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Abstract: We present a rigorous proof of an ordering transition for a two-component two-dimen-
sional antiferromagnet with nearest and next-nearest neighbor interactions. The low-temperature
phase contains two states distinguished by local order among columns or, respectively, rows. Over-
all, there is no magnetic order in accord with the classic Mermin-Wagner theorem. The method
of proof employs a rigorous version of “order by disorder,” whereby a high degeneracy among the
ground states is lifted according to the differences in their associated spin-wave spectra.

1. INTRODUCTION

1.1 Background.

For two-dimensional spin systems, the celebrated Mermin-Wagner theorem [32, 34] (and its ex-
tensions [11, 26]) precludes the possibility of the spontaneous breaking of a continuous internal
symmetry. However, this result does not prevent such models from exhibiting phase transitions.
For example, in the usual XY-model there is a low-temperature phase, known as the Kosterlitz-
Thouless phase [28], characterized by power-law decay of correlations and, of course, vanish-
ing spontaneous magnetization [22, 31]. The existence and properties of this phase have been
of seminal importance for the understanding of various low-dimensional physical phenomena,
e.g., 2D superconductivity and superfluidity, 2D Josephson arrays, 2D melting, etc. It it widely
believed that no such phase exists @m)-models withn > 3 although rigorous arguments for
(or against) this conjecture are lacking.

Of course, among such models there are other pathways to phase transitions aside from at-
tempting to break the continuous symmetry. One idea is to inject additiis@ketesymmetries
into the model and observe the breaking of these “small” symmetries regardless of the (global)
status of the “big” one. As an example, at each Z¢ (whered > 2) let us place a paifo,, ;)
of n-component unit-length spins whose interaction is described by the Hamiltonian
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where(r, r’) denotes a pair of nearest neighborsZhand J;, J, > 0. Obviously, this model

has O(n) symmetry (rotating all spins) as well as a discrétesymmetry (relative reflection
between thes’'s and thez’s). It is not hard to show that at low temperatures, regardless of the
global status of the’'s andz’s, there is coexistence between a phase wheresthand z's

are locally aligned with one another and one where they are locally antialigned. (Note that this
is based purely on energy considerations—the said alignments are the only minimizers of the
second term in the Hamiltonian.) A model similar to the one defined above was analyzed in [37]
where the corresponding conclusions were indeed established. We remark that these results hold
even ifd = 2 (and even ih > 2).

Another “circumvention” is based on the adaptation of the large-entropy methods to systems
which happen to have continuous symmetry. These are distinguished from the more commonly
studied systems in and of the fact that there is no appaneier parametersignaling the ex-
istence of a low-temperature phase. The key idea dates back to [12, 29] where some general
principles were spelt out that guarantgaeoént of phase coexistence. Let us consider an attractive
system where there is an energetically favored alignment which confines the spin configurations
to a small portion of the spin space. Suppose that there are many other less favored alignments
with an approximately homogeneous energy. Under these conditions, a first-order transition at
some (intermediate) value of temperature is anticipated. This kind of transition was established
for specific systems (including thepstate Potts model) in [12, 29], see also [38]. The general
philosophy can easily be adapted to spin systems with a continuous symmetry, e.g., asin[2,7, 8]
where some related problems were discussed.

To illustrate these matters let us consider an example from [2]. Here we have a two-component
spin of length one at each site &f which we parametrize by an angular varialles (-, «].

Let V (x) denote the function which equals negative onglif< ¢ and zero otherwise, and let

H =D VO —6), (1.2)

(r,r')

where, of course, the arguments dfare interpreted modulo2 Then, at some parameter
valueJ = J, obeyinge* ~ /€, coexistence occurs between a phase where nearly all neighboring
spins are closely aligned and one where, locally, spins exhibit hardly any correlation. We reiterate
that the use ofh = 2 andd = 2 is not of crucial importance for proofs of statements along these
lines. Indeed, in [15, 16], similar results have been established in much generality.

In all of the above examples a moment’s thought reveals that no violation of the Mermin-
Wagner theorem occurs. Indeed, this theorem does not preclude a phase transition, it only pre-
cludes a phase transition which is characterized by breaking of a (compact) continuous internal
symmetry.

1.2 Foreground.

The purpose of this note is to underscore another route “around” the Mermin-Wagner theorem.
The distinction here, compared to all of the abovementioned, is that it may take the tgader

moments to realize that our results are also in accord with the Mermin-Wagner theorem. Not
unrelated is the fact that in our example the mechanism for ordering is relatively intricate. Let us
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FIGURE 1. An example of the ground state of the Hamiltonian (1.3) on a finite grid. Here both
sublattices exhibit N& state with spins alternating betweerf 3hd 210 on one sublattice and
between 110 and 290 on the other. Any other ground state can be obtained by an independent
rotation of all spins in each sublattice.

go right to the (formal) Hamiltonian which reads

H =3 (S Sieie+S -Siag)+I7 D (S Sie+S-Sue).  (13)

Herer denotes a site ifZ? and theS, are unit-length two-component spins, i.8.,e R?, with

IS:| = 1, for eachr € Z2. The vectorsy, and@, are unit vectors in the andy lattice direc-

tions while J (the overall interaction strength) and(the relative strength of nearest neighbor
couplings) are positive numbers. Notice the sign of the coupling—there is antiferromagnetism
all around.

In order to analyze the ground states, let us focus on the gasesl. (Later we will only
requirey < 2.) Notice, especially in this limit, that the interaction splits the lattice into even and
odd sublattices. For the ground-state problem, say in an even-sided finite volume with periodic
boundary conditions, it is clear that both of the sublattices will bélNiee., antiferromagneti-
cally) ordered. However, once this 8leorder is in place, it is clear that the energetics are insen-
sitive to the relative orientation of the spins on the two sublattices. Specifically, the spin at any
siter couples antiferromagnetically to tsemof S ¢, Sr1e,, S—s, aNdS g, which, in any Nel
state, is exactly zero. Thus we conclude that the set of ground states, i.e., the “order-parameter
space,” cf [33], of this model exhibits db(2) ® O(2) symmetry.
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For convenience we will regard the first factor@¢2) ® O(2) as acting on all spins and the sec-
ond as acting on theelative orientationof (the spins on) the two sublattices. The upshot of this
work (precise theorems will be stated in Section 2.1) is that, at small but positive temperatures,
the order parameter space is reducedtoAlthough the firstO(2) is restored as required by the
Mermin-Wagner theorem, the remainifig is a remnant of the secorfd(2). Consequently, at
low temperatures, there are two Gibbs states: one where there is near alignment between nearest-
neighbor spins in every lattice column and the other featuring a similar alignment in every lattice
row. So the continuou® (2) ® O(2) symmetry is evidently broken; we have Gibbs state in which
all that acts is the singl®(2) factor. And all of this in two dimensions!

Having arranged for the requisite two moments via procrastination, we will now reveal why
this does not violate the Mermin-Wagner theorem. The answer is that the enh@ii2es
O(2) symmetry was never a symmetry of thkeamiltonian—this is both the hypothesis and the
driving force of the derivations of the Mermin-Wagner theorem. Indeed, the large symmetry
was only a symmetry of the ground state space and as such thera igriwoi reason to expect
its persistence at finite temperatures. So everything is all right. To further confuse matters, let
us remark that although th&Z; remnant”—the one that does get broken—was not an internal
symmetry of the Hamiltonian, it is, somehow, more organic thanQk®) group that contained
it. This particularZ, may be interpreted as the natural enactor of one of the lattice symmetries
(here a 90-rotation) which are typically associated with antiferromagnets.

The last observation is supported by the fact that there is an order parameter associated with
the above phase transition. Indeed, consider the object

N = (Sta, — S+ S (1.4)

whose expectation is zero at sufficiently high temperatures and non-zero (in appropriate states)
at low temperatures. (In another context, this sort of symmetry breaking has been referred to as
Ising nematic ordering [1,27].) To summarize (in case all of this has been confusing), here we
have arue long-range order but we avoid conflict with the Mermin-Wagner theorem because the
0(2) ® O(2)-symmetry was nevertaue symmetry of the model.

1.3 Order by disorder.

In accordance with the title, the mechanism behind this ordering is called “order by disorder” (or,
in the older vernacular, “ordering due to disorder”). This concept is, as of late, extremely preva-
lent in the physics literature; most of the recent work concerns quantum $sgstems where
finite Splays the role of thermal fluctuations, but the origin of this technique can be traced to the
study of classical systems, see [39,40] and [24]. In particular, in the latter reference, it is exactly
the present model that was studied and this has since been referred to as the canonical model
of order by disorder. The key words are “spin waves” and “stabilization by finite temperature
excitations,” neither of which should be unfamiliar to the mathematical physicist but which, until
recently, have not been exploited in tandem.

Let us proceed with the key ideas; we will attend to the obligatory citations later. For ease of
exposition, let us imagine that somehow even at finite temperatures the two sublattices remain
locked in their Nél states. Thus there is an angtg, which measures the relative orientation
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of the states on the two sublattices. Next we perforspia-wavecalculation to account for the
thermal perturbations about the ground state with fikgdAlthough said instructions may have
profound implications in other contexts, for present purposes this simply means “pitch out all
interactions beyond quadratic order and perform the resulting Gaussian integral.” The upshot of
such a calculation is a quantity, tepin-wave free energyhich should then be minimized as a
function ofp*. As we will see this minimum occurs exactly when the states are either horizontally
or vertically aligned, i.e.¢* = 0° or ¢* = 180°.

The reader may question the moral grounds for the working assumption of finite temperature
Negl order which is the apparent basis of the spin-wave calculation. Of course, the cheap way
out—the final arbitrator—is the fact that herein is a rigorous proof. However, the spin-wave con-
clusions are not so difficult to understand. Foremost, we reemphasize that the outcome is decided
purely on the basis of free energetics. A cursory examination of the calculational mechanics
then reveals that in fact only two ingredients are really needed. The first is ti@éhohtker is
present locally—which is certainly true at very low temperatures. The second boils down to the
statement that ththermodynami@roperties in these sorts of magnets are unaffected—to first
approximation—if the system is restricted to configurations that have magnetic order. In particu-
lar, the long wave-length excitations which are ultimately responsible for the break-up of ordering
in two dimensions contribute insignificantly to the free energy.

Now let us discuss the historical perspective of the present paper. The first phase in under-
standing this sort of problems is coming to terms with the degeneracy of the ground-state space.
When these situations arise, there is a selection at finite temperature according to the ability that
each state has to harbor excitations. The simplest cases, namely a finite number of ground states
and a small effective activity (e.g., a large “mass”) for the excitations have been understood by
physicists for a long time and are now the subject of essentially complete mathematical theo-
rems [35, 36,41]. Many interesting situations with infinitely many ground states were introduced
in late 1970s and early 1980s, see, e.g., [17,40]. Here intricate and/or mysterious calculations
are invoked to resolve the degeneracies—often resulting in phantasmagorical phase diagrams, see
e.g. [18]—but the upshot in these situations is pretty much the same. In particular, with excruci-
ating effort, some cases can now be proclaimed as theorems [6, 10]. However, the cornerstone of
any systematic analysis (either mathematical or physical) is the existence of a substantial gap in
the energy spectrum separating those excitations which resolve the ground-state degeneracy from
the excitations that are readily available to all ground states.

The degenerate ground-state problems look very different for the cla€siogispin models.
Indeed, the continuous nature of the spins in combinations with their internal degrees of freedom
almost inevitably lead to a gapless excitation spectrum. Although this sounds a lot harder, the
necessary computations turn out to be far more palatable. To our knowledge, the first such exam-
ple, studied in [39], was a frustrated FCC antiferromagnet. The system is quite similar to the one
discussed here but with the ordering caused, mostly, by quantum effects. In [24], studying exactly
the model in (1.3), it was demonstrated that these techniques also apply to classical systems. In
the present work we will transform these classical finite-temperature derivations into a mathemat-
ical theorem. The proofs are quite tractable; all that is really required are some error estimates for
the Gaussian approximations and a straightforward contour argument. To ease our way through
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the latter we will employ the method of chessboard estimates. In some concurrent work [3, 4],
a similar analysis is used to resolve some controversies concerning models of transition-metal
oxides. However, in these “TMO-problems,” the ground-state spaces have additional intricacies
so the beauty and simplicity of the method is obscured.

To make our historical perspective complete let us also relate to the existing mathematical work
on systems with continuous spins. A general approach to continuous spins with degeneracies has
been developed in [13,42]. Here the method of resolution appears to be not terribly dissimilar to
ours; e.g., there are quadratic approximations, Gaussian integrals, error estimates, etc. However,
only a finite number of ground states are considered and we suspect that a detailed look at the
“curvature conditions” will reveal that again there is a substantial mass gap in the excitation
spectrum. Finally, from an earlier era, there are the methods based on infrared bounds [14,19-21].
However, the reflection symmetries required to get these arguments started do not seem to hold in
the system defined by (1.3). And even if they did, due to the infrared divergence, this would only
provide misleading evidenceata Mermin-Wagner—that the model under consideration has no
phase transition.

2. MAIN RESULTS

2.1 Phase coexistence.

To state our results on phase coexistence in the model under consideration, we will first recall the
concept of infinite-volume Gibbs measures. We begin with finite-volume counterparts thereof,
also known as Gibbs specifications. ISt (S, Sac) be a spin configuration whef, andS,.
denote the corresponding restrictionsAd@nd A¢, respectively. Let7, (Sy, Sac) be the restric-
tion of (1.3) to pairs of sites at least one of which isAin Then we Iewf\SAC) be the measure on
configurations inA defined by
S dsy) = S o (ds) @.1)
N A) = Zn(Sro) Al0Sy). .

HereQ, denotes the product Lebesgue measure on the unit circle, one far eath Following
the “DLR-philosophy,” see [23], the infinite-volume Gibbs measures are those measures on full
configurations or%? whose conditional probability in a finite volune given the configuration
in the complement is exactly the object in (2.1).

In accord with the standard terminology, see [23], we will say that therplimae coexistence
for parameters], y and g if there exists more than one infinite-volume Gibbs measure for the
interaction (1.3) and inverse temperatyre To adhere with mathematical-physics notation, we
will refer to the Gibbs measures &dbbs statesand we will denote the expectations with respect
to such states by symbo+) 5.

Now we are in a position to state the main result of this paper.
Theorem 2.1 Consider the model as defined above with fixed @, oco) andy € (0, 2). Then

there exists gy € (0, 00) and a functionp — €(f) satisfyinge(f) — 0asf — oo such
that the following holds: For eaci > fiy there exist two distinct Gibbs states) Y and (—)
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such that

(S-S +1] < e(B) (2:2)
whenever, r’ are next-nearest neighbors &f, and

(S-S =1 < e(B) (2.3)

whenever, r’ € Z? are such that’ =r + &,.

Let us informally describe the previous result. First, on both even and odd sublatfiéevef
have a (local) antiferromagnetic order. The distinction between the two states is (hal;’ih
the nearest-neighbor spins @A are aligned in the direction and antialigned in thedirection,

while in (—);}’) the two alignment directions are interchanged. In particular, it is clear that the

order parameten,, defined in (1.4), has positive expectation in thetate<—>(ﬂx) and negative

expectation in thgr—state(—)}y). Since, as mentioned previously, Gibbsian uniqueness guarantees
that (n;); = 0 at sufficiently high temperatures, we havéane fidephase transition of the
“usual” type.

Despite the existence of multiple low-temperature Gibbs states, we emphasize that no claim
has been made about the actual direction that the spins will be aligned to. On the contrary, we
have the following easy corollary of the aforementioned Mermin-Wagner theorem:

Theorem 2.2 Consider the model as defined above witly E R fixed and let(—); be any
infinite-volume Gibbs state at inverse temperatgireThen(—); is invariant under the simulta-
neous rotation of all spins and, in particuld&; ), = O for all r € Z2.

The authors do not see any significant obstruction of Theorem 2.1 (appropriately modified) in
the cases > 2 andd > 2. For the case under consideration, namely 2 andd = 2, it may
be presumed that there is a slow decay of correlations at sufficiently low temperatures. Here it is
conceivable that, with great effort, this could be proved on the basis of technology that is currently
available [9, 22, 30]. The anticipation is that fbr> 3 andn > 2 there are actual sublattice &le
states while fod = 2 andn > 2 the decorrelations should be exponential. However, we do not
expect to see a proof of any statement along these lines in the near future.

2.2 Outline of the proof.

We proceed by an informal outline of the proof of our main result (Theorem 2.1). The argument
hinges on the following three observations:

(1) Suppose&\ is a number that satisfies
BIAZ> 1. (2.4)

Then the (angular) difference of any typical paimeixtnearest neighbor spins will not devi-
ate by more tham from the energetically optimal configuration.
(2) In situations when (1) applies and under the additional assumption talso satisfies

BIN® < 1, (2.5)
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then all important contributions to tHieeeenergy of the system will come from a quadratic—
or spin-wave—approximation to the Hamiltonian.
(3) Finally, if F(¢*) denotes the spin-wave free energy above the ground state where one sub-
lattice is rotated by anglg* relative to the other (see Fig. 1), th&r{¢*) is minimized only
atg* = 0° or ¢p* = 180°.
(The mathematical statements corresponding to (1-3) above are formulated as Theorems 3.1
and 3.2 in Section 3.1.) We observe that the necesaaag stipulated by (2.4—2.5) defines a
running scale—not too big and not too small—which obviously tends to zefo-asco.

Here is how these observations will be combined together to establish long-range order: We
partition the lattice in blocks of sidB. On the basis of (1) above, every block will with high
probability exhibit a near ground-state configuration, which by (2-3) will have the sublattices
either nearly aligned or nearly antialigned. Then we need to show that each of the two possibilities
are stable throughout the entire system. For that we will resort to a standard Peierls’ argument.
Here the crucial observation (see Lemma 4.6) is that two “good” blocks with different type of
alignment between sublattices are necessarily separated by a “surface” of “bad” blocks—that is
those which either contain energetically charged pair of nearest-neighbor spins or whose spin-
wave free energy exceeds the absolute minimum by a positive amount.

Appealing to chessboard estimates (see Section 4.1), the probability of a particular “surface”
can be factorized—as a bound—into the product over the constituting blocks. It turns out that the
energetically frustrated “bad” blocks are suppressed once

BIA? > logB, (2.6)

while the entropically frustrated blocks are suppressed once the excess spin-wave free energy

times B is sufficiently large. Under the conditions (2.5-2.6) @b 1 the entropy of the above

“surfaces” can be controlled. The desired phase coexistence then follows by standard arguments.
A couple of remarks are in order: Due to the perfect scaling properties of Gaussian distribu-

tions the suppression extracted from the spin-wave calculationiéendent of—the desired

decay is achieved solely by choosiBgsufficiently large. Larges is needed only to suppress

large deviations away from the “perfect” ground states. Notwithstanding, for (technical) ease of

exposition we will have to mak® increase slowly withg; see (4.19) for the precise relation

of A, B andg.

The various steps of the proof are laid out in the following order: In Section 3 we carry out
the harmonic approximation and provide the needed control of the spin-wave free energy. In
Section 4 we invoke chessboard estimates and some straightforward bounds to control the contour
expansion. The actual proof of Theorem 2.1 comes in Section 4.3.

3. SPIN-WAVE CALCULATIONS

As mentioned above, the underpinning of our proof of the main result is (the outcome of) a
spin-wave free-energy calculation. This calculation involves simply working with the harmonic
approximation of the Hamiltonian (1.3) for deviations away from a fixed ground state. The cal-
culation itself is straightforward although special attention must be paid to the “zero mode.” For



ORDER BY DISORDER IN ANO(2)-SPIN SYSTEM 9

reasons that will become clear in Section 4—and also to make discrete Fourier transform readily
available—all of the derivations in this section will be carried out on the lattice Brusf L x L-

sites. Here, for technical convenience, we will restkidd multiples of four so that we can assure

an equal status of the two Hkstates.

3.1 Harmonic approximation.

We will begin by an explicit definition of the torus Hamiltonian. Here and henceforth we will
parametrize the spins by angular varialles= (¢;) which are related to th&'s by the usual
expressiors, = (cosd;, sind;). (Of course, thé,’s are always to be interpreted only module.p

Up to irrelevant constants, the corresponding torus Hamiltogdarcan then be written as

H0) =13 Z{Z + cosOr — O 1e+8,) + COYO; — 0I’+éx—éy)}

I‘ETL

+Jy D {cod, — brie,) + cOG — bOrye))}- (3.1)

I'ETL

The spin-wave calculations are only meaningful in the situations where each of the sublattices is
more or less aligned with a particular &lestate. To describe the overall and relative orientation

of the spins on the even and odd sublattices we will need two adglasd ¢*, respectively.
Depending on the parities of the coordinates ofre will write the; for r = (x, y) in terms of
thedeviation variableg), as follows:

0*, X, y-even
0* + o*, x-odd, y-eve
0 = 9, + ¢ y-even (3.2)
0* + «, X, y-odd,
0"+ ¢* + x, x-even,y-odd

Obviously, only the relative anglg* will appear in physically relevant quantities; the overall
orientationd* simply factors out from all forthcoming expressions.

The principal object of interest in this section is the finite-volume free energy, which will play
an important role in the estimates of “entropically-disfavored” block events in Section 4. For
reasons that will become clear later, we will define this quantity by the formula

1 ; J\L%2
FLa(@") = 1z |09/e_ﬂ%L(o))(L,A(0) (Ig_n) H do. (3.3)
FETL

Here @) is the Lebesgue measure on unit circle amch (@) = x..A(0; ¢*, 6%) is the indicator
that the deviation quantitia®, defined fron® as detailed in (3.2), satisfy,| < A forallr € T.
The factors ofg have been added for later convenience.

The goal of this section is to (approximately) evaluate the thermodynamic limit of the quan-
tity F_ a(¢*) and characterize where it achieves its minima. As is standard in heuristic cal-
culations of this sort, we will first replace the Hamiltonian (3.1) by its appropriate quadratic
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approximation. We will express the resulting quantity directly in variaijes

J
A @) =L S0~ bsos) + (0 — Vs 6)?)

YETL

J
+ 2250089 SO — e+ O =18 (34

reT,
This approximation turns the integral in (3.3) into a Gaussian integral. As we will see later, here
the indicator in (3.3) can be handled in terms of upper and lower bounds which allow “diago-
nalization” of the covariance matrix by means of Fourier variables. The result, expressed in the
limit L — oo, is the following momentum integral:

o1 dk .
FOI=3 [ rp %90, 35)

where
Di(¢") = |1 — tatkd2 411 — dta=k)|2 1y cogp) (|1 — 42— |1 - M), (3.6)

Herek; andk, are the Cartesian components of vedtorThe quantityF (¢*) has the interpre-
tation—justified via the preceding derivation—as #pn-wave free energyAs is checked by
direct calculation, foy € [0, 2) we haveDy(¢*) > 0 almost surely with respect to the (normal-
ized) Lebesgue measure onaf, 7]°.

Having sketched the main strategy and defined the relevant quantities, we can now pass to the
statements of (admittedly dry) mathematical theorems. First, we express the conditions under
which the above approximate calculation can be performed:

Theorem 3.1 Givene > Oandy € [0, 2), there exist® = d(e, y) > Osuch thatiffJ, A ando
satisfy the bounds

BIA3 < and BIAZ>1/6, (3.7)
then
Ii[n SUp{FL A (@) — F(¢")| < € (3.8)

holds for every* € (—x, z].

The proof is postponed to Section 3.2. Having demonstrated the physical meaning of the
functiong* — F(¢*), we can now characterize its absolute minimizers:

Theorem 3.2 For all y € (0, 2), the absolute minima of functiar — F(¢*) occur (only) at
the pointsp* = 0° and¢* = 180°.

Proof. The proof is an easy application of Jensen’s inequality. Indeed ket[0, 1] be the
number such that®®— 1 = cog¢*). Then we can write
Dk (¢*) = aDy(0°) + (1 — a)Dy(180"). (3.9

Since Dy (0°) is not equal toDy (180°) almost surely with respect tdkdthis is where we need
thaty > 0), the concavity of the logarithm and Jensen’s inequality imply Bh@t) > aF(0°) +
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(1 - a)F(180) whenevera # 0, 1. This shows that the only absolute minima tRatan have
are 0 and 180. Now F is continuous (under the assumption that 2) and periodic, and so
there exists at least one point (rxz, 7] where it attains its absolute minimum. BEt{0°) =
F(180) and sap* — F(¢*) is minimized by bothp* = 0° and¢* = 180°. O

3.2 Proof of Theorem 3.1.

Throughout the proof we will fixJ € (0, co) andy € [0, 2) and suppress these from our notation
whenever possible. Since everything is founded on harmonic approximation of the Hamiltonian,
the starting point is some control of the error that this incurs:

Lemma 3.3 There exists a constant & (0, co) such that the following holds: For ank <
(0, 00), anyb*, ¢* € (—n, ] and any configuratiod® = (6;) of angle variables ofT, if the
corresponding? = (¥,) satisfy|¥;| < A forallr € T, then

|BAO) — Iy ()] < cr(1+ p)BIAZLA (3.10)

Proof. We begin by noting that};| < A for all r € T, implies that|¢, — ¥;/| < 2A for all pairs
of nearest and next-nearest neighlmns € T, . This and the uniform bound

3
‘ coda+ x) — (cos(a) — sin(@)x — %cos(a)xz)‘ < % (3.12)

show that, at the cost of an error as displayed in (3.10), we can replace all trigonometric factors
in (3.1) by their second-order Taylor expansion in difference% oHence, we just need to show
that these Taylor polynomials combine into the expression#oy-.

It is easily checked that the zeroth order Taylor expansiofy iexactly vanishes. This is a
consequence of the fact that fr= 0 we are in a ground state where, as argued before, both
sublattices can be independently rotated. This means we can suppagethat = 0° in (3.1)
at which point it is straightforward to verify tha#{ (@) actually vanishes. Similarly easy it is to
verify that the quadratic terms yield exactly the expressionfpr-. It thus remains to prove
that there are no linear termsdh’s.

First we will note that all next-nearest neighbor terms in the Hamiltonian certainly have this
property because there we hate— 6,545, ~ 0 or z, at which points the derivative of the
cosine vanishes. Hence we only need to focus on the nearest-neighbor part of the Hamiltonian—
namely, the second sum in (3.1)—which we will temporarily denotesfy". Here we will
simply calculate the derivative of"" with respect taj,:

0 . .
a_m%_nn(a) 90 Sin(@r e, — 6r) + siN(Or e, — 0r)

— {sin(0; — 6i—¢,) + sin(@: — 6_¢)}, (3.12)

where thed, on the right-hand side should be set to the “ground-state” values. To make the
discussion more explicit, suppose thatas both coordinates even. Then an inspection of (3.2)
shows that the first sine is simply i#t) while the second sine evaluates to(gin+ z) =



12 M. BISKUP, L. CHAYES AND S.A. KIVELSON

— sin(¢*). The net contribution of these two terms is thus zero. Similarly, the third and the fourth
sine also cancel out. The other possibilitiesrf@re handled analogously. a

Using the harmonic approximation of the Hamiltonian, let us now consider the corresponding
Gaussian equivalent of the integral in (3.3):

Qua@) = [ &7 D7 @) (5) " Tl (313)

TETL

where dJ, is the Lebesgue measure @nand y_ A () is the indicator thatd,| < A for all

r e T.. Our next goal is to evaluate the effect of this indicator, which we will accomplish by
proving an upper and lower bound @ A (¢*). We commence with the easier of the two, the
upper bound:

Lemma 3.4 Forall g € (0,00),all A € (0, ) and all¢* € (—=x, 7],

lim SupIOg Qt,ZA ()

L—>oo

< —F(@"). (3.14)

Proof. The argument is relatively straightforward so we will be correspondingly brief. (A more
verbose argument along these lines can be found in [3].) Pick-a 0. We will invoke the
exponential Chebyshev inequality in the form

=~ 1p32AL2 _1- 2
FLa(@) < €830 expl zﬁMrZT 9 7). (3.15)
elL

Next we plug this bound into (3.13), diagonaliz& 4- by passing to the Fourier components
D=L cr, ¥,€"k and perform the Gaussian integrals with the result

1 2 1
Xy < @zf AL _ 3.16
QL,A(¢ ) = k]:ﬂj; [i + Dk(¢*)]1/2 ( )
Sl
HereT; = {2zL~Y(ny,np): ni = 1,2,..., L} is the reciprocal lattice anBy (¢*) is as defined

in (3.6). The result now follows by taking logarithm, dividing by and invoking the limitd. —
oo followed by 4 | O—with the last limit justified by the Monotone Convergence Theoreml

The corresponding lower bound is then stated as follows:

Lemma 3.5 Forall g € (0,00), all A € (0, >0), all * € (—=z,x] and all 1 > 0 satisfying
pJIA%) > 1, we have

iminf 109 QL.a (@)
L2

L—>oo

> _F(¢", 1) + Iog(l - (3.17)

1
53a71)"

where H¢*, 1) is given by the same integral as(®.5)with Dy (¢*) replaced byl + Dy (¢*).
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Proof. Again, we will be fairly succinct. Lefi > 0. We begin by considering the Gaussian
measure defined by

1 1 BIN\L2/2
Pi(d9) = ————exp| —A @) — =pI1 I 2HE= dv 3.18
(00) = Gy P @) — 58 rEZTL|r|}(2”) [T @9)

where Q| (¢*, A1) is an appropriate normalization constant. [Et denote the corresponding
expectation. A simple bound shows that we have

Qu.a(9") = Qu(¢”™, DE;(Xa,L), (3.19)

which reduces the desired estimates to two items: a calculation of the in@gfaf, 1) and a
lower bound orE; (a.L)-
The first problem on the list is dispensed with similarly as in the proof of Lemma 3.4, so we

just state the result:

jim 109QL@ A —F (", A). (3.20)

L—>oo L2
As far as the second item on the list is concerned, here we use that by the results of [5] the
magnitudes of the Gaussian field with distribution (3.18) are positively correlated. (An alternative
proof of this fact uses reflection positivity.) Invoking the product structurg,of and translation
invariance ofP;, we thus have

2
E;(Za.L) = Pi(190o] < A)L , (3.21)

wherevy is the variable at the origin of the torus.

It remains to boun@®; (99| < A) from below, which we will do by estimating the complemen-
tary probability from above. We will pass to the Fourier compon@ntdefined as in the proof
of Lemma 3.4. Under the measure (3.18), these components have zero mean, the random vari-
ablesdy andﬁ;, for differentk andk’ are uncorrelated (a consequence of translation invariance),
while for the autocorrelation function we get

1 1 1

E; (191?) = — < : 3.22
(19 BJ 2+ Di(¢*) ~ BIa (3.22)
This allows us to use the (quadratic) Chebyshev inequality to derive
Ei(19oP) 1 <« E:(%P 1
P, (|9 A) < ———~ = — . 3.23
Aol = A) < == LZKZT; A2 S 5387 (3.23)
sl
Inserting this into (3.21) and applying (3.19) and (3.20), the rest of the proof boils down to taking
logs, dividing byL? and lettingL — oo. O

Now we are ready to prove the principal approximation theorem:

Proof of Theorem 3.1We just assemble together the previously discussed ingredients. First, our
constraints (3.7) imply thah < 62 and so we can assume that < z. Under this condition
the integrals in (3.3) and (3.13) are over the same sét'sfand so by Lemma 3.3 we have the

uniform bound
log Qr,a(¢") _

L2 FLA@)| < ci(1+p)BIAS. (3.24)
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Second, Lemmas 3.4-3.5 ensure that

im supl/29QLA @)

L—oo LZ

— F(@)

< [F(¢*) — F(¢", 1| + Iog(l— (3.25)

1
53a)

By the assumptions in (3.7), given an> 0 we can choosé > 0 such that the right-hand side
of (3.24) is smaller tham/2. On the other hand, sinde(¢*, 1) increases td-(¢*) as4 |, 0 and
sincefA? > 1/5, we can certainly choose/a> 0 (satisfyingfJA?\ > 1) and adjusb such
that also the right-hand side of (3.25) is less th@2. Combining these observations, the desired
bound (3.8) is proved. O

Remark 1 Physically motivated readers will notice that in both Lemmas 3.4 and 3.5 we have
introduced a “mass” into the spin-wave spectrum before (or while) removing the indjgator

The primary reason for this is the bad behavior of the zero Fourier mode for which the “spin-wave
Hamiltonian”.#_ 4 provides no decay in the Gaussian weight.

4. PROOF OF PHASE COEXISTENCE

Having discussed the spin-wave approximations (which will be essential for the arguments in this
section), we are now ready to start with the proof of phase coexistence. Our basic tool in this
section will be the chessboard estimates, so we will begin by introducing the notation needed for
applications of this technique.

4.1 Chessboard estimates.

As mentioned previously, in order use chessboard estimates, for technical reasons, we have to
confine our technical considerations to toroidal geometries. Again we willuge denote the

torus ofL x L sites (as in Section 3 we restrictto multiples of four). We will consider several
events which will all take place in a baxg of (B + 1) x (B + 1) sites (which, for definiteness,

we will assume to be placed with its lower-left corner at the torus “origin”). Since we want to

be able to covel| by translates of\ g, we will assume thak is an even multiple oB. Thus,

if A is an event inAg, then its translate bt; B lattice units in thex-direction andt; B units in

the y-direction will be denoted by;(A), wheret = (i1, t;). Heret takes values in a factor torus,
namely,t € T ,g. Note that events in the “neighboring” translates\gf may both depend on

the shared side of the corresponding boxes.

Let P_ 4 denote the Gibbs measure @p defined from the appropriate torus version of the
Hamiltonian (1.3) and inverse temperatyreSpecifically, using the “spin-version” of the Hamil-
tonian (3.1), the Radon-Nikodym derivative®f 5 with respect to tha priori spin measur€r,
ise PO /7, ,, whereZ, 4 is the corresponding partition function. The statement of the chess-
board estimates will be considerably easier if we restrict our attention to reflection symmetric
events, which are thosd for which S € A implies that the corresponding reflecti8hin any
coordinate plane passing through the centek pfsatisfiesS* € A. For these events we will also
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define the constrained partition function

zL,ﬁ(A)zzL,ﬁ< I1 1“<A’>L . (4.1)
tETL/B #

Herel, 4 is the indicator ofr;(A) and(—)_ s denotes the expectation with respecPtoy.
Then we have:

Theorem 4.1(Chessboard estimatesfConsider the Gibbs measufg s as defined above. Let

Ai, ..., An be a collection of (not necessarily distinct) reflection-symmetric evertssiand
lettq, ..., ty be distinct vectors frorfif ;5. Then
m m
ZL p(Aj)y@B/L?
PL,ﬁ( ﬂ Ty (.AJ)) < H(#) . (42)
j=1 j=1 Zip

Proof. This is the standard chessboard estimate implied by the reflection positivity condition
[19-21]. Here we consider reflection positivity in planes “through” sites, which holds in our case
because we have only nearest and next-nearest neighbor interactions. O

Unfortunately, as often happens with chessboard estimates, we may not be able to estimate
directly the quantityZ,_ 4(.A) for the desired event under consideration. Instead, we will decom-
poseA into a collection of more elementary events for which this estimation is easier. Here
chesshoard estimates can be used to establish the following standard (and often implicitly used)
subadditivity property:

Lemma 4.2 (Subadditivity) Let the torusll', and the blockAg be as above and let us consider
reflection-symmetric event$ and (Ay)ke» in Ag. If A C J, » Ak, then

ZLp (Y < > 70 5 (A B (4.3)
ket

Proof. See, e.g., Lemma 6.3 in [3]. a

Our succinct recount of the chessboard estimates is now complete. Readers wishing to obtain
more details on this and related topics are referred to (still succinct) Section 6.1 of [3] or the
classic references [19-21] and [38].

4.2 Good and bad events.

Here we introduce the notion of good and bad blocks and events. Roughly speaking, a block
is good if all spins on both sublattices are tolerably close to @l K&te and where the relative
orientation of the two Nel states is near one of the two optimal values predicted by the spin-wave
approximation. The bad blocks will of course be all those that are not good. Both these notions
will involve two parameters: the spin-deviation scalencountered already in Section 3, and the
scalex marking the distance to a spin-wave minimum which is still considered good. We will
keepx small but fixed, whileA will have to be decreased (and the block sdleill have to be
increased, albeit only slowly) gsgoes to infinity.
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The precise definition is as follows:

Definition 1 We say that a translate @fg by Bt, wheret € T| g, is agood block or that the
good blockevent occurred in this translate if there exist two angteand¢* such that:

(1) The anglep* satisfies eithejp*| < k or |¢* — 180| < «.
(2) The collection of deviation anglas = (%) defined from the angle variabl@s= (¢;) and
the angle®* and¢* via (3.2) obeys

9] < A (4.4)
forallr e T|.

Let Gy be the notation for good-block event with ~ 0° and letG, g be the good-block event
for ¢* in thex-neighborhood of 180 The complementary bad-block event will be denote®by
We remark that all these events depend only on the spin configuration (angle varialgs) in

Remark 2 Itis clear that if eitheGy or G150 occurs (and ifc, A « 1), then the spins ihg are
indeed well-behaved in the sense of (2.2-2.3) in Theorem 2.1. Explicitly;'ife Ag is any pair

of next-nearest neighbors, thén- S is very close to negative one. Moreover, Gnwe have
S-S~ 1lwhenr’=r+8& andS -S- ~ —1forr’ =r + &, while the opposite relations hold
onGigo. (Oncek, A « 1, the requisite error is proportional kofor next-nearest neighbors and

to A? for the nearest neighbors.) Thus, the first step in obtaining (2.2—2.3) will be to show that
any particular block is of a given type of goodness with probability tending to offe-ascc.

Our goal is to use chessboard estimates to show that, with overwhelming probability, any given
block is good and that, if one block is good with a known type of goodness, any other given block
(regardless of the spatial separation) will exhibit the same type of goodness. Asitturns out, on the
basis of Theorem 4.1, both of these will boil down to an efficient estimate of the quantjti3)
defined in Section 4.1. Unfortunately, here we will have to introduce a further partitioning: We
let Be denote the event that, for somext-nearesheighbor pair,r’ € Ag, we have

“‘9r — 6| — 75‘ (4.5)

> —.
- 2B
This event marks the presence of an energetic “catastrophy” somewhere in the block. As we will
see, the complementary part/6f

Bsw = B\ Be (4.6)

denotes the situations where the energetics—and the spin-wave approximation—are good but
where the configuration is not particularly near either of the spin-wave free-energy minima.

The eventBsy will be further split according to the relative angle between the two neéi-Ne
states on even and odd sublattices. Specifically, we/let = 1, ..., s, bes angles uniformly
spaced on the unit circle. Then we I, denote the event that the blogk is bad but such that
there exists an angl# for which the deviation angle8 = (;) defined using* and¢* = ¢;
satisfy || < A at eachr € Ag. (Note that the second part is essentially the definition of the
good block with the additional stipulation that = ¢ in part (1) of Definition 1.) It remains to
show that the3y,, indeed coveBsw;:
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Lemma 4.3 Lets be such thats > 4z. Then

S
Bsw C U Bg\)/v 4.7)
i—1

Proof. Consider a configuration of angle variab®s= (6;) such thatBsy occurs. Since this
rules out the occurrence 8k, we have

n—%<|@r—9r/|<n+% (4.8)
for any next-nearest neighbor pair’ € Ag. But any two sites on the even sublatticeAg can
be reached in less thd steps and s6,, for any everr’ € Ag is within A /2 of 5 or 6y + =,
depending on the parity of in the sublattice. Hence, the overall deviations from the appropriate
Neél state in directiod* = 6y, wheref, is the variable at the torus “origin,” do not excead?2
throughout the even sublattice. Similar considerations apply to the odd sublattice where we use
the positivex-neighbor of the origin to define the angle+ ¢*.

It remains to show that the above implies that the spin configuration is contained in one of

the eventng\)N. Leti = 1,...,s be the unique index such that < ¢* < ¢, wheregg,
is to be interpreted ag;. Then|¢* — ¢| < 2z /s which by our assumption is less thavy2.
Consequently, all spins on the even sublattice are withiof eitherd* or * + =, depending on
the parity, while those on the odd sublattice are withiof eitherd* 4 ¢ or 6* 4 ¢ + «, again

depending on the parity. In particular, the evéié@v occurs, thus proving (4.7). O

4.3 Proofs of Theorems 2.1 and 2.2.

As alluded to in the paragraph before (4.5), the computational part of the proof boils down to
estimates of the partition functions for evelitts and Bsy. These will be provided in next two
lemmas. We begin with the evelit:

Lemma 4.4 There exist® > 0 and constantsc; € (0, co) such that iffJ € (0, o) and
A € (0, 1) satisfy the boundg.7), then we have

lim sup(ZLL(BE))(B/L)2 < 4B?(Cyf 3) B2 A INY/B, (4.9)
L—o00 VAW

Proof. WhenBg occurs, the exists a next-nearest neighbor bondgnvhere the associated angle

variables satisfy (4.5). An easy calculation shows that the energy this bond contributes to the

Hamiltonian in (3.1)—note that the latter assigns zero energy to tBédieund states—exceeds

the J-multiple of

1+cogz — &) = 2sirf(%). (4.10)

Bounding the sine from below by a linear function, which is justified becaugB < =z, the
right-hand side is not less than a numerical constant time$)2. We thus get

7, 5 (Be)®/Y” < 4B2e2f I8, (4.11)
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wherec, e (0, 00) is a constant and whereB4 > 2B(B + 1) bounds the number of ways to
choose the “excited” bond in each translate\g.

Our next task is to derive a lower bound on the full partition function. A simple way to get such
a bound is to insert the indicator that all angle varialfleare within A of one of the spin-wave
free energy minima, say; OThis gives

27\ L?/2 o
zL,ﬁz(ﬁ—ﬁ) e L) (4.12)

whereF_ A isasin (3.3). Fix > 0 and lety > 0 be as in Theorem 3.1. Then our assumptions
on g, A andé and the conclusion (3.5) tell us that

27 \1/2 o
T 1/L2 <t —F(0°)—e
I|Lnl|0rc1)f (ZLp) > (ﬁJ) e . (4.13)
Let us write the right-hand side &szJ)~/?, wherec;s is a positive constant independent/f

andA. Raising this bound to thB? power and combining it with (4.11) the bound (4.9) is now
proved. a

Next we will attend to a similar estimate for the evédaty:

Lemma 4.5 For eachx « 1and eachy € (0, 2) there exist numberg(x) > 0andé > 0 such
thatif A « x and if §J, A andJ¢ satisfy the bounds i(8.7), then

. Z. 4B (B/L)?
lim sup(M) < 87 A~lg P®B?, (4.14)
L—oo ZL,ﬂ
Proof. Let¢,i = 1,...,s, besangles uniformly spaced on the unit circle. Supposediaaid A

satisfy 4r < sA < 8x. In light of the decomposition (4.7) and the subadditivity property from
Lemma 4.2, it suffices to show that, under the conditions of the lemma,

ZLaﬁ(Bg\)N )(B/L)2 < e—ﬂ(K)82 (415)

lim sup(

L 00 VAW
foreveryi =1,...,s.

First we note that fop; nearer tham — A to either O or 180 we automatically havég\),v C
Go N Gigo. But thenBY), = @ because the everl), is a subset of3. By our assumption
that A « x we just need to concentrate only or= 1, ..., s such thaip is at least, sayy/2
from 0° or 180. Here we will use thaZ, (B, is exactly the(/zj—’;)Lz/2 multiple of the integral in

(3.3) with¢* = ¢/, while Z_ 4 can be bounded from below by a similar quantitygor= 0°, i.e.,

(ZLﬁ(Bg\)N)

ZLp
Let nowe > O—whose size is to be determined momentarily—and ch@ose 0 so that
Theorem 3.1 holds. Then the quantities s (¢*) on the right-hand side are, asymptotically
asL — oo, to within € of the actual spin-wave free energy. Hence, we will have

)" < exp{—FLa () + FLa@). (4.16)

Z @) 1/L.2
lim sup(ﬂ) < exp{—F (¢") + F(0°) + 2¢}. (4.17)
L—o0 ZLp
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This proves (4.15) withp (x) given as the minimum oF (¢) — F(0°) — 2¢ over all relevant.
To show thatp (x) is positive fork <« 1, we first recall that Theorem 3.2 guarantees thgt*)
is minimized only byp* = 0°, 180°. Since all of the relevang; are bounded away from these
minimizers by at leask/2, choosinge = ¢(x) > 0 sufficiently small impliesp(x) > 0 as
desired. O

Apart from the above estimates, we will need the following simple observation:
Lemma 4.6 Letx <« 1. Then for any be two neighboring vectaist, € T\ g,

Tty (g) N Tty (g) - (T'[l (QO) N Tt, (QO)) U (T'[l (ngO) N Tty (gl80))' (418)
In other words, any two neighboring good blocks are necessarily of the same type of goodness.

Proof. SinceG = Gy U G1g0, the set on the right is a subset of the set on the left. The opposite
inclusion is a simple consequence of the fact that neighboring blocks share a line of sites along
their boundary. Indeed, suppose the shared part of the boundary is parallel wighattis.

Forx « 1, Definition 1 requires that the neighboring boundary spins are nearly align€f dg-a

block and nearly antialigned in @-block. Hence, the type of goodness must be the same for
both blocks. O

Now we are ready to prove our main result:

Proof of Theorem 2.1As is usual in the arguments based on chessboard estimates, the desired
Gibbs states will be extracted from the torus mea®yrg defined in Section 4.1. Throughout the
proof we will let # be sufficiently large and les scale as a (negative) power piwith exponent
strictly between 13 and %2, andB grow slower than any power ¢f, e.g., as in

A=p"% and B=logg. (4.19)

We note that these relations (eventually) ensure the validity of the bounds (3.7) for any given
0 and thus make the bounds in Lemmas 4.4-4.5 readily available.

First we will show that in any typical configuration frok ; most blocks are good. Lej
denote the sum of the ratios on the left-hand side of (4.9) and (4.14), i.e.,

= (M)(B/L)Z .\ (M)(B/L)z

: 4.20
Z0, (4.20)

ZL,ﬂ

and lety = limsup _, ., #.. By Theorem 4.1 and Lemma 4.2, the probability of a good block is
then asymptotically in excess ofdy. On the basis of Lemmas 4.4-4:pis bounded by the sum

of the right-hand sides of (4.9) and (4.14) which under the assumptions from (4.19) can be made
as small as desired by increasifi@ppropriately.

It remains to show that blocks with distinct types of goodness are not likely to occur in one
configuration. To this end let us first observe that, ondg small, no block can simultaneously
satisfy both event§y andGigo. Invoking also Lemma 4.6, in any given connected component of
good blocks the type of goodness is homogeneous throughout the component. (Here the notion
of connectivity is defined vidl'. /g, i.€., blocks sharing a line of sites in common, but other def-
initions would work as well.) We conclude that two blocks exhibiting distinct types of goodness
must be separated by a closed surface (kRegennected) consisting of bad blocks.
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We will now employ a standard Peierls’ estimate. For ayT, ;g the evenGo N 7 (G1g0) IS
contained in the union of events that the respective blocks are separateddoynaected surface
involving, saym bad blocks. Using our choice gf Lemma 4.2 and Theorem 4.1, the probability
of any surface of this size is bounded #Y. Estimating the number of such surfacesdy for
some sufficiently large < oo, and noting thain is at least 4, we get

PLp(Go N 11(G1s0)) < > ()™ (4.21)

m>4

Obviously, the right-hand side tends to zerojas 0.

Thus, informally, not only are most blocks good, but most of them are of particular type of
goodness. To finish the argument, we can condition on a block farthest from the origin to be,
say, ofGigotype. This tells us, uniformly irL, that with overwhelming probability the block
at the origin is of typ&jigo and similarly for the other type of goodness. The conditional state
still satisfies the DLR condition for subsets not intersecting the block at the “back” of the torus.
Taking the limitL — oo establishes the existence of two distinct infinite-volume Gibbs states
which clearly satisfy (2.2—2.3) with(f) directly related tay and the various other parameters
(cf Remark 2 in Section 4.2). a

Proof of Theorem 2.2This is, of course, just a Mermin-Wagner theorem. Indeed, the Hamil-
tonian (1.3) satisfies the hypotheses of, e.g., Theorem 1 in [26], which prohibits breaking of any
(compact) continuous internal symmetry of the model. O
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