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Abstract: We consider the (unoriented) long-range percolatiorZSrin dimensionsd > 1,
where distinct sitex, y € zd get connected with probabilitpxy € [0, 1]. Assumingpxy =
|x — y|_s+°(l) as|x — y| —» oo, wheres > 0 and| - | is a norm distance ofid, and supposing
that the resulting random graph contains an infinite connected compghgnve letD(X, y) be
the graph distance betwegrandy measured off»,. Our main result is that, fos € (d, 2d),

D(x, y) = (log|x — ypA+od),

whereA 1 is the binary logarithm of @/s ando(1) is a quantity tending to zero in probability as

X — y| = oo. Besides its interest for general percolation theory, this result sheds some light on
a question that has recently surfaced in the context of “small-world” phenomena. As part of the
proof we also establish tight bounds on the probability that the largest connected component in a
finite box contains a positive fraction of all sites in the box.
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1. INTRODUCTION
1.1 Motivation.

Percolation is a simple but versatile model with applications ranging from the study of phase
transitions in mathematical physics to opinion spreading in social sciences. The most well un-
derstood questions of percolation theory are those concerning the appearance and uniqueness
of the infinite component (Burton and Keane [10]), uniqueness of the critical point (Aizenman
and Barsky [1], Menshikov [20], Grimmett and Marstrand [16]), decay of connectivity functions
(Campanino, Chayes and Chayes [11], Campanino and loffe [12]), and the scaling properties
at the critical point in dimensiond = 2 (Smirnov [24], Smirnov and Werner [25]) amidlarge
enough (Hara and Slade [17, 18]). Less well understood remain natural questions about the quali-
tative structural and geometrical properties of the infinite connected component, especially below
the upper critical dimension. In particular, this includes the tantalizing open problem concerning
the absence of percolation at the percolation threshold.

Long-range versions of the percolation model have initially been introduced in order to study
the effect of long-range interaction on the onset of phase transition in one-dimensional systems.
OnZ, the most common setup is that, in addition to random nearest-neighbor connections with
probability p € (0, 1), a bond betweer, y € Z is added with probability + exp{—f|x — y| 3},
wheref € (0,00) ands > 0. In dimension one, the interesting ranges of values afe
s < 1, where the resulting graph is almost-surely connected (Schulman [23]k & 2, where
an infinite component appears onpds large enough (Newman and Schulman [22]), and the
critical cases = 2, where the infinite component appears “discontinuously” for spme 1
sufficiently large if and only iff > 1 (Aizenman and Newman [2]) and where the truncated
connectivity function decays with g-dependent exponent (Imbrie and Newman [19]) fon
the interval(1, 2). The cases > 2 are qualitatively very much like the nearest-neighbor case (in
particular, there is no percolation fpr < 1 andf < o0). In dimensiongd > 1, the insertion of
long-range connections is not essential for the very existence of percolation—the main problem
of interest there is to quantify the effect of such connections on the critical behavior.

In this paper we study the global scaling properties of the infinite component in long-range
percolation models ofZ® for arbitraryd. We focus on the scaling of the graph distance (aka
chemical distancein the cases when the probability that a bond is occupied falls off with ex-
ponents e (d, 2d). More precisely, we let distinot, y € Z9 be connected independently with
probability pxy that has the asymptotigs, = 1 — exp{—|x — y|=>T°D} as|x — y| — oco. As-
suming that there is a unique infinite connected compo#gnalmost surely, we leD(x, y) be
the distance between the siteandy measured of¥,.,. Then we prove thaD (x, y) scales with
the Euclidean distande — y| like

)A+O(1)a X,y € %003 |X - yl — 00, (11)

D(x, y) = (log|x —y|

whereA = A(s, d) is given by

AGs, d) = . (1.2)
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This result should be contrasted with those of Antal and Pisztora [5] (based on the thesis work
of Antal [4]), Benjamini, Kesten, Peres and Schramm [7], Benjamini and Berger [6] and Copper-
smith, Gamarnik and Sviridenko [14], where various (other) regimes of decay of long-range bond
probabilities have been addressed. We refer to Section 1.3 for further discussion of related work
and an account of the current state of knowledge about the asymptotic behavinps, §f.

The non-linear scaling (1.1) is a manifestation of the fact that adding sparse (but dense-enough)
long edges to a “Euclidean” graph may substantially alter the graph geometry and, in particular,
its scaling properties. This is exactly what has recently brought long-range percolation renewed
attention in the studies of the so-called “small-world” phenomena, see Watts and Strogatz [26] for
an initial work on these problems. This connection was the motivation of the work by Benjamini
and Berger [6], who studied how the (graph) diameter of a finite riniy giites changes when
long connections are added in. On the basis of a polylogarithpperbound, the authors of [6]
conjectured (cf Conjecture 3.2 in [6]) that in the regime wikea (d, 2d), the diameter scales
like (log N)” wherey = y(s) > 1. The present paper provides a polylogarithtoiger bound in
this conjecture. However, at present it is not clear whether the exponent for the diameter growth
matches that for théypical distance between two remote points. We refer to Section 1.4 for
further discussion of “small-world” phenomena.

The remainder of this paper is organized as follows: In the next section (Section 1.2) we define
precisely the long-range percolation model and state our main theorem (Theorem 1.1). In Sec-
tion 1.3 we proceed by summarizing the previous results concerning the behaiigx of)—
and graph diameter—for various regimessofin Section 1.4 we discuss the relation to “small-
world” phenomena. Section 2 is devoted to a heuristic explanation of the proof of Theorem 1.1.
The proof requires some preparations, particularly an estimate on the size of the largest connected
component in large but finite boxes. This is the content of Theorem 3.2 in Section 3. The actual
proof of our main result comes in Sections 4.1 (upper bound) and 4.2 (lower bound).

1.2 The model and main result.

Consider thal-dimensional hypercubic lattic&® and let(x, y) — |x—y| denote a norm distance
onZd. For definiteness, we can take| to be the usuat>-norm; however, any other equivalent
norm will do. Letq: Z% — [0, co) be a function satisfying

loga(x) _ s, (1.3)
Ix|—oo lOg|X|

wheres > 0. (Here we set log 8= —o0.) For each (unordered) pair dfstinctsitesx, y e Z¢
we introduce an independent random variablg € {0, 1} with probability distribution given
by P(wyy = 1) = pxy, Where

Py = 1 — &9y, (1.4)

Note thatpxy = Px—y,0 SO the distribution ofwyy) is translation invariant.

Let% be the random graph with vertices @ and a bond between any pair of distinct sites
andy wherewyy = 1. Given arealization o¥, let us callr = (2o, z1, . . ., Z,) apath providedz
are alldistinctsites inZ® andw,,_,, = 1 for eachi € {1,2,...,n}. Define the lengthr | of =
to be the number of bonds constitutindi.e., the numben above). UsindI(x, y) to denote the
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(random) set of all paths with zo = x andz,;| =y, we let
D(x,y) = inf{|z|: = € II(X, )}, X,y e Z°. (1.5)

(In particular, we haveD(x,y) = oo if TI(X,y) = #.) The random variabl®(x, y) is the
chemical distancbetweenx andy, i.e., the distance measured on the gr&ph

Throughout the rest of the paper, it will be assumed that the random @fagoimtains an in-
finite connected component. We will focus on the cases when(d, 2d) in (1.3), in which
percolation can be guaranteed for instance by requiring that the minimal probability of a nearest-
neighbor connectiory, is sufficiently close to one. (Indeed, th> 2, it suffices thatp exceeds
the percolation threshold for bond percolationZth while in d = 1 this follows by the classic
result of Newman and Schulmann [22].) Moreover, by an extension of Burton-Keane’s unique-
ness argument due to Gandolfi, Keane and Newman [15], the infinite component is unique almost
surely. We will use%,, to denote the set of sites in the infinite componer# of

Our main result is as follows:

Theorem 1.1 Suppose thafl.3) holds with an se (d, 2d) and assume thal-almost surely,
the random grapl¥’ contains a unique infinite compone#i,. Then for alle > 0,

(A—e - log D(O, x)

lim P <—
log log|X|

|X]— 00

whereA = A(s,d) is as in(1.2).

< A+e€

0,X € %oo) =1, (1.6)

Formula (1.6) is a precise form of the asymptotic expression (1.1). The fack tHas thebi-
nary logarithm of 21/s is a consequence of the fact that the longest bonds in the shortest path(s)
between two distant sites &, exhibit a natural binary hierarchical structure, see Section 2
for more explanation. Note that— A(s, d) is increasing throughoud, 2d) and, in particu-
lar, A(s,d) > 1foralls e (d, 2d) with limg 4 A(s,d) = 1 and limyog A(S, d) = oo.

Remark 1 The requirement of translation invariance is presumably not crucial for (the essence
of) the above result. Indeed, most of our proofs should carry through under the weaker assumption
of approximate homogeneity on large spatial scales. Notwithstanding, some of our arguments in
Section 3 are based on previous results that require translation invariance and so we stick with
the present setting for the rest of this paper.

1.3 Discussion.

As already alluded to, several different asymptotic behaviors are possible in the above problem
depending on the value of the exponsnWe proceed by reviewing the known (and conjectured)
results. Throughout, we will focus on the specific distribution

Pxy=1-— eXp{_ﬁ(l + X - YD_S}a (1.7)
wheref € [0, c0). (Some of the results also required that all nearest-neighbor connection be
a priori present.) We will concentrate on the asymptotic of two quantities: tyjpieal graph
distance O¥x, y)—the focus of this paper—and tldkameter Oy of the graph obtained by “dec-
orating” a box ofN x --- x N sites inZ9 by the bonds ir¢ with both endpoints therein. There
are five distinct regimes marked by the positiorsoélative to the numberd and 2.
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The cases o$ < d fall into the category of problems that can be analyzed using the concept
of stochastic dimension introduced in Benjamini, Kesten, Peres and Schramm [7]. The result is
the following almost-sure equality

d
D =|-— 1.8
Xiggd (X, y) (d—s—" (1.8)

see Example 6.1 in [7]. A similar asymptotic statement holds folNhe> oo limit of Dy, see
Theorem 4.1 of Benjamini and Berger [6].

Fors = d, Coppersmith, Gamarnik and Sviridenko [14] study the asymptotiD@f The
resulting scaling is expressed by the formula

logN

Dv =00 loglogN’

N — oo, (1.9)
where®(1) is a quantity bounded away from 0 and. Since the typical distance is always
less than the diameter, this shows tB¥ix, y) will grow at most logarithmically withx — y]|.
However, at present the appropriate lower bounddgr, y) is missing.

In the casesl < s < 2d, Benjamini and Berger [6] and Coppersmith, Gamarnik and Sviri-
denko [14] proved polylogarithmic upper bounds@g (and hence o (X, y) for |[x —y| &~ N).
However, the best lower bound these references gave was proportionaNo Tége present pa-
per provides a sharp leading-order asymptoticlgk, y) which constraindy to grow at least
as fast aglog N)2+°@_ Unfortunately, neither the bounds from Benjamini and Berger [6] and
Coppersmith, Gamarnik and Sviridenko [14] nor those derivedXox, y) in the present paper
are sharp enough to make any definitive asymptotic statements Bloutve hope to return to
this question in a future publication.

The critical cases = 2d are at present not very well understood. Here Benjamini and
Berger [6] conjectured that

DN — NG(ﬂ)+0(l), N — 00, (110)

withd(p) € (0, 1), and we expect a similar asymptotic to be valid for the typical dist@ee y).

A general upper bound on the abo#€3) was derived in Coppersmith, Gamarnik and Sviri-
denko [14]. The corresponding—hbut not sharp—lower bounds were derived in Benjamini and
Berger [6] and Coppersmith, Gamarnik and Sviridenko [14] under the restriction to the “non-
percolative” regimal = 1 andf < 1. (This restriction appears because the proof relies heavily
on the notion of a cut-point, see Newman-Schulman [22].) Surprisingly, similarly open are the
casess > 2d where we expect thdDy scales linearly withN. The latter seems to have been
proved only ind = 1 (Benjamini and Berger [6]), or for the case of the supercritical nearest-
neighbor percolation id > 2 (Antal and Pisztora [5]).

An important technical resource for this paper has been the recent work of Berger [8] on
long-range percolation with exponemnts< s < 2d. Employing a variant of the renormalization
scheme of Newman and Schulman [22], Berger proved among other thingjsstiece of critical
percolationand, whenever theiie percolation, the existence of a cluster of at legét°® sites
in any box of volumeN? (see Theorem 3.1 below). An extension of this result (see Theorem 3.2)
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establishing tight bounds on the probability that the largest connected component in a finite box
contains gositive fractionof all sites is essential for the proof of the upper bound in (1.6).

1.4 Relation to “small-world” phenomena.

As already mentioned, long-range percolation has been recently used in the study of “small-
world” phenomena. The catchy term “small worlds” originates in the old but still-fun-to-read
article by S. Milgram [21], who observed through an ingenious experiment that two typical Amer-
icans are just six acquaintances (or six “handshakes”) away from each other. With the rise of the
overall world connectivity in recent years due to the massive expansion of air traffic, electronic
communications and particularly the internet, etc., the “small-world” phenomena experienced a
fair amount of new interest. Novel examples emerged in physics and biology, particularly af-
ter the publication of the Watts-Strogatz paper [26]. Several mathematical models were devised
and studied using both rigorous and non-rigorous techniques. A brief overview of the situation
from the perspective of the theory of random graphs (and additional references) can be found in
Section 10.6 of Bollohs [9].

While we will not attempt to summarize the content of the publication boom following the
appearance of [26], let us mention that a major deficiency of many models introduced so far seems
to be—at least to the author of the present paper—the unclear status oflneanceo the actual
(physical, biological or sociological) systems of interest. In particular, a large fraction of studied
models seem to unjustly ignore the underlying spatial structure present in the practical problem of
interest. (The reason for that is most likely the reduced complexity—as in statistical mechanics,
models without underlying geometry, the so caltegan-fieldnodels, are often exactly solvable.)

With this problem in mind, Benjamini and Berger [6] proposed a new class of “small world”
models based on long-range percolation on Euclidean graphs. More precisely, as an underlying
graph they consider aa priori connected ring ol sites to which long edges are added with
probability as described in (1.7).

One of the questions discussed by Benjamini and Berger was how the diameter of the resulting
random graph depends &hfor various ranges of values sf As detailed in Section 1.3, this be-
havior depends rather sensitively on the value of the exp@éniparticular, “phase transitions”
occur ats = d, which is the borderline of the region with finite diameters, and 2d which sep-
arates the regions of linear and sublinear scaling. Each of the resulting behaviors may be useful
in different contexts. For instance, if we believe Milgram’s assertion that six is the typical graph
distance between average two Americans regardless of the population size, the esgbneid
be within the regime described by (1.8).

2. MAIN IDEAS OF THE PROOF

The proof of Theorem 1.1 consists of two parts where we separately prove the upper and lower
bounds in (1.6). Both parts will be based on the concept of cehiairarchiesof sites whose
definition is given below. In this definition—and elsewhere in this paper—the systehotes

a hierarchical indexg e {0, 1}¥, which can be viewed as a parametrization of the leaves of a
binarytree of deptrk. Thus, for instance; = 01101 means that, starting from the root, we “go”
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left, right, right, left and right to reach the leaf represented bydding digits behind> denotes
index concatenation.

Definition 1 Given an integer r> 1 and distinct sites xy € Z9, we say that the collection
Ha(X, ) = {(z,): 0 € (0,1, k=1,2,...,n; 2, € Z°} (2.1)
is ahierarchy of deptm connectingk andy if
Q) zo=xandz =y.
(2) Z,00=2Z,0and z11 =2z,1forallk =0,1,...,n—2and allo € {0, 1}*.
@) Forallk = 0,1,...,n—2and all¢ € {0, 1}¥ such that zo1 # z,10, the bond be-

tween zo; and z 19 is occupied, i.e.(Z,01, Z,10) € 4.
(4) Each bondz,01, Z,10) as specified in part (3) appears only onceHR(Xx, y).

In the following, the pairs of site&,; o0, Z;01) and (z,10, Z,11) Will be referred to as “gaps.”

Remark 2 By assumption (2), a hierarchy of deptlis uniquely specified by its-th level. Note

that we do not require thgitesof the hierarchy to be distinct and, if two points of the formg
andz,; coincide, we do not insists on having a bond between them. The phrase “connecting
andy” in the definition of H, (X, y) is not to imply that,(x, y) is an occupied path fromtoy.
Instead,Hn (X, y) should be thought of as a framework of large-scale bonds which can be turned
into a path by connecting the “gaps” in an appropriate way; see Fig. 1.

Our strategy in both the upper and lower bound will be to identify a hierarchy of sufficient
depth from within a given path. In an ideaized situation, this hierarchy between sites at Euclidean
distanceN would be such that the primary bottghs, z10) has length (approximately) 2, the
secondary bonds have Ieng\H%)z, etc. The principal difficulty is to “make” the hierarchy deep
enough so that it already contains “most of” the bonds in the underlying path. In particular, we
will have to guarantee that the “gaps’—which may still be rather spread out in the Euclidean
distance—can be spanned without substantially affecting the overall length.

2.1 Upper bound.

To outline the proof of the upper bound on the graph distance, it is convenient to start by analyzing
the cases when all pairs of nearest neighborg&bmrea priori connected. In these situations

one can (essentially) construct a path connecting two distant sites which uses about the optimal
number of distinct occupied bonds.

Lety € (s/(2d), 1). The construction is based on the following observatiorx #ndy are
two sites at distancix — y| = N > 1, and if By, resp.,B; are boxes of sidé&” centered ax,
resp.,y, thenBy and B; are with overwhelming probability connected by a bon&inindeed,
there areNY” ways to place each endpoint of such a bond while its Euclidean length has to be
essentially equal ttN. Hence, the probability thaBy, and B; arenot directly connected by an
occupied bond is

P(By «» By) = exp{— > > ae- z/)} = exp{—N2—stod}, (2.2)
zeBy ZeB;

Since 2y > s, the right-hand side tends rapidly to zeroNis> oo.
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Zyo10 Zn10 Zy010 Z1310
Zyo01 Zy01 Zy001 2301
Zy0 Z310

Zy1 Zyp1
Zy

—n
—

5
sl
— N

FIGURE 1. A schematic picture of a hierarchy of depth five connecking zyp andy = z;.
The straight line represents a path betwe@mndy and the arches stand for the bonds between
pairs of siteS(z;01, Z;10). The arrows indicate the sites on levels 1-4 of the hierarchy; the
fifth level has been omitted for brevity. Note that, by Definition 1(2), we laye= z10, etc.

Once the bond betweeBy and B; has been selected, a similar argument shows that the
boxesBgo and By; of side N7, centered ak and the “nearer” endpoint of the primary bond,
respectively, will typically be connected by an occupied bond. Continuing the process for a
while, the endpoints of the family of bonds thus identified give rise to a hierarchy of sites in the
above sense: First we le§ = x andz; = vy, then we letzy; andz;o be the endpoints of the
primary bond connecting, and B;. Next, the endpoints of the secondary bonds connecting the
boxesBgyg and By, resp.,B1o and By; will be denoted byzgg; andzy;o, resp.,zio; andzio. The
higher levels will be denoted similarly. Note that, in order to have each level of the hierarchy
completely defined, we need to use Definition 1(2) to idergifwith zg, etc.

Of course, the most pertinent question is now for how long we can continue developing such a
hierarchy. Proceeding as in our previous estimates, the probabilitpdhatl pairs of boxeB,q
andB,1 with o € {0, 1}¥ will be connected by a bond i is bounded by

ok exp{—N yk(Zdy—S+0(1))}’ (2.3)

where % counts the number of bonds we are trying to control at this step and the Rictat—o

in the exponent originates from the fact that we are connecting boxes oNgidewhich are

at Euclidean distanchl” from each other. This estimate shows that, as londy A9
loglog N, the probability that the identification procedure fails is negligible. However, this allows
us to reach the level when the pairs of sites constituting the “gaps” are no fartheNthaa

(log N)°® from each other. This happens for: K, where

_loglogN
~ log(1/y)

Now, a hierarchy of depthK consists of roughly ® bonds and ¥ “gaps.” Using nearest-
neighbor paths to span each “gap,” the total number of bonds needed to connect all “gaps”

(2.4)
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will thus be at most B(log N)°®. Hence, the graph distance betweerand y cannot ex-
ceed ¥ (log N)°®. Plugging the value oK and passing to the limit | s/(2d), the latter is
no more thar(log N)2+°®,

Performing the above argument without the luxury ofaapriori connected graph involves
quite some extra work. Indeed, we need to ensure that the sites identified in the process are
connected tx andy (and, therefore, t&,,) and that the bonds lie in a “backbone”—rather than
a “dead-end"—of the connection betwerrandy. Our solution to this non-local optimization
problem is to construct the hierarchy so that eachzsifer o € {0, 1}* is connected to a positive
fraction of all sites in theN’" neighborhood of,. Since the distance between the endpoints of
the “gaps” in such a hierarchy is at most of the ortlef ™, the connected components of these
endpoints are still with a large probability connected by a bond fearhlow, if k ~ K, we have
N%* = (log N)°® and we need no more thalog N)°® steps to connect the endpoints of each
“gap.” This allows us to proceed as before.

To ensure the connectivity property, we will introduce the conceptddrasesite which is a
site x that is connected to at least a (prescribed) fraction of all sites in a sufficiently large box
centered ak. Then we need to establish two additional facts: First, anysite ¢, is with
overwhelming probability dense. Second, any sufficiently large box contains a positive fraction
of dense sites. These statements—which come as Corollaries 3.3-3.4 below—will allow us to
look for hierarchies containing only dense sites, for which the above argument easily carries
through. The proof of the two corollaries in turn requires showing that the largest connected
component in any box contains a (uniformly) positive fraction of all sites. To maintain generality,
this statement—which comes as Theorem 3.2—has to be proved under very modest assumptions;
essentially, we only assume the asymptotic (1.3) and the fact that there is percolation.

2.2 Lower bound.

The argument for the upper bound shows that there exists a path that connegtsn about
(log|x — y])* steps. The goal of the lower bound is to show that, among the multitude of paths
possibly connecting andy, no path will be substantially shorter.

In an idealized situation, our reasoning would go as follows: WeNset [x — y| and pick a
path fromII(x, y) that connects with y in less than(log N)°@® steps. (HereD(1) represents
a fixed number whose value is irrelevant in the following.) Next we will attempt to identify a
hierarchy fromz. The primary bondzp;, z10) is chosen simply as (one of) the longest bonds
in z. Since|x —y| = N but|z| = (logN)°®), this bond must be longer thax/(log N)°®.
But in order for this bond to exist with a reasonable probability, a similar argument as used in the
upper bound shows that the distan®gs= |X — Zp1| andN; = |z30 — Y| must be such that

NING > Nstod, (2.5)

Supposing (without any good reason) titis comparable witiNy, the removal of(zy,, Z10)

from 7 would leave us with two paths that connect sites at distifc&D+°D in a polylogarith-

mic number of steps. The argument could then be iterated which would eventually allow us to
categorize the whole path into a hierarchical structure, with one bond of I&hgthio bonds of
lengthN 2, four bonds of lengttNz)°, etc.
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It is easy to check that the hierarchy thus identified would involve roughligéhds, wherék
is as in (2.4) withy = s/(2d), and|x | would thus have to be at lea@bg N)2+°d . Of course,
the main problem with the above argument is that the assumplio N, is not justified and
presumably fails in a large number of places. Extreme ways to violate the coniigien Ny
are not so hard to dismiss. For instance, in the case of a “gap” collapse, e.g.NgheN°WD
the bound (2.5) forces thad; > N¥9+°M . N implying that(zo1, z10) was not the longest
bond after all. But, since we are dealing with an exponentially growing number of bonds, even
“soft” violations of this condition could make the whole argument crumble to pieces. As we will
describe below, the solution is to work with (2.5)—and its generalizations—the way it stands
without trying to extract any information about the particuNyrandN;.

Here is what we do. We pick asatisfyingy < s/(2d) and show thagverypath connecting
andy in less than(logN)°® steps, whereN = |x — y|, contains a hierarch§{,(x, y) of
depthn < K—with K as in (2.4)—such that the following holds with overwhelming probability:
The length of the “gaps” is comparable with the length of the bonds that “fill” them, i.e., for all
k=1,...,n—1, we have

1Zy01 — Zo10| = 120 — Z1/*™°Y, o € {0, 1)1 (2.6)

Moreover, theaveragesize of the “gaps” on thk-th level is abouiN ™ ie., the guantitieiN, =
|Z;0 — Z,1| Satisfy

IT No = N® 2.7)

0e{0,1}k

forallk =1,...,n— 1. Obviously, fork = 1 this is a more precise form of (2.5). Part (2.6) is a
consequence of the fact that, in order to connect two sites at diskinde less thar(log N)°®
steps, at least one bond in the path must be longerKidn(log N)°®. This equalsN?*1-0)
as long ak < K. As to the proof of (2.7), le€, be the event that the inequality in (2.7) holds
fork =1,2...,n— 1. We will sketch the derivation of an upper bound®(&,, ; N &) which
can then be iterated into a boundB¢E,’).

Fix a collection of numberéN, ) representing the distances between various “gaps” in the hier-
archy, and let us estimate the probability that a hierarchy with tildseoccurs. In light of (2.6),
the primary bond will cosN~—St°® of probability but there are of the ordéNoN;)?~ ways to
choose the endpoints. (Remember tNgtandN; are fixed.) Similarly, the two secondary bonds
cost(NgN;)~5t°D of probability and their endpoints contribute of the oréisoNg1 N1gN11)d~2
of entropy. Applying this to the collection®,) compatible with&" ; N &,, we get

P(EC, NE) < z (NoN1)4=1 (NooNo1N1oN11)841 | N2
n+1 n) = _ _ . —o(1)°

o~ Ns-o() (NgNj)s—o@m Hae{O,l}”—l NS—oD
where the sum goes over &N,) for which &7 ; N &, holds.

To evaluate the right hand side of (2.8), we need to observe that the nun@ighan®—* can
be combined with the denominator of the next quotient into a term whichyd is summable
on bothNy andN;—using (2.7), the resulting sum ovislg and N, is bounded byN ~(-9@)+o(),
The other numerators will be handled analogously; the upshot is that, far<alin — 1, the
sum over allN, with ¢ e {0, 1} is bounded byN—-9@)+0®  The |ast numerator has no

(2.8)
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denominator to be matched with, but here we can use that, since (2K far fails on Sn°+1 N
&n, the product ofN,’s is now bounded from above! Consequently, the relevant sum does not
exceed\ 4@+ pytting all these estimates together, and applying the inequality
n-1
s—d@2p)"+ (s—d) > ()" > (s—2dy) ()", (2.9)
k=1
the right-hand side of (2.8) is bounded Ny<s—2dy)(27>"*l. (The inequality in (2.9) can be derived
either by direct computation or by a repeated application of the ineqsalitg—d)(2y) > s(2y)
to the first and the third term on the left hand side.) Summing the obtained bound,aber
probabilityP(&,) is shown to be essentially one as longas K.

Once we have established that (2.6) and (2.7) hold, we will use a similar estimate to find a
lower bound orD(x, y). Here we simply have to prove that, even though the hierarchy is already
rather large, the lower bound (2.7) requires that at least as many bonds be used to connect all
of the “gaps.” To avoid some unpleasant combinatorial estimates, we will continue under the
simplifying assumption that all of the"2! “gaps” of the hierarchy are non-trivial.

Let F, be the event that every hierarchy of deptatisfying (2.6—2.7) requires more thalt2
extra steps to connect all of its “gaps.” In light of our boundR{§,°), it suffices to estimate the
probability of ¢ N &,. Since all “gaps” are non-trivial, the only wa° can occurs is that each
“gap” is spanned by a single bond. Now the bond spanning the “gBp.’ z,1) costsN_-Sto@
amount of probability and sB(F,¢ N &,) can be bounded by

= (NgNyp)d-1 | NI 1
P(FEN &) < ’ ~ | | —, (2.10)
n n % Ns—o(l) Hae{o,l}“—Z NUs o(1) Ns o(1)

ce{0,1yn-1 70
where the(N,)’s now obey (2.7) forall k = 0,1,...,n — 1. The last product on the right-
hand side makes the entire sum convergent andNfoy 1) small. Thus, with overwhelming
probability, 7, occurs for alin < K, which means that the shortest path(s) betweandy must
contain at least®! = 2K(@-°M) djstinct bonds. FoK as in (2.4), we have!2 = (logN)?’
where YA’ = log,(1/y). From here the lower bound in (1.6) follows by letting* s/(2d).

3. PERCOLATION IN FINITE BOXES

3.1 Size of the largest connected component.

In this section we will prove an estimate showing that the largest connected component in large
but finite boxes contains a positive fraction of all sites whenever there is percolation. This estimate
will be essential for the proof of the upper bound in (1.6). Throughout this section, the original
meaning of the quantity from (1.3) will be substituted by a weaker form (3.1) below. We will
return to the original definition in Section 4.

We begin by quoting a result from Berger’s paper [8]. Let us say that the collection of prob-
abilities (pxy)x, yezd IS percolating if the associated i.i.d. measure has an infinite cluster almost
surely. LetL > 1 be aninteger and let, be a box inZ? of sideL containingL® sites. Consider
the percolation problem restricted to the sitesAgf (and, of course, only the bonds with both



12 MAREK BISKUP

endpoints inA ) and let|%} | denote the size of the largest connected componeft inin [8],
Berger proved that onc€pyy)y yezd are percolatingA, contains a large cluster. The precise
formulation is as follows:

Theorem 3.1(Berger [8], Lemma 2.3) Let d > 1 and suppose that the collection of probabili-
ties (Pxy)x,yezd, Where gy =1 — e~9=Y) 'is percolating. Suppose that, for some gd, 2d),

liminf |x|%(1 — e 9®)) > 0. (3.1)
|X|— 00

Then for eacl¥ > 0 and eachy € (0, o), there exists an L such that
P16l < cL¥?) <e. (3.2)

We note that once (3.1) holds for somethen it holds also for ang’ > s. Therefore, The-
orem 3.1 actually guarantees that the largest connected compong&ntwill contain at least
L9-°( sites. (Note that the statement forbids us to ke 2d, and an inspection of Lemma 2.3
in [8] reveals that this is non-trivially rooted in the proof.) However, for our purposes we need
to work with the event thaté, | is proportionalto LY and, in addition, we also need a more ex-
plicit estimate on the probability of such an event. Our extension of Berger’s result comes in the
following theorem:

Theorem 3.2 Let d > 1 and consider the probabilitiepxy)x yez¢ such that(3.1) holds for
some se (d, 2d). Suppose thatpxy)x yez¢ are percolating. For each’se (s, 2d) there exist
numbers > 0and Ly < oo such that for each > Lo,

p L2d—S/

P(16L] < plALl) < € (3.3)

In particular, once L is sufficiently large, the largest connected componefit itypically con-
tains a positive fraction of all sitesin .

Theorem 3.2 alone would allow us to establish the existence of a hierarchy between two sites,
but it would not ensure that the “gaps” are properly connected (which is what we need to turn the
hierarchy into a path). Fortunately, the structure of the proof of Theorem 3.2 allows us to make
this conclusion anyway. To state the relevant mathematical claims, forxeact and any odd
integerL > 1, let A (X) be the box of sidd. centered ak and let%, (x) be the set of sites
in A (X) that are connected toby an occupied path in_ (x). Then we have:

Corollary 3.3 Under the conditions of Theorem 3.2, there exists a congtan® such that

L”LnOOP(FgL(XN < pIAL(X)], X € Cs) =0 (3.4)

holds for each xe Z9.

Corollary 3.4 Given¢ < L, let 27" be the set of sites & A, such that,(x)| > p|As(X)].
Under the conditions of Theorem 3.2, for eatkeqs, 2d) there are constanté < coandp > 0
such that

P27 < plALl) < et (3.5)
holds for any? with £, < ¢ < L /{o.
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Theorems 3.2 and the two corollaries are all what this section contributes to the proof of the
main result of this paper. An impatient (or otherwise uninterested) reader should feel free to skip
the rest of this section on a first reading and pass directly to Sections 4.1 and 4.2. For those who
stay put, we proceed by discussing the main ideas of the proof and a breakdown of its steps into
the corresponding technical lemmas. The actual proofs appear in Section 3.5.

3.2 Outline of the proof.

Our strategy of the proof of Theorem 3.2 is as follows: First we combine a one-step renormaliza-
tion with Theorem 3.1 to convert the problem into a similar questiorsii@-bondpercolation.
An important feature of this reformulation is that the occupation probability of sites and bonds
can be made as close to one as we wish.

Given an odd integeK > 1, let ‘Kéx) denote the largest connected componeni\ j(X);
in the case of a tie we will choose the component containing the site that is minimal in the
standard lexicographic order &f. For any two distinck, y € Z9, we will say thatAg (K x)
and Ak (Ky) aredirectly connectedf there is an occupied bond connecting a site f@ﬁ‘fx)
to a site from%\Y. We will use {Ak(KxX) « Ax(Ky)} to denote the event thaty (K x)
andAg (Ky) are not directly connected. Then we have:

Lemma 3.5 Under the assumptions of Theorem 3.1, for any &, 2d) the following is true:
For eachp < co andr < 1there exists a number> 0 and an odd integer K< oo, such that

P16 < 0|AK(KX)[) <1—r (3.6)

and
P(Ak (KX) « Ag(Ky)) < ePx¥17° (3.7)
hold for all distinct x y € Z9.

Regarding boxes of sid€ as new sites and the pairs of maximal-connected components con-
nected by a bond fror as new bonds, Lemma 3.5 allows us to set up a renormalization scheme
of Newman and Schulman [22]. Clearly, by (3.6-3.7), a site is occupied with probability at least
and two occupied sitesandy are connected with probability at least & #*=Y"°_ (For the sites
that are not occupied such a connection will not be relevant, so we will often assume that the lat-
ter holds for all sites.) This puts us into a position where we can apply the following “idealized”
version of the desired claim:

Lemma 3.6 Letd > 1 and consider the site-bond percolation model Zhwith sites being
occupied with probability re [0, 1] and the bond between sites x and y being occupied with
probability

Pxy =1-— eXp{_[ﬂx - yl—s}’ (3.8)
where se (d, 2d) and g > 0. Let|%\| denote the size of the largest connected component of
occupied sites and occupied bondsARy. For each $ € (s, 2d) there exist numbers N< oo,
¥ > 0andfy < oo such that

Psr (1601 < 9|AN]) < €77
holds true for all N> No whenevep > ffpandr > 1 — e Vh.

NZd—S/

(3.9)
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Remark 3 The fact that the exponent in (3.9) is proportionalftavill not be needed for the
proofs in this paper. The addition gfrepresents only a minor modification of the proof and the
stronger results will (hopefully) facilitate later reference.

Once Lemma 3.6 is inserted into the game, the proof of Theorem 3.2 will be easily concluded.
To prove Lemma 3.6, we will invoke a combination of coarse-graining, stochastic domination and
a corresponding estimate for tbemplete graph(Let us recall that a complete graphrofertices
is a graph containing a bond for each unordered pair of distinct numbergdftdn . ., n}.) The
relevant complete-graph statement is extracted into the following lemma:

Lemma 3.7 Consider a complete graph of n vertices. Let each site be occupied with proba-
bility r and each bond be occupied with probability p. [R{" be the resulting i.i.d. measure

and let|%;,| denote the number of sites in the largest connected component of occupied sites and
occupied bonds. Foreach q’ € [0, 1] with ' < q there exists a number(q’, q) > 0 such that
foreachr € [0,r),each pe [0, p)and alln> 1,

PP (|%n] < Pr'n) < ™0 4 g sCCO (P, (3.10)

Moreover, for eachr: € [0, 1) there exists a constant € C(a) < oo such that

1
v(@. 9 = =@ -a)log;— ~C] (3.11)

holds true for all g g’ € [0, 1] satisfying the boundlL — q") > (1 — q)“.

Remark 4 While Lemma 3.6 can presumably be proved without reference to the complete graph,
in our case the passage through Lemma 3.7 has the advantage of easily obtained quantitative
estimates. As mentioned before, the present proof of Theorem 3.2 invokes a renormalization
scheme for which Theorem 3.1—whose proof is based on a similar renormalization scheme—
serves as a starting point. It would be of some conceptual interest to see whether a more direct
proof of Theorem 3.2 based on a single renomalization is possible.

Remark 5 Ind > 2, the decay rate in (3.9)—and, consequently, in (3.3)—is not always optimal.
The reason is that, fgf > 1 and 1-r « 1, the site-bond percolation problem dominates the
nearest-neighbor percolation @f for which it is expected (and essentially proved, see [3, 13])
that the probability in (3.9) should decay exponentially wNHA—. (Fors e (d, 2d), this is
sometimes better and sometimes worse tNa#TS.) This alternative decay rate is not reflected
in our proofs because, to apply equally well in all dimensidrs 1, they consistently rely only

on long-range connections.

Having outlined the main strategy and stated the principal lemmas, we can plunge into the
proofs. First we will prove technical Lemmas 3.5 and 3.7. Then we will establish the site-
bond percolation Lemma 3.6. Once all preparatory statements have been dispensed with, we will
assemble the ingredients into the proofs of Theorem 3.2 and Corollaries 3.3 and 3.4.
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3.3 Preparations.

Here we will prove Lemmas 3.5 and 3.7. First we will attend to the one-step renormalization
from Lemma 3.5 whose purpose is to wash out the short-range irregularities pf,teend to
ensure that the constantsandr in Lemma 3.6 can be chosen as large as required.

Proof of Lemma 3.5The principal task before us is to chodseso large that both bounds follow
from Theorem 3.1 and the assumption (3.1). dlet 1 and letf < co andr < 1. Lete =1—r
and pick ad’ € (s/2,d) such thatd’ — (d — 1) > d — d’. By Theorem 3.1 and the paragraph
that follows, for eaclt > 0 there exists & = K (¢, d’, ¢) such thai%x| > ¢K% occurs with
probability exceeding * ¢. Since Theorem 3.1 allows us to maKearbitrarily large (indeed,
the constraint¢k | < K9 forcesk to exceed a positive power g, we can also assume that, for
some constant > 0,

Pry > 1— e “*™ once |x—y|> K99 (3.12)

Here we rely on (3.1).

Letb > 0 be a constant such thlaK exceeds the diameter afx in the| - |-norm for allK.

We will show that (3.6—3.7) hold onde¢ is large enough and, in particular, so large that

1 aCZ 2d'—s

Z(Z_b)SK > pB. (3.13)
(Note that 2 > s so the left-hand side increases wkh) Consider a partitioning a£¢ into
disjoint boxes of sideK, i.e., let us writeZ? = |J, .z« Ax (Kx). We will call a box Ak (KX)
occupied if the bond configuration restrictedA@ (K x) contains a connected component larger
than K 9. By the choice ofK, eachAk (Kx) is occupied independently with probability ex-
ceeding 1— € =r. This proves (3.6) witld = | K99,

To prove also (3.7), we need to ensure that sufficient portions of the components in the two
K-blocks are so far from each other that (3.12) can safely be applied. To this end, we note
that, since{%éKXH > ¢KY, at least half of the sites i%ﬁgKX) will be farther fromZ® \ Ak (Kx)
thanyk = ac K9 ~@-D wherea is a constant depending only on the ngrrnand the dimension.
Moreover, an easy argument shows that,iff € Z9 are distinct andz € € andz e €Y
are such that digt, Z9 \ Ak (Kx)) > nk and distz, Z9 \ Ak (Ky)) > 5k, then

nkIx =yl < |z—12Z| < 2bK|x —yl. (3.14)

Now our choice ofi’ guarantees that, K is sufficiently large, we will havex > K9-% and the
inequality on the left shows that (3.12) fpg, is in power. The bound on the right-hand side of
(3.14) then allows us to write

(K /2)? T
P(AK(KX) R AK(KY)) < eXp{—am} <e 5 (315)
where we used (3.13) to derive the last inequality. This finishes the proof. a

Next we will focus on the proof of Lemma 3.7, which concerns the complete graph. This
lemma will be used to drive the induction argument in the next section.
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Proof of Lemma 3.7.The proof starts by estimating the total number of occupied sites. Once
that number is known to be sufficiently large, the desired bound is a result of conditioning on
occupied sites combined with straightforward estimates concerning occupied bonds.

Fixr’ € (O,r) andp’ € [0, p), and letp = p’r’. Note that we can assume théh > 1,
because otherwise the right-hand side of (3.10) exceeds onéy ldenote the (random) number
of occupied vertices of the complete graph. Sidgecan be represented as a sum of independent
random variables with mean the even{ A, < r’n} forcesA, to deviate substantially from its
mean and the standard Chernoff bound implies

PPT(A, <r'n) < e von, (3.16)
where
v (@, a) = sup[~log(1 —q +qe™) — 2] (3.17)

As is easy to showy (q’,q) > Oforallq’ < q.

The bound (3.16) is responsible for the first term on the right-hand side of (3.10). It remains
to show that the conditional probability givel, > r’n is bounded by the second term. Thus
suppose tha\, > r’n and letV, denote the total number of unordered pairs of occupied Bides
connected by an occupied bond. The principal observation is thét|if< pn, thenV, has to be
rather large. More precisely, we claim th&t,| < pn impliesV, > %(Aﬁ — pnAy). Indeed, if
we label the connected components of occupied sites and bonds byi inddxusek; to denote
the number of sites in thieth occupied component, then the number of vacant bonds certainly

exceeds
1 2 1
Kk = = k) — = 2. 3.18
ZJ, Z(Z') 2 2.k (3.18)
On{|¢n| < pn} we havek; < pn for eachi and since als®; ki = A,, the second sum can be
bounded byA,pn. The desired inequality,, > %(Aﬁ — pnA,) follows.

In light of our previous reasoning, we are down to estimating the probability

PR (Vo > $(A2— pnAy) | Ay > 1'n). (3.19)

The estimate will be performed by conditioning on the set of occupied sites. Once the set of
occupied sites has been fixad, can be represented as a sun\bt= %(Aﬁ — An) independent
random variables, each of which has mean . Now, assumingA, > r’n and recalling

thatp = p’r’ <r’andr’'n > 1, we can estimate

1 ., . pn—1 pn—1 ,
S (P2 = pnAy) = N(1- An_l) > N(l— r’n—l) > N - p). (3.20)

(In the cases whepn < 1, we just skip the intermediate inequality.) Now, singe< p, the
event{V, > l(Aﬁ — pnA,)} constitutes a large deviation for the random varialy|e Invoking

again the Chernoff bound and a little algebra, we thus get
PR' (Vn > (AT — pnAy) | Anz1'n, S(AR— Ay = N) <e WP (3.21)

From here (3.10) follows by noting that ¢&, > r'n} we haveN > Z(n(r")®> — n).



CHEMICAL DISTANCE IN LONG-RANGE PERCOLATION 17

To verify the bound (3.11), we need to find the minimizihgn (3.17) and use it to find an
explicit expression foy (q’, q). A computation gives

/ / 1- q/ / q
v(@.a) = 1-d)log(7—,) —a'log( ). (3:22)
The second term—including the minus sign—can be split into two parts: thegtéoang’, which
is bounded below by-1/e, and the term-q’ log g, which is always positive. Moreover, @ —
1 then(g'logq’)/(1 — q) — 1. From here we infer that the second term is bounded below
by (1 - a)(1 — q')-times a (negative}-dependent constant. Using the bound @' > (1 — q)*
in the first term, (3.11) is proved. O

3.4 Site-bond percolation lemma.

Now we are ready to start proving Lemma 3.6. The essential part of the proof relies on induction
along a series of scales defined as follows. Fixaa (s, 2d), let ¢, be a positive integer and
consider an increasing sequeneg) of integers such tha, > ¢o for all n > 1. Let Ny be
another positive integer and let

n
No = No[ ]t (3.23)
k=1
Suppose that, tend to infinity so fast that
Dt <oo and D N <00 (3.24)
n>1 n>1

but moderate enough that also

1 ,
Co=inf —J[e"% >0 (3.25)
n>1 £n+1 1

Next, let us define the sequendes) and (pn) by puttingr, = 1 — 69 andp, = 1 — N5,
let us fix a constantg € (0, 1) and let

n
pn = po [ [repo). (3.26)
k=1
Clearly, by (3.24) we have, — p, > 0 ash — oco.
Remark 6 An extreme example of a sequenég) satisfying these constraints is
th=eMd"™ n>q (3.27)

wherea = (2d — s')/s’. Herea has been tuned in such a way that the term in the infimum in
(3.25) is independent af. Sincea > 0, the bounds (3.24) immediately follow.

The proof of Lemma 3.6 is based on the fact that a bound (3.9Nfet N, can be used to
prove the same bound for (essentially) adybetweenN, and N,1. The proof works as soon
ascy andp., are bounded away from zero afigland Ny are sufficiently large; the precise form
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of (¢y) is not important. (In particular, we do not mageplicit use of (3.24).) The induction step
is isolated into the following claim:

Lemma 3.8 Suppose the assumptions of Lemma 3.6 hold and let ¢s, 2d), ¢; > 0 and
70 > 0. Then there exist two numbef§ < co and N < oo and a constantce (0, oo) such
that for any N > Nj and any sequenc€,) with £ > ¢; and @ > ¢, the following holds:
If = € [70, C1p2 ] and if k is @ non-negative integer such that

Py (10 < pNG) < &N (3.28)
is true, then
By (1G] < prea(ENQ?) < @7 N0 (3.29)
holds for all¢ € {¢o, ..., {xy1}.
Proof. The proof is based on the “complete-graph” Lemma 3.7. Our preliminary task is to set up
all the constants so that the bounds emerging from this lemma are later easily converted to that on

the right-hand side of (3.29). Lset € (s, 2d), ¢; > 0 andzg > 0 be fixed. First we will address
the choice of the constant§, Ny andc;. We will assume that; is so large that

(1—60979)2¢20 — ¢4 > 102 (3.30)
holds for all¢ > £;,. Then we choos#&l] so large that, for alNg > Nj and allz > 1,
609 > g T (EN)* (3.31)
holds for all¢ > ¢, and that
N2~ > max3C, log 2}, (3.32)

whereC is the constant from Lemma 3.7 far= 1/2. Moreover, we leb be the constant such
that Nb bounds the diameter ofy in the metric| - | for all N > 1 and choose; = b™5/16.
Then we also require th&d be so large that for anig > Nj,

Bb™Sp2N2=S¢=S — C > 8¢ NS¢ (3.33)
and
(ENp)S™ > @ 2P0 pANGI—=C (3.34)
hold for all z < clpgoﬁ, alln > 0and all¢ € {¢o,...,¢ns1}. The first bound is verified for

sufficiently largeNg by noting the inequalitiegb=5p2 > 27 and

7 /s /
NE-o s N 2 N [TE) T 2 Nt @)

n+1 = n+1
k<n

As to (3.34), we note thaXi2?=5¢=S/(¢Ny)¥~S > N24=%¢-%, which again can be made arbitrarily
large by boosting upg. The factors 12 in the exponents of (3.31) and (3.34) have been inserted
for later convenience.

Now we are ready to prove (3.29) from (3.28). lfgt> £, andNg > N{. Suppose that (3.28)
holds for somer e [z, c1p2 8] and somek > 0. Pick an¢ e {€o, ..., {xy1}. Viewing Ay, as
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the disjoint union ot translates\ ) of Ay,
[d
Aen = [JAY, (3.36)
i=1

let us callA®) occupied if it contains a connected component of size at jgabk|9. Choosing
one such connected component in each occupi€d (if necessary, employing lexicographic
order onZ to resolve potential ties), we will cah® and A with i # j connected if their
respective connected components are directly connected by an occupied bond. Let

and p=1— e AN (3.37)

and note that (3.28) implies thatis a lower bound on the probability that® is occupied.
Moreover, a simple calculation shows thais a uniform lower bound on the probability that two
distinct A® and AU) are connected.

Let us introduce the quantities

r'=1-600" and p' =1— (NS (3.38)

and letAyx , be the event that the largest connected component of the occtfiesdcomprises
more thanp’r’¢9 individual boxes. The assumption (3.31) shows that r while (3.34) in turn
guarantees that' < p. Invoking the fact thay  is an increasing event, the probability.4f ,
is bounded by the probability that, for site-bond percolation on a complete grapfiwiéttices
and parametensand p, the largest connected component involves at npast? vertices:

Pyr(AS ) < PR (10l < pr'e?). (3.39)

Since the factors /2 in the exponents in (3.31) and (3.34) ensure thatrl > (1 —r)¥2 and
1—p > (1 - p)¥? the right-hand side can be estimated using Lemma 3.6 avith 1/2
andC = C(1/2). To evaluate the first term on the right-hand side of (3.10), we estimate

F=1—e N

1 , ,
Oy, r) > Eengd—S(rNkZd—S —C) > 2t (ENX-s., (3.40)

Here we used that, by our choice @fwe havet?(1 — a)(1 — ') = $6(%~S and then invoked
(3.32) to show that N2~ > N2~ > 3C. Similarly we get

1 1 ,
(2 = )y (P p) = NN (BTN — C) = 20(EN™ S (3.41)

for the exponent in the second term in (3.10). Here we first used (3.30) to reduce the compli-
cated/-dependence on the extreme left and then we inserted (3.11) and the definitiphs of
and p to produce the intermediate inequality. Finally, we invoked (3.33).

By putting the bounds (3.10-3.11) and (3.40-3.41) together and recalling thai_:logxléd‘s/,
the probabilityPs r (A ,) does not exceed the term on the right-hand side of (3.29). Bution
the box A,n, contains a connected component comprising (strictly) more fieid® disjoint
connected components each of which involves at I;aaslﬁ sites. Using that’ > ry,; and
P’ > pks1, We have

1Cen] > PNkl > prya(ENK)T, on Ay, (3.42)
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and thus(|;n | < prral Aene |} € AR . From here (3.28) follows. O

Lemma 3.8 encapsulates the induction step. However, we will also need an estimate that allows
us to start the induction. This is provided in the following lemma.

Lemma 3.9 Under the conditions of Lemma 3.6, for each € (0, o) there exist numbers
No < oo anddg € (0, 1) and, for each? < g, there exists a numbey < co such that

Py (101 < LAN]) < €PN (3.43)

holds once N> No, 8 > flpandr > 1 — e %,

Proof. We will again apply the “complete-graph” Lemma 3.7. Lgt=r' = 1/2, letb be

a constant such th&N exceeds the diameter &y for any N and pickdy > 0 such that
128,199 < b™S. Fix a number) e (0, 9¢). Then the left-hand side of (3.43) is bounded by the
left-hand side of (3.10) witlm = N9, p = 1 — exp{—f(bN)~S} andr = 1 — e /. We will
estimate the right-hand side of (3.10) under the conditions Wiygs so large that

NS > 16c, and N2(r’)2— N > N%/8 (3.44)

are true for allN > Ng and, given such al, the constanp, is so large that for alf > £, we
have 1-r’ > (1—-r)Y?and 1— p’ > (1 — p)¥?, and

9p >2C and B(ON)™—C > 12894N"". (3.45)

Here, as beforeC is the constant from Lemma 3.7 far= 1/2.
In conjunction with these bounds, (3.11) with= 1/2 shows that

1 1
p(r',r) > 20 —C) = gvp (3.46)

and
y(0. p) > 5 (AN~ C) = 320, N> (3.47)

Using the bounds in (3.44), we find that both exponents on the right-hand side of (3.10) exceed
2c,9 NS, This impliesPy (|En| < 9| AN]) < 2 exp—2c9 AN2-S}). Increasingy, if neces-
sary, the latter is no more than exqc,9 fN24-3}, a

Equipped with the induction machinery from Lemmas 3.8 and 3.9, the proof of the main site-
bond percolation lemma is now easily concluded.

Proof of Lemma 3.6First we will adjust the parameters so that Lemmas 3.8 and 3.9 can directly
be applied. Le$’ € (s, 2d) and letc; > 0 andzo > 0 be fixed. Let;, Nj andc; be the constants
from Lemma 3.8 and pick a sequen@g) such that/q > ¢; andcy > c; are satisfied. Pick a
numberNo > Nj so large that Lemma 3.9 holds fos = (2£0)%~S andN > No, and letvo
be the corresponding constant from this lemma. Agt (0, 1/4] and definep, and p,, as in
(3.26). Let? > 0 be such that? < g, (200)%9 < ps andc) < Clpgo. Choosefy so large
that Lemma 3.9 holds for af > Sy and such that,¥ 8y > 9. Note thatr = ¢, necessarily
satisfiest e [0, C1p2 8] as long ag8 > Bo, which is needed in Lemma 3.8.

Now we are ready to run the induction argument: Sipge< 1/4 andd < ¥, Lemma 3.9
ensures that (3.28) holds for= c,9 4 andk = 0. Applying the induction step from Lemma 3.8,
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we recursively show that (3.29) is true for &ll> 0 and all¢ € {¢qg, ..., {ks1}. Let N be a
general integer and lé¢ be a non-negative integer such tidt,; > N > Ny. Let ¢ be the
maximal number i1, ¢o, ..., k1) such that Ny < N. A simple calculation now shows that
|[AN] < max(2€o)d|AgNk| and, if we positiorAy and Ay, SO thatA,n, C An,

{1601 < 91IANI} C {1l < (200)%0 | Aen]}- (3.48)

By our previous conclusions and the fact tt@fo)%9 < py.1, the probability of the event on the
right-hand side is bounded by expr (¢N)24=}. From here (3.9) for a generl follows by
noting that, by our choice ak, we haver (¢Ny)24—S > NS, O

3.5 Proofs of Theorem 3.2 and Corollaries 3.3-3.4.

Now we are finally ready to prove Theorem 3.2. After some preliminary arguments, the proof
follows a line of reasoning similar to the one just used to prove Lemma 3.6.

Proof of Theorem 3.2Let s’ € (s, 2d) and let, o andNg be as in Lemma 3.6. Pick numbers
p > poandr >1— e Y/ and letk andJ be the corresponding constants from Lemma 3.5. First
we will prove the claim forL of the formL = KN, whereN is a positive integer. To that end,
let us viewA_ as the disjoint union oNY translatesAk (K x) of Ak, wherex € Z4. We will
again callAk (K x) occupied ifig<®| > 6| Ak | and, similarly, we will call two distinctk (K x)
and Ak (Ky) connected if the connected compone#if§ ™ and%*Y'—chosen with the help of
lexicographic order in case of a tie—are directly connected by a bond#tom

By Lemma 3.5 and our choice ofand K, the boxA (x) is occupied with probability ex-
ceedingr, while Ax (Kx) and Ak (Ky) are connected with probability exceedipg, in (3.8).
Let Ay k be the event that the bak, contains a connected componéfit of boxesAk (K x)
such that at leas#|Ayn| of the connected components in these boxes get joinegiin By
Lemma 3.6, we know that

Py (AS ) < e /N (3.49)
On the other hand, oy k we have
1611 > (O1ANI) (5] Ak ) = 96IALI (3.50)

and thug|61| < p|ALl} C A} k oncep < 4. If p is also less that fK -2 this finishes the
proof for L of the formN K. The general values df are handled by noting that MK < L <
(N + 1)K, then|A_| < 29 Ank| and, if Ank C Ar, then alsd@nk| < |€L]. O

Proof of Corollary 3.3.Fix ' € (s, 2d), let Np, ©# andf, be the constants from Lemma 3.6, and
let 5 > foandr > 1 —e Y/, Letf > 3Ny be an odd integer and I&t be the constant from
Lemma 3.5 for our choice gf andr. Clearly, it suffices to show that (3.4) holds forof the
form L, = K¢" andp proportional to the product of constarteands from Lemmas 3.5-3.6.
All of the volumesA |, below are centered atso we omit that fact from the notation.

Our strategy is as follows: We pick an> 0 and show that, with probability at least-le
and some integer, the largest connected componeit, in AL is connected to at leap{A |
sites inAy ,, for everyn” > n. (Note that this guarantees thfét, C ¢..) Once this has
been established we observe tiét , (x)| < p|AL,, | implies thatx cannot be connected %
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within A ,. Assuming thak e ¢, the boxA_, then contains at least two distinct sitesy e

%~ Which are not connected withift,_,. By the uniqueness of the infinite cluster, the probability
of the latter event can be made smaller thdyy makingn’ sufficiently large. But then the limit
in (3.4) must be less tharr 2nd, since: was arbitrary, it must equal to zero.

To make the proof complete, it remains to establish the first claim in the previous paragraph.
Namely, we must show that the probability thét, is not connected to at leagt|A| | sites
in AL, for some " > nis less thare, providedn is sufficiently large. To that end, 18y, with
k > 0, be a sequence of boxes (generally not centered atich thatBy, = A, and thatBy
is the maximal box iM\_,, that is centered on th@, 1, ..., 1) half-axis, disjoint from all the
previousBy's and with side a multiple oK. Since¢ > 3, it is easy to see thdBy| grows
proportionally to|Ay,,,| (in fact, |B|/|AL,,| > 37%). Our goal is to show that the largest
connected components in &}'s are with overwhelming probability connected.

Invoking Lemmas 3.5-3.6 and choosingufficiently large, the probability that each bBx—
viewed as the disjoint union of translates Af—contains a component comprising at least
9|By|/K? maximal connected componerig® of size at leassK ¢ is bounded by /2. On
the other hand, the probability that the corresponding componerg amd By, ; arenot con-
nected is bounded by

92 |Bxl| Byl
exp{ - < exp{—p/¢@—H0H 3.51

whereb is a constant such that,/K bounds the distancde — y| for any translates\ « (K x)
andAk (Ky) contained inA,, and whergs’/ g is a constant that depends only ©andK. The
right-hand side is summable dnand the sum can be made smaller tld@ by increasingn.
Thus with probability as least % ¢, for eachk > 0 the componerf¢, , is connected to at least
99| By] sites inA(,,,. Choosings < 69379, the above claim follows. O

Proof of Corollary 3.4. Let ¢ > 1 be an odd integer. Clearly, it suffices to prove the result
for 2”"*) instead of7”" and L a multiple of ¥. Viewing A, as a disjoint union of boxes
Az(36x) with x € Z9, let ™ be a maximal connected componentAp(3¢x). Forp’ > 0,
let 4,(x) be the event thats>"| > p’|A,| is true. LetN, , denote the number of € Z with
A3:(3(x) C AL such thatd,(x) occurs.

The events4,(x) are independent and, 4fis large enough and’ > 0 is sufficiently small,
Theorem 3.2 shows that,(x) occurs with probability at least = 1 — exp{—p’¢24=5}. This
allows us to invoke the Chernoff bound once again with the result

P(NL, <r'LY/@30)%) < e v nL/Ee (3.52)

wherew (r’,r) is as in (3.17). Choosing = 1/2,« = 1/2 andC = C(1/2) and takingf so
large thatp’¢?—% > 2C, (3.11) gives us

1 / 1 /
p(t',1) = Z(p'%% = C) = 2p/t*s, (3.53)
On the other hand, ofN_, > r’L9/(30)%} we have
|@£ﬂ,2€)| > (p/fd) (F/Ld/(%)d) — p/r/3—d Ld, (354)
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and sof| 2"*| < pL9) c {N_, < r'L/(3)%} oncep < p'r’37%. Invoking (3.52-3.53) and
choosingp such that alse < %3“’,0’, the desired estimate follows. O

4. PROOF OF MAIN RESULT

In this section we will provide the proof of Theorem 1.1. The arguments closely follow the outline
presented in Sections 2.1 and 2.2. The reader may consider skimming through these sections once
again before plunging into the ultimate details of the proofs.

4.1 Upper bound.

The principal goal of this section is to establish the upper bound in (1.6). By the continuity of
s — A(s, d) it suffices to prove the upper bound for any numbexceeding the limit (1.3), so
we will instead assume thatobeys (3.1). The desired claim is then formulated as follows:

Proposition 4.1 Letse (d, 2d) be such tha3.1)holds and letA = A(s, d) be as in(1.2). For
eachA’ > A and eache > 0, there exists an )N< oo such that

P(D(x,y) > (log|x — yD*', X,y € €x) < € 4.1)
holds for all x, y e Z¢ with [x — y| > No.

As discussed in Section 2.1, the proof is conceptually rather simple: For each pair of sites
andy we will construct a hierarchy of an appropriate dektibonnectingx andy, such that
pairs(z,01, Z,10) With o € {0, 1}*~2 are connected by paths of lengtbg |x — y|)°®. The main
difficulty stems from the requirement that the bonds constituting the hierarchy be connected in
a prescribed (linear) order. This will be ensured by the condition that all sites constituting the
hierarchy are surrounded by a sufficiently dense connected component.

Recall our notation that | (x) is a box of sideL centered ak and% (x) is the set of sites
in AL (X) connected tx by a path inA_ (x). We will require that the siteg, are dense points
according to the following definition:

Definition 2 Given a numbep € (0, 1) and an odd integef > 1, we will call x € Z¢ a
(p, £)-densgor, simply,densg pointif |4, (X)| > plA¢(X)].

For any realL > O sufficiently large, lel.™ be the minimal odd integer larger thanand
let L~ be the minimal odd integer larger than?2. Let

BL(X) = AL+ (X) \ AL-(X). 4.2)

Given a numbep € (0, 1) and an odd integef > 1, let 2”"(x) denote the set of allp, ¢)-
dense points iB, (x). The input needed from Section 3 then comes directly from Corollaries 3.3
and 3.4: By Corollary 3.4 and the fact tHat (x) contains a box of side at leds}' 3, we know that

P12 (0] < pLY) < e (4.3)

oncep is sufficiently smalls’ € (s, 2d) and¢y < ¢ < L/£o. Corollary 3.3 in turn shows that
if X,y € % then bothx andy are dense points in the sense that for each 0 there exists an
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€1 = €1(¢) < oo such that
P(15: (01 < pt?,x € o) < € (4.4)
is true whenevef > ¢1. A similar statement holds foy.

Now we can define the principal events: lye¢ (s/(2d), 1) and letx andy be two sites irZd.
Let N = |x — y| and defineN, = N’". For eactn > 1, let3, = Bg{’f)(x, y) be the event
that there exists a hierarchy,(x, y) of depthn connectingx andy subject to the following
constraints: Forak =0,1,...,n—2and allo € {0, 1},

0 N
Zor € 73 (2,0) and zp10 € 2) (2,0). (4.5)

The event3, ensures that all sites of the hierarchgxeept perhaps x and—yare(p, £)-dense
points. To cover these exceptions, we also introduce the &ventl -9 (x, y) that bothx andy
are(p, {)-dense in the above sense. In the following, we will regard the nupbsrfixed—such
that (4.3—4.4) hold—but andy will be adjustable.

The requirements (4.5) become appreciated in the proof of the following bound:
Lemma 4.2 For eache € (0, 1), eachy € (s/(2d), 1) and eachA’ satisfying
- log 2 ,

log(1/y)

there exists a constant’N= N'(¢, y, A’) < oo such that the following is true for all xy e Z¢
with N = |x — y| > N’: Let n be the maximal positive integer such that

/

(4.6)

nlog(1/y) < loglogN — ¢ logloglogN. 4.7

If £ in the definition of the event8, = BY;”(x,y) andT = T»)(x, y) is an odd integer
between Nand2N,, then

P({D(x,y) > (logN)*} N B, NT) < e. (4.8)
The reason why we chooseas in (4.7) can be seen from the following bounds:
2r‘I < (log N)Iog’(%/zy) and e(l/y)(k)g logN)* > Nyn > e(IOQ IOgN)E_ (49)

These bounds will be important in the upcoming proof.

Proof of Lemma 4.2The main reason whil has to exceed a certain constant is because we need
the scales corresponding to successive levels of the hierarchy to be clearly separated. To that end
we observe that for ak < n andNy = N’ we have

N - (1= »)doglogNY-, (4.10)
Nk+1
which tends to infinity atN — oo.

Introduce the abbreviatioB, = 7 N B,. If B, occurs, then there exists at least one hierar-
chy Hn(X, y) of depthn connectingx andy such that (4.5) is satisfied. Then (4.10) guarantees
the existence of numbeid’ < oo andb € (0, 1) such that the following is true for any such
hierarchy: Ifo € {0, 1} withk =0, 1, ...,n — 2, then

1Zs01 — Z510l > BN, (4.11)

log



CHEMICAL DISTANCE IN LONG-RANGE PERCOLATION 25

while if z € BNk+2(ZgQ) andz e BNk+2(Zgol), then
b Nit1 > 12— Z| > bNis1, (4.12)

wheneverN > N’. Similar statements hold for pais € By,,,(z,1) andZ € By,,,(Z,10)-
Moreover,N’ can be chosen so large that also the bounds

b~*Ny_1 < bN,_, and bN,_1 > diamA,, (4.13)

hold true for all¢ betweerty and 2\, and alln satisfying (4.7).

Let A, be the event that, for any hierarchy that would m#kesatisfied, at least one of the
“gaps” of the hierarchy, safz,o, z,01) Wheres € {0, 1}"~2, fails to have the componerit§(z,o)
and%,(z,01) connected by an occupied bond. (Note that these components are quite large because
bothz,q andz,q; are dense points.) We claim that

{D(x,y) > (logN)*'} N By © An N B (4.14)

Indeed, if all “gaps’do havethe corresponding components connected, thenzgéhconnected
to z,01 by a path of no more than- 2¢¢ bonds (note that® bonds should be enough to get out
of 6;(z,0)), and similarly for the pairg,; andz,1o. Noting that a hierarchy of depthinvolves
only 2"~ “gaps” and 2-! — 1 bonds, we can use< 2N, and (4.9) to write

D(X, y) < 2n—1(1+ 2d+lNr?) + 2n—2 < 2d+2(|og N)iloI;(?L/zy) e(d/y)(log IogN)E' (415)

In light of (4.6), this is not compatible witD (x, y) > (log N)2" if N is sufficiently large.

To finish the proof, we thus need to estimate the probabilitdoh B,. The above estimates
show that the occurrence 8%, is determined by looking only at the bonds longer thdd_» (to
ensure the existence of a hierarchy) or shorter than dia(to ensure that all sites in the hierarchy
are(p, £)-dense). Explicitly, let# denote ther-algebra generated by the random varialides )
with |z — Z| > bN,_, or |z — Z| < diamA,. Then (4.11-4.13) show th&, € .%. This allows
us to prove (4.8) by conditioning: L&t be a number such that, > 1 — exp{—f|z — Z|~5} for
any pair(z, ) of sites with|z — Z| > N,. Then we have

1 2 Nrfd 2
P < 2" expl—pBp —"— onB,. 4.16
(A,1:7) < 2 expl—fp e /b)s}, B, (4.16)
Here we used that, ofi,, the component®; (z,0) and%;(z,01) are both larger thapt? > pN¢,
while (4.12) dictates that the longest bond that can connect them is not longeNgharb.
The prefactor represents the number of “gaps” in the hierarchy which is the number of places
where A, can fail. Inserting the upper bound arfrom (4.7), the estimate (4.8) follows onde
is sufficiently large. O

Our next goal is to show that the evesf is quite unlikely to occur:

Lemma 4.3 Lety e (s/(2d),1) andlets € (s, 2dy). Let N= |[x — y| > N’ where N is asin
Lemma 4.2 and defineyN= N’*. Then there is a constant c- 0 such that if¢ in the definition
of By is an odd integer between,Mind 2N, then

P(BS,, N By) < 2L exp{—caNZ Y, (4.17)
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forallk < n, where nis asin Lemma 4.2. In particular,
P(BL) < 2" exp{—csN2 =5}, (4.18)

Proof. Clearly, (4.18) is a result of summing (4.17), so we just need to prove (4.17) for all
k =0,1,...,n. Bythe fact thatN > N’, we can assume that the scalMs and Ny,; are
clearly separated in the sense of the inequalities (4.11—-4.13)5; | e the event that there exists
a hierarchyHn (X, y) of depthm connectingx andy such that for eack < m — 2 and each
o € {0, 1),

Z;01 € By, (Zo0) and z,10 € By, (Z01). (4.19)
A comparison with (4.5) shows th& c B,. Consider also the following events:

(1) The eventA; that, for any hierarchy(x, y) that would make3, satisfied, we have
1237 (2,)] < pNd for somes e {0, 1.

(2) The eventA; that, for any hierarchy that would makg satisfied, there exists a pair of
sites(z, Z) of the type(z,0, Z,01) Of (Z,1, Zy10) With & € {0, 1}*~2 such that there is no
occupied bond between the sét§” (z) and 2" (2).

Now on By N By, , there exists a hierarchy that would maRgsatisfied, but such that for some

pair of sites as in the definition ofl,, the setsZy{"" (z) and 2" (z) are not connected by an
occupied bond. It follows thas, N B¢, c B, N A,. The eventd; will be used to write4; as
the union of4; and. Ay N A, whose probabilities are more convenient to estimate.

The proof now mimics the argument from the proof of Lemma 4.2. By the factNhat N,
the events, is determined by looking only at the bonds that are longer kién,. Let.#” denote
the o-algebra generated by the random varialtes ) with |z — Z| > bN¢_». ThenB, € #'.
On the other hand, conditional ofi’, the event4; is only determined by looking at the bonds
that are shorter than diary. By (4.3), we have

P(A4|F") < 2Xexp{—pNZ—=),  onB;. (4.20)

Here X counts the number of pairs wherg can go wrong.

Concerning the eventl;, we note that conditional osl; N By, the eventA; is determined
by the bonds of length betwedN,_; andb~*N,_1, which by (4.13) must be either longer than
diamA, or shorter thatoNx_,. Let.%# be thes-algebra generated lgyw,,) with [z—Z'| > bN«_»
or|z—Z| < diamA,. ThenA; N B, € .# andA; is determined by bonds independent®f
Let # be the same constant as in the proof of Lemma 4.2. Then we have

N2d
P(A;|.%) < 2% expl —fp? —FK—— °N By 4.21
(o) 7) < Zexpl—pp? (=) on AN B (421)
Putting these bounds together and choosingppropriately, (4.17) directly follows. a

Lemmas 4.2-4.3 finally allow us to prove Proposition 4.1:

Proof of Proposition 4.1.Let A’ > A and lete € (0,1). Choosey € (s/(2d), 1) such that
(4.6) holds true and pick asl € (s,2dy). SupposeN > N’, whereN’ is the constant from
Lemmas 4.2-4.3, and letbe as in Lemma 4.2. Fix an odd integebetweenN,, and 2N, and

let c3 be the constant from Lemma 4.3.
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Invoking the inclusion
[D(X,y) = (logN)*'} € ({D(x,y) = (logN)*} N B, NT)UBEUTE, (4.22)

we just need to estimate the probability of the three events on the right-hand side. Lemma 4.2
shows that the probability of the first event is less tharLemma 4.3 in conjunction with the
bounds (4.9) shows that

P(Bn) < 2exp{A’(loglogN) — cge??7=s)(0glogN) (4.23)

which can also be made less thaty choosingN sufficiently large. Finally, the probability
P(7 ) is estimated from (4.4) where we assume tRas so large that alsé > N, > ¢;. From
here the desired claim follows. O

4.2 Lower bound.

The goal of this section is to prove the lower bound in (1.6). As in Section 4.1, we formulate the
relevant claim as a separate proposition:

Proposition 4.4 Suppose thgtl.3)holds with an s= (d, 2d) and letA = A(s, d) be asin(1.2).
For eachA’ < A and eache > 0, there exists an N< oo such that

P(D(x,y) < (log|x — yD*) <€ (4.24)
holds for all x, y € Z% with |[x — y| > No.

In conjunction with Proposition 4.1, this result immediately implies Theorem 1.1:

Proof of Theorem 1.1Lete¢ > 0 and letD.(x) be the event in (1.6). Choosiryy’ such that
|A — A’| < ¢, Propositions 4.1 and 4.4 ensure thatlim., P(D(x) N {0, X € €x}) = 0. Then
(1.6) follows by noting that, by FKG inequality and translation invariance, we fg0ex <
%») > P(0 € € )? which is positive by our assumption that there is percolation. a

The remainder of this section will be spent on the proof of Proposition 4.4. As discussed in
Section 2.2, our strategy will be to show that each path connextangly in less thar(log |x —
y)2 steps contains a hierarchy whose “gaps” obey the conditions (2.7). (As far as this claim is
concerned, the specific choice of the exponent plays no essential role; any positive number will
do.) This will be used to control the combined length of the paths needed to span the “gaps” and
show that it will eventually exceedog |x — y|)2  forany A’ < A.

We begin by defining the relevant events. ety € Z° be distinct (and distant) sites and
let N = [x —y|. Fixanumben e (0, s/(2d)) and, for each integar > 2, let&, = &, ,(X, y) be
the event thagveryhierarchyH, (X, y) of depthn connectingk andy such that

1Z,01 — Z510l > 1250 — Zo1l(log N) ™ (4.25)
holds forallk = 0,1, ..., n — 2 and alls € {0, 1}* will also satisfy the bounds
[T 1ze0— 2zl v1=N®' (4.26)
oe{0,1}K

foralk=1,2,...,n— 1. Here ‘v" is a shorthand for maximum.
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Remark 7 Since we allow the possibility of “site collapse” in our definition of a hierarchy—e.g.,
we do not forbid that,qo = z,0;—We must use aVv” on the left-hand side of (4.26). Note that
(4.26) is a precise form of (2.7) while (4.25) is a precise form of (2.6).

Our first goal is to estimate the probability &f:

Lemma 4.5 Lety € (0,s/(2d)) and let s € (2dy, s) be such that's> d. Let&, = &, (X, Y)
be as above. Then there exists a constant €0, co) such that for all x y € Z9 with N = |x —y|
satisfyingy" logN > 2(s' — d),

P(E5,1 N En) < (log N)%2' N=(E=2n@n", (4.27)

The proof of Lemma 4.5 requires certain combinatorial estimates whose precise statements
and proofs have been deferred to Lemmas A.1-A.2 in the Appendix. We encourage the reader to
skim through the statements of these lemmas before plunging into the forthcoming proof.

Proof of Lemma 4.50n &7, N &, there exists a hierarcly,(x, y) such that the bound (4.26)
holds for allk = 1, ..., n — 1 but doesot hold fork = n. In order to estimate the probability
of such an event, led (n) be the collection of all 2tuples(z,) of sites such that (4.25) holds for
alle € {0,1}withk = 0,1,...,n— 1 while (4.26) is true only fok = 1,...,n — 1 but not
for k = n. Then we can write

n-1
P(EL L NE) < Z H H P(Zs01, Z510), (4.28)

(2,)€@®(n) k=05 {0, 1}k

wherep(z, ) = 1 — e 9%2) for z £ Z—see (1.4)—whilep(z, ) = 1 for z = Z. As specified
in the definition of the hierarchy, none of the bon@so:, z,10) May appear more than once
whence (4.28) follows by invoking inclusion-exclusion and independence.

In order to estimate the right-hand side of (4.28), we will introduce a convenient change of
variables: Foreack =0, 1, ..., nand eacly € {0, 1}, let

trr = Z;0 — Z51. (429)

(Thus,tz is justx —y, while tg represents the “gafyo— zo1 andt; represents the “ga@io— z11.
Note that theN,’s from Section 2.2 are related to thes via N, = |t,|.) Clearly, oncex andy
are fixed and, are defined for alb € {0, 1}k and allk = 1, ..., n, all of z, with ¢ € {0, 1}"+1
can be reconstructed from (4.29). In terms oftlig, the conditions (4.26) can be written as

[T vz nNe", (4.30)
oe{0,1}%
which on&7 , N &, is required to hold for alk = 1,2,...,n — 1 and to fail fork = n, while
(4.25) can be rewritten as
|Zs01 — Zo10l > Its|(log N)~2, (4.31)

which is required to hold forak = 0,1, ..., n — 1 and allo € {0, 1} .
The latter condition—Eq. (4.31)—allows us to recast (4.28) entirely in terms df, theln-
deed, lefQ (k) be the set of all collectiond,), o € {0, 1}¥, of elements fronZ? such that (4.30)
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holds true and le€ e (0, o) be a constant so large that

p(z,2) < Z—2F (4.32)

is true for all distinctz, Z € Z9. Then (4.32) and (4.30) allow us to write

C(logN)®2
PER &) < > 0 2 2, H 11 (LIvDs” (4.33)
(t;)eQ(1) (t;)eQ(n-1) (t;)¢Q(n) k=0 5e(0,1}%
wherety = X — y and where we assumed thatis so large that the last fraction exceeds one
whenevelt,| < 1.
The right-hand side of (4.33) is now estimated as follows: First we will extract the terms

C(log N)¥2 and write the sequence of sums as a product by grouping the corresptyslinigh
their sum (and noting thdtz| = N). This gives

[C(log N)* 4]
PEGaNE) < —— g 2.
(ts)#2(n)

Now s > d, which implies that the sum in the second parentheses can be estimated using
Lemma A.1 in the Appendix. Explicitly, noting thifiz € Z9: n < |z] v 1 < n+ 1} < c(d)n?-?

for all n > 1 and some fixed constanfd) < oo, we introduce a collection of positive inte-
gers(n,) and first sum over allt,) subject to the constraimt, < |t,| V1 < n, + 1. Then we are

in a position to apply Lemma A.1 with =s' —d,b = N andx = 2%, which yields

_ (Clog N)Z*
Z H ( o*l v 1)5/ - NE-dDE@p)k’ (435)

(t-)eQ(K) se{0,1}k

)H( 2. 1l (|t|v1)5/) (.39

(t-)eQ(K) oe{0,1}k

for someC’ < oo independent oN andn. (Here we used that < 1 to bound log\N ” by logN.)
The sum in the first parentheses can be estimated in a similar fashion; the result of application of
Lemma A.2 witha = d, b = N?" andx = 2"is

> 1<(C’logN)*' Ne@" (4.36)
(t;)#Q(n)
for someC” < oco. Combining these estimates with (4.34) and invoking the identity (2.9), the
desired bound (4.27) is proved. O

Lemma 4.5 will be used to convert the evéfi(x, y) < (logN)2'} into a statement about
the total number of bonds needed to span the “gaps” of a hierarchy identified within (one of) the
shortest paths connectingandy. Let 7, = Fn(X, y) be the event that, foeveryhierarchy of
depthn connectingx andy and satisfying (4.25)verycollection of (bond) self-avoiding and
mutually (bond) avoiding paths, with ¢ € {0, 1}"~%, such thatr, connectsz,o with z,; without
using any bond from the hierarchy, will obey the bound

> il = 2" (4.37)
oe{0,1)n-1
Then we have the following claim:
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Lemma 4.6 LetA’ < A. If N = |x — y| is sufficiently large and

/

n>
log 2

loglogN, (4.38)

then
{D(x,y) < (logN)*'} N F, = 4. (4.39)

Proof. We will show that on{D(x, y) < (logN)%'} there exists a hierarchy of a depth satis-
fying (4.38) such that (4.25) is true, and a collection of pathsspanning” the “gaps” of this
hiearchy such that (4.37) is violated. Letbe a path saturating the distarid€x, y) betweenx
andy. The pathr is necessarily (bond) self-avoiding. Sineg < (log N)*—Dby our restriction
to {D(x, y) < (logN)2}—and sincex, y — |x — y| satisfies the triangle inequality, the path
must contain a bond whose length excebidglog N)2. Let z; be the endpoint of this bond on
the x-side and letz;o denote the endpoint on theside of the bond. Denotingy = x andz; = v,
we thus have

|Z01 — Z10l > |20 — z1|(log N) ™%, (4.40)
i.e., (4.25) forc = @.

Similarly we will identify the next level of the hierarchy. Lef, be the portion ofr be-
tweenzgy = X and zy;, and letz; be the portion ofr betweenz;; = y and z;g. (Note
that this agrees with our notation used in the definition of the ey@mnt Again, we have
|7ol, |m1] < (logN)? and thus bothrg andz; contain at least one bond of length exceeding
|20 — Zo1|/(log N)® and|z;0 — z11]/(log N)2, respectively. The endpoints of this bondzp
identify the siteszgp1 andzy;o, and similarly for the endpoints of the bondzn. (If 7o is empty,
which can only happen iy, = 7y, we letzgg; = Zp10 = 20, @ Similarly forz;.) The very construc-
tion of these bonds implies (4.25) fer= 0, 1. Proceeding in a similar way altogethretimes,
we arrive at a hierarchy of depthconnectingkx andy and satisfying (4.25).

The construction implicitly defines a collection of pathswith ¢ € {0, 1}"~! such thatz,
is the portion ofr connecting the endpoints of the “gaf¥,o, z,1). Now we are ready to prove
(4.39). Indeed, ifD(x, y) < (logN)2'} occurs, the combined length of all’s must be less than
(log N)2’, which by (4.37) is strictly less tharf 2But then there exists a hierarchy of deptand
self-avoiding and mutually avoiding paths “spanning” its “gaps” such that (4.37) is violated.
Consequently, we must hay®(x, y) < (logN)2'} FL. O

In light of Lemma 4.6, to prove Proposition 4.4, we will need a bound on the probabilif of
for somen obeying (4.38). However, invoking also Lemma 4.5, we can as well focus just on the
eventF N é&,.

Lemma 4.7 Lety € (0,s/(2d)) and let s e (2dy, s) be such that's> d. Let&, = &, (X, y)
and 7, = Fy(X,y) be as above. Then there exists a constantc(0, co) such that for all
distinct x, y € Z9 with N = |x — y| satisfyingy"logN > 2(s’ — d),

P(FCN &) < (logN)SZ' N=S@)"" (4.41)

Proof. The proof will closely follow that of Lemma 4.5 so we will stay rather brief. In fact, the
only essential difference is that, instead of (4.36)—which we cannot use because we are no longer
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in the complement of,,, ;—the necessary decay for the last sum will have to be provided on the
basis of the containment if;".
We begin by noting that off,° N &,, the following events must occur:

(1) There exists a hierarchy,(x, y) such that (4.25-4.26) hold.

(2) There exists a collection of self-avoiding and mutually avoiding pathswith ¢ €
{0, 1}"1, such thatr, connects,o with z,1 without using any bonds from{,(X, y).

(3) The bound (4.37) fails.

As in Lemma 4.5, we will use brute force: First we will fix a hierarchy satisfying the desired con-
dition and try to estimate the probability that, for some collection of non-negative intéggys

the length of the path, is m, for eachs € {0, 1}"~1. The fact that the paths and the hierarchy
are all disjoint then allows us to write

P(F¢ oceurs &(Iz,1) = (M) | Hax, ) < [ Qm, Zo0. Z,0). (4.42)
oe{0,1)n-1
where
m-1 o4
Qm(z, 2) = . (4.43)
" n_(g’zm ill 1z — zi41l vV D
20=2, Zm=2Z

Here the sum runs over self-avoiding pathsf lengthm andC’ is so large that the last quotient
is an upper bound on the probability thiatandz , ; are connected by an occupied bond.

To estimate (4.42), we first need a bound@#(z, Z'). To that end we note that, in light of the
inequalitys’ > d, there exists a constaate (1, co) such that for and ak, y € Z¢,

1 1 a
Z 4 s = s’ (4.44)
Sx—2dvDT(y-2vDY ~ (x—ylIvD

From here we conclude that

(Ca)m
Qm(z,7) < m,

i.e., up to a multiplicative factoiQn(z, Z') acts similarly asp(z, Z). The paths still carry some
entropy in the choice of the intege¢s,) which amounts to counting the numbefmit n) of
ordered partitions of a non-negative integeinto 2"~! non-negative integers. A simple estimate
shows that #m, n) < om+2" and, noting that oiF,* we only need to considen < 2",

1
(1250 — Zp1| V 1)

(4.45)

P(FiHa(x, ) < 4aCh” ]

oe{0,1n-1

(4.46)

becaus,,_»#(m,n) < 47",

Having dispensed with the paths, we now start estimating the probability & N &,.
Let ®*(n) be the set of all collection&,), o € {0, 1}", obeying (4.25) fok = 0,1,...,n—2
and (4.26) fok = 1,...,n — 1. The bounds (4.32), (4.25) and (4.46) then give

n-1 g'on
PFNE) < acy” > [T I1 i (ClogN)™> (4.47)

— s
(Zg)E@*(n) k=oae{0,1}k Z()'O Z()'ll V 1)
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HereC is the same constant as in (4.33) and the product still goes only(mptd)—despite the
insertion of the terms from (4.46)—because we are now looking only at a hierarchy ofrdepth
(and notn + 1 as in the proof of Lemma 4.5). Passing again to the variaplesz,o — z,; and
recalling the definition of2 (k) from the proof of Lemma 4.5, we now get

c [C"(ogN)*21" T 1
P(FEN &) < H( > 11 m) (4.48)

NS¢
k=1 " (t,)eQ(K) se{0, 1}k

whereC” < oco. Each term in the product can now be estimated by (4.35). Using

n—-1
S+ (8 —d) D @)k =5t (4.49)
k=1
instead of (2.9), the estimate (4.41) directly follows. g

Having assembled all necessary ingredients, we can now finish the proof of Proposition 4.4.

Proof of Proposition 4.4Let A’ < A and, recalling that 2/ = s/(2d), choose ars’ e (d, s)
such that 24" < §'/(2d). Pick a numbey such that

/

, S
2~/ = 4.50
<7 <54 (4.50)

and letd = 3(s' — 2dy).
By Lemma 4.6, we havéD(x, y) < (logN)2'} c F.f oncen satisfies the bound (4.38). On
the other hand, if also obeys the bound

nlog(l/y) < loglogN — 2logloglogN, (4.51)

which is possible for largeN by (4.50), then we have"logN > (loglogN)2. This shows

that, for N large enough, the right-hand side of the bound from Lemma 4.5 is les\th&#)"

and similarly for the bound in Lemma 4.7. Consequently, both bounds are summaikenai)
increasingN if necessary, the result can be made smaller than any number initially prescribed.
Hence, for ang > 0 andN sufficiently large, we will have

P(FH) <PED) +P(FyNéy) < 2 (4.52)
oncen satisfies both (4.38) and (4.51). By the inclusidh(x, y) < (logN)2"} c FL, this
finishes the proof. a

5. APPENDIX

Here we establish the bounds needed in the proof of Lemmas 4.5 and 4.7. To that er &t
positive integer and, fdo > O real, let

=, (b) = {(ni) eNin > 1, ﬁni > b"}. (5.1)
i=1

We will also useZ7 (b) to denote a (formal) complement of this set, i.e., the set of all collec-
tions(n;) € N* of positive integers such th@{; n; < b*.
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Lemma A.1 For eache > 0 there exists a constant g= gi(¢) < oo such that

> -

1+a
(MyeZe () i=1 M

is true for alla > 0, all b > 1 and all positive integers satisfying

k—1
<Togh > €. (5.3)

< (g1 b™*logb)* (5.2)

Proof. As is common for this kind of estimates, we will turn the sum into an integral. With each
(nj) € E.(b), we will associate a unique hypercub&;) = (n;) + [—%, %)" in R* and note

that wheneve(x;) € h(n;), we havex; > nj —1/2 > nj/2 andx; < n; + 1/2 < 2n; for all

i =1,...,«. This implies that the product on the left-hand side of (5.2) can be bounded by the
product of(x; /2)~®+*) and

U bonc {(xi) e RF: 2% > 1, ﬁ(in) > b"}. (5.4)

(ni)eE, (b) i=1

Noting that theh(n;) are disjoint, we can now bound the sum in (5.2) by the integral over the set
on the right-hand side. Relabeling;dy x;, we thus get

l.h.s. of (5.2)< 2¢(+2%) // dxy . .. dx, H%. (5.5)
X >1i=1,.x =17
[Ti2q xi >b*
To evaluate the integral, we introduce the substitutions: €% followed byz; = y; + - - - + y;
forj =1,...,x. Sincey;, > 0, thez;’s are ordered and since the integrand depends onky ,on
the integrals over, . . ., z._; can readily be performed. The result is

00 Z;c—l

r.h.s. of (5.5)= 2”(1+2"‘)/ z— e 2 (5.6)
xlogb (x — 1!

where we have now dropped the subscript from z. Now the assumption (5.3) ensures that
for z > xlogb, the functionz — z‘~'e~*Z is strictly decreasing and, in fact, its logarithm is
concave. Applying (5.3), we easily derive that for any « logb,

ZK—le—aZ < (K IOg b)S—lb—(XKe—E(Z—IC |0gb). (57)

Substituting this into (5.6), the integral is now easily performed. The calculation is concluded by
using Stirling’s formula to cancel the factef—! coming from the previous estimation against
the leading order ofx — 1)! in the denominator. O

Our next claim concerns a similar sum over the indiceZja):

Lemma A.2 There exists a constan g< oo such that for eaclx > 1, each b> e/4 and any
positive integek,

> H n“~! < (g, b* logb)~. (5.8)

(n)eEL(b) i=1



34 MAREK BISKUP

Proof. A moment’s thought reveals that we only have to address the«casel. We will call
upon the argument from Lemma A.1. Indeed, replacing (5.4) by

U smcfoner:axzt Hx. < (20}, (5.9)

(n)eEx(@)
we easily find out that

> 152‘”/---/dx1...dxk. (5.10)

(n)eE; (@)
H. 1 Xi <(4b)*
Invoking the same substitutions as before, we then get

x log(4b) 75— 1
r.h.s. of (5.10)= 2"‘/ dz( — e <2 "(4b)" (;c log(4b))“. (5.11)
0
Here we used the boured < (4b)* to get rid of the exponential in the integral and then integrated
out. Invoking Stirling’s formula, the desired bound directly follows. O
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