
(E1 + E»)~ with respect tdk, andks, which is manifestly divergent.

The above reasoning shows that> f,(1) takes all positive real values assweeps through
the positive real line and hence the invefses 1,(f) is defined for alls < [0, co). Moreover,
for 2 > 0the functionl — p,(A) is analytic in a small neighborhood of the real line and hence so
is B — A.(B). The desired function then arises by settingg) = fJ1.(8)/2, which satisfies
(7.3) by construction. Furthermore, pluggiag g) for A in F(4, B) proves that the free energy
is real analytic ing. In order to prove also (7.4-7.5), we just need to note that (7.6) implies that
the correlaton §% 87}, 4., is exactly the(a, a’)-th matrix element of#J)~1[11 + © (k)] L.
But then

Ssp(k) (7.11)

1 2 2
52> > = 233 oL 0 (7.12)
<‘L3 g{ ’ Lppy  BIA(BILE Lo
while
! dk 1 1 _ /
i @) (/(X) :/ 1 iK1 713
L'_[noo(sr( S LB e (2002 B3 (i*(ﬂ)l n ®(k))aa,e , (7.13)

which by the Riemann-Lebesgue lemma and the factib@gt) is strictly positive for anys e
[0, o0) tends to zero ag — r'| — . d

Remark 13 The last expression of the proof indicates that the correlations decay (at least) expo-
nentially fast. However, as is seen from (7.11), the angular dependence of the resulting correlation
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length is fairly complicated. In particular, there may be directions in which the quadratic approx-
imation of ® (k) vanishes in which case more than one pole in the “com{gxplane (instead
of the usual single pole) jointly contribute to the integral.

We conclude with a remark concerning the relation of these findings to the actual systems of
interest. For the spherical model, the so called structure f&gtgk) = <|ék|2)ﬂ,,, can explicitly
be computed, cf (7.10). As was established in [22, 23, 25] for a general class of nearest-neighbor
ferromagnetic systems (including the one discussed in the present work) the spherical rendition
of the structure factor withk = 0 provides a bound on the structure facank) (namely, the
two-point correlation function ik-representation) of thactualsystem,

Sa(k) < Ssplk)],_q: (7.14)

This is the basis of the infrared-bound technology which uses the convergence of the integrated
bound to establish long-range order at low temperatures.

Here, the low momentum behavior of the spherical structure factor together with the rigorous
as well as non-rigorous results relatifge to Sa (including in particular [28]) strongly suggest
a disordering due to long wave-length fluctuations. It is usually the case that these are reliable
indicators for the behavior of the actual system. Evidently, as the results of this work show, the
present cases are exceptional.
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