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Abstract: We consider instances of long-range percolation on Zd and Rd , where points at dis-
tance r get connected by an edge with probability proportional to r−s, for s∈ (d,2d), and study the
asymptotic of the graph-theoretical (a.k.a. chemical) distance D(x,y) between x and y in the limit
as |x−y| →∞. For the model on Rd we show that, in probability as r→∞ for any nonzero x ∈Rd ,
the distance D(0,xr) is asymptotic to φ(r)(logr)∆, where φ is a positive, continuous function
obeying φ(rγ ) = φ(r), with γ := s/(2d), for all r > 1, and ∆ := 1/ log2(1/γ). For the model on Zd

we show that D(0,xr) is with probability tending to one squeezed between two positive multi-
ples of (logr)∆. The proof of the asymptotic scaling is based on a subadditive argument along
a continuum of doubly-exponential sequences of scales. The results strengthen considerably the
conclusions obtained earlier by the first author. Still, significant open questions remain.

1. INTRODUCTION

1.1 The model and main results.

Long-range percolation is a tool to expand connectivity of a given graph by adding, at ran-
dom, edges between far-away vertices. Although arising from questions in mathematical physics
(Dyson [15], Fröhlich and Spencer [16]), the problem was recognized quickly to pose interesting
challenges for probability (Schulman [21], Newman and Schulman [20], Aizenman and New-
man [1], Aizenman, Kesten and Newman [2]). More recently, instances of long-range percolation
have been used as an ambient medium for other stochastic processes (e.g., Berger [6], Benjamini,
Berger and Yadin [4], Crawford and Sly [11, 12], Misumi [19], Kumagai and Misumi [17]). The
overarching theme here is the geometry of random networks.

In this paper we consider two models of long-range percolation on Rd . One of these is set on
the hypercubic lattice Zd (endowed, a priori, with its nearest-neighbor edge structure) augmented
by adding an edge between any non-neighboring vertices x and y with probability

px,y := 1− exp{−β |x− y|−s} (1.1)

independently of all other edges. Here β > 0 and s > 0 are parameters while | · | is any norm
of choice. Our main point of interest is the behavior of the graph-theoretical distance D dis(x,y),
defined as the minimal number of edges used in any path in that connects x to y, in the limit as
the separation between x and y tends to infinity.
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The question of distance scaling in long-range percolation has been studied quite intensely in
the past and this has revealed five regimes of typical behavior, s < d, s = d, d < s < 2d, s = 2d
and s > 2d, with rather different kinds of asymptotic behavior. Deferring the discussion of the
specifics and requisite references until the end of this section, let us focus attention directly on
the regime d < s < 2d. Here the first author [8, 9] showed

D dis(0,x) = (log |x|)∆+o(1), |x| → ∞, (1.2)

where
∆ :=

1
log2(1/γ)

for γ :=
s

2d
, (1.3)

and where o(1)→ 0 in probability. The proof worked for more general connection probabilities
than (1.1); in fact, it was enough that pxy = |x− y|−s+o(1).

The question we wish to resolve here is whether assuming the “perfect” scaling (1.1) yields a
sharper version of the asymptotic (1.2). Our first result in this regard is the subject of:

Theorem 1.1 Consider the long-range percolation on Zd with connection probabilities (1.1)
for β > 0 and s ∈ (d,2d) and let D dis(x,y) denote the chemical distance between x and y. There
are c,C ∈ (0,∞) depending only on β , s and the underlying norm | · | such that

lim
|x|→∞

P
(
c(log |x|)∆ ≤ D dis(0,x)≤C(log |x|)∆

)
= 1, (1.4)

where ∆ is as in (1.3).

As soon as we accept the bound (1.4), a natural next step is the consideration of possible
distributional limits of D dis(0,x)/(log |x|)∆ as |x|→∞. We are able to argue that if a distributional
limit exists along a particular lattice direction, then it has to be non-random. Unfortunately, the
proof of existence of the limit remains elusive, despite multiple attempts. Ultimately, we were
led to the consideration of a model on Rd where progress could eventually be made.

To define long-range percolation over Rd , fix β > 0 and consider a sample Iβ from the Poisson
process on Rd×Rd with (σ -finite) intensity measure

µs,β (dxdy) := 1{|x|2<|y|2}
β

|x− y|s
dxdy, (1.5)

where | · | is the norm from (1.1) while | · |2 is, here and henceforth, the Euclidean norm on Rd . Let
us write Sym(Iβ ) := Iβ ∪{(y,x) : (x,y) ∈Iβ} for the symmetrized version of Iβ . We regard
a “point” (x,y) ∈ Sym(Iβ ) as an undirected edge connecting the two points. Given x,y ∈Rd , we
then proclaim

D(x,y) := inf
{

n+
n

∑
i=0
|xi+1− yi| : n≥ 0, {(xi,yi) : i = 1, . . . ,n} ⊂ Sym(Iβ )

}
(1.6)

with the convention y0 := x and xn+1 := y, to be the chemical distance between points x,y ∈ Rd

in the graph with edges Iβ .
We will at times refer to the sequence {(xi,yi) : i = 1, . . . ,n} as a path and call xi+1− yi the

i-th linear segment. Note that the infimum is over a non-empty set as the empty path, i.e., the
one with n = 0, is always included. Note also that edges (xi,yi) with |xi− yi| < 1 need not be
considered as their removal decreases (thanks to the triangle inequality for the norm | · |) the
expression in the infimum. The main result of the present paper is then:
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Theorem 1.2 For each s∈ (d,2d), each β > 0 and each choice of the norm | · | there is a positive
and continuous function φ : (1,∞)→ (0,∞) satisfying

φ(rγ) = φ(r), r ≥ 1, (1.7)

with γ as in (1.3), such that for each x ∈ Rd r{0},

D(0,rx)
φ(r)(logr)∆

−→
r→∞

1, in probability. (1.8)

Moreover, t 7→ φ(et)t∆ is convex throughout [0,∞).

Note that we claim existence and continuity of φ on (1,∞) only. Actually, φ has a continuous
extension to r = 1 if and only if it is constant.

1.2 Remarks and open questions.

We continue with some remarks and open questions. First we note that the mode of convergence
in (1.8) cannot generally be improved to almost sure. This is best seen in d = 1 by the following
argument: A ball of radius rγ centered at the origin will meet an edge of length of order r (in fact,
even up to lengths r1/(2γ−1)) with a uniformly positive probability. If we parametrize the nearer
endpoint of this edge as rγx and write ry for the farther endpoint of this edge, then the assumption
of a.s. convergence in Theorem 1.2 would tell us

D(0,ry)≤ 1+D(0,rγx)

= 1+φ(rγ)(logrγ)∆
(
1+o(1)

)
=

1
2

φ(r)(logr)∆
(
1+o(1)

)
,

(1.9)

a contradiction with our very assumption. (We used (1.7) and the fact that γ∆ = 1
2 .)

Next, although this may not be quite apparent at first sight, the distance on Rd is actually quite
closely related to the chemical distance on Zd . Indeed, replacing the Lebesgue measure on the
right of (1.5) by the counting measure on Zd , the case when | · | is the `1-norm on Rd reduces
exactly to distance D dis(x,y) with x,y ∈ Zd connected with probability px,y as in (1.1). However,
this does not seem to help in extending the sharp asymptotic (1.8) to the model on Zd .

Another remark concerns the function φ which encodes the dependence of the limit on β and
the underlying norm | · |. We in fact believe:

Conjecture 1.3 The function φ above is constant for each β > 0.

This is because φ seems to appear largely as an artifact of our method which uses subadditivity
arguments to relate the chemical distances at scales of the form {rγ−n

: n ≥ 1} for a fixed choice
of r > 1. The growth rates of this sequence for two distinct r,r′ ∈ [eγ ,e) are so incommensurate
that the same proof would apply even if the intensity measure (1.5) were modulated depending
on which of the two sequences |x− y| is closer to. In that situation, we would actually not expect
the corresponding φ to take the same value at r and r′.

The dependence of D(0,rx) on x is another interesting problem. As shown in Theorem 1.2,
there is no such dependence in the leading order. Still, regardless on how the above conjecture
gets resolved, formal expansions suggest:



4 BISKUP AND LIN

Conjecture 1.4 For any x 6= 0 we have

D(0,rx) = φ(r)(logr)∆ +
(
1+o(1)

)
ψ(r)(log |x|)(logr)∆−1 (1.10)

where o(1)→ 0 in probability as r→∞ and where ψ is again a positive and continuous function
satisfying the kind of “periodicity” requirement (1.7).

This would in particular imply that balls in the chemical distance are close to those in the norm | · |.
However, at this point we lack good ideas how to tackle this question rigorously.

1.3 Earlier work and connections.

We will now give the promised connections to the existing literature on the scaling of the chemical
distance in long-range percolation on Zd . In the regime s < d the chemical distance approaches
a deterministic finite number at large spatial scales; namely, d d

s−d e (Benjamini, Kesten, Peres
and Schramm [5]). When s = d, the chemical distance between points at Euclidean distance N
grows as (logN)/ log logN (Coppersmith, Gamarnik and Sviridenko [10]) while, as already men-
tioned, for d < s < 2d we get (1.2) (Biskup [8, 9]). For s > 2d, the chemical distance resumes
linear scaling with the Euclidean distance (Berger [7]). These asymptotics extend even to some
inhomogenous versions of long-range percolation (Deprez, Hazra and Wüttrich [13]).

The most interesting case is that of s = 2d, where the model is scale invariant. Some aspects
of the d = 1 situation have been clarified already by Benjamini and Berger [3] but it was not until
recently that Ding and Sly [14] established the existence of an exponent θ(β ) ∈ (0,1) such that
D(0,N)� Nθ(β ) in d = 1. Interestingly, also here subadditivity arguments play a prominent role.
The existence of a sharp asymptotic in this case remains open.

1.4 Outline.

The rest of this note is organized as follows. In Section 2 we define the notion of a restricted
distance D̃ and show (in Proposition 2.7) that it obeys a stochastic subadditivity bound that will
drive all subsequent derivations in this paper. This bound involves D̃ at randomized locations and
so its recursive use naturally leads, in Section 3, to the consideration of a random variable W that
is a fixed point for the randomized locations. This closes the recursion and permits extraction (in
Proposition 3.7) of the limit asymptotic of r 7→ D̃(0,rW ). The key technical steps in this are finite-
ness (derived in Lemma 3.4) of the sum of conditional variances (given W ) of 2−nD̃(0,rγ−n

W ) for
any r ≥ 1 and the use of Dini’s theorem to obtain uniformity of these estimates in r. In Section 4
we then show that the same asymptotic applies to distance D as well.

2. RESTRICTED DISTANCE

We are now ready to commence the proofs. A majority of the work will be done directly for
the model on Rd although we do use the model on Zd in the proof of positivity of φ . In this
section we focus on an auxiliary quantity, called the restricted distance, that is better behaved
under subadditivity arguments. We will return to the full distance in Section 4.
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2.1 Definition and comparisons.

Let us write B(x,r) := {y ∈ Rd : |x− y| < r} for the open ball in the norm | · |. Given x,y ∈ Rd

we then define their restricted distance by constraining the infimum to paths that do not leave the
ball B(x,2|x− y|), i.e.,

D̃(x,y) := inf

{
n+

n

∑
i=0
|xi+1− yi| :

n≥ 0, {(xi,yi) : i = 1, . . . ,n} ⊂Iβ

xi,yi ∈ B
(
x,2|x− y|

)
∀i = 1, . . . ,n

}
, (2.1)

where, as before, we set y0 := x and xn+1 := y. We caution the reader that D̃(·, ·) is not a metric
as it is neither symmetric nor obeying the triangle inequality. The following properties of the
restricted distance will be important in the sequel:

Lemma 2.1 Let D(x,y) be as in (1.6) and D̃(x,y) as in (2.1). Then
(1) for any x,y ∈ Rd ,

D(x,y)≤ D̃(x,y)≤ |x− y|, (2.2)

(2) the law of D̃ is translation invariant,{
D̃(x,y) : x,y ∈ Rd} law

=
{

D̃(x+ z,y+ z) : x,y ∈ Rd}, z ∈ Rd , (2.3)

(3) x 7→ D̃(0,x) is stochastically continuous in x (i.e., the law of D̃(0,x) is continuous in x in
the topology of weak convergence of measures), and

(4) for any x,y, x̃, ỹ ∈ Rd

|x− x̃|> 2|x− y|+2|x̃− ỹ| ⇒ D̃(x,y)⊥⊥ D̃(x̃, ỹ) (2.4)

Proof. The inequalities (2.2) are checked by comparison of (1.6) with (2.1) and the fact that
the path with no edges is included on the right of (2.1). The translation invariance in (2) is a
consequence of the corresponding property of the intensity measure (1.5).

In order to prove (3), consider a path minimizing D̃(0,x). (Such a path exists as B(0,2|x|)
contains only a finite number of edges of length in excess of one, a.s.) The continuity of the law
of the underlying point process and the fact that B(0,2|x|) is open ensure that the minimizing path
is a.s. unique and that the same sequence of edges are used by the minimizer of D̃(0,x+ z) for
all |z| sufficiently small. It follows that, for every y ∈ Rd , x 7→ D̃(0,x) is continuous at x := y a.s.
This yields stochastic continuity via the Bounded Convergence Theorem.

The independence claimed in (2.4) follows from the independence of Poisson processes over
disjoint sets. �

Let us write Dβ if need arises to mark explicitly the dependence of the law random variable D
on β . The following comparisons then hold:

Lemma 2.2 For all β > 0, all a≥ 1 and all x ∈ Rd ,

Dβ (0,ax)
law
≤ Das−2dβ (0,ax)

law
≤ aDβ (0,x). (2.5)

The same conclusions apply to the restricted distance D̃β as well.

Proof. Let Iβ = {(xi,yi) : i ∈N} denote a sample from the point process on Rd×Rd with inten-
sity measure (1.5). For any a > 0, the process I ′

β
:= {(axi,ayi) : i ∈ N} is then equidistributed



6 BISKUP AND LIN

to Iβ (a) where β (a) := as−2dβ . Pick a path π connecting 0 to x using the edges in Sym(Iβ ) and
let n(π) denote the number of edges and ρ(π) the total length of the linear segments in π . Now
consider the path π ′ built using the corresponding edges in Sym(I ′

β
), and let n(π ′) and ρ(π ′)

denote the corresponding quantities for π ′. Then

n(π ′) = n(π) and ρ(π ′) = aρ(π). (2.6)

Assuming a≥ 1, it follows that

n(π ′)+ρ(π ′)≤ a
[
n(π)+ρ(π)

]
. (2.7)

The left-hand side is bounded by D(0,ax) from below; optimizing over π then implies the in-
equality on the right of (2.5). The left inequality in (2.5) is a consequence of Poisson thinning:
As β (a) ≤ β for a ≥ 1, the process with parameter β (a) can be realized as a pointwise subset
of the process with parameter β . In this coupling, every path contributing to D̃β (a)(0,ax) will
contribute to D̃β (0,ax) as well.

The inequalities extend to D̃ as the additional restriction imposed on paths there scales propor-
tionally to the distance between endpoints. �

For distance D we can also get comparisons under rotations:

Lemma 2.3 For each ε > 0 there is δ > 0 such that for all x,y ∈ Rd r{0},

|x|2 = |y|2 &
|x− y|2
|x|2

< δ ⇒ D(1+ε)β (0,x)
law
≤ (1+ ε)Dβ (0,y). (2.8)

Proof. Thanks to all norms on Rd being continuous with respect to one another, for each ε > 0
there is δ > 0 such that for any rotation R ∈ SO(d) which is close to the identity in the sense
that |Rx− x|2 < δ |x|2 for all non-zero x ∈ Rd , we have

(1+ ε)|x| ≥ |Rx| ≥ (1+ ε)−1/s|x|, x ∈ Rd r{0}. (2.9)

The inequality on the right shows that µs,β (1+ε)− µs,β ◦R−1 is a positive measure. The addi-
tivity of Poisson processes implies that a sample Iβ (1+ε) from the Poisson process with the
intensity µs,β (1+ε) contains a sample I ′

β
from the process with intensity µs,β rotated by R. Pick

a path π ′ using the edges in Sym(I ′
β
) from 0 to R−1x and let π be its rotation by R. Then,

in the notation from the previous proof, n(π) = n(π ′) while, by the left inequality in (2.9),
ρ(π)≤ (1+ ε)ρ(π ′). Optimizing over π ′ we get

Dβ (1+ε)(0,x)
law
≤ (1+ ε)Dβ (0,R

−1x) (2.10)

for every x ∈ Rd . Realizing y as R−1x, this yields (2.8). �

We can even get comparisons with the distance on Zd , writing again D dis
β

to denote the distance
on Zd with connection probabilities (1.1) for parameter β :

Lemma 2.4 For each β > 0 there is c = c(β ) ∈ (0,1] such that for all x,y ∈ Zd ,

cD dis
c−1β

(x,y)
law
≤ Dβ (x,y) . (2.11)
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Proof. Denote B := [−1/2,1/2)d and define the coupling of the process on Zd and the process
on Rd as follows. Given a sample Iβ from the Poisson process with intensity µs,β , place an edge
between distinct non-nearest neighbors x ∈ Zd and y ∈ Zd whenever there is an edge (x′,y′) ∈
Sym(Iβ ) with x′− x,y′− y ∈ B. Distinct vertices x,y ∈ Zd are then connected by an edge with
probability

1− exp
{
−β

∫
B×B

dzdz′

|x− y+ z− z′|s
}

(2.12)

independent of all other edges. Note that (since s > d) the integral diverges for any two x,y ∈ Zd

within `∞-distance one which ensures these points are connected almost surely. As is readily
checked, the resulting process on Zd stochastically dominates the process defined in (1.1) with β

multiplied by a sufficiently large constant.
Now consider a path π contributing to Dβ (x,y) and use the above coupling to project it to a

path π ′ on Zd while replacing each linear segments of π by a shortest nearest-neighbor path on Zd

between the corresponding vertices on Zd . An edge in π then gives rise to an edge in π ′ or no
edge at all. A linear segment in π of length L corresponds to a “segment” on Zd of `1-distance L′

between the endpoints or no segment at all. The fact that the `1-distance is comparable with the
norm | · | ensures that L≥ cL′ for some c > 0 small enough. The claim then follows. �

We will find the lower bound by distance on Zd particularly useful in light of the following
result by the first author that itself draws on earlier work by Trapman [22]:

Theorem 2.5 For each β > 0 there are c1,c2 ∈ (0,∞) such that for all n≥ 1 and all x ∈ Zd ,

P
(
D dis(0,x)≤ n

)
≤ c1

ec2n1/∆

|x|s
. (2.13)

Proof. This is proved by following, nearly verbatim, the proof of [9, Theorem 3.1] while set-
ting s′ := s and ∆′ := ∆. (Note that s′ is introduced in [9] in order to reduce the asymptotic form
|x− y|−s+o(1) assumed there for pxy to the sharp asymptotic (1.1) with s′ instead of s. The rest of
the proof then uses the sharp asymptotic form only.) �

From here we get one half of Theorem 1.1 of the present paper:

Corollary 2.6 For each β > 0 there is c = c(β )> 0 such that

lim
|x|→∞

P
(
D dis(0,x)≤ c(log |x|)∆

)
= 0. (2.14)

Proof. Substitute n := c(log |x|)∆ into (2.13) and observe that, thanks to s > d, the resulting
probability is summable on x ∈ Zd once c is sufficiently small. This implies the claim. �

2.2 Subadditivity bound.

Our next task is to derive a subadditivity relation for the restricted distance. This relation will
play a fundamental role in all derivations to come. We remark that D, being a metric, satisfies the
“ordinary” subadditivity estimate

D
(
0,(n+m)x

)
≤ D(0,nx)+D

(
nx,(n+m)x

)
. (2.15)
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However, this estimate is not useful for our purposes because n 7→ D(0,nx) turns out to be sub-
linear a.s. Our subadditivity bound will thus have to be tailored to the polylogarithmic growth
of x 7→ D(0,x). It will also be derived only for the restricted distance because that, unlike D,
obeys the independence statement in Lemma 2.1(4).

Proposition 2.7 (Subadditivity for restricted distance) Fix η ∈ (0,1) and let Z,Z′ be i.i.d. Rd-
valued random variables with common law

P(Z ∈ B) =
√

ηβ

∫
B

e−ηβc0|z|2d
dz , (2.16)

where

c0 :=
∫
|z|2d+|z̃|2d≤1

dzdz̃ . (2.17)

Let D̃′ be an independent copy of D̃ with both quantities independent of Z and Z′. For each
γ1,γ2 ∈ (0, 1

2(1+ γ)) with γ1 + γ2 = 2γ , there are c1,c2 ∈ (0,∞) and, for each x ∈ Rd , there is an
event A(x) ∈ σ(Z,Z′) with

P
(
A(x)

)
≤ c1e−c2|x|θ (2.18)

for θ := 2d[1+γ

2 − γ1∨ γ2] such that

D̃(0,x)
law
≤ D̃

(
0, |x|γ1Z

)
+ D̃′

(
0, |x|γ2Z′

)
+1+ |x|1A(x) (2.19)

holds true for every x ∈ Rd .

Remark 2.8 It may not appear at all obvious that the above choice of c0 makes (2.16) a probabil-
ity; this will be seen from formula (2.25) in the proof below. We will use this proposition mostly
in the case when γ1 = γ2 = γ . The main reason for our consideration of the more general setting
is the proof of continuity of the limit in Theorem 1.2 which requires (small but non-trivial) per-
turbations about the symmetric case as well. The choice of η will be immaterial in what follows.
We will therefore suppress η from the notation wherever possible.

Proof of Proposition 2.7. The main idea of the proof is simple: We first pick an edge (X ,Y ),
with X closest to 0 and Y closest to x according to criteria to be specified later. Then we pick
a shortest path from 0 to X and a shortest path from x to Y , demanding in addition that the first
path stay in 2|X |γ1-neighborhood of 0 and the second in 2|x−Y |γ2-neighborhood of x. Assuming
|x| � 1, concatenating the two paths with (X ,Y ) yields a path from 0 to x not leaving 2|x|-
neighborhood of 0. Writing Z for |x|−γ1X and Z′ for |x|−γ2(Y − x), a pointwise version of (2.19)
follows. A key technical point is to choose the selection criteria for (X ,Y ) to ensure independence
of Z and Z′ and (conditionally on X and Y ) the distances D̃(0,X) and D̃(x,Y ).

Fix η ∈ (0,1). There is nothing to prove when x = 0 so let us also assume that x ∈ Rd r{0}.
Recall that a∨b denotes max{a,b}. The proof comes in three steps.

STEP 1: Construction of (X ,Y ): We begin by constructing the aforementioned edge. Note that,
for any x̃, ỹ ∈ Rd with |x̃|∨ |ỹ− x| ≤ |x| 12 (1+γ) we have

|x̃− ỹ| ≤ |x+ x̃+ ỹ− x| ≤ |x|+2|x|
1
2 (1+γ) = |x|

(
1+2|x|−

1
2 (1−γ)

)
. (2.20)
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Recalling the intensity measure µs,β from (1.5), define

µ
′
s,β (dx̃dỹ) := ηβ1{|x̃|2<|ỹ|2}1

{
|x̃|∨|ỹ−x|≤|x|

1
2 (1+γ)

} dx̃dỹ
|x|s

. (2.21)

Then, as soon as x is so large that 1+ 2|x|− 1
2 (1−γ) ≤ η−1/s (recall that γ ∈ (0,1) and η < 1),

the inequality (2.20) ensures that µ ′′s,β := µs,β − µ ′s,β is a positive measure. This permits us to
represent Iβ as the sum of two independent Poisson processes I ′

β
and I ′′

β
with intensities µ ′s,β

and µ ′′s,β , respectively. Considering also the measure

µ
′′′
s,β (dx̃dỹ) := ηβ

(
1−1{|x̃|2<|ỹ|2}1

{
|x̃|∨|ỹ−x|≤|x|

1
2 (1+γ)

})dx̃dỹ
|x|s

, (2.22)

let I ′′′
β

denote a sample of the Poisson process with intensity µ ′′′s,β . We regard I ′
β

, I ′′
β

and I ′′′
β

as independent of one another.
As is directly checked from (2.21–2.22), I ′

β
∪I ′′′

β
is a homogeneous Poisson process on Rd×

Rd with density ηβ |x|−s and so, in particular, I ′
β
∪I ′′′

β
6= /0 a.s. The process is also locally finite

and so there is (a.s.) a unique pair (X ,Y ) ∈I ′
β
∪I ′′′

β
minimizing the function

fx(x̃, ỹ) :=
(
|x|−γ1 |x̃|

)2d
+
(
|x|−γ2 |ỹ− x|

)2d
. (2.23)

Setting
Zx := |x|−γ1X and Z′x := |x|−γ2(Y − x), (2.24)

and noting that dγ1 +dγ2 = s, the law of (Zx,Z′x) is given by

P
(
Zx ∈ dz, Z′x ∈ dz′

)
= ηβ exp

{
−ηβ

∫
dz̃dz̃′1{|z̃|2d+|z̃′|2d≤|z|2d+|z′|2d}

}
dzdz′ . (2.25)

Scaling the variables in the inner integral by (|z|2d + |z′|2d)
1

2d and invoking (2.17) shows that
(Zx,Z′x) are i.i.d. with law as in (2.16).

STEP 2: Definition of A(x) and pointwise inequality: We will now define A(x) and prove a
pointwise version of the inequality (2.19). For x so large that 1 + 2|x|− 1

2 (1−γ) ≤ η−1/s and
4|x| 12 (1+γ) < |x| hold true, we set

A(x) :=
{
|Zx|> |x|

1
2 (1+γ)−γ1

}
∪
{
|Z′x|> |x|

1
2 (1+γ)−γ2

}
(2.26)

and otherwise set A(x) to be the sample space carrying the three Poisson processes above. We
now claim the pointwise inequality

D̃(0,x)≤ D̃
(
0, |x|γ1Zx

)
+ D̃

(
x,x+ |x|γ2Z′x

)
+1+ |x|1A(x), (2.27)

where all instances of D̃ are defined using the symmetrized version of Iβ = I ′
β
∪I ′′

β
. Since

D̃(0,x) ≤ |x|, (2.27) holds whenever A(x) occurs and so we just need to verify (2.27) under the
conditions

1+2|x|−
1
2 (1−γ) ≤ η

−1/s, 4|x|
1
2 (1+γ) < |x| and |X |, |x−Y | ≤ |x|

1
2 (1+γ) . (2.28)

Noting that µ ′s,β and µ ′′′s,β have disjoint supports, the last two conditions ensure (X ,Y )∈I ′
β
⊂Iβ

a.s. and so (X ,Y ) is allowed to enter a path contributing to the distance on the left of (2.27). Fix
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any ε > 0 and consider a path in B(0,2|X |) from 0 to X of length at most D̃(0,X)+ ε and then a
path in B(x,2|x−Y |) from x to Y of length at most D̃(x,Y )+ ε . Since (2.28) ensures

B(0,2|X |)⊆ B(0,2|x|
1
2 (1+γ))⊆ B(0,2|x|) (2.29)

and

B(x,2|x−Y |)⊆ B(x,2|x|
1
2 (1+γ))⊆ x+B(0, |x|)⊆ B(0,2|x|), (2.30)

concatenating the former path with edge (X ,Y ) and then adjoining the latter path after Y , we
get a path contributing potentially to the infimum defining D̃(0,x) and having length at most
D̃(0,X)+ D̃(x,Y )+2ε +1. As ε was arbitrary, (2.27) follows via (2.24).

STEP 3: Reduction to independent variables: Let us now see how (2.27) reduces to (2.19). En-
large the probability space so that it holds two independent copies D̃′ of D̃′′ of random variable D̃,
that are independent of the processes I ′

β
,I ′′

β
,I ′′′

β
and thus of the random objects D̃, Zx and Z′x.

Under the restrictions on x from (2.28) we have

B
(
0,2|x|

1
2 (1+γ)

)
∩B
(
x,2|x|

1
2 (1+γ)

)
= /0. (2.31)

It follows that, conditional on A(x)c, the triplet of families of random variables{
D̃(0,z) : |z|< 2|x|

1
2 (1+γ)

}
,
{

D̃(x,x+ z) : |z|< 2|x|
1
2 (1+γ)

}
and {X ,Y} (2.32)

are independent. Moreover, D̃(x,x+ z) law
= D̃′′(0,z) by translation symmetry of the underlying

process. Since, as before, (2.27) holds trivially when A(x) occurs, it suffices to check (2.19)
conditionally on A(x)c. In that case the independence of the objects in (2.32) permits us to
swap D̃(0, |x|γ1Zx) for D̃′(0, |x|γ1Zx) and D̃(x,x+ |x|γ2Z′x) for D̃′′(0, |x|γ2Z′x) without affecting the
(conditional) law of the right-hand side of (2.27). Then (2.19) follows from (2.27).

In order to complete the proof, it remains to verify the bound (2.18). Assuming the first two
conditions in (2.28) hold, A(x) will occur only if one of Zx or Z′x exceeds the stated bounds. The
formula (2.25) then readily shows (2.18) in this case. We then adjust the constant c1 so that (2.18)
holds even when the first two conditions in (2.28) fail. �

3. LIMIT CONSIDERATIONS

The main goal of this section is to establish the limit claim from Theorem 1.1 for the restricted
distance. Due to our lack of a suitable substitute for the Subadditive Ergodic Theorem, we will ex-
tract the result by controlling the expectation and the variance of the restricted distance. Through-
out this section we fix β > 0 and η ∈ (0,∞) and suppress them from all formal statements.

3.1 Convergence along doubly-exponential sequences.

We begin by noting that iterations of (2.19) naturally lead to the consideration of randomized
locations to which the restricted distance is to be computed. In order to get a closed-form expres-
sion, a natural idea is to work with a fixed point of the randomization. This leads to:
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Lemma 3.1 Let Z0,Z1, . . . be i.i.d. copies of the random variable from (2.16). Then the infinite
product in

W := Z0

∞

∏
k=1
|Zk|γ

k
, (3.1)

converges in (0,∞) a.s. Moreover, W has continuous, non-vanishing probability density and has
all moments. Furthermore, if Z has the law as in (2.16), then

Z ⊥⊥W ⇒ |W |γZ law
= W (3.2)

Proof. The random variable | logZ| has exponential tails and so k 7→ | logZk| grows at most
polylogarithmically fast a.s. Since k 7→ γk decays exponentially, the infinite product converges
to a number in (0,∞) a.s. This, along with the fact that Z has continuous and positive density,
implies that W has continuous and positive density as well.

To control the upper tail of W , observe that ∑k≥0(k+1)γk =(1−γ)−2. Hence, if |W |> t(1−γ)−2
,

then we must have |Zk|> tk+1 for at least one k ≥ 0. Hereby we get

P
(
|W |> t

)
≤ ∑

k≥0
P
(
|Zk|> t(k+1)(1−γ)2)

, t > 0. (3.3)

As the tails of Z are no heavier than Gaussian in all d ≥ 1, the claim follows. The distributional
identity |W |γZ law

= W for Z ⊥⊥W is checked directly from the definition of W . �

The identity (3.2) shows that W is indeed a fixed point for the random arguments of the re-
stricted distance under iterations of (2.19). This enables us to extract our first limit claim:

Lemma 3.2 Assume W from (3.1) is independent of D̃. Then for each r ≥ 1, the limit

L(r) := lim
n→∞

E D̃(0,rγ−n
W )

2n , (3.4)

exists. Moreover, r 7→ L(r) is upper-semicontinuous on [1,∞) and positive on (1,∞).

Proof. We will apply Proposition 2.7 for the choices γ1 = γ2 = γ . Let W be the random variable
independent of D̃, D̃′, Z and Z′ in (2.19). Plugging rγ−n

W for x in (2.19) and invoking |W |γZ law
= W

along with the bound (2.18) yields

E D̃(0,rγ−n
W )≤ 2E D̃(0,rγ−n+1

W )+ c, (3.5)

where c := 1+ c1 supx∈Rd |x|e−c2|x|θ , for c1, c2 and θ as in Proposition 2.7. This shows that

an(r) := 2−n[E D̃(0,rγ−n
W )+ c

]
(3.6)

is non-increasing and, being non-negative, limn→∞ an(r) exists. The limit in (3.4) then exists as
well and takes the same value. By Lemma 2.1(3), r 7→ an(r) is continuous and so r 7→ L(r) is is
upper semicontinuous, being a decreasing limit of continuous functions. The positivity of L(r)
for r > 1 follows from Lemma 2.4, Theorem 2.5 and the fact that [log(rγ−n

)]∆ = 2n(logr)∆. �

We now augment the convergence of expectations to:

Proposition 3.3 For any r ≥ 1 and Lebesgue a.e. x ∈ Rd ,

D̃(0,rγ−n
x)

2n −→
n→∞

L(r) P-a.s. (3.7)
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In particular, L(r) defined in (3.4) does not depend on the choice of η .

The main ingredient of the proof is:

Lemma 3.4 Suppose D̃, Z and W are independent with distribution as above. Let σ(W ) denote
the sigma algebra generated by W. Then for any r ≥ 1,

∞

∑
n=1

E
(

Var
(

2−nD̃
(
0,rγ−n

Z|W |γ
)∣∣∣σ(W )

))
< ∞ . (3.8)

Proof. Fix r ≥ 1. Plugging x := rW in (2.19), squaring both sides and taking expectations we get

E
(
D̃(0,rW )2)≤ 2E

(
D̃(0,rγW )2)+2E

([
E
(
D̃(0,rγZ|W |γ)

∣∣σ(W )
)]2)

+F0 , (3.9)

where, using D̃(0,x)≤ |x| and Z|W |γ law
= W , the error term is given by

F0 = F0(r) := E
(
[1+ r|W |1A(rW )]

2)+4ED̃(0,rγW )+4E
[
(r|W |)1+γ1A(rW )

]
. (3.10)

Next we rewrite the second term on the right of (3.9) using conditional variance, and then subtract
suitable terms on both sides to get

Var(D̃(0,rW ))≤ 2Var(D̃(0,rγW ))+2Var
([

E(D̃(0,rγZ|W |γ)|σ(W ))
]2)

+4E
(
D̃(0,rγW )

)2−E
(
D̃(0,rW )

)2
+F0. (3.11)

Replacing W by Z|W |γ in the first two variances above and using the standard identity

Var(X) = E
(
Var(X |Y )

)
+Var

(
E(X |Y )

)
(3.12)

yields

Var
(
E(D̃(0,rZ|W |γ)

∣∣σ(W )
)
+E

(
Var(D̃(0,rZ|W |γ)

∣∣σ(W ))
)

≤ 4Var
(
E(D̃(0,rγZ|W |γ)

∣∣σ(W ))
)
+2E

(
Var(D̃(0,rγZ|W |γ)

∣∣σ(W ))
)

+4E
(
D̃(0,rγW )

)2−E
(
D̃(0,rW )

)2
+F0 . (3.13)

Abbreviating

An :=
1
4n Var

(
E
(
D̃(0,rγ−n

Z|W |γ)
∣∣σ(W )

))
Bn :=

1
4n E

(
Var
(
D̃(0,rγ−n

Z|W |γ)
∣∣σ(W )

))
Cn :=

1
4n E

(
D̃(0,rγ−n

W )
)2

(3.14)

the inequality (3.13) gives

An +Bn +Cn ≤ An−1 +
1
2

Bn−1 +Cn−1 +
Fn

4n , (3.15)

where Fn(r) := F0(rγ−n
). Iterating shows

An +
1
2

Bn +Cn ≤ A0 +
1
2

B0 +C0−
1
2

n

∑
k=1

Bk +
n

∑
k=1

Fk

4k . (3.16)



DISTANCE IN LONG-RANGE PERCOLATION 13

Thanks to (2.18) and (3.5) we have supn≥1 Fn/2n <∞. Since An,Bn,Cn≥ 0 and Fn/4n is summable
on n≥ 0, the sum of Bk must remain bounded uniformly in n. �

As a direct consequence we get:

Corollary 3.5 Assume D̃ and W are independent with distributions as above. Then

sup
r∈[eγ ,e)

sup
n≥1

E
(( D̃(0,rγ−n

W )

2n

)2
)
< ∞. (3.17)

Proof. In the notation of the previous proof, the expectation equals An+Bn+Cn which is bounded
uniformly in n thanks to (3.16). As supn≥1(Fn(r)/2n) is bounded uniformly on compact intervals
of r, the expectation is bounded also uniformly in r on the stated interval. �

We are now ready to give:

Proof of Proposition 3.3. Consider again the independent copies D̃′ and Z′ of the quantities D̃
and Z, respectively. Formula (3.8) then reads

∞

∑
n=1

E

[(
D̃′(0,rγ−n

Z′|W |γ)
2n − D̃(0,rγ−n

Z|W |γ)
2n

)2
]
< ∞ . (3.18)

Pick a compact set U ⊂ Rd \ {0} with non-empty interior, denote its Lebesgue measure by |U |
and let ε ∈ (0,1). From the fact that Z has a continuous nonvanishing density f , there is a constant
c = c(U,ε)> 0 such that

z|w|γ ∈U & |w|< 1/ε ⇒ f (z)|w|−dγ ≥ c
1
|U |

. (3.19)

Restricting the expectation to the event {Z|W |γ ∈ U}∪ {|W | < 1/ε}, this bound permits us to
change variables from z to x := z|w|γ and conclude that for X uniform on U , and independent of
all other random objects, we have

∞

∑
n=1

E

[(
D̃′(0,rγ−n

Z′|W |γ)
2n − D̃(0,rγ−n

X)

2n

)2
∣∣∣∣∣ |W |< 1/ε

]
< ∞ (3.20)

where we also used that P(|W |< 1/ε)> 0 for ε ∈ (0,1). Using Jensen’s inequality, we can now
pass the expectation over D̃, Z′ and W inside the square to get

∞

∑
n=1

E

[(
E
[

D̃(0,rγ−n
Z|W |γ)

2n

∣∣∣∣ |W |< 1/ε

]
− D̃(0,rγ−n

X)

2n

)2
]
< ∞ (3.21)

By the Monotone Convergence Theorem, this implies

D̃(0,rγ−n
X)

2n −E
[

D̃(0,rγ−n
Z|W |γ)

2n

∣∣∣∣ |W |< 1/ε

]
−→
n→∞

0,a.s. (3.22)

with the exceptional set not depending on ε .
Let c̃ denote the quantity in Corollary 3.5. Denoting qε := P(|W | ≥ 1/ε), from Cauchy-

Schwarz we have∣∣∣∣∣(1−qε)E
[

D̃(0,rγ−n
Z|W |γ)

2n

∣∣∣∣ |W |< 1/ε

]
−E

[
D̃(0,rγ−n

W )

2n

]∣∣∣∣∣≤√c̃qε (3.23)
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As qε→ 0 when ε ↓ 0, we thus get (3.7) for Lebesgue a.e. x∈U . Since U was arbitrary (compact),
the same applies to a.e. x ∈ Rd . �

Remark 3.6 The reader may wonder why the passage through an a.s. limit for Lebesgue a.e. x
has been used instead of trying to prove the a.s. convergence of Xn := 2−nD̃(0,rγ−n

W ) directly.
(The convergence Xn → L(r) a.s. does hold by (3.7) and the fact that W has a density w.r.t. the
Lebesgue measure.) This is because Lemma 3.4 only controls the conditional variances of Xn
given W , and not the full variances Var(Xn). We will in fact show Var(Xn)→ 0 in the proof of
Proposition 3.7, but that only with the help of (3.7).

3.2 Full limit for the restricted distance.

We now proceed to extend the limit from multiples of the argument by terms from {rγ−n
: n≥ 0}

to multiples ranging continuously through positive reals. However, for reasons described after
Theorem 1.2, such a limit can generally be claimed only in probability. It will also suffice to
show this for x replaced by random variable W . This is the content of:

Proposition 3.7 Suppose D̃ and W are independent with distributions as above. Then

D̃(0,rW )

L(r)
−→
r→∞

1 in probability. (3.24)

As we will see, a key point in proving Proposition 3.7 is:

Lemma 3.8 The identity L(r) = 2L(rγ) holds for all r ≥ 1 and t 7→ L(et) is convex on [0,∞). In
particular, r 7→ L(r) is continuous, strictly increasing on [1,∞). The function

φ(r) := L(r)(logr)−∆, r > 1, (3.25)

obeys the conditions stated in Theorem 1.2.

Proof. First, L(r) = 2L(rγ) is a consequence of the limit definition of L in Lemma 3.4. Let γ1,γ2

be such that 0 < γ1,γ2 <
1+γ

2 and dγ1 +dγ2 = s. Plugging rγ−n
x for x in (2.19) yields

D̃(0,rγ−n
x)

law
≤ D̃

(
0,rγ1γ−n |x|γZ

)
+ D̃′

(
0,rγ2γ−n |x|γ2Z′

)
+1+ rγ−n |x|1A(rγ−n x). (3.26)

Dividing the expression by 2n, applying Proposition 3.3 and noting that, by (2.18), the last two
terms tend to zero in probability as n→ ∞ gives

L(r)≤ L(rγ1)+L(rγ2). (3.27)

Now set et1 := rγ1/γ and et2 := rγ2/γ and observe that then r = e
1
2 (t1+t2). The identity 2L(rγ) = L(r)

and the fact that the constraints on γ1,γ2 will be satisfied if |γ1− γ2|< 1− γ then imply

∀t1, t2 ≥ 0: 0 <
|t1− t2|
t1 + t2

<
1− γ

2γ
⇒ L

(
e

1
2 (t1+t2)

)
≤ L(et1)+L(et2)

2
, (3.28)

i.e., a local mid-point convexity of t 7→ L(et). The upper semicontinuity of L from Lemma 3.4
then implies continuity of r 7→ L(r) on [1,∞), and subsequently also the convexity of t 7→ L(et)
on [0,∞). The strict monotonicity arises from convexity and the fact that L(1) = 0 while L(r)> 0
for r > 1, by Lemma 3.2. The conditions for φ in Theorem 1.2 are checked directly. �
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We will also need a uniform bound on third moments of 2−nD̃(0,rγ−n
W ):

Lemma 3.9 Assume D̃ and W are independent with distributions as above. Then

sup
r∈[eγ ,e)

sup
n≥1

E
(( D̃(0,rγ−n

W )

2n

)3
)
< ∞. (3.29)

Proof. Consider the setup of Proposition 2.7 with γ1 = γ2 := γ . Taking the third power of both
sides of (2.19) and setting with x := rW yields

E
(
D̃(0,rW )3)≤ E

([
D̃(0,rγ |W |γZ)+ D̃′(0,rγ |W |γZ)

]3)
+G0(r) , (3.30)

where

G0(r) := 3E
([

D̃(0,rγ |W |γZ)+ D̃′(0,rγ |W |γZ)
]2)

+3E
(

D̃(0,rγ |W |γZ)+ D̃′(0,rγ |W |γZ)
)
+1+3E

([
1+2rγ |W |γ

]2r|W |1A(rW )

)
+3E

([
1+2rγ |W |γ

]
r2|W |21A(rW )

)
+E

(
r3|W |31A(rW )

)
(3.31)

With the help of Hölder’s inequality and the fact that Z|W |γ law
= W , we then get

E
(
D̃(0,rγ−n

W )3)≤ 8E
(
D̃(0,rγ−n+1

W )3)+Gn(r) , (3.32)

where, as before, Gn(r) := G0(rγ−n
). Corollary 2.6 and (2.18) ensure that Gn(r)/4n is bounded

uniformly in n≥ 1 and r ∈ [eγ ,e). The claim follows. �

We are now ready to give:

Proof of Proposition 3.7. Abbreviate Xn := 2−nD̃(0,rγ−n
W ). By Lemma 3.2, E(Xn)→ L(r).

Lemma 3.9 and the almost sure convergence in Proposition 3.3 in turn show E(X2
n )→ L(r)2.

Using the quantities from (3.14), we can alternatively write E(X2
n ) = An +Bn +Cn. Since Cn =

[EXn]
2, the above shows Cn→ L(r)2 and so An +Bn→ 0 for each r ≥ 1.

We claim that the convergence of the moments is uniform in r on compact subsets of [1,∞).
Starting with the former, observe that (3.15) in fact shows that

n 7→ An +Bn +Cn−
∞

∑
k=n+1

Fk

4k (3.33)

is non-increasing, with the sum absolutely convergent. The functions An,Bn,Cn,Fn are continuous
and so is the limit L(r)2, by Lemma 3.8. Dini’s Theorem then ensures that the convergence
An +Bn→ 0 is indeed uniform on compact sets of r.

The argument for the first moments is similar; the proof of Lemma 3.2 shows that, for some
constant c > 0, the sequence E(Xn)+ c2−n decreases to L(r) pointwise. Since both the sequence
and the limit are continuous, Dini’s Theorem again implies local uniformity.

As An +Bn = Var(Xn), we have Var(Xn)→ 0 locally uniformly in r. In light of the similar
uniformity of E(Xn)→ L(r), for each ε > 0 there is n0 ≥ 1 such that

sup
r∈[eγ ,e)

sup
n≥n0

E
(∣∣∣ D̃(0,rγn

W )

2n −L(r)
∣∣∣2)< ε. (3.34)
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Since L(rγ−n
) = 2nL(r), dividing the expression by L(r) we get

sup
r≥eγ

1−n0

E
(∣∣∣ D̃(0,rW )

L(r)
−1
∣∣∣2)<

ε

L(eγ)
, (3.35)

where we also used that L(r) ≥ L(eγ) for all r ∈ [eγ ,e). This implies D̃(0,rW )/L(r)→ 1 in L2

and thus in probability. �

Remark 3.10 With some extra work, we could show that the limit in (3.24) also exists in prob-
ability conditional on W . As W is continuously distributed with support Rd , we could then
replace W by Lebesgue a.e. x ∈Rd and, finally, use monotonicity arguments to extend to conclu-
sion to all non-zero x ∈ Rd . However, the same arguments will (have to) be applied to the full
distance treated in the next section and, since the full distance is what we are interested in, we
refrain from making them here.

4. FULL DISTANCE SCALING

We are now ready to return to the full distance D(x,y) associated with long-range percolation
on Rd and prove its asymptotic stated in Theorem 1.2. We begin by extending the conclusions of
Proposition 3.7 to the full distance:

Proposition 4.1 Suppose D and W are independent with distributions as above. Then

D(0,rW )

L(r)
−→
r→∞

1 in probability. (4.1)

For this, we will need to expand the notion of the restricted distance to a whole family of
“distances” Dk indexed by k ∈ {0,1, . . .} as follows. Abbreviating γ̃ := 1

2(1+ γ), we set

D̃k(x,y) := inf

{
n+

n

∑
i=0
|xi+1− yi| :

n≥ 0, {(xi,yi) : i = 1, . . . ,n} ⊂Iβ

xi,yi ∈ B
(
x,2|x− y|γ̃−k)∀i = 1, . . . ,n

}
, (4.2)

where, as before, we set y0 := x and xn+1 := y. We have

D(x,y)≤ ·· · ≤ D̃k+1(x,y)≤ D̃k(x,y)≤ ·· · ≤ D̃1(x,y)≤ D̃0(x,y) = D̃(x,y) . (4.3)

Our first observation is:

Lemma 4.2 Let W be independent of the distances D̃k and D. There is k ∈ N such that

lim
r→∞

P
(

D̃k(0,rW ) 6= D(0,rW )
)
= 0. (4.4)

Proof. Pick x ∈ Rd and let c denote the diameter of [0,1)d in | · |-norm. Note that, as soon as r is
sufficiently large, on {D̃k(0,rx) 6= D(0,rx)} there must be a point

y ∈ Zd r
[
B
(
0,(r|x|)γ̃−k)∪B

(
x,(r|x|)γ̃−k)]

(4.5)

for which D(0,y) ≤ D̃(0,rx)+ c and D(rx,y) ≤ D̃(0,rx)+ c occur using disjoint collections of
edges in the underlying sample of the Poisson process. Given any C > 0 and assuming that r is
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so large that C(logr)∆ > 2c, the van den Berg-Kesten inequality then shows

P
(

D̃k(0,rx) 6= D(0,rx), D̃(0,rx)≤C(logr)∆

)
≤ ∑

y∈Zd

|y|∧|brxc−y|≥(r|x|)γ̃−k

P
(
D(0,y)≤ 2C(logr)∆

)
P
(
D(brxc,y)≤ 2C(logr)∆

)
. (4.6)

where a∧b := min{a,b} and where brxc is the closest point on Zd to rx. Our aim is to show that
the sum vanishes as r→ ∞ once k is large enough.

In light of the domination bound in Lemma 2.4, we can replace the continuum distance D by
the discrete distance D dis at the cost of changing C and β by multiplicative constants. We may
thus estimate the above sum for the model on Zd instead, writing temporarily just x for brxc and n
for 2C(logr)∆. The bound in Theorem 2.5 then shows

∑
y∈Zd

|y|∧|y−x|≥|x|γ̃−k

P
(
D dis(0,y)≤ n

)
P
(
D dis(y,x)≤ n

)
≤ c2

1e2c2n1/∆

∑
y∈Zd

|y|∧|y−x|≥|x|γ̃−k

1
|y|s|x− y|s

≤ c̃1
e2c′2n1/∆

|x|sγ̃−k (4.7)

for some c̃1 ∈ (0,∞) independent of x. Returning to the continuum problem with n :=C(logr)∆,
there is thus a constant c̃ ∈ (0,∞) such that, for some c′2 proportional to c2,

P
(

D̃k(0,rx) 6= D(0,rx), D̃(0,rx)≤C(logr)∆

)
≤ c̃

|x|−sγ̃−k

rsγ̃−k−2c′2C1/∆
. (4.8)

The exponent of r in the denominator is positive once k is taken sufficiently large (depending only
on C). Plugging in x :=W , choosing C > maxφ for φ as in Lemma 3.8, adjusting k accordingly
and invoking Proposition 3.7, we get (4.4) on the event {|W | > ε}, for any ε > 0. But W is
continuously distributed and so the claim follows by noting that P(|W | ≤ ε)→ 0 as ε ↓ 0. �

Next we observe:

Lemma 4.3 Let k ∈N and suppose W and D̃k are independent with distributions as above. Then
for every k ≥ 0,

liminf
r→∞

ED̃k(0,rW )

L(r)
≥ 1. (4.9)

The proof will be based on perturbations of the underlying model in β . For this reason,
let Lβ (r) henceforth mark the explicit dependence of the limit in Lemma 3.2 on β and define,
as before, φβ (r) := Lβ (r)/(logr)∆. We note one useful fact:

Lemma 4.4 The function (β ,r) 7→ φβ (r) is jointly continuous on (0,∞)× (1,∞).

Proof. From (2.5) and the existence of the limit in Lemma 3.2 we get

∀a≥ 1: Lβ (r)≤ Las−2dβ (r)≤ aLβ (r). (4.10)



18 BISKUP AND LIN

The continuity of β 7→ Lβ (r) for each r ≥ 1 is then readily inferred. The continuity and mono-
tonicity of r 7→ Lβ (r) then yields the joint continuity of (β ,r) 7→ Lβ (r) on (0,∞)× [1,∞). The
claim follows by applying the definition of φβ . �

Proof of Lemma 4.3. The argument hinges on a subadditivity bound of the kind derived in Propo-
sition 2.7 which links expectations of D̃k and D̃k+1 albeit at slightly different values of β . The
proof of this bound follows closely that of the above proposition, although it is simpler as here
we can efficiently use additivity of Poisson processes.

Fix β > 0 and let W be the random variable associated with parameters β and η := 1 as
defined in Lemma 3.1. Let ε ∈ (0,1/2). Writing Eβ for the expectation with respect to the point
process Iβ with intensity measure µs,β , we will show later that, for some c = c(β ,ε) ∈ (0,∞),

Eβ

[
Dk(0,rε

− 1
2d W )

]
≤ 2Eβ (1−2ε)

[
Dk+1(0,rγ

ε
− 1

2d W )
]
+ c (4.11)

holds for all r≥ 1. This is sufficient to prove the claim by induction. Indeed, the factors ε−
1

2d can
seamlessly be absorbed into r by noting that Lβ (ar)/L(r)→ 1 as r→∞ for any a> 0 thanks to the
continuity of r 7→ φβ (r). Assuming (4.9) for some k ∈N, then dividing (4.11) by Lβ (r) = 2Lβ (rγ)
and relabeling β (1−2ε) for β yields

liminf
r→∞

Eβ

[
Dk+1(0,rW )

]
Lβ (r)

≥ inf
r∈[eγ ,e)

φβ/(1−2ε)(r)
φβ (r)

(4.12)

Taking ε ↓ 0 and invoking the continuity from Lemma 4.4, we then get (4.9) for k+ 1 as well.
Since Lemma 3.2 ensures (4.9) for k := 0, we get it for all k ≥ 0.

It remains to prove (4.11). Abbreviate

β
′ := 2εβ and β

′′ := (1−2ε)β . (4.13)

A sample Iβ of the Poisson process with intensity measure µs,β can then be written as the union
Iβ ′ ∪Iβ ′′ of two independent processes with intensities µs,β ′ and µs,β ′′ , respectively. Fix x ∈Rd .
Following the proof of Proposition 2.7 (with η there set to 1/2), under the condition

1+2|x|γ̃−1 ≤ 21/s (4.14)

we can further decompose Iβ ′ into the union of independent processes I ′
β ′ and I ′′

β ′ , with their
respective intensity measures given by

µ
′
s,β ′(dx̃dỹ) := εβ1{|x̃|2<|ỹ|2}1

{
|x̃|∨|x−ỹ|<|x|γ̃

} dx̃dỹ
|x|s

(4.15)

and µ ′′s,β ′ := µs,β ′−µ ′s,β ′ . (The condition (4.14) ensures that µ ′′s,β ′ is a positive measure.) We also
introduce an auxiliary independent process I ′′′

β ′ with intensity measure

µ
′′′
s,β ′(dx̃dỹ) := εβ

(
1−1{|x̃|2<|ỹ|2}1

{
|x̃|∨|x−ỹ|<|x|γ̃

})dx̃dỹ
|x|s

. (4.16)

As is directly checked, I ′
β ′ ∪I ′′′

β ′ is a homogenous Poisson process with intensity εβ |x|−s.
Now define a pair of random variables (X ,Y ) as the minimizer of fx(x̃, ỹ) := |x̃|2d + |x− ỹ|2d

among all points of I ′
β ′ ∪I ′′′

β ′ . Set

Z := ε
1

2d |x|−γX and Z′ := ε
1

2d |x|−γ(x−Y ) (4.17)
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and note that, by the calculation in (2.25) and a simple scaling arguement, Z,Z′ are i.i.d. with
common law (2.16) for η := 1. Given k ∈ N, let Dk(0,x) be defined using the full process Iβ

and let D′′k+1(·, ·) be defined using the process Iβ ′′ . We now claim

Dk(0,x)≤ D′′k+1
(
0,ε−

1
2d |x|γZ

)
+D′′k+1

(
x,x+ ε

− 1
2d |x|γZ′

)
+1+ |x|1A′(x) (4.18)

where we set
A′(x) :=

{
|Z|∨ |Z′| ≥ 1

2 ε
1

2d |x|γ−γ̃
}
. (4.19)

whenever |x| is so large that (4.14) and

|x|1−1/γ̃k
+21−1/γ̃k+1 ≤ 2, k ≥ 0, (4.20)

hold, and put A′(x) to the whole sample space otherwise. To see this we note that, on A′(x)
the inequality follows from Dk(0,x) ≤ |x| and so we just need to prove this on A′(x)c. Here we
observe that |X | ∨ |x−Y | ≤ 1

2 |x|
γ̃ and so (X ,Y ) ∈Iβ ′ . A path minimizing D′′k+1(0,X) will then

lie in B(0,2|X |γ̃−k−1
)⊆ B(0,2|x|γ̃−k

) while the path minimizing D′′k+1(x,Y ) will lie in

B
(
x,2|x−Y |γ̃−k−1)⊆ B

(
x,21−γ̃−k−1 |x|γ̃−k)⊆ B

(
0,2|x|γ̃−k)

, (4.21)

where the last inclusion is inferred from (4.20). The concatenation of these paths with edge (X ,Y )
then produces a path entering the infimum defining Dk(0,x). Hence (4.18) follows.

Noting that the probability of A′(x) decays stretched-exponentially with |x|, plugging W on
both sides of (4.18), taking expectation and using that |W |γZ law

= W then yields (4.11). �

Armed with the above lemmas, we can now give:

Proof of Proposition 4.1. Abbreviate X(r) := D̃k(0,rW )/L(r). Corollary 3.5 and D(0,rW ) ≤
D̃(0,rW ) show supr≥eγ E[X(r)2] < ∞ and so {X(r) : r ≥ eγ} is uniformly integrable. Propo-
sition 3.7 in turn implies P(X(r) > 1 + ε) → 0 as r → ∞ for every ε > 0 and so we have
E[X(r)1{X(r)>1+ε}]→ 0 as well. Lemma 4.3 then gives E[X(r)]→ 1. Since X(r)≥ 0, it follows
that the mass of X(r) must asymptotically concentrate at 1. This proves the claim for D̃k(0,rW );
Lemma 4.2 then extends it to D(0,rW ). �

This makes us finally ready to complete the proof of our main results:
Proof of Theorem 1.2. The definition and properties of function φ have already been established,
so we just have to prove the limit claim (1.8). This will be derived from Proposition 4.1 and
some perturbation arguments. Write Pβ for the law of the Poisson process with intensity µs,β .
Fix x ∈ Rd r {0} and note that, by the stochastic domination bounds in Lemmas 2.2–2.3, for
each ε there is δ such that for all y ∈ Rd and all t > 0,

|y− x|< δ |x| ⇒ Pβ

(
D(0,x)≤ t

)
≤ Pβ (1+ε)

(
D(0,y)≤ (1+ ε)t

)
. (4.22)

Let W be independent of D with the distribution as above and pick any ζ ∈ (0,1). Noting
that P(|W − x|< δ |x|)> 0, for the above ε and δ we then get

Pβ

(
D(0,rx)≤(1−ζ )Lβ (r)

)
= Pβ

(
D(0,rx)≤ (1−ζ )Lβ (r)

∣∣∣ |W − x|< δ |x|
)

≤ Pβ (1+ε)

(
D(0,rW )≤ (1−ζ )(1+ ε)Lβ (r)

∣∣∣ |W − x|< δ |x|
) (4.23)
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Lemma 4.4 permits us to pick ε so small that

(1−ζ )(1+ ε) inf
r∈[eγ ,e)

φβ (r)
φβ (1+ε)(r)

< 1− ε. (4.24)

The right-hand side of (4.23) then tends to zero by Proposition 4.1. The argument for the other
bound is completely analogous and so we omit it. �

Proof of Theorem 1.1. The lower bound was already shown in Corollary 2.6. For the the upper
bound we first use Theorem 1.2 and the comparisons in Lemma 2.4 to prove the claim for x of
the form x := rei, where ei is one of the coordinate vectors. Then we use the triangle inequality
for D dis to get the full limit as |x| → ∞. �
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