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Abstract: We consider a long-range percolation graph on Z? where, in addition to the
nearest-neighbor edges of 74, distinct x, yE 74 get connected by an edge independently
with probability asymptotic to f|x — y| =%, for s € (d,2d), > 0 and | - | a norm on R¥. We
first show that, for all but a countably many > 0, the graph-theoretical (a.k.a. chemical)
distance between typical vertices at | - |-distance r is, with high probability as r — <o,
asymptotic to ¢g(r)(log )2, where A~ := log,(2d/s) and ¢ is a positive, bounded and
continuous function subject to ¢g(r") = ¢g(r) for 7y := s/(2d). The proof parallels that
in a continuum version of the model where a similar scaling was shown earlier by the
first author and J. Lin. This work also conjectured that ¢4 is constant which we show

to be false by proving that (log ﬁ)A<p/5 tends, as B — o0, to a non-constant limit which
is independent of the specifics of the model. The proof reveals arithmetic rigidity of the
shortest paths that maintain a hierarchical (dyadic) structure all the way to unit scales.

1. INTRODUCTION AND RESULTS

The asymptotic behavior of the intrinsic, a.k.a. graph-theoretical or chemical, distance
in random graphs has been a subject of intense research. A prime example is the first
passage percolation of Hammersley and Welsh [22] where edges of Z¢ are assigned ran-
dom lengths and one is interested in the aggregate edge length L(x,y) of the shortest
path connecting x to y. Under suitable mixing and moment assumptions, the Subaddi-
tive Ergodic Theorem (Kingman [26, 27]) shows that L(0, x) is, for x large, asymptotic
to a norm on R? and, in particular, L(0, nx) scales asymptotically linearly with n. The
conclusion extends to the chemical distance on the infinite cluster of supercritical bond
percolation on 74 with d > 2 (Antal and Pisztora [1], Garet and Marchand [21]). See the
recent review by Auffinger, Damron and Hanson [2].

Our focus in the present paper is on the chemical distance in long-range percolation
graphs. More precisely, we will use long-range percolation as a means to add random
shortcuts to the existing nearest-neighbor structure of Z?. Our setting will be as follows:
Given a collection of numbers {q(x)},.zs < [0, 0] satisfying q(x) = q(—x) for all x € Z*
and a parameter § € (0, 0), set

pp(x,y) =1 —exp{—Balx—y)} (1.1)

(where e=® := 0) and consider the random graph with vertices Z“ and an undirected
edge between x and y present with probability pg(x,y), independently of other edges.
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The cases of prime concern for us are those when q exhibits power-law decay which,
in light of our use of B as an independent parameter, we take to mean

1

~ W, |x| - OO, (1.2)

q(x)
for anorm |- | on R? and a parameter s > 0. We will assume that q(x) = +o0 whenever x
is a neighbor of the origin to ensure that all the nearest-neighbor edges of Z¢ are present,
and the graph is thus connected. The chemical distance D(x, y) between x,y € Z% is then
defined as the minimal number of edges in any path connecting x to y.
Earlier studies have revealed five distinct parameter regimes of asymptotic scaling of
the chemical distance with respect to the Euclidean metric:

(1) s < d, where the percolation graph on all of Z“ has finite intrinsic diameter (Ben-
jamini, Kesten, Peres and Schramm [5]),

(2) s = d, where the chemical distance grows logarithmically modulo log-log correc-
tions (Coppersmith, Gamarnik and Sviridenko [15]),

(3) d < s < 2d, where the chemical distance growth is polylogarithmic with exponents
increasing from 1 to o as s varies from d to 2d (Biskup [9,10]),

(4) s = 2d, where the chemical distance has sublinear polynomial growth with a 8-
dependent exponent (Benjamini and Berger [3], Ding and Sly [20]),

(5) s > 2d, where the asymptotically-linear scaling with the underlying metric on z¢
valid for first passage percolation resumes (Berger [8]).

Our focus here is on the intermediate regime d < s < 2d. Here the early work [9] by the
first author showed

D(0,x) = (log |x|)**°M when g(x) = |x|~*°M as |x| — oo (1.3)

where
1

ANi=————.
log, (24/5)
The first author and J. Lin [12] then sharpened this to an asymptotic statement for a
closely related continuum model with asymptotic decay (1.2). Our first item of business
is to extend this conclusion to the model on Z?. Write B(x, ) := {y € Z%: |x —y| < r} for
aballin | - |-norm and let # denote the counting measure on Z%. We then have:

(1.4)

Theorem 1.1 Letd > 1and s € (d,2d) and assume q obeys (1.2). Write A for the quantity in
(1.4) and let 7y := 55. For each B > O there exists a continuous function ¢g: (1,00) — (0, 0)
subject to the log-log-periodicity condition

Vr>1:  ¢p(r?) = ¢p(r) (1.5)
and there is an at most countable set X < (0, c0) such that, for all € (0,0) \ X,
1 _ D(0,x) P
V€>0. W#({xeB(O,r). )W_l‘ >€}> 7jw) O. (1.6)

The map B — ¢g(r) is non-increasing and left-continuous. It is continuous at all B ¢ .
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F1G. 1 Top figure: A plot of the chemical distance from the origin to points
in {1,...,2000} in a sample of long-range percolation on Z with q(x) := |x|™*
(for |x| > 1) and parameters s := 1.5 and § := 1. The arcs below depict the
the edges in the underlying graph. Bottom figure: A corresponding plot for
a sample with s := 1.5 but § := 5. Note that the distance drops at the points
where a long edge lands. The chemical distance plots are not to scale.

The function ¢4 depends on the whole set of connection parameters {q(x)} .z, but
we keep that dependence implicit. Referring to (1.5) as log-log-periodicity is justified by
letting 5: R — (0, ) be defined by

vp(t) = pp(e”) (1.7)

and noting that (1.5) then translates into (additive) 1-periodicity of ig. The restriction
to B ¢ X reflects on our inability to control the continuity of B — ¢p(r). Indeed, writing

Lg(r) := (log r)A(pﬁ(r) the proof actually gives

#<{xe B(0,7): (1—€)Lg+ (r) < D(0,x) < (1+6)L5(r)}> 21, (18)

#B(0,7)

where Lg+ (r) := limpg/ g Lg (r). The latter then equals Lg(r) when ¢ %.

We note that in the continuum setting of [12], scaling arguments were used to show
that B, 7 — ¢p(r) is jointly continuous, which gave convergence for all > 0. In addition,
the convergence D(0,rx)/L(r) — 1 in [12] was shown to hold in probability for every
x # 0. In this “pointwise” version, the mode of convergence cannot be improved to
“almost sure,” at least in d = 1. This is due to long edges offering effective shortcuts at
and near the points where they land; see [12, Observation 1.3] and Fig 1.

Natural follow-up questions to (1.6) are: What is ¢s? Can it be described more ex-
plicitly? What is its limit behavior as f — oo and g | 0?7 In [12], ¢ appeared to arise
from the method of proof that was based on subadditivity arguments along doubly-
exponentially growing scales. In light of the overall scale invariance of the continuum
model, it seemed reasonable to conjecture that ¢4 is generally constant. However, as our
next result shows, this is false.
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Theorem 1.2 Letd > 1, s € (d,2d) and assume q as above. Write ¢g for the function from
Theorem 1.1. Denote m(B) := sup{k € Z: v~* < log B} for vy := o7 and set

u(B) = 7" Plogpe 1,97, (19)
Define yp from ¢g via (1.7). Then for all t € [0,1],
log(52) Sy os—d_
(log B)* ¥ (t - 10g(1/7)> . 57— 27 t —2—22 f] (2d —5)2 (1.10)

with the limit uniform on [0, 1].

As is readily checked, the function on the right of (1.10) equals (2d —s)® att = 0
and t = 1 (which is consistent with the 1-periodicity of ¢) yet, being the difference of
two exponentials with distinct bases, it is not constant. We thus conclude:

Corollary 1.3  For each q as above there is B € (0, 0) such that ¢g is not constant for > P.

This refutes Conjecture 1.4 from [12]. The conclusion of Theorem 1.2 also reveals the
overall scaling of ¢g with p:

Corollary 1.4 For each q as above there are ¢, C € (0,00) and By > 1 such that

c C
VB > B1Vr > 1: {log 1 < ¢p(r) < (log BA (1.11)

The upshot of Theorem 1.2 is that the asymptotic distances exhibit a universal scaling
limit as B — o that depends only on the dimension d and the exponent s but not on the
particulars of q. A plot of this limit, along with that for the asymptotic distance function
Lg(r) := ¢p(r)(logr), is shown in Fig. 2.

The fact that ¢p is not constant means that, for g large, D(0, x) is sensitive to the
arithmetic nature of |x| — namely, the fractional part of log, Iy log(|x|). The need for the
u(p)-dependent term in (1.10) reveals that similar arithmetic oscillations occur also in
B-dependence of the distance scaling function. As we explain below, these arise from
the minimizing paths being quite rigid down to a lattice scale.

2. MAIN IDEAS, CONNECTIONS AND OPEN QUESTIONS

We proceed to review the main ideas of the proofs. The proof of Theorem 1.1 runs
very closely to that in [12] and so we focus on Theorem 1.2. We also highlight natural
questions that we find worthy of further study and make connections to literature.

2.1 Heuristics for distance oscillations.

As shown in earlier work on this problem [9, 10, 12], the polylogarithmic scaling of the
graph distance with the underlying metric on Z¢ in the parameter range d < s < 2d
arises from a dyadic structure of the minimizing paths. Naturally, the larger the B, the
more long edges are there and the more rigid the dyadic structure should be expected to
become. We will now present a semi-heuristic derivation of an asymptotic formula for
the graph distance in the limit as § — oo that yields the conclusion (1.10). This formula
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FIG. 2 The graph of the f — oo limit of 7 — ¢4(r) (top curve) and the corre-
sponding limit for Lg(r) := (log r)A(pﬁ(r) (bottom curve) for the choices d = 1
and s = 1.6. (The adjustment due to u() is hidden in the parametrization of
the horizontal axis.) The bottom graph touches down on the horizontal axis
atr = 1. The mild cusps at the points {€?": n € Z} arise from the function on
the right of (1.10) having unequal derivatives at t = 0 and t = 1.

will be justified rigorously in later sections by way of asymptotically matching upper
and lower bounds.

Consider the long-range percolation on Z¢ with connection probabilities (1.1-1.2)
for some s € (d,2d) and B > 0. The aforementioned dyadic hierarchical structure
of minimizing paths comes from the observation that, given two sites x and y with
N := |x —y| » 1, the ball B(x, N;) is likely to contain an edge to the ball B(y, N,) pro-
vided that .

ﬁ(MI\II\SIZ) > 1 (2.1)
while having even one such edge is unlikely when the quantity on the left is « 1. De-
noting by z the endpoint of such an edge in B(x, N;) and writing z’ for the endpoint
in B(y, N,), this yields a key subadditivity inequality

D(x,y) <1+ D(x,z) + D(y,Z) (2.2)

that drives all the recent work [9,10,12]. As it turns out, the inequality (2.2) is actually
saturated for at least one “optimal” choice of the edge (z,z’) where finding an optimal
edge includes optimizing over the “radii” N1 and N subject to (2.1).

Under the additional assumption that B » 1, these observations seem to point to
the conclusion that D(x, y) increases by one every time N := |x — y| increases, roughly,
through a specific power of . To see this note first that (1.1-1.2) show that, for p large,
vertices at | - |-distance much smaller than B'/* are very likely connected by a single edge
while those at | - |-distance much larger than B'/* are quite unlikely to do so. Hence,
with high probability, D(x,y) = 1 when 0 < N := |x —y| <« g% and D(x,y) > 2
when N » Bl Proceeding inductively, if we assume that for each k = 0,...,n there
is O > 0 such that, with high probability once B is large,

<k, for N := |x —y| « g%,
D(x,y) xoyl<p 23)
=>k+1, for N » p%,
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then (2.1-2.2) with Nj := g% and N, := g%+ yield D(x,y) < 1 + 1 as long as, for at least
oneke{0,...,n},

N « BY5(NyNp)#/s = Ba+5 (@t (2.4)
The fact that (2.2) reduces to equality for an optimal choice of (z, z') — which dictates the
choice of k — in turn gives D(x,y) > n + 1 when N is much larger than the right-hand
side for all k € {0, ..., n}. This reproduces the induction assumption (2.3) for k := n +1
provided 6,1 is set to the maximal exponent in (2.4). We are thus lead to:

Definition 2.1 (Exponent sequence) Let {6y }x>0 be the sequence defined by the recursion

1 d
Ons1:= — + — max (6 + 6, 2.5
n+1 5 S ngén( k n k) (2.5)
with initial value 6 := 0.

We will now make a couple of mathematical observations about this recursion and
then solve it explicitly. First we note that the term 6 + 0, is maximized by the “most
symmetrical” value of k:

Lemma 2.2 Define the auxiliary sequence {0, },>1 by 8 := 0 and, recursively,

0, = S+ g(én +0,_1) (2.6)
and L 2
§2n+1 = g + ?éi’l (2.7)

Then n — 0, is non-negative and concave (on naturals) and, in fact,
Vn=0: 6,=0, (2.8)
Proof. Non-negativity is immediate from the recursive definition. For concavity on nat-
urals we note that, by (2.6-2.7),
Vn=1: Gpupq +01—-20,,=0 (2.9)
while

Vin=1: Oy + 0202001 =—(0,+6,_0—20,_1). (2.10)

» |

Since . p s g
< ~ —s
we get 0,41 + 0,1 — 20, < 0 for all n > 1 by induction.
In order to prove (2.8) we note that the statement holds for n = 0 so, aiming for a

proof by induction, let us assume 6; = 0 fork = 0,...,n. Then

1 d 1 d
041 = " + — max (0 +6,_x) = — + — max (6 +6,,_¢) (2.12)

S 0<k<n S S 0<k<n

and the second maximum equals 20y if n = 2k and 0 + 0;_; if n = 2k — 1 by concavity
of n — @,. From (2.6-2.7) we get 0,41 = 0,+1 and so (2.8) follows by induction. O

The observations made in the previous proof are strong enough to identify the se-
quence {0, },>1 explicitly:
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Lemma 2.3 Recall the notation vy := 55. The following holds for all n = 0:

11—-9" _
921’1_1 - gﬁ’)’ n+l (213)
and, for all integers k satisfying 2" —1 < k < 2"*t1 -1,
2l 1k k—2"+1
|9k = 27” 92n_1 + T 92n+171. (214:)

In short, k — O is piecewise linear with explicit values for k € {2" —1: n > 0}.

Proof. We start with the explicit values. Note that 2" — 1 is odd and 2(2" — 1) +1 =
2"+1 1. From (2.7-2.8) we thus get

1
Opui1_1 = S+ Y 001 . (2.15)

Since (2.13) gives the correct value for n = 0, we get (2.13) for all n > 0 by induction.
For (2.14) it suffices to prove that, foralln > 1,

Vke {2"+1,...2" " —1}: 6 — 601 = 61 — Or_» (2.16)

because this shows that k — 6y is linear for 2" — 1 < k < 2"*! —1 and so (2.14) follows
from (2.13). To show (2.16) note that, for k odd, the equality follows directly from (2.9)
(and (2.8)). For k even, writing k = 2/ for some integer ¢, (2.10) (and (2.8)) tells us

d
O — O—1 — (O—1 — Ok2) = (96 — 01— (801 — 912—2))- (2.17)

Since 2" < k < 2"*! — 1 implies 2"~! < ¢ < 2" — 1, the right-hand side vanishes assum-
ing that (2.16) holds for n — 1. Since (2.16) for n = 1 boils down to (2.9), we get (2.16) for
all n > 1 by induction. O

We will now present a calculation that determines the asymptotic in the main theorem
based on the assumption that, for any x € Z4 \ {0},

D(0,xp%) ~ n (2.18)

where “~” means “the ratio of the quantities tends to one in probability” in the limits
n — oo followed by B — co. This assumption restates the conclusion (2.3) of our heuristic
reasoning while allowing for sublinear corrections.

First note that, for A € [0, 1] such that 2" A is an integer, (2.18) yields

D(0, xph2+a-12+1) < 227 4 (1= A2+ = [A+ (1—A)2]2" (2.19)
Lemma 2.3 along with 4" — 0 and (27)™" — 0 gives
b
2d s

Theorem 1.1 shows D(0, x#? ")/2" — Lg(r) := ¢p(r)(log r)® in measure as 1 — o0 pro-
vided B is not one of the exceptional values (which we can ignore thanks to the mono-
tonicity of B +— Lg(r)). From (2.19-2.20) and the continuity of 7 — ¢5(r) we then get

0A2n+(1_A)2n+1 ~ Al + (1 — )\)02;«+1 ~ [/\ + (1 — )\)’)/_1] -, (220)

Ly (ﬁ[M(l—A)v*]ﬁ) ~A+(1-A)2 (2.21)
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and so At (1-Ap .
_l’_ —
2d —s)" :
A0y 1 o
Writing u(B) for the unique number in [1,7~1) such that g = "B for a suitable
integer m(p) (see (1.9)), the log-log-periodicity of ¢ in (1.5) then tells us

4)[3 (‘B[)““(l—)\)”r_l] s ) ~

(2.22)

)17 1 )17 (B
g (lg[M(l A)y ]ZH) = ¢p (e[M(l A)y ]Zd,s)_ (2.23)
Finally, let f € [0,1] be such that
A (1=A)y =97 (2.24)
This is solved for A by
2d 5 _t
/\_Zd—s_Zd—sly (225)
Using 72 =2 we get [A + (1 — A)y~1]4 = 4 = 2! while (2.25) shows
s s—d
A+ (1-A)2=2-A=-——7"-2 : 2.2
+( ) 245 2d —s (2.26)
Inserting this into (2.22-2.23), we get that, for all t € [0, 1],
TRy ot St S ] g gp 2.27
tp(e” ) [zd—s'y 251—5]( =9 log B3 @27)

Writing the left-hand side using g, we obtain (1.10).
2.2 Remarks and connections.

We proceed with some remarks on directions of possible future study as well as pointers
to relevant literature.

(1) Non-constancy for all  and extension to percolation setting: Our proof of non-const-
ancy of ¢g applies only to large B but we expect ¢ to be non-constant for all § > 0.
However, lack ideas or techniques for proving that rigorously. An interesting starting
point could be the B | 0 asymptotic of ¢g, for which the continuum limit analyzed in [12]
should be quite relevant.

Another extension concerns replacing the requirement that pg(-,-) = 1 for nearest
neighbors by the requirement that the graph contain an infinite connected component.
We expect the asymptotic (1.6) to take place here as well but several parts of the proof
require new arguments.

(2) Subleading terms and “shape theorem”: The fact that ¢g is non-constant complicates
the ultimate goal of the whole sequence of works [9, 10, 12], which is to prove a “shape
theorem” for balls of very large radii in the intrinsic (i.e., graph-theoretical or chemical)
distance. Shape theorems lie at the core of the study of the First Passage Percolation;
cf Auffinger, Damron and Hanson [2]. The difficulty of the present situation is that the
limit (1.6) is not influenced by the choice of x. It follows that the “shape” of the intrinsic
ball, if there is one at all, is determined by terms beyond the leading-order scale.

In [12, Conjecture 1.5], a proposal for the relevant x-dependent second-order term
was made but that only under the assumption that ¢; is constant. We expect that the
oscillations of ¢ will contribute another such term, albeit perhaps of a smaller order.
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(3) Diameter scaling: Another interesting question is the asymptotic scaling of the in-
trinsic diameter of large sets, e.g., lattice boxes or Euclidean balls. Our control of the
point-to-point distance is too weak to rule out exceptional points — which do exist, e.g.,
at endpoints (or points nearby) certain long edges. The main result of [10] shows that
the polylogarithmic exponent remains in effect for the diameter as well; the question is
whether exceptional events may lead to sub-logarithmic corrections.

(4) Other aspects of d < s < 2d regime: Long range percolation in the regime of ex-
ponents considered in the present paper is attractive for other reasons than just those
explored here. One of these is connectivity as a percolation model (again, dropping the
requirement that p(x) = 1 for x being a nearest neighbor). Here the d < s < 2d regime
of (1.2) identifies a robust family of percolation models for which we have a proof of no
percolation at criticality; see Berger [7] and the recent work of Hutchcroft [25].

A somewhat opposite situation occurs for random walks on long-range percolation
graphs (even with nearest-neighbor edges present). There an invariance principle (i.e.,
scaling to non-degenerate Brownian motion) is expected to hold for all exponents s >
d + 2 yet the method of proof breaks down when s < 2d due to the fact that the so called
corrector fails to be sublinear everywhere (Biskup, Chen, Kumagai and Wang [11]). The
geometric aspects of long-range percolation such as those studied here will likely play an
important role in extending the proof of invariance principle to all exponents s > d + 2.
We refer to, e.g., Berger [7], Benjamini, Berger and Yadin [4], Crawford and Sly [16,17],
Misumi [29], Kumagai and Misumi [28], Can, Croydon and Kumagai [13] for studies of
random walk in long-range percolation setting and further connections.

(5) Inhomogenous percolation models: In [18], Deijfen, van der Hofstad and Hooghiem-
stra introduced an inhomogeneous version of the long-range percolation model where
an edge between x and y is added with probability

1—exp{—p =1 (2.28)
o=yl

for a given collection {w},.z« of non-negative i.i.d. random weights. The main novelty

here is that, by tuning the law of the w’s — for instance, choosing it heavy tailed with

a suitable exponent — one can make the degree distribution of the graph “scale free,”

which is an aspect relevant for real-life networks.

The appearance of another tunable parameter — namely, the distribution of the w’s or
the relevant exponent therein — makes the “phase diagram” of the model more intricate
(see Deprez, Hazra and Wiittrich [19], Heydenreich, Hulshof and Jorritsma [24], Hao
and Heidenreich [23]) although the five basic regimes of behavior outlined early in this
section persist. It is of interest to explore whether the sharp leading-order asymptotic of
the distance established here and [12] extend to the inhomogeneous case as well.

Another modification of our model comes in the work of Chatterjee and Dey [14]
in which an edge between x and y is assigned an exponentially distributed passage
time with mean |x — y|*%; one is then interested in the minimal passage time in paths
connecting two vertices. Also here the regime d < s < 2d is of significance, being marked
by stretched-exponential growth of the passage time with the /!-distance. A novelty here
is the appearance of an additional regime 2d < s < 2d + 1, in which the passage time
grows polynomially (as opposed to linear growth that resumes for s > 24 + 1).
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3. PROOF OF THEOREM 1.1

The proof of of Theorem 1.1 follows closely that of its continuum predecessor [12, The-
orem 1.2]. Many steps of the proof can in fact be taken over nearly verbatim; the main
novelty is the need for a coupling between the lattice and continuum edge processes and
an argument by-passing potential discontinuity points of g — ¢g(r).

3.1 Subadditivity inequality.

Fixd > 1,s € (d,2d), B > 0 and q satisfying (1.2) throughout the rest of this section.
Given a sample of the percolation graph on Z4, let & denote for the set of all occupied
edges, of both orientations and including the nearest-neighbor ones, contained therein.

Echoing definition (2.1) of [12] we introduce D: 7% x 7% — Z via

{(xk,l,xk):kzl,...,n}gg, Xo = X, } (31)

5 7 ::. f 20:
(x,y) :=in {n Xp =y, Vk=1,...,n: |xp — x| <2|x —y|

We will refer to D(x, ) as the restricted distance from x to y as it is non-negative, strictly

positive for x # y and arises by optimizing lengths of paths, although D is not a distance
in proper sense as it is not symmetric in general. What matters in the sequel is

vx,ye 2% D(x,y) < D(x,y) < |x—y| (3.2)
and the fact that the law of D is translation invariant with
v,y X,y e 2% |x— x|y > 2lx—yli +2]x' —y'|1 = D(x,y) L D(x,v). (3.3)

Here and henceforth | - |; denotes the ¢!-norm on R¥.

Let |x|, for x € RY, denote the unique z € Z? such that x —z € [0,1)?. The inde-
pendence property (3.3) enabled by the consideration of the restricted distance permits
us to prove the following analogue of [12, Proposition 2.7] that drives the bulk of the
subsequent derivations in this paper.

Proposition 3.1 (Subadditivity inequality) Fix € (0,1) and % € (v,1). Let Z,Z' be
i.i.d. R%-valued random variables with common law given by

P(Z € B) = /1B f e Pl gz, (3.4)
B
where
Cp := jl{z|2d+2|2d<1} dzdz. (35)

Let D’ be an independent copy of D with D and D’ assumed independent of Z and Z'. For each
Y1, 72 € (0,7) with 1 + 2 = 2y = s/d, there are c1, ¢, € (0,00) and, for each x € 74, there is
an event A(x) € 0(Z,Z") such that

~ law ~ ~, ,

D(0,x) < D(0,[|x|"Z]) +D'(0,[|x[Z']) + 1 + |x1 1 a(x) (3.6)
and ,

P(A(x)) < cre~ 2 (3.7)

hold with ¢ := 2d[y — max{7y1, v2}]-
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Proof. Fixn € (0,1), 7 € (7,1) and 71,72 € (0,%) with 91 + 72 = 27. Let x € Z*.
Following the overall strategy of the proof in [12], consider Borel measures y and p’
on R? x R? defined by
. dxdj
u(dxdy) := 17,31{|3?|<|]7‘}1{‘g‘v|g_x|<|x|7}7‘x|s (3.8)
and

dxdy
p(didg) = np o — ' (d5d) (39)

Next observe that, for |x| larger than an ;7-dependent constant, for any (%,7) € RY x RY,
the inequalities |¥| < ||, || < |x|7, and |§ — x| < |x|7 imply

()Y ) < 12— gl < (50) 7 I (3.10)

and so, by the inequality on the right,
%+ [0, D)%) x (|7] + [0, 1)¢ <ﬁ< 1 ~'B~. 3.11
P11+ 10,17 x (191 +10,1)%)) < (5 el (3.11)

By (1.1-1.2), the left-inequality in (3.10) and ;7(1%'7)*1 < 1, this is less than pg(|X| — [7])
as soon as |x| exceeds a constant that depends on 7, B and q. Under these circumstances
we can couple a Poisson point process .# with intensity measure y’ to the discrete edge
set & so that

V(&g es: (517 eé (3.12)
holds pointwise and, by (3.3) and the restriction built into the definition of D, the families
{DO, %)+ 7] < |x[T}, {D(x, [g]): [7 - x| < 27}, 7 (3.13)

are independent.

Let .#’ be a Poisson point process with intensity measure y” independent of .# and &.
Then .# U .#’ is a homogeneous Poisson process with intensity #|x|~° € (0,0) and, as
is readily checked, there is almost surely a unique pair (X, Y) € .# U .#’ that minimizes
the function

J _ -\ 2d _ - d
Fol® ) = (I 77 &)™ + (Jx[72)7 — x))™. (3.14)
The joint law of X and Y can be computed explicitly
P((X,Y)eB) = |1;IC|55 Bexp |x|5f ey <fol W)}dx’dy’}dfdg. (3.15)

The random variables
Z:=xT"X and Z':=|x|772(Y —x) (3.16)
then have the joint law
P((Z, z' ) € B) ‘17[; eXp{—(ZC[; J1{|Z|zd+|Z/|2d<|z|2d+|zl|2d}dfdzl}dZdZI (317)

where { := s — d(q1 + 72). Scaling z and 2’ by (|z*¢ + |2/|**)1/4, the inner integral is
shown to equal co(|z[>* + |2’|*¥) thus turning the outer integral into one with respect to a
product measure. (This is where using 2d-powers in (3.14) is crucial.) Noting that = 0
by assumption, Z and Z’ are independent with above law.
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Next define the event A(x) as follows: When |x| is large enough (with exact bounds
including those mentioned above and further given below), set

A(x) :={|Z] > |x" 1} O {|Z'| > |x|7772} (3.18)

and let A(x) be the entire probability space otherwise. On the event A(x) the edge (X, Y)

lies in .# since |X| v [Y — x| < |x|7 and so (|X],|Y]) € & by (3.12). Moreover, both X

and Y are within distance 2|x| of the origin (as long as |x| is large enough; this is part

of the bounds on |x|). Recalling the notation B(y,7) := {z € R%: |z —y| < r}, similar
arithmetic as in [12, eq. (2.29) and (2.30)] establishes
B(0,2[|X]|) = B(0,2]x[) A B(x,2||Y]—x[) = B(0,2|x]). (3.19)

Picking a path achieving D(0,|X]), concatenating it with edge (|X],|Y]) and a path
achieving D(x,|Y]) then produces a path in B(0,2|x|) whose length dominates the re-
stricted distance D(0, x).
Using (3.2) to bound D(0, x) by [x[114(x) when A(x) occurs, this yields the pointwise
inequality
D(0,x) < D(0,||x|"Z]) + D(x, x + [|x["Z']) + 1 + |x[11 a(»)- (3.20)

In light of (3.13), the two instances of D on the right can be regarded as independent
of each other and of the variables Z and Z'. Invoking translation invariance of the law
of D, the proof is reduced to (3.7). This follows readily from (3.18) and (3.4). O

3.2 Convergence for restricted distance.

The next several steps hew closely to the original argument from [12]. Indeed, taking
expectation in (3.6) with 7y = 72 = 7 gives

ED(0,x) < 2ED(0,|[x|"Z]) + 1+ |x{ P(A(x)). (3.21)

In order to unite the arguments in the two expectations and get an expression that can
be iterated, we replace x by the random variable

a0
W= 2o [ ]1zdl", (3.22)

k=1
where Zy, Z,, ... areii.d. copies of Z. As shown in [12, Lemma 3.1], the infinite product
converges and W € (0, ) a.s., with W admitting a continuous, a.e.-non-vanishing prob-
ability density and finite moments of all orders. Noting that for W and Z independent

we get |W|"Z aw taking W independent of the D’s then yields
ED(0,rW) < 2ED(0,7"W) + ¢ (3.23)
for ¢ := 1 + sup, ga |x|1P(A(x)). This implies the existence of the limit

Ly(r) = lim ED(O. 1 W)

n—0o0 on

(3.24)

giving us
Vr>1: ¢p(r) := Lg(r)(log r)8 (3.25)
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From (3.24) we get Lg(r") = 2Lg(r), which then forces the log-log-periodicity (1.5). The
construction via a (essentially) decreasing limit then ensures that ¢4 is bounded from
above on (1,c0) and [12, Theorem 2.5] shows that ¢ is also uniformly positive.

While simple, the construction of Lg via (3.24) harbors several conceptual problems.
First, it concerns the restricted distance. Second, it depends on W which itself depends
on B and 7. In [12, Section 3], these concerns are dispelled by subsequently proving that,
for all ¥ > 1 and Lebesgue a.e. x € RY,

D(0,|r" "x|)
— T Lg(r), P-as. (3.26)
see [12, Proposition 3.3]. The proof of this is based on the subadditivity estimate (3.6)
and, modulo rounding of the arguments of D, it can be taken over verbatim.
Another concern is the regularity of r — Lg(r). As in [12], this can again be handled
using the subadditivity bound (3.6) which gives

~ —n 1 ~ —n ~ —n
D0, "x]) < DO, [r7 " |x1Z]) + D' (0, | "|x[Z']) + O(1), (3.27)

where, thanks to (3.7), O(1) is bounded in L! uniformly in x and r > 1. Since Z is
continuously distributed, (3.26-3.27) give

Lﬁ (1’) < Lﬁ(?’%) + Lﬁ(?”h) (3.28)

for all 1,72 € ) with 91 + 92 = 27. This implies convexity of t — Lg(e') and thus
continuity of r — Lg(r) and r +— ¢p(r) on (1,0).

The next step in the argument is the replacement of the limit along doubly exponen-
tially growing sequences by a plain limit » — oo. This comes at the cost of reinserting W:

Lemma 3.2 Suppose D and W are independent. Then

T - 1, in probability and in L2 (3.29)
Proof. The corresponding statement in [12] (see Proposition 3.7 there) is deduced from
the fact that, for X,,(r) := 27"D(0, 77 "W), the limits EX,(r) — Lg(r) and Var(X,(r)) — 0
are locally uniform in r > 1. This is in turn proved by noting that, thanks to (3.6), both
EX,(r) and E(X,(r)?) are downward monotone in 7 modulo vanishing additive correc-
tion terms. As r — X, (r) is continuous in the continuum model, the local uniformity is
then extracted from Dini’s Theorem.

In order to adapt this reasoning to our setting, we need to supply an argument for
continuity. This can be achieved by extending the definition of x — D(0,x) to all x € R?
as follows: Let dist,, denote the £*-distance on R? and let : [0,1]¢ x {0,1}¥ — [0,1] be
defined by

h(x,0) = [1—distoo(x,(7)]< 3 [1—distoo(x,a’)])_l (3.30)
o'e{0,1}
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This function is continuous in x with h(c,¢’) = 6, for all 7,0’ € {0,1}. Defining, for
each x € RY,
D(0,x):= ' h(x—1x],0)D(0,|x] +0), (3.31)
oe{0,1}4
we get an continuous extension of x — D(0,x) to R%. The subadditive bound (3.6)
(which implied the aforementioned downward monotonicity) holds without any round-
ing albeit with “1” on the right replaced by a d-dependent constant thanks to the bound

ID(0, x) — D(0, |x])| < d for all x € R%. This constant is irrelevant in the argument and so
we can proceed as in [12]. O

Before we move on, we record a useful consequence of above derivations:
Corollary 3.3 Thereis c = c(d,s, B) € (0, ) such that
Vxe 27 {0}:  E(D(0,x)) < c[1+1log|x[]". (3.32)
Proof. The claim will follow from (3.21) and the bound (3.7) once we prove
vr=1: ED(0,rZ) < &1 +logr)® (3.33)
with ¢ € (0,0) a constant and Z 1L D. For this we note that, by Lemma 3.2, a bound

of this kind holds for Z replaced by W so it suffices to “exchange” the probability den-

sity fw of W for that of Z. Using that Z faw W/|W'|7 for W 1L W' with W’ 2 1 and
writing fz(z) := /1B e~ for the probability density of Z, we have

fw(w) = J(o . Uflfz(w/v)y(dv), (3.34)

where 1 is the law of [W|7 on R. For v > 1, we have fz(w/v) > fz(w) and so it suffices
to show that p([1,vg]) > 0 for some vy > 1. For this it suffices to show that u([1,0)) >0
which is checked readily from (3.22) and (3.4). ]

3.3 Actual distance.

We are now ready to start working towards the asymptotics of the actual distance D.

Paralleling the approach in [12, Section 4], fix 7 € (7,1) and extend D to a family of
restricted “distance” functions,
- {(xi—1,x;)):i=1,...,n} S &, x0=x, X, =,
Dy(x,y) :=min< n > 0: __ . (3.35)
) Vi=1,...,n: \xi—x]<2]x—y\7k
These interpolate between the actual distance and the restricted distance monotonically,
D(x,y) < -+ < Dgya(x,y) < Dlx,
(x,y) Dia(xy) < Delxy) (3:36)
<< Di(x,y) < Do(x,y) = D(x,y).

Since k > 5k(x, y) is non-increasing, non-negative, and takes values in Z, the sequence
{Dy(x, Y)}k>1 must stabilize; i.e., Di(x, y) = D(x, y) for all k sufficiently large, depending
on x, y, and on the random edges that determine the distances. A key fact is that, at large
scales, this happens uniformly with high probability:
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Lemma 3.4 Let W be independent of the distances Dy and D. There is a k € N such that
lim P(Dk (0,[rW]) = D(0, [rWJ)) ~0. (3.37)

Proof. This is a lattice version of [12, Lemma 4.2] whose proof went through by way of
the discrete distances and so can be taken over without change.

The next result to establish is an analogue of [12, Lemma 4.3], which bounds the ra-
tio EDi(0, [rW|)/L(r) asymptotically by one from below. In [12], the proof relied on
continuity of B+ ¢g(r) which was in turn proved using scaling arguments that do not
seem to apply here. However, the above does give us the following:

Lemma 3.5 Foreachr > 1, B+ ¢g(r) is left-continuous and downward monotone. There
exists an (at most) countable set ¥ < (0, o0) such that, for each r > 1, the function p — ¢g(r) is
continuous at all points p' € (0,00) \ L.

Proof. Inlight of (3.25), the downward monotonicity follows from (3.26) and the fact that,
under a monotone coupling of edge sets for two different B, distances are ordered point-
wise. Being a downward limit of continuous functions, f — Lﬁ(r) is left-continuous,
and hence so is f — ¢p(7).

The convexity of t — Lg(e’) shown above guarantees that, for any 0 < By < p1 <
and 1 < rg < r; < o, the family of functions

{r— Lg(r): B e [Bo, prl} (3.38)

is uniformly equicontinuous on [r1,72]. This implies that, if B — ¢g(r) is continuous
at some B’ € (0,0) for all ¥ € Q N [r1, 2], then it is continuous at p’ for all € [rq,12].
Invoking the log-log-periodicity (1.5), B +— ¢4(r) is continuous for all » > 1 as soon as
does not belong to

= ,00): li ' li ()b .
z reQmU[ev,e]{ﬁ € (0,0) i ¢p (r) > Lim ¢ (r)} (3.39)

This set is (at most) countable, since for each r € Q n [e7, e] the set of jump discontinu-
ities of B +— ¢p(r) is at most countable. O

All that continuity of  — ¢ was needed for in [12] is condensed into:

Lemma 3.6 Let X be as in Lemma 3.5. Then for each ¢ L,

lim inf P (r)
Blp r>1 Pp(r)

=1. (3.40)

Proof. We will prove the contrapositive. First observe that, by the log-log-periodicity (1.5),
we may restrict the infimum to r € [e7,e] without changing the result. Next, since
the ratio is non-increasing in B’, we can take ' down to B along any decreasing se-
quence B, | B. The continuity and boundedness imply existence of a minimizer for
each n; call it r, for B’ := B,,. By compactness of [e?, e] we may assume 1, — 7, € [e7, €]
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as n — o0. But then the uniform equicontinuity of (3.38) implies

. Pp(r) . ¢ (re)
1 f =1 . 3.41
B 08 A gs(r0) (3.41)

If the latter limit is not equal to one, then B’ — ¢g(ry) is not continuous at B, thus
forcing B € X. Hence B ¢ X implies (3.40). O

Let us henceforth write Py for the probability and Eg for the expectation associated
with edge probabilities pg. We then have:

Proposition 3.7 Let B ¢ X and let W be as in (3.22) for Z with law (3.4) for y := 1. Then

Es ® Ew Di(0,7W
Vk>1: liminf pOEW k( Z )
r—00 ¢p(r)(logr)

where the product of expectations indicates that W and Dy are independent.

>1, (3.42)

Proof. As in [12], the statement will be deduced from the fact (to be proved) that, for
eachk> 1,5 >0ande€ € (0,1/4) thereis c = c(k, B, €) € (0,00) such that

Ep® Ew Dy (0, [re W) < 2Ep(1_26)® Ew Dyy1 (0, [r7e 2= W)) +c. (3.43)
Indeed, dividing both sides ¢g(1_2¢)(7)(log r)® and taking r — o0 shows
Ep ® Ew Dyy1(0,rW Es ® Ew Dy (0,rW
T ¢p (1) (logr) r>1¢p(r) | o Pp(r)(logr)

where ' := B(1 — 2¢). Since (3.42) holds for k := 0 and all § > 0 by Lemma 3.2, this
bounds (3.42) inductively for any k > 1 by

(3.44)

k

 Ppa—2e (1) [ Ppa—e+(1)]*
oty = [t ™5 049

where the inequality follows from downward monotonicity of B — ¢4(r). Taking e | 0
and applying Lemma 3.6 we then get (3.42) for all ¢ X.

As in [12], the proof of (3.43) is based on a variant of the argument from Proposi-
tion 3.1. Let y, resp., ' be as in (3.8-3.9) for 7 := € and let .7, resp., .#' be independent
Poisson processes with intensity measures y, resp., #’. For any (%,7) € R? x RY satisfy-
ing || < |7], |%] < |x|7, and |7 — x| < |x|7 we have

(171 +10,1)%) x (191 +[0,1)%) ) + pga20) (12 171) < ps (1%, 17) (3.46)

provided |x| is sufficiently large. Letting &’ be a sample of edge configuration with
probabilities pg(;_ze) which we assume independent of .# and .#’, we can couple the
above processes to a sample & of edge configurations with probabilities pg so that

{1z l9): (x,9)e L} L& < 6. (3.47)

We then use .# U .#’ to pick a pair (X, Y) minimizing (3.14), define (Z, Z’) from these as
in (3.16) and A(x) as in (3.18) unless |x| is small, in which case we set A(x) to the whole
probability space.

j=1
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On A(x)¢ we are guaranteed (X,Y) € .# and so (| X|,|Y]) € &. For the same reasons,
the fact that 7 < 1 also gives

B(0,2)x[7 “"

) UB(x,2x— Y7 ") = B(0,2)x]7 ) (3.48)

whenever A(x)® occurs. Writing f),’( for the distances generated by &’ and Dy for those
generated by &, concatenating a path minimizing Djs1 (0,1X]) with edge (| X],|Y]) and
the path minimizing Dy, (%, |Y]) produces a path contributing to the optimization un-
derlying Dy (0, x). Thanks to (3.47) we thus get

Dy (0,x) < Di(0,|X[) + Djyy (3, 1Y) + 1+ |x[11 4 gx- (3.49)
Rewriting X and Y using Z and Z’, plugging for W defined using # := € for x and tak-
ing expectation, this yields (3.43). As a calculation shows, the change in normalization
effectively replaces W by e TS U

We are now ready to give:

Proof of Theorem 1.1. Let B ¢ X. Summarizing the above developments, for W (defined
using 17 := 1) independent of D we have

M — 1 in probability and L% (3.50)
Lﬁ (r) r—m
Indeed, the upper bound is supplied by Lemma 3.2 and D(0,x) < D(0, x), while the
lower bound follows from Lemma 3.4 and Proposition 3.7.
Fix 6 € (0,1). Using that W admits a probability density f, the expectation of the
quantity on the left of (1.6) is bounded by

o al) DO, /W)
“H#B(0, 1) + E5®EW(‘ oo ) (3.51)
where
9= max J f(z/r)dz)_l (3.52)
Cr( T x€B(0,r)\B(0,0r) \Jx+[0,1]¢ ‘ .

Since f is continuous and positive on R? \ {0} we have sup,_, ¢;(§) < c0. The second

term thus tends to zero as r — o by (3.50). Noting that r~##B(0,6r) < cd?, the claim
follows by taking r — coand ¢ | 0. U

4. PROOF OF THEOREM 1.2: UPPER BOUND

Moving to our second main result, we will now put the heuristic derivation from Sec-
tion 2.1 on rigorous footing by proving separately upper and lower bounds on ¢z that
match the desired asymptotic in the limit as B — . Here we will prove the upper
bound. Throughout we fix d > 1 and s € (d,2d) and denote, as before, v := ;.

4.1 Key proposition and preliminaries.

The argument again relies broadly on the subadditivity bound in Proposition 3.1 and
subsequent derivations relying on the random variable W. However, the need to include
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the asymmetric case (771 # 72) robustly and to track all relevant g-dependent terms
explicitly requires additional care.

Let Pg,denote the law of the edges with connection probabilities pg and let Eg denote
the associated expectation. Given > 0, fix # € (0, B) and let Z henceforth denote the
R?-valued random variable with law

P(ZeB) = \/ﬁfB e neole gz, (4.1)

where cy is as in (3.5). Given i.i.d. copies {Z, },>0 of Z, for any sequence {7y, },>1 < [0, 1]
with sup, _; yn < 1let

Wiy on o= Zo | | 12T, (4.2)

n=1

}»121 :

Since Z, # 0 a.s. with n — log|Z,| growing slower than polynomially while n —
[ I=1 7x decays exponentially, the infinite product converges to a finite and non-zero
number a.s. Let

W= {W{’Yn}n>1 {'Yn}n>1 [O 12_:/7]} (4-3)

and denote by Eyy the expectation with respect to the law of W € W. Introduce another
exponent sequence {¥,},>1 by ¢y := 1 and

V=00 Op1 = (27) 7 (O + Ouyy)- (4.4)

Finally, let us use a different way of rounding points in RY by writing [x] to denote the
unique z € Z¢ with x — z € [-1/2,1/2)%. (We need this to ensure that |[x]|; < 2|x|;.) The
upper bound in (1.10) will be derived primarily from:

Proposition 4.1 There is kg > 0 and a function x: (0,00) x (0,00) — (0, 0) satisfying

lim limsup x(«,8) =0 (4.5)
a—00 ,B—’OO
such that for all &, B = 1o with a = log B = ko and alln > 1,
sup Eg® Ew(D(0,[e " g% W])) < n[1 + x(a, B)]. (4.6)
Wew

Here the product of expectations indicates that W and D(-, -) are regarded as independent.

The proof requires a number of preliminary considerations. A key input is a version
of Proposition 3.1 that carries all the f-dependent factors explicitly.

Lemma 4.2 For each i € (0, 1) and 7y € (y,1) there is c = c(1,7) € (0,0) such that the
following holds: Writing D and D' for independent copies of the restricted distance under Pg
and Z and Z' for independent copies of the random variable (4.1), independent of D and D', for
allxe R, n>0, B > 0and 1,72 € (0,7) with 1 + y2 = 27 we have

~ law

D(0,[x]) < D(0,[gora—nbi|xmZ7])
+ DI (0, [BA O x2]) + 14 20 1g, 0, (A7)
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where
Anp() = {|Z\ > B2+ 1101 | [T 71} {|Z | > B0t v20st |y T ’Yz} 4.8)

when |x| > c(17,7)(1 + %) and Ay, p(x) is the whole probability space otherwise.

Proof. Let B > 0,7 € (0,1) and 4 € (,1). Modulo some trivial modifications due
to a different way of rounding, the early parts of the proof run almost exactly as in
Proposition 3.1. The measures yu and ' are just as in (3.8-3.9) and the processes .#
and .#’ are as before. The requirement that |x| is large than an 7, y-dependent constant
still ensures (3.10). To get (3.12) we need

r((17]+ 10,1)%) x (191 + [0,1)%) ) < wg (1] - 171) (49)

whenever (%, ) € .# and, in particular, whenever (%, i) lies in the support of u. It is here
we need to assume that 7 < 1 and that |x| exceeds an 7, y-dependent multiple of B/
We will write this as |x| > c(17,7)(1 + /).

The next important change comes in the construction of the pair X and Y. Instead of
(3.14), here we optimize the function

fon(%,) = (B0t x| =1 g) 2y (B Owart e x| 2[5 — x)*. (4.10)
Using this instead of f, in the formula for the joint law (3.15) and setting
Z:=pB" 621710 x| TNX A 7! .= B~ On/2] +’Yz9n+1|x| 7Y —x), (4.11)

with the help of y1 + 72 = 2y and 0,41 = g + g(eln/zj + 0[,/21) We then verify that Z
and Z’ are independent with law (4.1). Definining A, g as in the statement and invoking
I[x]]1 < 2|x|;, the rest of the proof of Proposition 3.1 applies to give us (4.7). U

In order to use (4.7) fruitfully, we will need the following observations about the ex-
ponent sequence {6, },>1 and the auxiliary sequence {0, },>1:

Lemma 4.3 {8, },>1 is strictly increasing with

Oz _ %1 _ 27

—_— 4.12
n=0 Ont1 147 ( )
In addition, we also have
0
sup nj2) =7 (4.13)
n=0 9n+1
and P
1 U2
su ax: —,— < o0. 4.14
n>11°9 {91 92} (4.14)

Proof. While the values of {8,},>1 can be computed explicitly following similar argu-
ments as in the proof of Lemmas 2.2-2.3, for above claims we will only need the follow-
ing: Using (4.4) we get

V=00 Oapp1 — 02 = (27) " (Bus1 — ) (4.15)

and
Vn=1: O — -1 = (27) (00 — O41) (4.16)
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which, in light of 29y > 1 and ¢; = 771 > 1 = ¢, shows that n — 8,1 — 9, is positive
and non-increasing and thus n — 9, is positive and strictly increasing.
For (4.12) we then use (4.4) to write

Bn/2) BO1nj2) = Oy

— =7+
7 219n—i—l

4.17
ﬁn—s—l ( )

The numerator on the right vanishes for n even while for n odd it is of the form &1 — 0,
and is thus positive and non-increasing in n. Since the denominator is increasing in n,
the ratio in (4.17) is maximized by the smallest odd 7, which is n = 1. A computation
then gives (4.12).

The argument for (4.13) is very similar. Indeed, in light of (2.8), we have

0 On/2) — Onjo) — 3
i L RV 7 B LU B (4.18)

041 20,41

Since 0y, 2] — 0],,2) is non-negative and maximal at n := 1 where it equals 1/s, the second
term is non-positive for all n > 1. Using that 6,1 — o0 as n — oo, this gives (4.13).
For (4.14), we invoke (2.8), (2.6-2.7) and (4.4) to get, for each n > 1,

Ons1 _ O + Oz

. 4.19
Ons1 Oy + Oy (4.19)

Thus, if 9y < aby forall 1 < k < [n/2], then 9,41 < ab,41. It follows that the maximum
value of the ratio ¢,,/6, (for n > 1) occurs for either n = 1 or n = 2. O

To see why the bound (4.13) is useful, we note:
Corollary 4.4 Let c(1,7) and A, g(x) be the constant and the event from Lemma 4.2. Then
for all x e RY with |x| > c(y,7)(1 + BY/*),
—(Y=Y)0n1 | [T i
P(Aup(x)) < 2max P(|Z| > B 4|y ) (4.20)

hold for all B > 1 and n > 0.

Proof. Using the union bound, this follows from (4.13) and g > 1. g

The bounds (4.12) and (4.14) will in turn be used in the proof of Proposition 4.1; specif-
ically, after (4.36) and (4.45). In addition to bounds on the exponent sequences, we will
also need uniform control of the small-valued tail of random variables W € W:

Lemma 4.5 Therearec,{ € (0,0) such that forall v € [0,1/2),

sup P (|W| <7) < cr. (4.21)
WeWw
Moreover,
sup Ew (|W[?) < o. (4.22)

Wew
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Proof. Let W € W correspond to the sequence {,},>1. Abbreviate ¢ := 1 + 5 and pick
€ (7,1). Then 3}, ,a"(1 —a) = 1 along with the union bound give, for each t <0,

Py (W] <e') = P<log]Zo| + Z (H ’)/k> log|Z,| < t)

n=1 k=1

P(log|Zo| < (1—a) Z <(ﬁ ) log |Z,| < a"(1 - a)t) (4.23)

n=1
<) P<log\Z\ (a/7)"(1 — a)t )

n=0
where, besides t < 0, we used that 7y, < <y for all n > 1 in the last step. Noting that the
probability density of Z is at most /77 < 1, there is ¢ € (0, 0) depending only on d and

the norm | - | such that
vr<1: P(log|Z| < (a/7)"(1—a)logr) < erd@m"(1=0), (4.24)
It follows that, for r < 1/2, the last sum in (4.23) is dominated by its n = 0 term, thus

giving us (4.21).

For (4.22) we dominate |W|? by a.s. limit of [ [}_o(|Zx| v 1)%*, where pg := 1 and p,, :=
[ Ti=1 vk for n = 1, whose expectation is bounded using the independence of {Z,},>0
and the Holder inequality (enabled by p, € [0,1)) by E(|Z|* v 1) to power >}}_, k. As
E(|Z]*v1) < o and Yo px < 9, the infinite product converges in the mean by the
Monotone Convergence Theorem thus showing (4.22). O

4.2 Proof of Proposition 4.1.

The proof of Proposition 4.1 proceeds by induction with the induction step supplied by
Lemma 4.2. There are two base cases, n = 0 and n — 1, of which the latter requires a
separate argument and so we address that first:

Lemma 4.6 We have

limsup limsup sup Eg® Ew (D(0, [e/*W])) < 1. (4.25)
€l0 -0  WeW

Proof. Given p > 0, we split the expectation according to whether |W| < (BY%)77 or
otherwise. The former cases are handled using

Eﬁ®EW( (0, [eB* W)Ly < g1~ v})
< 2(epVS)IPP(IW] < (BY5)7P) < 2cel P (BYE)1-0H0P. (4.26)

For the latter cases we temporarily replace eW by a non-zero deterministic x € R, ab-
breviate xg := [8'/°x] and set

A= {ze 2 1N < [z, |z — xpl < 28V . (4.27)

Note that, if D(0, xg) > 1, then either D(0, xp) = 2 but the edge (0, x4) is not occupied
or 15(0, xp) < |xg|1 and no vertex in A is connected by an occupied edge to both 0 and xg.
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The union bound then shows
Eg (D(O' xﬁ)l{ﬁ(o,xﬁ)x})
< 2P((0,x5) ¢ &) + 285 |x | P (v;z eA: (0,2)¢E v (xp,2) ¢ 5) (4.28)

where |[x]|; < 2|x|; was used for the second term on the right. The first probability is
bounded directly as

Ps((0,x5) ¢ &) =1 —pp(0,x5) = exp{—Bq(xp)} <e <™ (4.29)

for some ¢’ € (0, 0) provided |xg| exceeds a constant that depends only q. For the second
probability in (4.28) we note that that, on the said event, less than half vertices in A have
an edge to 0 or less than half of them have an edge to xg. Since A is symmetric, it
suffices to bound the probability of the former event. For that we note that, if X;,..., X,
are independent 0, 1-valued with a := 1 3" | EX;, the Chernoff bound gives

n
P < DX > ;n> < e /2= (e—1)a], (4.30)
i=1
A similar estimate as in (4.29) shows
|1A| D iPs((0,2) ¢ &) <e M < (2e)7! (4.31)
ze\

once |xg| exceeds a constant that depends only on g. From (4.30) we then get

2’31/5|x|1Pﬁ (VZ e A: (O,Z) ¢ E v (x/g,Z) ¢ @(a)
< 4p"[xe =N < 4pVilxlie ™ FTRT @32

for some constant ¢” € (0, 0) depending only on d and the norm | - |.

Now substitute x := eW with |W| > (8/*)~? and choose p := 11TC Then (4.26) is
at most 2ce! =7, which vanishes as € | 0, while (4.29) equals e W™ and (4.32) is at
most 441/ se=¢"e7U Y times |W];. In light of (4.22), the expectation with respect to W
of latter terms tends to zero as p — oo and € | 0 uniformly in W e W. O

With the preliminaries out of the way, we are ready to give:

Proof of Proposition 4.1. Since D dominates D, it suffices to prove the claim for D. For
each n > 0 we first construct functions x,: [0,00) x [1,0) — [0, ) such that

sup Eg® Ew(D(0, [e ™ B%W1)) < 1+ xu(e, B) (4.33)
Wew

and such that x;1 is tied recursively to x|,z and x|,z allowing for inductive control
of their 8, & — o limits.

For n = 0 we note that [x] = 0 unless |x|; > 3. Using D(0,x) < |x|1, [x]l < 2|x|; and
the Chebyshev inequality we then get

Es ® Ew (D(0, [e™*W1)) < 2Ew (IWh1 ;5 jery) < 4e~*Ew (IWR). (4.34)
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Denoting by xo(«, B) he supremum of the right-hand side over all W € VW, which is finite
by Lemma 4.5 and the fact that all norms on IR¥ are comparable, we have (4.33) for n = 0.
For n = 1 we simply put

xi(a, B) = max{O, sup Eg ® Ew (15(0, [e~a01 gt W])) — 1}. (4.35)
Wew

which then obeys (4.33) trivially.
Next assuming that, for some n > 1, the functions yxy, ..., x» have been constructed,

we show how to construct x,,41. Fix 7 € (2% 27 1), pick W € W and set

T+’
% o4
Y1 = 2l Y2 1= (/2] (4.36)
i1 i1
Then 1,72 € (0,7) by (4.12) and so Lemma 4.2 along with (4.4) give
5(0[ [e—ﬂcﬁ,z+1‘89n+1w ) (0 [ —1)619[,1/2 ,B 1n/2] |W’fhz])
+ D' (0, [e*%m2 Bl W2 Z'T) + 1+ 2| X gl 1, 5(x, ) (4.37)

where X, g := e_w”“ﬁgﬂﬂ W and where 5, 5’, Z,Z' and W on the right-hand side are
independent with their respective laws.

We will use (4.37) only when |W| is sufficiently large so that the bound (4.20) becomes
available and useful. Defining “small” by |W| < r for some r € (0,1/2) to be determined,
the part of the expectation for |W| small is then handled by

E,B ® EW (5 (0, [e—lxﬂn-H IBGVH—I WJ) 1{|W\<r})
c[ (4041 + (0g B)B,:1)" + 1]P(|W| < 7) (4.38)
< [ (adps1 + (log 5)9n+1)A +1] 7.

Here we first took expectation with respect to D (conditional on W) using Corollary 3.3,
then used |[X,p]| < 2|Xyp| and r < 1/2 inside the logarithm and, finally, invoked
Lemma 4.5. The bound holds uniformly in W € W.

The part of the expectation for |W| large is handled via (4.37) with the result

Eg® Ew < D(0, [e~ %1 g1 W]) 1{\W\>r}>
<E;®Ew®Ez (ﬁ(O, [e =021 BOn/21 [ | 1 ZD)
+Eg®Ew ® 7 (15 (0, [e=®mm ooz |W|72Z’])>

+1+42Ew (|Xa,ﬁ|1 1{|W|>r}P(An,ﬁ(Xoc,)5)))/

(4.39)

where we also used that Z’ is equidistributed to Z and D' is equidistributed to D. In
order to control the last expectation, we assume e %+ g%+1r > c(1,7)(1 + BY/*) to get,
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for any x € R? with |x| > 7,

P(Ay ple™ 01 Boreix)) < 2Py (|2] > BI-1r 0wy

4.40
< 2Cle7C2[‘B(V*“/)9n+1e*lﬁﬂ;ﬁqr*]zd’ ( )
where we used that r < 1 and let ¢1,c; € (0, ) be such that P(|Z] > a) < cre~2% for
all a > 0. Writing ¢ € (0, %0) for the best constant such that |- |; < ¢| - |, the last term on
the right of (4.39) is thus bounded by

2d k2d

dorce i gt N p(k 4 1)e el e T T (4.41)
k=1

where the sum arises by partitioning the support of W according to |W|/r € [k, k+ 1) and
estimating Py (|W|/r € [k, k + 1)) by one. Noting that

2

—pk vk =
Dilk+ e <2} ke @) (4.42)
k=1 k=1
for all p > 0, the quantity in (4.41) is at most
-2
4C15e_“19n+1 ‘Ben+l 7 <exp{—C2 [13(7_7)9n+1e_“719n+1 rT]Zd} _ 1) (443)
Again, this holds uniformly in W e W.
We now finally set
ri= (a1 + (log B)8ys) ° (4.44)
and note that, since 6,,,1 > 1/s forn > 1,
1
r < 5 A e 1 g0y > o(n,7)(1 + V%) (4.45)
hold for all n > 1 provided that f is sufficiently large and a ! log B exceeds the quan-
tity in (4.14) by a positive constant. Thanks to 1,72 < 12%7 as seen via (4.12), we also

have |W|"Z € W for both i = 1,2 in (4.39). The first two expectations on the right of
(4.39) can thus be bounded using (4.33). In light of |1n/2] + [1n/2] + 1 = n + 1, this yields
(4.33) for n replaced by n + 1 and

Xn+1(a, B) = Xnj2) (&, B) + X[ns2) (&, B) + an(a, B) + bu(a, B). (4.46)
where a,(«, B) is the term on the right-hand side of (4.38) and b, («, B) is the quantity in
(4.43) for r as above. Proceeding recursively, this gives (4.33) for all n > 0.

With (4.33) in hand, it remains to prove (4.5-4.6). First, noting v < %, under the
assumption a, B > ko and a ! log B > ko with xp sufficiently large,

X(a,B) := sulf [an(a, B) + bu(a, B)] (4.47)
is finite with
X p) = 0 (4.48)

Using |n/2| + [n/2] = n we now readily verify that
Vn=0:  xu(a,B) < (n+1)max{xo(x, B), x1(x, B)} + nx(x, B) (4.49)
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by induction from (4.46). Then (4.6) holds with x(«, 8) := 2max;_o1 xi(«, B) + X(«, B).
The convergence (4.5) then follows from (4.34) and (4.22), (4.25) and (4.48). O

Note that, since 6; = 1/s, the requirement (4.45) is exactly the reason why the case
n = 1in (4.6) has to be treated separately using Lemma 4.6.

4.3 Proof of upper bound in Theorem 1.2.

With Proposition 4.1 established, we finally give:

Proof of < in Theorem 1.2. Let {y,},>1 be such that v, = v forall n > 0 and let ' € (0, 1).
For B > 1, the random variable Wy, , _, for i := 5’ coincides with the random variable
in (3.22) provided  in (3.4) is set to ##’/B. By the argument in the proof of Lemma 3.2,
we then have

—n ~ r)/_” _
27"Eg @ Ew(D(0,r" "W)) — Lp(r) (4.50)
uniformly on compact subsets of r € (1, 0).
Given A € [0,1], let {A,},=>1 < [0, 1] be such that
g(n) := Ay (2" = 1) + (1 — A,) (2" = 1) (4.51)

is an integer for eachn > 1and A, - A as n — 0. Then (2.13-2.14) gives

Gq(n) = Anezn_l + (1 — An)92n+1_1
(4.52)

=57 A=) o7,

where 0(1) — 0 as n — co. Let {ny};>1 be a sequence of naturals tending to infinity such
that v := limy_, 0 4(n,)/04(n,) €Xists in IR; such a sequence exists thanks to (4.14). In light
of the aforementioned uniformity in (4.50), this implies

lim 2" Eg @ Ey (D(0, e ~*%tw gl W)) = L, ((e—wﬁ)[““*m*]ﬁ). (4.53)

k—o0
But g(n) = [A + (1 —A)2 +0(1)]2" along with (4.6) then show
Lg((e g+ (=17 055 ) < [A 421 = M)][1+ x(a, B)] (4.54)

provided a and 8 obey the conditions of Proposition 4.1. Writing the result using ¢ and
introducing m(B) and u(B) as in (1.9), the log-log-periodicity (1.5) gives

¢ﬁ <(e7“077,n(ﬁ>eu(’5))[A+(1_A)771] 2,11_5 )

A+21—A)  (2d—s)A
T (A+(1-2A)y71)A (log B — av)®

[1+x(x,B)].  (455)

As A varies in [0, 1], the combination A + (1 — A)y~! sweeps all values in [1,77!]. The
bound (4.55) then gives supg_, (log IB)A(P/g(T’) < oo for all > 1 which in conjunction with

the convexity of t — Lg(e’) shows

{(log B)*¢p: B > 1} is uniformly equicontinuous on [e7, e’ . (4.56)
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This implies that e2or "W jg negligible in the limit § — co. Invoking (4.5) to take p — oo

and x — oo limits, the argument following (2.21) then gives “<” in (1.10). By (4.56) again,
the limit is uniform in ¢. O

5. PROOF OF THEOREM 1.2: LOWER BOUND

It remains to prove the lower bound in (1.10). For this we build on an argument from the
proof of a corresponding lower bound in [10] (which itself goes back to an argument in
Trapman [30]). The main improvement compared to [10] is that our computations track
the B-dependence explicitly and that so via the exponent family {60, },>1.

Proposition 5.1 Noting that s < 2d, let p € (0, c0) be such that

2d
?p>p+s+l. (5.1)
Then there are c, & € (0,0) such that for all B = 1, all natural n > 1 and all x € Z° . {0},
=1/
Qn eCﬂ si
P(D(0,x) < 1) < c(,B o ) — (5.2)

Notice that [10, Theorem 3.1] gives the same estimate albeit without the g%- term. (As
0, ~ n'/%, this term can be absorbed into a change of the constant é.) Before proving
Proposition 5.1, let us present how it implies the desired part of Theorem 1.2:

Proof of > in Theorem 1.2. We start with some preliminary considerations. Let n > 1 be a
large integer and let A € [0, 1] be such that A2" is an integer.For § > 1 set

Nu(A, B) = inf{k > 0: e > phara-apt } (5.3)
where ¢ is the constant from Proposition 5.1 and where B > 1 ensures that the set is
non-empty. The definition gives Ny, (A, B) < A2" + (1 — A)2"*! and

Na(A, )V
QNn()\,ﬁ) = 9/\2)z+(1_)\)211+1 - CHIOT' (54)

Next, the concavity and piece-wise linear nature of k — 6y implies that, for all m with
2" —1<m<2"landallk < m,

92n+1_1 - 921171

Ok < O0p + (k—m) o , (5.5)
Using this for k :== N, (A, B) and m := A2" + (1 — A)2"+! gives
~ 1/A
Na(A, B) 3 2" + (1 -yt = & _NulbB) T o (5.6)

log 5 02n+1_1 — 92n_1 )

The fact that Nj,(A, ) < 2"+! along with 271/ = « implies N, (A, B)/4 < 47"~ while
the explicit form (2.13) shows 0,.11_1 — 0n_1 = s~ 17", Putting this together, we get

2d4¢ )/

Nu(A, B) = [A2" + (1 — A)2"H1] (1 ~ fog

(5.7)

where we also used that 2" < A2 + (1 — A)27+1,
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We now move to the proof of the claim. Fix A € [0, 1] and let A, € [0, A] be maximal so
that A,2" is an integer. Since 6, — oo and N, (A, B) — 0w asn — o, forany x € R\ {0}
the bound (5.2) shows that

D(O, [x’BG,\nznﬂl—/\n)an]) > Nn (/\n’ ,B) (5.8)

occurs with probability tending to one as n — . Bounding D(-,-) < 15(, -) and sub-
stituting x := W, for W the random variable from (3.22), the local uniformity of the

convergence of E D(0, 77 "W)/2" — Lg(r) along with the asymptotic (2.20) show

A=A g = B _2de
Lg(B w5) = A+ (1-1)2) (1 iog /3>' (5.9)
Modulo the form of the error term, this bound is complementary to (4.54). The same
calculation based on (2.21-2.27) then proves “>" in (1.10). 0

It remains to give a proof of Proposition 5.1. As in [10], we will proceed by induction
which will require control of the expected size of balls in the intrinsic metric. Denote

B(x,k) :={zez®: D <k} (5.10)
We then have:

Lemma 5.2 Foralld > 1and s > d thereisa = a(d,s) € (0, 0) such that if (5.2) holds for
some B > 0, p > 0, an integer n > 1 and a constant ¢ > 0 then

E(|B(0,n)|) < a(cl/sﬁe”egnl/An_P/s)d (5.11)
Proof. Given any real r > 0, assuming (5.2) we have
1
E(BO,n)) < D] 1+A4° > — (5.12)
x| <r \x|>r’ ‘

where A := ¢!/ ﬁgneﬁnl/An_P/ °. The right-hand side is bounded by a d, s-dependent con-
stant times ¥ + A*r4~5. Optimizing over r then yields the claim. 0

Another technical input we will need is a bound on a sum that appears in the proof
of the induction step:

Lemma 5.3 Foralld > 1,s € (d,2d) and p > O there is a constant b = b(d, s, p) € (0, 0)
such that for all ¢ > 1 and all integer n > 1,

cd[kl/A+( k)2 ec"s(n-&-l)l/A

; kv 1)PA/s((n—k) v 1)pa/s S b(n + 1) 1e2pdssT (5.13)

Here k v 1 is the maximum of k and 1.

Proof. Using that A > 1 we readily check that x!/* + (1 — x)1/4 < 21718 —x(x — 1/2)?
for some x > 0 and all x € [0,1]. Noting that d2'~/2 = s, for k < n/3 and k > 2n/3 the
numerator is bounded as

LKA+ (n—k)'/*] < plsn'/t o —ggdckn!/ (5.14)
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The sum in (5.13) is thus dominated by k in the range 1/3 < k < 2n/3, where the numer-
ator at most e®"”* while the denominator is at least a constant times 1n~2%/5, As there
are at most n terms under the sum in this range, the result follows. O

Equipped with these technical lemmas, we now prove the induction step:

Lemma 5.4 Let ¢ € (0,00) be a constant such that

A

C

VxeZU{0}: q(x) < o

(5.15)

Then the the following holds for all p > 0, ¢ > 0 and B > 1 and all integers n > 1: Assuming
that (5.2) is true for all x € Z9 . {0} and all positive integers less or equal than n, then
E(n-i—l)l/A
P(D(0,x) < n+1) < éa?b s (ﬁ‘)n+1e|x|)s

holds for all x € Z \. {0}, where a and b are the constants from Lemmas 5.2-5.3.

(n + 1)s+1-2pd/s (5.16)

Proof. Fix n > 1 and assume that (5.2) holds for all naturals up to an including n. By
the triangle inequality, on {D(0, x) < n + 1} every path connecting 0 to x must contain
an edge of length at least |x|/(n + 1). Writing (z, Z) for the first edge with this property
along the path (as labeled from 0 to x), we have

{D(0,x) <2n+1}

c O U ({D(O,z) < k}o{(z2) occupied} o {D(x,Z) <n— k}) (5.17)

Z'eZ
|Z |>T|1

where A1 0 Aj o Az is the set of edge-configurations w for which there are disjoint finite
sets of edges 51, 52, S3 < Z¢ (called witnesses) such that, for each i = 1,2, 3, the event A;
occurs in every configuration that agrees with w on S;. (On {D(0,x) < 2n + 1}, these
witnesses arise as the corresponding portions of the minimal shortest path, with min-
imality taken relative to an a priori ordering on finite paths on Z“. These portions are
necessarily edge-disjoint because the path is of minimal length.) Hereby we get

P(D(0,x) <n+1)

gi Z pp(z,2)P(D(0,z) <k)P(D(x,2) <n—k)  (5.18)
k=0

2'eZ
2~ P%

thanks to a union bound and the van den Berg-Kesten inequality [6].
Using that (5.15) implies pg(z, Z) < |z — Z|~° whenever z # Z, ignoring the restriction
on the size of |z — Z| we obtain

P(D(0,x) <n+1) <

E(|B(0,k)|)E(/B(0,n —k)|). (5.19)
k=0
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With the help of the translation invariance of the underlying process, the induction as-
sumption allows us to bound the expectations on the right via Lemma 5.2. Plugging this
in (5.19) while using that 6y = 0 shows

P(D(0,x) <2n+1)
eCd(KY/ A+ (n—k)/A

(kv 1)Pa5((n— k) v 1)paFs-

< 6(” + 1)Sazczd/s Zn] BLH6+6,)

- (5.20)
x| ]

Definition 2.1 gives 1 + d(6; + 6,_x) < s6,41 for all kK under the sum and so the p-
dependent prefactor is no larger than g%+1. (This is where we need g > 1.) The claim
then follows from Lemma 5.3. U

Proof of Proposition 5.1. We proceed by induction. The base case is settled by the obser-
vation that, almost surely, in order for x # 0 to obey D(0, x) < 1, the edge (0, x) must be
occupied. By (5.15) this has probability at most ¢|x|~* and so, in light of 6; = 1/s, the
claim holds for n = 1 with any ¢, ¢ > 0 such that

ce® >¢ (5.21)

and with any g > 0and p > 0.
Assuming p is such that (5.1) holds, once (5.2) is true for all integers up to and includ-
ing n, Lemma 5.4 will extend it to n + 1 as soon as

ea’bc®s < ¢, (5.22)

where a2 and b are as in Lemmas 5.2-5.3. The simultaneous validity of (5.21-5.22) is
arranged by first taking c to be sufficiently small (note that 2d/s > 1) and then making ¢
sufficiently large. By induction, the claim holds for all n > 1. O

Remark 5.5 While we originally hoped to use the fact that k — 6, + 6,,_x is concave
on {0,...,n} to show that the sum in (5.13) is dominated by k of order #, this will not

allow us to eliminate the term e from (5.2). Indeed, the prime use of this term is to
allow for ¢ to be sufficiently small (to make the induction step true) while preserving the
validity of the base case of claim.
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