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ABSTRACT. We present a large-deviations/thermodynamic approach to the classic problem of
percolation on the complete graph. Specifically, we determine the large-deviation rate function
for the probability that the giant component occupies a fixed fraction of the graph while all other

components are “small.” One consequence is an immediate derivation of the “cavity” formula for

the fraction of vertices in the giant component. As a by-product of our analysis we compute the
large-deviation rate functions for the probability of the event that the random graph is connected,
the event that it contains no cycles and the event that it contains only “small” components.

1. INTRODUCTION

For physical systems, mean-field theory often provides a qualitatively correct description of “re-
alistic behavior.” The corresponding analysis usually begins with the derivation of so called
mean-field equations which are self-consistent relations involving the physical quantity of pri-
mary interest and the various parameters of the model. This approach may be realized and, to
some extent, justified mathematically by considering the model on the complete graph where
each constituent interacts with all others.

As an example, let us consider the Ising model on a complete d¢goii n vertices. Here we
have a collection of-1-valued random variablgg;);'_, which are distributed according to the
probability measure,({o}) = e #™(@/Z, , where

Hn(a):—% ZUin —hZai (1.1
i=1

ij=1
and wheref, h are parameters. The relevant physical quantity isetfmpirical magnetization
Ma(o) =n~1>7", oi. Interms of this quantitytn (o) = —Zn[mn(c)]*~hmy (o) and so
En(oiloj: j # 1) =tanHB(Ma(o) + h)] + O(¥n). (1.2)

This permits the following “cavity argument:” Supposing thattends, as — oo, to a valuem,
in probability, we have than, = lim,_,, E,(c1) obeys

m, = tant{f(m, + h)]. (1.3)
This is themean-field equatiofor the (empirical) magnetization. Of course, the concentration of
the law ofmj, still needs to be justified; cf [20] for details.
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In the context of percolation [22], the relevant mean-field model goes under the name the
Erdds-Renyi Random Graph. Here each edg&gfis independently occupied with probabil-
ity ¢/n, where 0< a < oo, and vacant with probability + «/,. The relevant “physical” quantity
is thegiant-component density, i.e., the limiting fraction of the vertices that belong to the giant
component of the graph. The corresponding mean-field equation,

0, =1—¢€%, (1.4)

is also readily derived from heuristic “cavity” considerations. As is well knogn= 0 is the
only solution fora < ac = 1, while fora > o, there is another, strictly positive solution. This
solution tends to zero as |, a¢; hence we may speak of a continuous transition.

While (1.3-1.4) are indeed straightforward to derive, matters at the level of mean-field equa-
tions are not always satisfactory; the problem being the existence multiple solutions. As it turns
out, for the percolation model (as well as theore percolation) the proper choice is always the
maximalsolution, but prescriptions of this sort generically fail, e.g., for the Ising model (1.3)
with h < 0 and, as often as not, whenever there is a first-order transition. Thus, one is in need of
an additional principle which determines which of the solutions is relevant.

The existing mathematical approach to these difficulties—e.g., for percolation [21], see also [2,
13, 24], or thek-core [34]—is to work with sufficient precision until the mean-field conclusions
are rigorously established. Another approach—which admits some prospects of extendability
beyond the complete graph [5, 6]—is to supplement the picture by the introduction roEtre
field free-energy functiorfor the Ising model, this is a function — @4 ,,(m) such that

ﬂn(mn(o') ~ m) = g "Ppnmrom, n— oo, (1.5)

l.e.,m = @z (M) is the large-deviation rate function for the probability of observing the event
{m, () =~ m}. This spells the end of the story from the perspective of probability and/or theo-
retical physics: One seeks the minimum of the free energy function, setting its derivative to zero
yields the mean-field equations with the irrelevant solutions corresponding to the local extrema
which are not absolute minima; see again [20].

The free-energy approach to mean-field problems has met with success in Ising systems and, to
some extent, it has been applied to the Potts and random-cluster models [14, 31, 18, 29]. However,
no attempt seems to have been made to extend this technology to “purely geometrical” problems
on the complete graph, specifically, ordinary percolatiok-opre percolation. The purpose of
this note is to derive the large-deviation rate function for the event that the random graph contains
a fractionp of vertices in “large” components. As we will see, the function has a unique minimum
for all & which coincides with the “correct” solution of (1.4). We do not necessarily claim that
the resultant justification of this equation is easier than which already exists in the literature.
However, the picture presented here provides some additional insights into the model while the
overall approach indeed admits the possibility of generalizations.

2. MAIN RESULTS

Consider the set of vertices = {1, ..., n} and let(wk )1<k<1<n be a collection of i.i.d. random
variables taking value one with probabilityand zero with probability - p. Let& = &(w)
be the (random) sdik,1): 1 < k < | < n, wy = 1}. In accord with the standard notation,
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FIGURE 1. The graph of the free energy functien— ®(p, a) for four distinct values
of a. Fora < 1, the function is minimized by = 0, while fora > 1 the unique minimum
occurs ap > 0. In any case, the minimizer is the maximal positive solutiorpfofrom (1.4).
The dashed portion of the graphs for= 1.6 and 24 marks the part where the background
contribution,¥ (a(1—p)), to ® (g, a) in (2.4) is strictly positive. This rules out the zero solution
to (1.4) for alla > 1.

cf [2, 13], we will use¥(n, p) to denote the undirected graph with verticésand edgeg’. Of
particular interest are the cases wherdecays to zero proportionally #g,. Since these are the
only problems we will consider, let us set, for once and plk= ¢/, for some fixedx € [0, 00).
We will denote the requisite probability measure®y, .

In order to state our main theorems, we need to introduce some notation. First, consider the
standard entropy function

S(g) = eloge + (1 —p)log(l - o) (2.1)

and let
m(a) =1—¢€“. (2.2)

In addition, consider the function

¥(a) = (Ioga - %[a — 2]) AO (2.3)
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and note tha¥ (a) < O ifand only ifa > 1. Finally, let us also define

®(g, ) = S(o) — o logzi(ao)
—(1-o)log[1—71(ap)] — 1—0)¥(a(l-0)). (2.4)
Then we have:

Theorem 2.1 Consider¥(n, ¢/;) and let?; be the set of vertices that are in connected compo-
nents of size larger than r. Then for every [0, 1],

lim im Py, (|%nl = Lon))"" = @), (2.5)

€0 =00

An inspection of Lemma 6.2 reveals that, conditional{pfi,| = |en]}, with ¢ > 0, there
will be only one “large” component with probability tending to onenas> oco.

Fig. 1 shows the graph @ for various values of which is archetypal of free-energy functions
in complete graph setting. The figure indicates a unique global minimum; direct, albeit arduous
differentiation of (2.4) yields the fact that all local extrema satisfy the mean-field equation (1.4).
The extremum ap = O is ruled out fora > 1 by noting that, under these conditions, the last
term in (2.4) is strictly positive.

The corresponding conclusion may also be extracted from the following probabilistic argu-
ment: Letm = |pn| and note thag¢~"5@) is then the exponential growth-rate@f). This allows
us to write

n -
g0 — o (m) [z1(20)]"[1 = za(ae)]" " NG, (2.6)

Neglecting the?-term (which provides a lower bound ab), one sees a quantity reminiscent
of binomial distribution. Well known results on the latter inform us that the right-hand side is
exponentially small unless
m

mi(ag) ~ n’ (2.7)
i.e., unlesg satisfies the mean-field equation (1.4). Mifis set to zero, there are degenerate
minima fora > 1; however, theP-function will lift the degeneracy and, in fact, create a local
maximumat o = 0 oncea > 1. Meanwhile, in the region of the maximal solutio#, has
vanished and the above mentioned approximation is exact.

Remark.2 (1) A closely-related, but different problem to the one treated above has previously
been studied using large-deviation techniques. Indeed, in [32], O’'Connell derived the large-
deviation rate function for the event that ttagestconnected component is of size abaut

Note, however, that this does not restrict the total volume occupied by these component. For
close top, from (1.4)—explicitly, as long as the complement of the large component has ef-
fectivea less than 1—O’Connell’s rate function coincides with ours. But ond® sufficiently

small, his conditioning will lead to the creation of several large components whose total volume
is such that their complement is effectively subcritical. Consequently, O’'Connell never needs to
address the central issue of our proof; namely, the decay rate of the probability that supercritical
percolation has no giant components. (This is what gives rise to the¥eim(2.4) and the
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dashed portion of the graph in Fig. 1.) In fact, his rate function is basically a concatenation of
many scaled copies of the undashed portion of the graph in Fig. 1.

(2) While theW-term in (2.4) has a non-trivial effect on the large-deviation questions studied
here, it does not play any role for events whose probability is of order unity (or is subexponential
in n). This is becaus& “kicks in” only for o away from the minimizing value. This is not
the case for thd-core where the corresponding large-deviation analysis [8] suggests that the
analogous term “kicks in” right at the minimizer and may even affect the fluctuation scales. One
way to bring¥ out of the “realm of exponentially-improbable” for percolation would be to give
each configuration a weight suppressing large components. However, we will not pursue these
matters in the present note.

(3) Our control of the rate function is not sharp enough to provide a detailed description of the
critical region, i.e., the situations when= 1+ O(n~Y®). The corresponding analysis of the
scaling phenomena inside the “critical window” has been performed in [12, 28, 30, 33, 15]. On
the other hand, fos > 1 one should be able to sharpen the control of the rate function near its
minimum to derive a CLT for the fluctuations of the size of the giant component.

Several ingredients enter our proof of Theorem 2.1 which are of independent interest. We state
these as separate theorems. The first one concerns the exponential decay rate for the probability
that the random-graph is (completely) connected:

Theorem 2.3 Let K denote the event th@(n, «,) is connected. Then
Pro(K) = (1—e )Pl n 5 oo, (2.8)
where (logn) is bounded by a constant timkgyn uniformly on compact sets afe [0, c0).

We remark that Theorem 2.3 holds witA®9™ replaced byC(a) + o(1), see [4] for a proof.
However, the requisite steps seem far in excess of the derivation in Sect. 3. Furthermore, various
pieces of Theorem 2.3 have been discovered, apparently multiple times, in [36, 26, 37, 27, 3]; cf
also the discussion following Lemma 3.3.

Next we present a result concerning the eventdh@t, ¢/,) contains no cycles. Such problems
have been extensively studied under the conditions where this probabilitflis see e.g. [13].

Our theorem concerns the large-deviation properties of this event:

Theorem 2.4 Let L be the event th& (n, ¢/,) contains no cycles. Then

aexp(—%+ ), ifa>1,

. (2.9)
1, otherwise

lim Pp,(L)Y" = [
n— oo
Strictly speaking, this result is not needed for the proof of our main theorem; it is actually
used to derive the exponential decay for the probability of the eventéttrat/,) contains only
“small” components. Surprisingly, the decay rates for these two events are exactly the same:

Theorem 2.5 Let L be the event th&#(n, ¢/,) contains no cycles and let, Bbe the event that
there are no components larger than r. Then

lim liminf Py, (B)Y" = lim lim supPn 4 (Ben)Y" = lim Py, (L)Y". (2.10)
n— oo €l0 n— oo

r—oo n—o0



6 M. BISKUP, L. CHAYES AND S.A. SMITH

Update In the present paper we prove Theorem 2.4 using enumeration and generating-function
techniques. Recently, a probabilistic approach has been developed by which we obtain an expan-
sion of P, , (L) to quantities of order unity. One advantage of the new approach is that it also
permits the analysis of the conditional measBgg (-|L,); see [9].

To finish the discussion of our results, let us give some reason for the word “thermodynamic”
in the title. The motivation comes from an analogy with droplet formation in systems at phase
transition. Such situations have been studied extensively in the context of percolation [1, 16] and
Ising (and Potts) model [19, 23, 7, 10, 17] under the banner of “Wulff construction,” see [11] for
a review of these matters.

One of the principal questions underlying Wulff construction is as follows: Compute the
probability—and the characteristics of typical configurations carrying the event—that a given
fraction of the system is in one thermodynamic state (e.g., liquid) while the rest is in another
state (e.g., gas). It turns out that the typical configurations are such that the two phases separate;
a droplet of one phase “floats” in the other phase. The requisite probability is then given by a
large-deviation expression whose rate function is composed of three parts: the “surface” energy
and entropy of the droplet, the rate function for the probability that the droplet is all in one phase,
and the rate function for the probability that the complement of the droplet is in the other phase.

In the case under study, the droplet is exactly the giant component and its weight is just the
probability that all vertices in the droplet are connected to each other. The “surface” energy is
(the log of) the probability that no vertex inside is connected to no vertex outside; the entropy
is (the log of) the number of ways to choose the corresponding number of sites. The weight of
the phase outside simply amounts to the probability that all remaining components are of sub-
macroscopic scale. When the leading-order exponential decay rate of all of these contributions is
extracted using Theorems 2.3-2.5, we get a quantity that only depends on the fraction of vertices
taken by the droplet. The resulting expression is the one on the right-hand side of (2.6).

3. EVERYBODY CONNECTED

The goal of this section is to prove Theorem 2.3. Our proof is based on showing that the proba-
bility in (2.8) is exactly the same probability in a related, directed graph problem.

For a collection of vertice¥;, = {1, ..., n} and a set of edge probabiliti€px)1<k<i<n, I€t¥
be the inhomogeneous undirected random graph ByeSimilarly, let¢/ denote the inhomoge-
neousdirectedcomplete random graph with the restriction that the two possible (directed) edges
betweenk andl occur independently, each with probabilipy,. To keep our notation distinct
from the special caspy = %, treated throughout this paper, we will wrikeinstead ofP, , .

Definition 3.1 A labelled directed graph ¢ = (¥, &) is said to be groundecht vertex v € ¥ if
for every w € ¥ there exists a (directed) path from w tov in &.

The identification of the two problems is now stated as follows:

Lemma 3.2 Let K be the event th&f is connected and let G be the event ti#ais grounded
at vertex “1” Then P(K) = P(G).
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Proof. We use induction on the total number of edges incident with veniéxfideed, if pxn = 0
forallk =1,...,n—1, thenP(K) = P(G) because both probabilities are zero. Now let us
suppose thaP(K) = P(G) whenp,, = 0forall£ =k, ...,n—1 and let us prove that it also
for pxn > O. It clearly suffices to show that the partial derivative$d¢K ) and P (G) with respect
to p«n are equal for allpgn, € [0, 1].

Notice first that bottK andG are increasing events. Invoking Russo’s formula, see [35] or [22,
Theorem 2.25], we obtain

0
apkn
where the evenf(n, k) is pivotal forG} means that ifn, k) is occupied, the ever@ occurs and
if not, it does not. (Note thatn, k) denotes the edge going from™to “k.”) The conditions
under which this event occurs are straightforward: Therget {1, ..., n} splits into two dis-
joint components, one rooted at “1” and the otherrgt Such that no vertex in the component
associated with vertexn” has an oriented edge to the other componentlahds an oriented
path to 1. Similarly, we have
0
6pkn
Here{(n, k) is pivotal forK} simply means that, if the eddg@, k) is absent;#;, consist of two
connected components, one containing “1” and the other containihg *

To see the equality of partial derivatives, we split both “pivotal” events according to the com-
ponent containing the vertexi” If % is a set of vertices such thate # and 1¢ 7/, let%,
and¥,; » be the restrictions o¥ to #/, and 7, \ 7, respectively. Similarly, Ie@nw and?fLW
be the corresponding “components” of the oriented graph. Kigf and Ky 5 be the events
that¥, » and¥; » are connected and &, » andGy » be the events thai,},y,y is grounded

at“n”and that%lyy is grounded at “1,” respectively. Since these pairs of events are independent,
we have

P(G) = P((n, k) is pivotal forG), (3.1)

P(K) = P((n, k) is pivotal forK). (3.2)

P((n,k)is pivotal forG) = > P(G1)PGny)PCyx)|, o (3.3)

W neW
Lke¢w

whereCy is the event that no vertex iW" has a (directed) edge t4, \ 7. But the induction
assumption tells us th&(G1,») = P(Ky») andP(Gy ») = P(Kp »), and the symmetry of
edge probabilities for the directed graph tells us &€ ) is the probability tha#, 4, and¥; »

are not connected by an edge4h Substituting these into (3.3), we get the right-hand side of
(3.2). This completes the induction step. O

From now on, letk andG pertain to the specific random graptisgn, ¢/,) andé?(n, /). We
begin with upper and lower bounds &, (K):

n-1

Lemma 3.3 Py, (K) < (1— (1 — )"

Proof. Let E be the event—concerning the graﬁm, a/n)—that every vertex except number “1”
has at least one outgoing edge. Tl&rc E and so

Po(G) < Poo(E) = (1— (1 — o)™ )" (3.4)
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Invoking Lemma 3.2, this proves the desired upper bound. a

We remark that the upper bound in Lemma 3.3 has been discovered (and rediscovered) several
times in the past. It seems to have appeared in [36] for the first time and later in [26, 37] and
also [25]. A generalization to arbitrary connected graphs has been achieved in [27].

Lemma 3.4 Py, (K) > (1—(1— )" 1) "1,

Proof. Consider the following events for directed random grmjﬂm, an): Let E be the event
that every vertex, except vertex number “1,” has at least one outgoing edge &nlddd¢he event
every such vertex haaxactlyone outgoing edge. Sin¢e c E, we have

Pn,a (G) = Pn,a(E) Pn,tx (GIE) (35)

We claim that
Pn.« (GIE) > Pn 4 (GIF). (3.6)

Indeed, let us pick an outgoing edge for each vertex different from “1,” uniformly out of all edges
going out of that vertex, and let us color these edges redGLbe the event thab occurs using
only the red edges. The distribution of red edges conditionaEas the same as conditional
onF. HenceP, ,(G|E) > P,,(G'|E) = P,,(G'|F). But, onF, every available edge is red and
S0 P« (G'|F) = P+ (G|F). Combining these inequalities, (3.6) is proved.

The number of configurations thﬁé?t(n, a/,) can tqke orfF is exactly(n — 1)"~1. On the other
hand, the number of configurations which resul#n, ¢/,) being grounded ia, = n"~2—the
number of labelled trees withvertices. Hence

n"-2 1
Pre(GIF) 2 o 2 (3.7)
Using thatP, , (E) = (1 — (1 — #)"~1)"~1 the desired bound follows. O
Proof of Theorem 2.3The claim is proved by noting
o \n—1yn—1 —a
lim_ (1 _(il—_e—/f:;”‘l) =exp ((1 — aj) 1a_ee_a) (3.8)
and using the results of Lemmas 3.3 and 3.4. O

4. ONLY TREES

Here we will assemble the necessary ingredients for the proof of Theorem 2.4. The proof is based

on somewhat detailed combinatorial estimates and arguments using generating functions.
Recall thatlL denotes the event th&(n, «/,) contains no cycles and thBt denotes the event

that all components o¥(n, #,) have no more than vertices. We begin by a combinatorial

representation of the probability, ,(L N By): Let a, denote the number of labeled treesfn
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vertices. Then

! -1™ G)-n+Zm
Pa(LNB)= > m(g[aﬁ(%y 1} )(1_%) +>

> mgt=n
my=0V{>r (41)

(&) (-5 ()

where we sek = >, my, applied the constrairt., m; = n and letQn , denote the sum

= > G o (42)

> mel=n {>1
> me=k

my=0V{>r

We begin by isolating the large-k behavior of this quantity:

Proposition 4.1 Consider the polynomial

r 4
S'a
F(s) = VB (4.3)
(=1 ’
Thenforallnk,r > 1,
Fe ()
Qni = g =0 @4
Moreover, for eachy > 0, there is iy < oo and a sequence, ), »1 of positive numbers for which
¢ 1. R
Qnkr > Tkl ng p (4.5)
holds for alln> ng, allk > 1and allr > 2 such that k< (1 — #)n and rk> n(1+ 7).
Proof of upper boundLet us consider the generating function
[e.9] n
Q52 =14 > QuirZ's" = expfzR (9)}, (4.6)

n=1 k=1
where we used Fubini-Tonelli to derive the second equality. Séga polynomial, the Cauchy
integral formula yields

expizR(s)} 1 1 Fr (s)X
Qnikr = (2 I)Z]{ j{d oA ok fds el 4.7)

where all integrals are over a circle of positive radius centered at the origih dbince all
coefficients ofF, are non-negativeé) — |F, (s€?)| for s > 0 is maximized a® = 0. Bounding
the integrand by its value &t = 0, the integral yields a factorz2 optimizing overs > 0 then
gives the upper bound in (4.4). d

Proof of lower bound.As is common in Tauberian arguments, the lower bound will require
somewhat more effort. First let us note that under the conditions (1 — n)n andrk >
n(1+ #) the functions = F; (s)k/s", for s > 0, blows up both at 0 ansb. Its minimum is thus
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achieved at an interior point; for the rest of this proof we willito a minimizer of this function.

Since|F; (s€?)| < F(s) for all @ € (—x, z]\{0}, the part of the integral in (4.7) corresponding

to |#| > € is exponentially small (im) compared to the infimum in (4.5). We thus need to show

the lower bound only for the portion of the integral odewith |0| < ¢, for some fixedt > 0.
SinceF; has positive coefficients;; # 0 in the (complex)-neighborhood o&. This allows

us to define the function »

Fr (s€”)¢

9(9) =log — -~ )

wherep plays the role of;,. The functiong is analytic in anO(¢)-neighborhood of the origin.

The choice ok implies thatg’'(0) = 0 which is equivalent to

sF(s) 1

, 0] <e, (4.8)

= —. 4.9

Fr (s) 0 (4-9)

For the second derivative we ggt(0) = —pVar(X), whereX is the random variable with law
1 asf

P(X=¢)= — =1 ...,r. 4.10

In particular, since our restrictions @d)etween}(l-i- n) and 1— y imply thats is bounded away
from zero, this law is non-degenrate andgs¢0) < O.

The analyticity ofd — g(@) for 8 = O(e) implies thatg” is bounded in this neighborhood,
and so by Taylor’'s theorem we have

g(®) = g(0) — A9% + 0(6°), (4.11)

where A = A(r, p) is positive uniformly in the allowed range efs and O(#%) is a quantity
bounded by|d|® times a constant depending only one andy. (In particular, we may assume
that O(6°) is dominated by A9? for |0] < €.)

We will split the integral ovef) € [—e, €] into two more parts. Led > 0 and note thamg(0)
is the logarithm of the infimum in (4.5). Then féwith on=Y2 < |4| < € we have

nReg(@) < ng(0) — %A&an (4.12)

which shows that even this portion of the integral brings a contribution that is negligible compared
to the right-hand side of (4.5). But f¢#| < on~/3 we havenO(#®) = O(J) and so ford « 1,
the Taylor remainder will always have imaginary part between,-say,andz/,. This means that

5n_l/3 (sn—l/3

Re / 90) g > Lenao) / e g > o g0 (4.13)
_sn-1/3 2 _on-1/3 J/n

for some constant > 0 which may depend onand# but not onp andn. Combined with the
previous estimates, this proves the lower bound (4.5). a

In light of the above lemma, theth term in the sum on the extreme right of (4.1) becomes
a~*nkean Qnir = €™ inf exp{n® (s, ¥n)}, (4.14)
s>0

where
0O;(s,0) = —ploga —plogp + o + o log F (s) — logs. (4.15)
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Here we should interpret (4.14) as an upper bound fern and a lower bound for fixed. It is
clear that, regardless of the sum is dominated by = |pn] for which g — infs.o ®; (S, p) is
maximal. Such values are characterized as follows:

Lemma4.2 Leta > Oandr > 2. Then there is a uniques, or) € [0, oo] x[¥, 1] for which

1/r<g<18>0

Moreover, we always have & (0, co) andg, € (¥, 1) and, furthermore,

] 1+ 24 —loga, ifa <1,
lim ©(s,0r) = L _ (4.17)
r—oo 1+ a° ifa > 1.

Proof. We begin by ruling out the “boundary values”"®andp. First, if p = 1, then the infimum
overs is actually achieved bg = oo. In that caser (s) = oo and the (one-sided) derivative
with respect top is infinite, i.e.,p = 1; is a strict local minimum ofp +— infs.q©; (S, 0).
Similarly, for o = 1 the infimum overs > 0 is achieved as = 0 but then thep-derivative of
o — infe. 0 O, (S, p) is negative infinity, i.e., alsp = 1 is a strict local minimum. It follows that
any (s, or) satisfying (4.16) necessarily lies {0, co) x (Y, 1).

Setting the partial derivatives with respecstandp to zero shows that any minimizing pair is
the solution of the equations

Fr(s)=ap and sF(s)=a. (4.18)

In light of monotonicity ofs — sF/(s), the solution is actually unique. To figure out the asymp-
totic asr — oo, we note that fos < Y,

sF/(s) = Zaf l)' = W(s), (4.19)

whereW is the unique number in [@/] such thatWe W = s. (Incidentally, W is closely
related to the survival probability of the Galton-Watson branching process with Poisson offspring
distribution.) Ifs > L, thensF/(s) — oo asr — oo. Using the relation betwees¥/ (s) anda,
we thus get
ae %, ifa <1,
s — _ (4.20)
r-oo | 1y, if a > 1.
Integrating the derivative df;, now shows thaf; (s) — a(1 — %) for a < 1. Using thatF/(s)
is bounded fos < s, we also find thak (s) — Y. fora > 1. This yields

1—a,, if a < l,
r—o0 %, if o > 1.
Noting that® (s, or) = or — logs we now get (4.17). a

Proof of Theorem 2.4By the fact that the supremum ovelin (4.16) is achieved at an interior
point, we can control the difference between the maximizingnd its continuous counterpart
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Thence |
a
Pria(L 1 Br) = ooy ! (=) €2 exp{n@y (5., 20}, (422)
where

% < Onr <N (4.23)
for some positive constangs which may depend onanda. SinceB, contains every realization
of 4(n, #), takingr = n and applying Lemma 4.2 directly shows tigt, (L) < e @+oM™ To
get a corresponding lower bound, we ffix- 2 and applyP, n(L) > P, n(L N By). Taking¥y-th
power and lettingn — oo then yields

lim Pog(L N B)Y" = e l-%/2+0r(suan), (4.24)
n— o0
As we have just checked, the right-hand side tends't6 esr — oo. O
Corollary 4.3 We have
lim lim P,,(B, N L)Y" = lim P, (L)Y". (4.25)
r—-o00 N—o00 n— o0
Proof. This summarizes the last step of the previous proof. g

5. NO BIG = NO CYCLES

Here we will prove that absence of large component has a comparable cost to absence of cycles,
at least on an exponential scale. To achieve this goal, apart from Corollary 4.3, we will need the
following upper bound:

Lemmab5.1 Let B be the event tha (n, ¢/,) has no components larger thanr and let L be the
event that all connected component4gh, ¢/,) are trees. Then for all > 1,

1
=5

a
Pra(B) < Poa(L)(1-2) 7 (5.1)
Proof. Let C be the restriction 0% (n, ) toasetSc {1,...,n}. LetT be atree ors. Then

n

Pno(C=T) (1 06)('?')—|5|Jrl > (l a)%ISIZ.

Poe(COT) " n (5-2)

n
Hence
. ay—3IS? .
Pn.«(C is connecteyl < Z Pa(CDT) < (1 - ﬁ) Pn..(C is atred. (5.3)
T

Now, if L, is the event that no component @f(n, ¢/,) of size larger tham has cycles, then
Br c L, and soP,,(B;) < Ph.(L;). Let{S;} be a partition off1, ..., n} and letP, ,({S;})
denote the probability thd;} are the connected components&i, #/,). Then

Poa(Lr) =D Poa({SH P (LS, (5.4)

{Sj)
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whereP, (L [{Sj}) is the conditional probability of, given that{S;} are the connected com-
ponents of7(n, «y).
Letting C; represent the restriction éf(n, #/») to Sj, the bound (5.3) tells us that

Poa(Lil{S) = [] Pna(Cjis atredC; is connecteyl
TR,

1 2
. . o\ ~3ISi
< [ Pu«(Cj is atredC; is connecteyl || (1— ﬁ)
j i 1Sjl<r

(5.5)

Using that|Sj| < r for every S; contributing to the second product and applying that the sum
of |§j| over the components witf§;| < r gives at mosh, we then get

Paa (LIS ) < Pr(Liis (1= 4) 7" (5.6)
Plugging this back in (5.4), the desired bound follows. O
Proof of Theorem 2.8y Lemma 5.1 we have

Iiglsogp Pr.o(Ben) V" < /2 lim. Pra (L)Y, (5.7)

On the other hand, the inclusidh > B, N L and Corollary 4.3 yield

liminf Poo(B)Y" > liminf P, (B, N L)Y" — lim P, ,(L). (5.8)
n—oo n—oo r-o0 N—oo

SincePn,(Br) < Pn.(Bq) eventually for any fixed > 1 ande > 0, all limiting quantities are
equal provided we take — oo and/ore |, 0 aftern — oco. O

6. PROOF OF MAIN RESULT

Before we start proving our main result, Theorem 2.1, we need to ensure that if a large component
is present in the graph, then it is unique. The statement we need is as follows:

Lemma6.1 Let K., be the event thaf (n, /) is either connected or has exactly two connected
components, each of which is of size at leastand recall that K is the event th&t(n, ;) is
connected. Then for alky > 0 andeg > O there exists £ = Ci(ap, €g) < 1 such that for
all e > egand alla < ag,

limsupP, n(K°|K.2)¥" < . (6.1)

n—oo

Proof. It clearly suffices to show that the ratio &, (K. \ K) and P, 1(K) decays to zero
exponentially withn, with a rate that is uniformly bounded in > ¢; anda < ag. In light of
Theorem 2.3 and the fact thkt , only admits components that grow linearly withwe have

Pun(Ke2 \K) o) n\ 71(a k/n)knl(oc(l—k/n))”_k Kk
P = 2 ( ) Ta(@)” (-5 . 2

en<k<n-—en
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whereo(n)/n tends to zero uniformly ik > ¢; anda < ag. Writing ¢ for ¥, the expression
under the sum can be bounded BiF&-=O1 \where

E(g) = —S(o) + e logmi(ap) + (1 — o) logmi(a (1 — @) — ae(l— o). (6.3)

Sincep is restricted to the intervak[ 1 — €], the right-hand side of (6.2) will be exponentially
small if we can shovE (p) < Z(0) forall p € (0, 1) and alla.

As is easy to check, the functign—~ Z(p) is symmetric about the poit = 1». Hence, if
we can prove that it is strictly convex throughout 10, then it is maximized at the endpoints.
Introducing the function

m1(n)

G(n) = nlog (6.4)

we have
aZ(,) = G(n) + Gla —n) + n(a —n). (6.5)

In order to prove strict convexity @, it thus suffices to show th&” () + 1 > 0 for all 4 > O.
Introducing yet another abbreviatiopy) = #/(1 — e ), a tedious but straightforward differen-
tiation yields

1
G'm+1= a(q’ —q)(qe™" = 1). (6.6)

A direct evaluation now shows that bath— q andge™" — 1 are negative oncg > 0. O
We will use the above lemma via the following simple conclusion:

Lemma 6.2 Let N denote the number of connected componené(of /) of size at least r
and let”; be the set of vertices contained in these components. Thenéoral andp > ¢ > 0
there exists &= c(e, g, a) > 0such that

Pun(1%nl = Len] & Nen = 1) > (1= € ) Pun(1%nl = Lon)). (6.7)
Proof. Clearly, (6.7) will follow if we can prove that
Pun(1%nl = lan] & Nen > 1) < € "Pyn(1%nl = Len)). (6.8)

Let ¥ (x) denote the connected componentd, ¢;,) containing the vertex and letx < y
denote the event that y € 7, but 7' (x) N ¥ (y) = @. Then (6.8) will be proved once we show

Pon(I%enl = Lon] & X < y) < €2"P, o(| ¥l = Lan]). (6.9)

(Indeed, the sum ovex, y adds only a multiplicative factor af? on the right-hand side.) By
conditioning on the set;, andthe set? (x) U 7 (y), this inequality will in turn follow from

Pun(X «» Y&V (X) U7 (Y) = ¥) < €2"P, (¥ (X) U7 (y) = 7). (6.10)

Indeed, let us multiply both sides by the probability thfais disconnected from the rest of the
graph and that all components disjoint frofhof size at least¢n take the total volumépn| —| 7.
The sum over all admissibl& reduces (6.10) to (6.9).

We will deduce (6.10) from Lemma 6.1. Recall théis the event that the graph is connected
andK, » is the event that it has at most two components, each of which is of size ateatt
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will now use these events for the restrictior@f, #n) to 7 Letm = |¥|,a = ay andé = ¢
Then we have

n
m

Xy n{7xu¥(y) =7} c K NKez, (6.11)
while for the event on the right-hand side of (6.10) we simply get
{(vOuU¥(y) =7} =Kepo. (6.12)
By Lemma 6.1 and the fact that< « andé > e,
m(KCKe 2) < 7™, (6.13)
oncen is sufficiently large. Butn > 2¢n and so (6.10) holds with = ec;. O

Now we have finally amassed all ingredients needed for the proof of our main result.

Proof of Theorem 2.1The case = 0 is quickly reduced to Theorems 2.4-2.5 while= 1 boils
down to Theorem 2.3. Thus, we are down to the caseg0, 1). Lete € (0, gp). By Lemma 6.2,
we can focus on the situations wily, = 1. To make our notation simple, let us assume gimat
is an integer. Then we have

n o\ end-en
Pan(Yenl = en& Nev = 1) = () Punce (KO Poognaci-o Ben) (1= 1)

The terms on the right-hand side represent the following: the number of ways to choose the unique
component of sizen, the probability that this component is connected, the probability that the
complement contains no component of size larger #raand, finally, the probability that the

two parts of the graph do not have any edge between them. Invoking Stirling’s formula to deal
with the binomial term, and plugging explicit expressions R ., (K) and Pn_yn ¢1—0)(Ben)

from Theorems 2.3-2.5, the result reduces to a simple calculation.

(6.14)
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