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ABSTRACT. We study continuous-time (variable speed) random walks in random environments
on Zd , d≥ 2, where, at time t, the walk at x jumps across edge (x,y) at time-dependent rate at(x,y).
The rates, which we assume stationary and ergodic with respect to space-time shifts, are symmet-
ric and bounded but possibly degenerate in the sense that the total jump rate from a vertex may
vanish over finite intervals of time. We formulate conditions on the environment under which the
law of diffusively-scaled random-walk paths tends to Brownian motion for almost every sample
of the rates. The proofs invoke Moser iteration to prove sublinearity of the corrector in pointwise
sense; a key additional input is a conversion of certain weighted energy norms to ordinary ones.
Our conclusions apply to random walks on dynamical bond percolation and interacting particle
systems as well as to random walks arising from the Helffer-Sjöstrand representation of gradient
models with certain non-strictly convex potentials.

1. INTRODUCTION

1.1 Model and assumptions.

The aim of this note is to study long-time behavior of random walks on Zd , d ≥ 2, in a class of
dynamical random environments given as a family of non-negative random variables{

at(e) : e ∈ E(Zd), t ∈R
}

, (1.1)

where E(Zd) denotes the set of (unordered) nearest-neighbor edges of Zd . For each sample of
these random variables, referred to as conductances, we consider the continuous time Markov
chain {Xt : t ≥ 0} on Zd with the instantaneous generator Lt acting on functions f : Zd →R as

Lt f (x) := ∑
y : |y−x|=1

at(x,y)
[

f (y)− f (x)
]
. (1.2)

The variable at(e) = at(x,y), i.e., the jump rate of the walk across edge e = (x,y) at time t, is
assumed to obey at(e) ∈ [0,1] with at(e) = 0 allowed for non-trivial finite intervals of time. Our
aim is to describe the long-time behavior of such random walks and, in particular, show that their
path distribution, scaled diffusively, tends to a non-degenerate Brownian motion.

A representative example of the above setting is the variable-speed random walk on dynamical
bond percolation on Zd . In this case at(e) is, for each e ∈ E(Zd), an independent copy of a sta-
tionary continuous-time process on {0,1} with joint invariant distribution (product) Bernoulli(p)
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for some prescribed p ∈ (0,1). We interpret at(e) = 1 as the event that edge e is occupied at
time t and at(e) = 0 as the event that edge e is vacant. The random walk then jumps at rate 1
across edges incident with its current position that are occupied at that instant of time. When the
site where the walk is located has no incident occupied edges, the walk does not move.

It is clear that some mixing properties of the conductances (1.1) in both space and time are
required for the desired convergence to Brownian motion to be possible. We will work under the
following set of technical assumptions:

Assumption 1.1 The family {at(e) : e ∈ E(Zd), t ∈ R} is realized as coordinate projections
on the product space Ω := [0,∞)R×E(Zd) endowed with the product Borel σ -algebra F and the
probability distribution denoted by P. In addition, we assume:

(1) t 7→ at(e) obeys
at(e) ∈ [0,1] (1.3)

for each e ∈ E(Zd) and each t ∈R,
(2) letting τs,x : Ω→Ω denote the map

(τs,xa)t(y,z) := at+s(y+ x,z+ x), (y,z) ∈ E(Zd), t ∈R, (1.4)

the law P is invariant and jointly ergodic under {τt,x : t ∈R, x ∈Zd},
(3) denoting, for each e ∈ E(Zd),

Te := inf
{

t ≥ 0 :
∫ t

0
ds as(e) ≥ 1

}
(1.5)

we have Te < ∞, P-a.s.
We will write E to denote expectation with respect to P.

We remark that joint ergodicity in (2) means that any measurable subset of Ω preserved by τt,x for
all t ∈R and x ∈Zd is a zero-one event under P. The restriction to conductances bounded by 1
is only a matter of convenience; any uniform constant upper bound will suffice (and ensure that X
is non-explosive). Additional moment conditions on Te will need to be assumed in the statement
of our main result. However, no assumptions will be made on the dynamics of the conductances
and/or the law of its time reversal (which is stationary but possibly unrelated to P).

Besides dynamical percolation, the setting of Assumption 1.1 accommodates various other
examples of interest. For instance, one can consider the random walk on the symmetric exclusion
process {ηt(x) : x ∈ Zd}, where ηt(x) is the indicator that site x is occupied by a particle at
time t and the configuration t 7→ ηt evolves by swaps ηt(x)↔ ηt(y) at endpoints x and y of edges
in E(Zd) whenever an independent exponential clock rings at that edge. We then set, e.g.,

at(e) := cηt(x)ηt(y) whenever e = (x,y) (1.6)

for some c > 0. The walk is thus active only at times when it resides on an occupied site and the
transitions are only between occupied vertices. Other particle systems such as the voter model or
the contact process can of course be considered as well.

Another interesting class of random walks arises in the context of Helffer-Sjöstrand repre-
sentations of gradient models with convex, but not uniformly strictly convex, potentials V . The
representative examples covered by our theory include

V (η) := β logcosh(η) (1.7)
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with any β > 0, or even

V (η) :=

{
1
2 |η |

2, if |η | ≤ 1,
|η |− 1

2 , else.
(1.8)

In this case the random environment is a family of diffusions {φ (x) : x ∈Zd} evolving according
to the Langevin dynamics

dφt(x) = ∑
y : |y−x|=1

V ′
(
φt(y)−φt(x)

)
dt +
√

2dBt(x) , (1.9)

where {B(x) : x ∈Zd} is a family of independent standard Brownian motions. The random walk
jump rates are then given by

at(e) := V ′′
(
φt(y)−φt(x)

)
whenever e = (x,y). (1.10)

In both (1.7) and (1.8), at(e) is non-negative and bounded yet not bounded away from zero.

1.2 Main result.

In order to give a statement of our main result, we need some additional notation. Let D([0,∞))
denote the space of càdlàg functions ω : [0,∞)→R endowed (disregarding the standard notation
for the Skorokhod space) with the norm

‖ω‖D([0,∞)) := ∑
n≥1

2−n sup
t∈[0,n]

|ω(t)|∧1. (1.11)

The space of continuous functions C([0,∞)), a set that supports the law of the Brownian mo-
tion, is naturally embedded in D([0,∞)) and is, in fact, a closed (and thus measurable) subset
thereof in the topology induced by the above norm. Our main conclusion regarding the Markov
chain {Xt : t ≥ 0} defined via (1.2) is as follows:

Theorem 1.2 Let d ≥ 2 and suppose that Assumption 1.1 holds and, in addition, the quantity in
(1.5) obeys

∃ϑ > 4d : E(T ϑ
e ) < ∞, e ∈ E(Zd). (1.12)

Then, for P-a.e. random environment, the law of t 7→ n−1/2Xtn on D([0,∞)) tends, as n→ ∞, to
the law of Brownian motion {Bt : t ≥ 0} with

E(Bt) = 0 and E((v ·Bt)
2) = v ·Σv, v ∈Rd , (1.13)

where Σ = {Σi j}d
i, j=1 is a non-degenerate (deterministic) covariance matrix.

We note that this is a quenched statement (i.e., one for P-a.e. environment). The corresponding
annealed (or averaged) statement follows from the fact that the limiting covariance Σ is non-
random. The covariance actually admits the usual representation

v ·Σv = E

(
∑

e : |e|=1
a0(e)

∣∣v ·ψ(0,e, ·)
∣∣2) , v ∈Rd , (1.14)

where ψ : R×Zd ×Ω→ Rd is the harmonic coordinate constructed in Section 3. However,
unlike for the static situations, the harmonic coordinate is not obtained by minimizing Dirichlet
energy; instead one has to solve the heat equation (3.2) using a suitable limit procedure.
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1.3 Connections and main ideas.

Theorem 1.2 is an example of a quenched invariance principle which has been a topic of persis-
tent interest over the past few decades. In the realm of static environments, the studied examples
include uniformly elliptic random conductance models (Kipnis and Varadhan [25], Boivin [14],
Boivin and Depauw [15], Sidoravicius and Sznitman [36]), the random walk on the supercriti-
cal percolation cluster (De Masi, Ferrari, Goldstein and Wick [18, 19], Sidoravicius and Sznit-
man [36], Berger and Biskup [9], Mathieu and Piatnitski [31]), non-elliptic i.i.d. random conduc-
tance models (Mathieu [30], Biskup and Prescott [12], Barlow and Deuschel [8], Andres, Barlow,
Deuschel and Hambly [2]), balanced models (Lawler [29], Guo and Zeitouni [23], Berger and
Deuschel [10]), environments admitting finite cycle decompositions (Deuschel and Kösters [20]).
Recently, an elliptic regularity-based theory was developed that covers general random conduc-
tance models subject to moment conditions on the conductance tails at zero and infinity (Andres,
Slowik and Deuschel [4]).

Significant advances have occured also for random walks in dynamical random environments.
Here a line of attack focused on Markovian environments under various mixing conditions (Boldri-
ghini, Minlos and Pellegrinotti [16], Bandyopadhyay and Zeitouni [6], Dolgopyat, Keller and
Liverani [22], Redig and Völlering [35]) while other approaches worked under other structural
assumptions on the environment such as independence and directionality (Rassoul-Agha and
Seppälainen [34]) or ergodicity and uniform ellipticity (Andres [1]). Random walks on dynamical
percolation have been studied by Peres, Stauffer and Steif [33] but the objective there were mix-
ing properties rather than the scaling limit. An annealed invariance principle for random walks
on the symmetric exclusion has been proved by Avena [5].

The sharpest conclusions concerning scaling to Brownian motion for dynamical environments
of the kind (1.1) appear at present in the work of Andres, Chiarini, Deuschel and Slowik [3].
Indeed, a quenched invariance principle has been shown there to hold whenever

E
(
at(e)p)< ∞ and E

(
at(e)−q)< ∞ (1.15)

are true for some p,q > 1 with

1
p−1

+
1

(p−1)q
+

1
q
<

2
d

. (1.16)

(Somewhat weaker, albeit harder-to-state, conditions actually suffice.) Although our rates are
bounded (i.e., we can set p := ∞ above), the principal novelty of our work is that we allow
at(e) = 0 with positive probability (which rules out existence of any q as above). This is quite
important in applications; e.g., we can reach previously unattainable examples such as the random
walk on dynamical percolation or the Helffer-Sjöstrand walks for potentials (2.15), and even
(2.14) for any β > 0 (note that (1.15–1.16) apply only for β sufficiently large).

Our approach is technically based on combining an enhanced version of the methods of the
aforementioned article [3] with an observation from Proposition 4.6 in Mourrat and Otto [32].
The latter work proves a heat-kernel estimate (a.k.a. return probability) for random walks covered
by our Assumption 1.1. The former in turn addresses random walks among random conductances
satisfying (1.15–1.16) with the aim of proving that these scale to Brownian motion. The strategy
there is fairly standard: prove that the key object of stochastic homogenization, the corrector,
scales sublinearly in space and sub-diffusively in time.
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The technical approach of [3] (drawing on its precursor [4] for static environments) is to control
the corrector in supremum norm by way of Moser iteration starting only from a priori estimates
in L1-norm. A key point is that the condition on the negative moment of at(e) from (1.15) is
used only in a handful of places, and that typically for a conversion of a bound on a weighted L2-
norm to a bound on an L1-norm, but these seem absolutely irreplaceable in the whole argument.
This is where the said observation from [32] enters for us as this work shows that, under suitable
averaging over time, one can control the heat kernel using energy norms where the “naked” at(e)
is substituted by the weights

wt(e) :=
∫

∞

t
ds ks−t as(e) (1.17)

for some positive, polynomially decaying function t 7→ kt . The crucial input from [32, Proposi-
tion 4.6] is that these weighted energy norms can, for solutions of relevant Poisson equations, be
again bounded by the ordinary energy norms (i.e., those where at(e) replaces wt(e)).

Under the condition Te <∞ a.s. we have wt(e)> 0 a.s. and since we will even require finiteness
of some moments of Te, we can count on having suitable moments of wt(e)−1. The basic strategy
of our proofs is thus to demonstrate that one can substitute at(e)−1 by wt(e)−1 in those few
places in the argument of [3] where finiteness and moments of these quantities are crucially
required. However, this would in itself be an understatement of our contribution. Indeed, we have
to carefully adapt the Moser iteration from [3] which is based on conversion (via an inequality
from Kružkov and Kolodiı̆ [27]) of certain space-time norms of the corrector into an L∞-norm
in time. This in turn requires generalizing [32, Proposition 4.6] to include arbitrary moments of
the solutions. In addition, we also need to devise an alternative construction, and prove the a
priori L1-estimate, of the corrector. Unlike for [3], these will again hinge on the aforementioned
conversion of the energy norms.

1.4 Remarks and open questions.

We proceed with a couple of remarks and open questions. First off, our aim here has been to find
a way to prove convergence to Brownian motion under some reasonable (moment) conditions on
the environment and so we have not tried to tune these conditions to get optimal control. It is thus
of interest to solve:

Problem 1.3 Find out whether sharp moment conditions on Te exist for an invariance principle
to hold for all environments satisfying Assumption 1.1.

We note that this includes both quenched and annealed statements. To see that we should hope to
get better than (1.12), we note:

Lemma 1.4 Suppose Assumption 1.1 holds and, in addition, assume that P is separately ergodic
with respect to time shifts {τt,0 : t ∈R} alone. Then for each q > 0,

E
(
T q+1

e
)
≤
[
E
(
a0(e)−q)] q+1

q . (1.18)

We relegate the (easy) proof to the Appendix.

Remark 1.5 Under the conditions (1.15–1.16) with p := ∞, which requires q > d/2, we thus get
finiteness of moments of Te of order larger than d

2 +1. We note that this is less than 4d in all d ≥ 2
so our condition (1.12) is generally quite a bit stronger than (1.15–1.16).
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As we will see in Lemma 2.10, our conditions on Te imply conditions on the negative moments
of w0(e) which then serve as technical input for the rest of the proofs. Noting that integrability
of t 7→ kt and Jensen’s inequality imply

E
(
w0(e)−q)≤ cE

(
a0(e)−q) (1.19)

for some c = c(k) ∈ (0,∞), these moment conditions on w(e)−1 are directly implied by the
corresponding moment conditions on a0(e)−1. The bounds (1.18–1.19) indicate that the setting
of [3] is naturally included in ours, except that (as was just noted in Remark 1.5) our conditions
are more stringent than those in [3]. We take this as a suggestion for potential improvements of
our techniques.

Another aspect left out in our study are environments where at(e) is unbounded from above.
These include some very interesting cases; in fact, our initial motivation was to understand a
specific model where t 7→ at(e) is zero except for some random times when it has a Dirac-delta
singularity. Our proofs require boundedness of at in a number of places and we do not know how
to overcome these restrictions.

Yet another aspect where our study falls short is our choice of time-parametrization of the walk.
Indeed, our choice of the generator (1.2) corresponds to the so-called variable-speed random
walk but other parametrizations, e.g., the constant-speed random walk, are of interest as well. In
particular, we would like to solve:

Problem 1.6 Extend our conclusions to discrete-time random walks among (discrete) time de-
pendent random conductances subject to (analogues of) Assumption 1.1.

A somewhat unexpected feature of time-dependent random environments is that different time-
parametrizations are not directly related and so our proofs do not shed any light on those either.
We consider this to be one of the most challenging open problems of this subject area.

As an attentive reader has surely noticed, our results are stated under the restriction to spatial
dimensions d ≥ 2. This is dictated by the fact that the parameters space-time Sobolev inequalities
behave differently in d = 1 than in d ≥ 2. Although we think that these differences can be
overcome, we have decided to skip the d = 1 case in order to avoid having to deal with annoying
provisos and keep the paper to a manageable length. Under the moment conditions (1.15–1.16),
the one-dimensional case has been addressed in [21].

Finally, although we work with elliptic regularity techniques, we have not touched the subject
of heat-kernel estimates; i.e., Gaussian-type upper/lower bounds on the probability pt,s(x,y) that
the walk conditional on being at x at time t is at y at a later time s. Unlike for the static envi-
ronments, such bounds are much less regular and various pathologies may arise (cf Huang and
Kumagai [24]). As already mentioned, for our class of environments upper bounds on the diag-
onal term pt,s(x,x) have been derived in Mourrat and Otto [32]. In analogy with the static case,
we expect that our proof of the invariance principle with non-degenerate diffusion matrix should
imply an on-diagonal lower bound. However, we have not been able to conclude this rigorously.

1.5 Outline.

The remainder of the paper is organized as follows. In Section 2 we develop the functional-
theoretical tools underpinning the proofs in later sections. This, in particular, includes the in-
troduction of Sobolev inequalities and conversion of the Dirichlet energies mentioned above. In



RANDOM WALKS IN DEGENERATE ENVIRONMENTS 7

Section 3, we then construct the harmonic coordinate, which one can think of as an embedding
of Zd on which the random walk is a martingale. The change in the embedding is expressed by
the said corrector, which is a fundamental quantity in all standard treatments of random conduc-
tance models (see, e.g, recent reviews by Biskup [11] and Kumagai [28]). The above mentioned a
priori L1-estimates on the corrector are also derived here using methods of independent interest.
In Section 4 we give a proof of the main result subject to a pointwise sublinearity estimate on
the corrector. This estimate is then substantiated in Sections 5–6 by combining the a priori L1-
bounds with Moser iteration. The Appendix collects some estimates that would be a distraction
in the main line of a proof.

Let us make the following convention about the use of constants. We denote by c,c′, . . . positive
and finite constants which can change from place to place. Numbered constants c1,c2, . . . become
fixed whenever they first appear. Their dependence on all parameters will always be explicit.

2. SOBOLEV INEQUALITIES AND WEIGHTED ENERGIES

Here we introduce the necessary functional-theoretical tools for our later proofs. A reader pre-
ferring to avoid technicalities until they are actually used may consider skipping this section and
returning to it only while reading the rest of the paper.

2.1 The `1-Sobolev inequality.

The control of the corrector in stochastic homogenization seems to always require a kind of
coercive-type estimate for its Dirichlet energy in terms of a suitable norm. Historically this was
done (e.g., in Sidoravicius and Sznitman [36], drawing on Delmotte [17] and Barlow [7]) via
the Poincaré inequality. This is easy and elegant in uniformly elliptic cases but becomes less so
when one deals with non-elliptic environments and, particularly, wishes to work under moment
assumptions on the conductances only. In this line of thought, Andres, Deuschel and Slowik [4]
devised a powerful approach based on Sobolev inequalities which we will follow here as well.
The starting point of this approach is:

Lemma 2.1 (`1-Sobolev inequality) For each d ≥ 2 there is c = c(d) ∈ (0,∞) such that any
f : Zd →R with finite support,(

∑
x∈Zd

∣∣ f (x)∣∣ d
d−1
) d−1

d ≤ c(d) ∑
(x,y)∈E(Zd)

∣∣ f (x)− f (y)
∣∣ . (2.1)

Proof. This is very standard, but we give a proof as it is short and instructive and, also, as we will
reuse the argument in the next lemma. First off we use Jensen’s inequality to get

∑
x∈Zd

∣∣ f (x)∣∣ d
d−1 =

∫
∞

0
ds ∑

x∈Zd

∣∣ f (x)∣∣ 1
d−1 1{| f (x)|>s}

≤
(

∑
x∈Zd

∣∣ f (x)∣∣ d
d−1
)1/d ∫ ∞

0
ds
∣∣{x ∈Zd : | f (x)|> s}

∣∣ d−1
d .

(2.2)

By the isoperimetric inequality in Zd , for any finite Λ⊂Zd , we have |Λ| d−1
d ≤ c(d)|∂ Λ|, where

∂ Λ is the set of edges with exactly one endpoint in Λ. Using this for Λ := {x ∈Zd : | f (x)|> s}
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in (2.2), shows (
∑

x∈Zd

∣∣ f (x)∣∣ d
d−1
) d−1

d ≤ c(d)
∫

∞

0
ds ∑

x,y∈Zd

|x−y|=1

1{| f (x)|>s≥| f (y)|}. (2.3)

Performing the integral and using that
∣∣|a|− |b|∣∣≤ |a−b| now yields (2.1). �

We note (as our proof above attests) that the `1-Sobolev inequality is equivalent to the isoperi-
metric inequality. The restriction to f with finite support is sometimes inconvenient and one
might wish to work instead in a finite box. The following lemma addressing this setting will be
quite useful. No surprise, it is still based on isoperimetry but this time in a finite box:

Lemma 2.2 For d ≥ 2 there is c′ = c′(d) ∈ (0,∞) such that for any f : Zd →R, any n≥ 1 and
any translate B of [0,n]d ∩Zd ,

∑
x∈B

∣∣ f (x)− f̄B
∣∣≤ c′(d) |B|1/d

∑
(x,y)∈E(Zd)

x,y∈B

∣∣ f (x)− f (y)
∣∣, (2.4)

where f̄B := |B|−1
∑x∈B f (x).

Proof. Replacing f by − f if needed, we may assume without loss of generality that∣∣{x ∈ B : f (x) > f̄B}
∣∣≤ ∣∣{x ∈ B : f (x) < f̄B}

∣∣ . (2.5)

Let Λ denote the set on the left-hand side. Since ∑x∈B( f (x)− f̄B) = 0, we have

∑
x∈B

∣∣ f (x)− f̄B
∣∣= 2 ∑

x∈Λ

(
f (x)− f̄B

)
. (2.6)

Jensen’s inequality along with the argument in (2.2) then show

∑
x∈Λ

(
f (x)− f̄B

)
≤ |Λ|1/d

∫
∞

0
ds
∣∣{x ∈ Λ : f (x)− f̄B > s}

∣∣ d−1
d . (2.7)

Since |Λ| ≤ 1
2 |B|, the isoperimetric inequality in B yields |Λ′| d−1

d ≤ c̃(d)|∂ BΛ′| for any Λ′ ⊂ Λ,
where ∂ BΛ′ is the set of edges in ∂ Λ′ that have both endpoints in B. Using this as in (2.3) and
plugging the result into (2.6) yields the claim with c′(d) := 21−1/d c̃(d). �

2.2 Sobolev inequalities with weighted energies.

Our next goal will be a conversion of the `1-Sobolev inequality into a more useful form. Given
any Lebesgue measurable ζ : R→ [0,∞), for any measurable f : R×Zd →R, with the value at
(t,x) denoted by ft(x), any B⊂Zd and any p,q ∈ (0,∞), define the norms

‖ f‖p,q;B,ζ :=

(∫
dt ζ (t)

(
∑
x∈B

∣∣ ft(x)∣∣p)q/p
)1/q

. (2.8)

Recalling our notation E(Zd) for the set of unordered edges (with each edge included only once)
in Zd and writing E(B) for the set of edges in E(Zd) with at least one endpoint in B, we will use
the notation ‖ f‖p,q;E(B),ζ to denote the corresponding object for functions f : R×E(Zd)→R;
just replace sum over x ∈ B by sum over e ∈ E(B).
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For any B ⊂Zd , any t ∈R, any f : R×Zd →R and any collection of non-negative weights
{wt(e) : e ∈Zd} we define

E w
t,B( ft) := ∑

(x,y)∈E(B)

wt(x,y)
[

ft(y)− ft(x)
]2. (2.9)

The notation E a
t,B( ft) will be reserved for the specific situation when the weights are given by the

conductances at(e). Assuming in addition that t 7→ wt(e) is Borel measurable for each e, we then
define the integrated forms of these via

E w,ζ
B ( f ) :=

∫
dt ζ (t)E w

t,B( ft), (2.10)

reserving E a,ζ
B ( f ) again for the case when the weights are given by the conductances. If B = Zd ,

we denote the above energies simply by E w
t ( ft) and E w,ζ ( f ). We now claim the validity of the

following family of inequalities:

Lemma 2.3 (Sobolev inequalities) For each d≥ 2, each α ∈ (1,2 d−1
d−2 ) and each β ∈ (0,2) there

is c0 = c0(d,α ,β ) ∈ (0,∞) such that for r,s defined by

α−1
α

d−1
d

+
1
r
=

1
2

and
1
s
+

1
2
=

1
β

, (2.11)

the inequality

‖ f‖
α

d
d−1 ,β ;B,ζ ≤ c0‖w−1/2‖r,s;E(B),ζ E w,ζ

B ( f )1/2 (2.12)

holds for any finite B⊂Zd and any measurable f : R×Zd →R.

The quantity 2 d−1
d−2 should henceforth be interpreted as infinity when d = 2. We remark that

Andres, Chiarini, Deuschel and Slowik [3] derive (2.12) for the particular case when ζ (t) :=
T−11[0,T ](t) and wt(e) replaced by at(e). However, their parametrization is different from ours.

Remark 2.4 The norm (2.8) is asymmetric in the sense that it puts integration with respect to the
spatial variables before that with respect to time and so the reader may wonder whether setting
the norms up the opposite way may give us any advantage. To address this issue, define

‖ f‖∼p,q;B,ζ :=

(
∑
x∈B

(∫
dt ζ (t)

∣∣ ft(x)∣∣p)q/p
)1/q

. (2.13)

Then a similar calculation to the one in the proof of Lemma 2.3 below shows that, for each
α ∈ (1,2 d−1

d−2 ) and each β ∈ (1,2),

‖ f‖∼
β ,α d

d−1 ;B,ζ ≤ c‖w−1/2‖∼r,s;E(B),ζ E w,ζ
B ( f )1/2 (2.14)

holds for any finite B ⊂ Zd and any measurable f : R×Zd → R. In particular, both ways to
define space-time norms seem more or less equally powerful.

Proof of Lemma 2.3. Let Ẽ(B) denote the set of ordered edges with at least one endpoint in B.
Pick α and β from the allowed ranges. The `1-Sobolev inequality along with the fact that

|xα − yα | ≤ α(xα−1 + yα−1)|x− y|, x,y > 0, α > 0, (2.15)
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and simple symmetrization show(
∑
x∈B

∣∣ ft(x)∣∣α d
d−1
) d−1

αd β

≤ c
(

∑
(x,y)∈Ẽ(B)

∣∣ ft(x)∣∣α−1∣∣ ft(x)− ft(y)
∣∣)β /α

. (2.16)

Let p be defined by

p(α−1) = α
d

d−1
(2.17)

and notice that then 1
p +

1
2 +

1
r = 1 by the first equality in (2.11). Hölder’s inequality with indices

(p,2,r) then bounds the right-hand side of (2.16) by

c
(

∑
x∈B

∣∣ ft(x)∣∣α d
d−1
) β

pα
(

∑
(x,y)∈E(B)

wt(x,y)
∣∣ ft(x)− ft(y)

∣∣2) β

2α
(

∑
(x,y)∈E(B)

wt(x,y)−r/2
) β

rα

, (2.18)

where the constant c arises from rewriting the first sum from that over edges to that over sites
and where the sums are now over unordered edges again. Now multiply the resulting inequality
by ζ (t) and integrate over t. Since the second equality in (2.11) ensures that (p d−1

d ,2α/β ,sα/β )
are Hölder conjugate indices, another use of Hölder’s inequality yields∫

dt ζ (t)
(

∑
x∈B

∣∣ ft(x)∣∣α d
d−1
) d−1

αd β

≤ c

(∫
dt ζ (t)

(
∑
x∈B

∣∣ ft(x)∣∣α d
d−1
) d−1

αd β

) 1
p

d
d−1 [

E w,ζ
B ( f )1/2‖w−1/2‖r,s;E(B),ζ

]β /α

. (2.19)

This now readily implies (2.12). �

Our later applications make it convenient to introduce normalized versions of the above norms.
Assuming ζ to be integrable and denoting by ‖ζ‖L1 its L1-norm is with respect to Lebesgue
measure, we thus set

||| f |||p,q;B,ζ := |B|−1/p‖ζ‖−1/q
L1 ‖ f‖p,q;B,ζ . (2.20)

For the case q := ∞ we get

||| f |||p,∞;B,ζ := esssup
(

t 7→
( 1
|B| ∑x∈B

∣∣ ft(x)∣∣p)1/p
)

, (2.21)

where the essential supremum is with respect to the Lebesgue measure on suppζ . We will write
‖ f‖p,q;E(B),ζ and ||| f |||p,q;E(B),ζ to denote the corresponding norms for functions indexed by edges
of Zd . For later reference, we note that, by Jensen’s inequality,

||| f |||p,q;B,ζ is increasing in p and q for all p,q > 0. (2.22)

The norms ||| f |||p,q;B,ζ will be used heavily in Sections 5-6. The following form of (2.12) is tailored
to the purposes of that section.

Corollary 2.5 For each d ≥ 2, each α ∈ (1,2 d−1
d−2 ) and each β ∈ (0,2) and for r,s and c0 as in

Lemma 2.3, defining

p̂ = p̂(α) :=
α

2
d

d−1
and q̂ := q̂(β ) =

β

2
, (2.23)
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the bound

||| f 2|||p̂,q̂;B,ζ ≤ c2
0 |B|

2
d

E w,ζ
B ( f )
|B|

|||w−1||| r
2 , s

2 ;E(B),ζ . (2.24)

holds for all finite B⊂Zd and all measurable f : R×Zd →R.

Proof. An application of (2.12) yields

||| f 2||| α
2

d
d−1 , β

2 ;B,ζ = ‖ζ‖−2/β

L1 |B|−
2
α

d−1
d ‖ f‖2

α
d

d−1 ,β ;B,ζ

≤ c2
0 ‖ζ‖

−2/β

L1 |B|−
2
α

d−1
d E w,ζ

B ( f ) ‖w−1/2‖2
r,s;E(B),ζ

= c2
0 |B|2[−

1
α

d−1
d + 1

2+
1
r ]

E w,ζ
B ( f )
|B|

|||w−1||| r
2 , s

2 ;E(B),ζ .

(2.25)

Now (2.11) implies 1
2 +

1
r = 1− α−1

α

d−1
d = 1− d−1

d + 1
α

d−1
d and so

− 1
α

d−1
d

+
1
2
+

1
r
= 1− d−1

d
=

1
d

. (2.26)

Using this in (2.25), the claim follows. �

Our application of the above norm in Moser iteration requires a comparison between various
instances of the norm (2.8). This is the content of the following lemma.

Lemma 2.6 (Interpolation) Suppose p,q, p1, p2,q1,q2 ∈ (0,∞) and θ ∈ (0,1) are such that

1
p
=

θ

p1
+

1−θ

p2
and

1
q
=

θ

q1
+

1−θ

q2
. (2.27)

Then, for all measurable f : [0,∞)×Zd →R and all finite B⊂Zd ,

‖ f‖p,q;B,ζ ≤ ‖ f‖θ

p1,q1;B,ζ ‖ f‖1−θ

p2,q2;B,ζ . (2.28)

In particular, for all q,q1 ∈ (0,∞) with q1 < q and all p, p1, p2 ∈ (0,∞) satisfying the first condi-
tion of (2.27) with θ := q1

q , we have

||| f |||p,q;B,ζ ≤ ||| f |||
q1
q

p1,q1;B,ζ ||| f |||
1− q1

q

p2,∞;B,ζ . (2.29)

Proof. Writing | ft(x)|p = | ft(x)|θ p| ft(x)|(1−θ )p in (2.8) and invoking Hölder’s inequality with
conjugate exponents ( p1

θ p , p2
(1−θ )p ) yields

‖ f‖p,q;B,ζ ≤

(∫
dt ζ (t)

(
∑
x∈B

∣∣ ft(x)∣∣p1
)θq/p1(

∑
x∈B

∣∣ ft(x)∣∣p2
)(1−θ )q/p2

)1/q

. (2.30)

Hölder’s inequality with conjugate exponents ( q1
θq , q2

(1−θ )q ) then readily gives (2.28). The inequal-
ity (2.29) follows from (2.20) and (2.28) by noting that ||| f |||p2,q2;B,ζ → ||| f |||p2,∞;B,ζ as q2→∞. �

2.3 Edge weights and their growth.

Throughout the rest of this paper, the edge weights wt(e) we will work with always take the
form (1.17). The choice of the function k : [0,∞)→ (0,∞) underlying (1.17) is tied to the choice
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of the function ζ : R→ (0,∞) governing the above norms by certain conditions we will now
spell out. Other than having to obey the restricted set of constraints listed in (2.31–2.33), the
functions k and ζ can be chosen arbitrarily for the purposes we have in mind.

We assume that the function ζ : R → [0,∞) is supported in [0,∞) and is bounded, non-
increasing, continuously differentiable with both t 7→ ζ (t) and t 7→ tζ (t) Lebesgue integrable.
We also assume that ‖ζ‖L1 > 0 and

inf
t∈[0,2]

ζ (t) > 0 and ‖ζ ′/ζ‖∞ < ∞. (2.31)

The function k : [0,∞) → (0,∞) is Borel measurable with both t 7→ kt and t 7→ tkt Lebesgue
integrable on [0,∞). Moreover, setting

Kt := kt +
∫

∞

t
ds (s− t)ks, t ≥ 0, (2.32)

there exists a constant c1 ∈ (0,∞) such that for each s≥ 0,∫ s

0
dt ζ (t)Ks−t ≤ c1ζ (s). (2.33)

Remark 2.7 The condition (2.33) is needed for the conversions of Dirichlet forms mentioned in
the Introduction, see in particular Lemmas 2.11 and 6.1 below.

That a pair of functions ζ ,k satisfying the above requirements exists is ensured by:

Lemma 2.8 Let µ > 4 and ν ∈ (2, µ−2). Then kt := (1+t)−µ and ζ (t) := 2ν(1+t)−ν1[0,∞)(t)
obey the above conditions and, in particular, (2.31–2.33). In fact, for all r ≥ 1, we have∫ s

0
dt ζ (t/r)Ks−t ≤ c1ζ (s/r), for s≥ 0. (2.34)

Proof. The integrability conditions are immediate from the fact that µ > 2 and ν > 2; (2.31) is
checked directly. For (2.34) we note that Kt ≤ c(1+ t)−µ̃ where µ̃ := µ−2 and then observe∫ s

0
dt
(
1+(s− t)

)−µ̃
(1+ t/r)−ν

≤ cs−µ̃

∫ s/2

0
dt (1+ t/r)−ν + c(s/r)−ν

∫ s/2

0
dt (1+ t)−µ̃

≤ c̃
1
r

s−µ̃ + c̃(s/r)−ν .

(2.35)

Since µ̃ > ν and ν > 1 (and r ≥ 1), both terms on the right are now less than a constant
times (s/r)−ν . This proves (2.34) for s≥ r; in the complementary range of s values the claim is
checked directly. �

Unless specified otherwise, we will henceforth always tacitly assume that ζ and k are a pair of
functions satisfying (2.31–2.33). Some (but not all) calculations will require adapting our setting
to diffusive scaling of space and time, i.e., choosing ‖ f‖p,q;B,ζ in (2.8) with B replaced by

Br := [−r,r]d ∩Zd for r ≥ 1 (2.36)

and ζ replaced by

ζr(t) :=
1
r2 ζ (t/r2), for r ≥ 1, (2.37)
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with ζ as above. It is then natural to require (2.34), instead of just (2.33), to hold. (Note that
(2.34) is tantamount to saying that (2.33) holds for all pairs (ζr,k), r ≥ 1.) When needed, the
condition (2.34) will always be mentioned explicitly.

The diffusive scaling of time naturally underlies the following property that will be repeatedly
used in the sequel:

Lemma 2.9 For each p > p̃≥ 1 there is c = c(p, p̃,ζ ) ∈ (0,∞) such that for all f ∈ Lp(P),∥∥∥sup
n≥1

∫
∞

0
dt ζn(t) f ◦ τt,0

∥∥∥
L p̃(P)

≤ c‖ f‖Lp(P) (2.38)

In particular, the integrals converge absolutely for all n≥ 1.

Proof. Dominating f by | f |, we may assume without loss of generality that f ≥ 0. The assumed
properties of ζ ensure that ζn(t) = − 1

n2

∫
∞

tn2 dsζ ′(s). Using that −ζ ′ is greater or equal to zero
and Tonelli’s Theorem yields∫

∞

0
dt ζn(t) f ◦ τt,0 =

∫
∞

0
ds (−ζ

′(s))
1
n2

∫ n2s

0
dt f ◦ τt,0 . (2.39)

Denoting h := supn≥1
1
n

∫ n
0 dt f ◦ τt,0, straightforward monotonicity considerations show that the

supremum over n of the quantity on the right is at most

h
[∫ 1

0
ds (−ζ

′(s))+ 2
∫

∞

1
ds (−ζ

′(s))s
]

. (2.40)

The boundedness and integrability of ζ imply that both integrals are finite. Jensen’s inequality and
the Maximal Ergodic Theorem in turn ensure ‖h‖L p̃(P) ≤ c‖ f‖Lp(P) for some c = c(p, p̃) ∈ (0,∞)
independent of f . The claim follows. �

In order to use the Sobolev inequalities (2.24), we will need a uniform bound on the norms of
the weights w appearing on the right-hand side. This is the content of:

Lemma 2.10 Under Assumption 1.1 and the moment bound (1.12) with some ϑ > 0, and for
k,ζ satisfying (2.34) in addition to (2.31–2.33) the following holds: For each e ∈ E(Zd), the
family {wt(e) : t ∈ R} defined in (1.17) is stationary with respect to time-shifts. Moreover, if
kt ≥ 1∨ t−µ is true for all t ≥ 0 and some µ > 0, then

E
(
w0(e)−ϑ /µ

)
< ∞ (2.41)

and, in addition,

sup
n≥1

max
m∈[n,2n]

|||w−1||| r
2 , s

2 ;E(Bm),ζn
< ∞ P-a.s. (2.42)

is satisfied for all 1≤ r ≤ s < 2ϑ /µ .

Proof. The stationarity of t 7→wt(e) is clear from (1.17) and the assumed stationarity of t 7→ at(e).
The definition (1.5) and monotonicity of t 7→ kt ensure that, for any e ∈ E(Zd),

w0(e) ≥ kTe (2.43)
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and so (2.41) directly follows from (1.12) and the assumed bound on kt . For (2.42), we first note
that, if r ≤ s, then (2.22) implies∣∣∣∣∣∣w−1/2∣∣∣∣∣∣s

r,s;E(Bn),ζn
≤
∣∣∣∣∣∣w−1/2∣∣∣∣∣∣s

s,s;E(Bn),ζn
≤ ‖ζ‖−1

L1

1
|E(Bn)| ∑

x∈Bn

hn ◦ τ0,x , (2.44)

where

hn :=
∫

∞

0
dt ζn(t) ∑

z : |z|=1
wt
(
(0,z)

)−s/2 . (2.45)

Under s < 2ϑ /µ , (2.41) implies that w0(e)−s/2 ∈ Lp(P) for some p > 1. Lemma 2.9 and sta-
tionarity of t 7→ wt then show supn≥1 |hn| ∈ L1(P). Bounding hn in (2.44) by the supremum, the
claim follows from the Spatial Ergodic Theorem. �

2.4 Conversion of Dirichlet energies.

The usual way a regularity argument starts with the use of Sobolev inequality to bound the desired
norm of a function by its Dirichlet energy. For a solution to Poisson or heat equation, the Dirichlet
energy is in turn bounded by a lower-order norm, thus gaining regularity. Unfortunately, our
Sobolev inequality outputs a weighted Dirichlet energy and so we need an additional step in
which we bound this Dirichlet energy by the ordinary one to which the rest of the argument can
be applied.

Recall the definition of the (finite volume) Dirichlet energy in (2.9). The bound that achieves
the stated goal is then as follows:

Lemma 2.11 Suppose t 7→ at(e) are measurable and take values in [0,1]. Let B⊂Zd be finite
and set B := B∪∂B. If u : R×Zd →R solves (weakly) the heat equation

∂

∂ t
u(t,x) = Ltu(t,x)+ f (t,x), t ∈R, x ∈ B, (2.46)

for some bounded measurable f : R×Zd →R, then for each t ∈R,

E w
t,B(ut) ≤ 48d2

∫
∞

t
ds Ks−t E

a
s,B(us)+ 24d

∫
∞

t
dsKs−t ∑

x∈B

∣∣ fs(x)
∣∣2 , (2.47)

where Kt is as in (2.32).

Proof. We follow the calculation in the proof of Proposition 4.6 in Mourrat and Otto [32]. The
definition of the weights wt(e) in (1.17) gives

E w
t,B(ut) =

∫
∞

t
ds ks−t ∑

x∈B
∑

y∈Zd

(x,y)∈E(Zd)

as(x,y)
[
u(t,x)−u(t,y)

]2. (2.48)

Writing u(t,x) = u(s,x) + [u(t,x)− u(s,x)] and using that (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 and
that at(x,y) ≤ 1 then shows

E w
t,B(ut) ≤

∫
∞

t
dsks−t

(
3E a

s,B(u)+ 12d ∑
x∈B

[
u(t,x)−u(s,x)

]2). (2.49)
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Concerning the second term in the parentheses, here (2.46) and (a+ b)2 ≤ 2a2 + 2b2 yield[
u(t,x)−u(s,x)

]2
=
[∫ t

s
dr
[

fr(x)+Lru(r,x)
]]2

=

[∫ t

s
dr
(

fr(x)+ ∑
y∈Zd

(x,y)∈E(Zd)

ar(x,y)
[
u(r,y)−u(r,x)

])]2

≤ 2(s− t)
∫ s

t
dr
(∣∣ fr(x)

∣∣2 + 2d ∑
y∈Zd

(x,y)∈E(Zd)

ar(x,y)
[
u(r,y)−u(r,x)

]2) ,

(2.50)

where the last inequality follows by Cauchy-Schwarz and the bound at(x,y) ≤ 1. Plugging this
in (2.49) and invoking the definition of Kt , we get (2.47). �

Remark 2.12 The argument (2.50) uses crucially that the lattice gradient is a bounded operator.
This is what makes the above proof fail in the continuum setting.

Recall the definitions of Bn and ζn from (2.36) and (2.37). Then we have:

Corollary 2.13 For at and u as in Lemma 2.11, if (2.34) holds (in addition to (2.31)-(2.33)),
then for each n≥ 1,

E w,ζn
Bn

(u) ≤ 48d2c1 E a,ζn

Bn
(u)+ 24dc1‖ f‖2

2,2,Bn,ζn
. (2.51)

Moreover, under Assumption 1.1, if u and f are such that u(t,x, ·) = u(0,0, ·)◦τt,x and f (t,x, ·) =
f (0,0, ·) ◦ τt,x for each x ∈Zd , each t ∈R, and (2.46) holds, then

E

(
∑

e=e1,...,ed

w0(e)
∣∣u(0,e, ·)−u(0,0, ·)

∣∣2)
≤ 48d2c1E

(
∑

e=e1,...,ed

a0(e)
∣∣u(0,e, ·)−u(0,0, ·)

∣∣2)+ 24dc1E
(
| f (0,0, ·)|2

)
.

(2.52)

Proof. In light of (2.47), the first conclusion follows directly from (2.33). For (2.52) take expec-
tation of (2.51) (this eliminates the integrals over time), divide by |Bn| and take n→ ∞. �

We remark that, in the derivations underlying the Moser iteration, we will need to rederive
variants of these estimates for powers of the solutions multiplied by suitable mollifiers. Besides
illustrating the main ideas of our proofs, the above simpler versions will be used to define, and
derive a priori L1-estimates, of the corrector in the next section.

3. CONSTRUCTION OF THE CORRECTOR

The next task is the construction and derivation of the needed properties of the harmonic coordi-
nate and the associated corrector. The natural setting for our proof is to require a certain moment
condition for the weights wt defined in (1.17), see (3.1) below. We will verify immediately that
this condition is met under the assumptions of Theorem 1.2.
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Note that, whenever Assumption 1.1 holds, the family {wt(e) : t ∈R} is stationary with respect
to time-shifts for each e ∈ E(Zd), as can be seen from (1.17) and the assumed stationarity of
t 7→ at(e). This will be used frequently below. Recall also that the functions k,ζ are assumed
to satisfy (2.31–2.33); k enters through the definition of the weights w and, although ζ does not
appear explicitly in the following theorem, it will be used in its proof. Let Lp,loc(R) denote
the space of measurable f : R→ R whose p-th power is locally integrable with respect to the
Lebesgue measure and P. The main conclusion of this section is now as follows:

Theorem 3.1 Suppose the law of the conductances P obeys Assumptions 1.1, (2.34) holds and,
with wt as defined in (1.17), there exists q > 1 such that

E
(
w0(e)−q)< ∞, for all e ∈ E(Zd). (3.1)

Then there exists a measurable function ψ : R×Zd×Ω→Rd such that the following holds:

(1) ψ is a weak solution to the family of the ODEs

∂

∂ t
ψ(t,x, ·)+Ltψ(t,x, ·) = 0, t ∈R, x ∈Zd , (3.2)

where Lt is the generator defined in (1.2), and Ltψ(t,x,a) := (Ltψ(t, ·,a))(x),
(2) ψ satisfies the cocycle conditions in space-time: for each t,s ∈R and each x,y ∈Zd ,

ψ(t,x, ·) ◦ τs,y = ψ(t + s,x+ y, ·)−ψ(s,y, ·) (3.3)

with ψ(0,0, ·) = 0,
(3) ψ is of finite specific energy in the sense that

E
(

∑
x : |x|=1

a0(0,x)
∣∣ψ(0,x,a)

∣∣2)< ∞ , (3.4)

(4) defining the corrector by χ(t,x, ·) := ψ(t,x, ·)− x and letting p := 2/(1+ 1/q) > 1,

χ(t,x, ·) ∈ Lp(P), χ(·,x, ·) ∈ Lp,loc(R)⊗Lp(P) and Eχ(t,x, ·) = 0 (3.5)

holds for each x ∈Zd and each t ∈R.

Remark 3.2 Theorem 3.1 fits the setting of Theorem 1.2 for the choice kt := (1+ t)−µ with any
µ ∈ (4,ϑ /2) because (2.41) implies (3.1) with q := ϑ /µ > 1. Such a choice of µ can be made
since ϑ

2 > 4 when ϑ > 4d (and d ≥ 2).

From Theorem 3.1 and Lemma 2.8 we thus immediately obtain:

Corollary 3.3 Under the assumptions of Theorem 1.2, there exists a measurable function ψ : R×
Zd×Ω→Rd satisfying (1–4) in Theorem 3.1 above.

The strategy of our proof of Theorem 3.1 is as follows: similarly to all existing constructions
of the harmonic coordinate, we will solve a suitably perturbed version of (3.2) and then control
removal of the perturbation. As usual, the latter step will be done using functional analytic
methods. In [3], which is closest to our setting, even the former step was based on functional
analytic tools (namely, the Lax-Milgram lemma) but here we will proceed by more probabilistic
arguments.
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Let pt,s(x,y), for t ≤ s and x,y ∈Zd , denote the transition probability of the random walk X
between times t and s; i.e.,

pt,s(x,y) := P(Xs = y|Xt = x). (3.6)

We begin by noting the following fact about uniformly elliptic situations:

Lemma 3.4 Let ε ∈ (0,1) and suppose, for the moment, that the conductances t 7→ at(e) are
Lebesgue measurable and taking values in [ε ,1/ε ]. Let g : R×Zd →R be bounded and mea-
surable. Then

h(t,x) := −
∫

∞

t
ds e−ε(s−t)

∑
y∈Zd

pt,s(x,y)g(s,y) (3.7)

is well defined with t 7→ h(t,x) continuously differentiable for each x ∈Zd . Moreover, h obeys

∂

∂ t
h(t,x)− (ε−Lt)h(t,x) = g(t,x) (3.8)

at each t ∈R and x ∈Zd .

Proof. Since g is bounded, the sum in (3.7) converges absolutely and is bounded uniformly
in s, hence the integral over s converges absolutely as well and h is well-defined. The transition
probability admits the representation

pt,s(x,y) = δ (x,y)e−
∫ s

t duπu(x)+
∫ s

t
duπu(x)e−

∫ u
t dr πr(x) ∑

z : z∼x

au(x,z)
πu(x)

pu,s(z,y), (3.9)

where δ (x,y) = 1 if x = y and vanishes otherwise, z∼ x means that (x,z) ∈ E(Zd) and πu(x) :=
∑z:z∼x au(x,z). Thus, the function t,x 7→ pt,s(x,y) obeys the differential equation

∂

∂ t
pt,s(x,y)+Lt pt,s(·,y)(x) = 0. (3.10)

Since the conductances are nearest-neighbor and uniformly bounded, the sum of the derivatives
(with respect to t) of the terms in (3.7), as well as the resulting integral, converge absolutely.
Standard criteria permit us to exchange the time derivative with the integral over s and the sum
over y. The result then boils down to a simple calculation which we leave to the reader. �

Given a sample of the conductances {at(e) : e∈ E(Zd), t ∈R} satisfying Assumption 1.1, we
will apply Lemma 3.4 to the function g given by (t,x) 7→ −V (t,x, ·) where

V (t,x,a) := ∑
z : |z|=1

at(x,x+ z)z. (3.11)

However, in order to have the required ellipticity, the random walk will be driven by the collection
of perturbed conductances {aε

t (e) : t ∈R, e ∈ E(Zd)}, where

aε
t (e) := ε + at(e), e ∈ E(Zd). (3.12)

Writing pt,s
ε (x,y,a) for the transition probability of the random walk among conductances aε

t (e),
Lemma 3.4 then ensures that

ϕε(t,x, ·) :=
∫

∞

t
ds e−ε(s−t)

∑
y∈Zd

pt,s
ε (x,y, ·)V (s,y, ·) (3.13)
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obeys

∂

∂ t
ϕε(t,x, ·)+ (ε− ε∆−Lt)ϕε(t,x, ·) = −V (t,x, ·), t ∈R, x ∈Zd . (3.14)

Here ∆ is the discrete Laplacian on Zd acting as ∆ f (x) := ∑y:y∼x[ f (y)− f (x)] and Lt is the
generator derived from the “bare” conductances at(e) as in (1.2). The effect of the term ε∆ is to
make the generator uniformly elliptic; the term ε (times identity) then represents killing of the
walk at uniform rate ε .

Our aim is to show that ϕε(t,x, ·)− ϕε(0,0, ·) converges, as ε ↓ 0, to the desired correc-
tor χ(t,x, ·) in a suitable sense. This will be done via a sequence of lemmas. First we note
that ϕε satisfies the cocycle conditions in space-time:

Lemma 3.5 For each ε > 0, each t ∈R and each x ∈Zd ,

ϕε(t,x, ·) = ϕε(0,0, ·) ◦ τt,x. (3.15)

In particular, for each t,s ∈R and each x,y ∈Zd ,

ϕε(t + s,x+ y, ·)−ϕε(s,y, ·) = ϕε(t,x, ·) ◦ τs,y−ϕε(0,0, ·) ◦ τs,y. (3.16)

and so t,x 7→ ϕε(t,x, ·)−ϕε(0,0, ·) satisfies (3.3) for every ε > 0.

Proof. (3.15) follows from (3.13) and the identities V (t,x, ·) = V (0,0, ·) ◦ τt,x and pt,s(x,y, ·) =
p0,s−t(0,y− x, ·) ◦ τt,x. The second line follows from (3.15) and τt+s,x+y = τs,y ◦ τt,x. �

Next we observe the validity of some a priori estimates:

Lemma 3.6 Under Assumption 1.1, for each ε > 0,

εE
∣∣ϕε(0,0, ·)

∣∣2 ≤ d (3.17)

and

∑
i=1,...,d

E
(

a0(ei)
∣∣ϕε(0,ei, ·)−ϕε(0,0, ·)

∣∣2)≤ d . (3.18)

Proof. Recall that ϕε is bounded; by (3.14) and the definition of V the same applies to its time
derivative as well. This justifies exchanges of limits and expectations in

E
(

ϕε(0,0, ·) · ∂

∂ t
ϕε(0,0, ·)

)
= lim

t↓0

1
t

E
(

ϕε(0,0, ·) ·
(
ϕε(t,0, ·)−ϕε(0,0, ·)

))
= lim

t↓0

1
t

E
(

ϕε(0,0, ·) ·
(
ϕε(−t,0, ·)−ϕε(0,0, ·)

))
= −E

(
ϕε(0,0, ·) · ∂

∂ t
ϕε(0,0, ·)

)
,

(3.19)

where the middle equality follows from (3.15) and invariance of P under τt,0. We thus have

E
(

ϕε(0,0, ·) · ∂

∂ t
ϕε(0,0, ·)

)
= 0. (3.20)
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Taking the inner product of (3.14) at x = 0 and t = 0 with ϕε(0,0, ·) and then taking expectation
yields, on account of (3.20),

εE|ϕε(0,0, ·)|2 + ∑
i=1,...,d

E
(

aε
0(ei)

∣∣ϕε(0,ei, ·)−ϕε(0,0, ·)
∣∣2)

= −E
(
V (0,0, ·) ·ϕε(0,0, ·)

)
= ∑

i=1,...,d
E
(

a0(ei)ei ·
(
ϕε(0,ei, ·)−ϕε(0,0, ·)

))
≤
[

d ∑
i=1,...,d

E
(

a0(ei)
∣∣ϕε(0,ei, ·)−ϕε(0,0, ·)

∣∣2)]1/2

,

(3.21)

where we used (3.15) and simple symmetrization for the second term on the left hand side and
also to obtain the middle equality, and then invoked the Cauchy-Schwarz inequality along with
a0(e) ≤ 1 to get the last inequality. Since aε

0(e) ≥ a0(e), foregoing the term εE|ϕε(0,0, ·)|2 ≥ 0
yields (3.18) and, by plugging that in on the right-hand side of (3.21), also (3.17). �

These bounds have the following consequences:

Lemma 3.7 Under the assumptions of Theorem 3.1, for p := 2/(1+ 1/q) with q as in (3.1),
the following holds uniformly on compact sets of (t,x) ∈R×Zd :

εϕε(t,x, ·) −→
ε↓0

0 in Lp(P) (3.22)

and

sup
0<ε<1

E
∣∣ϕε(t,x, ·)−ϕε(0,0, ·)

∣∣p < ∞. (3.23)

Proof. As p ∈ (1,2), the first part of the claim follows immediately from (3.17), Hölder’s in-
equality and (3.15). For the second part we first use (3.16) and (3.14) with the result

(
E
∣∣ϕε(t,x, ·)−ϕε(0,0, ·)

∣∣p)1/p
≤ εt

(
E
∣∣ϕε(0,0, ·)

∣∣p)1/p

+
(
|x|1 + 2d(1+ ε)t

)
max

i=1,...,d

(
E
∣∣ϕε(0,ei, ·)−ϕε(0,0, ·)

∣∣p)1/p
. (3.24)

The first term on the right is bounded thanks to (3.17). For the expectations in the second term,
we invoke the weights wt(e) from (1.17) and Cauchy-Schwarz to get

E
∣∣ϕε(0,ei, ·)−ϕε(0,0, ·)

∣∣p
≤
(

E
(
w0(ei)

− p
2−p
)) 2−p

2
(

E ∑
i=1,...,d

w0(ei)
∣∣ϕε(0,ei, ·)−ϕε(0,0, ·)

∣∣2)p/2

. (3.25)

Since p
2−p = q, the first term on the right-hand side is bounded thanks to (3.1). Using (2.52),

(3.14), (3.15) and the identity (a+b+c)2 ≤ 3a2+3b2+3c2, the second expectation on the right
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is no larger than

48d2c1 ∑
i=1,...,d

E
(

a0(ei)
∣∣ϕε(0,ei, ·)−ϕε(0,0, ·)

∣∣2)
+ 72dc1

[
ε

2E
(
|ϕε(0,0, ·)|2

)
+ ε

2E
(
|∆ϕε(0,0, ·)|2

)
+E

(
|V (0,0, ·)|2

)]
. (3.26)

By (3.17–3.18), (3.15) and the fact that |V | ≤ 2d, this is bounded uniformly in ε ∈ (0,1). �

We now set
χε(t,x, ·) := ϕε(t,x, ·)−ϕε(0,0, ·) (3.27)

and note:

Proposition 3.8 Under the assumptions of Theorem 3.1, and with p := 2/(1+ 1/q) > 1 for q
as in (3.1), there is a sequence εn ↓ 0 and a measurable function χ : R×Zd×Ω→Rd such that
for each x ∈Zd ,

χεn(·,x, ·) −→
n→∞

χ(·,x, ·) weakly in Lp,loc(R)⊗Lp(P) (3.28)

and, for each t ∈R,
χεn(t,x, ·) −→

n→∞
χ(t,x, ·) weakly in Lp(P). (3.29)

Moreover, on a set of full P-measure, χ is normalized so that χ(0,0, ·) = 0, obeys the cocycle
conditions

χ(t + s,x+ y, ·)−χ(t,x, ·) = χ(s,y, ·) ◦ τt,x, t,s ∈R, x,y ∈Zd , (3.30)

and t 7→ χ(t,x, ·) is continuous and weakly differentiable with

∂

∂ t
χ(t,x, ·)+Lt χ(t,x, ·) = −V (t,x, ·) (3.31)

for all x ∈Zd and all t ∈R.

The bounds of Lemma 3.7 will readily allow us to take weak limits as ε ↓ 0. A slightly subtle
point, see Lemma 3.9 below, is to choose a version of the resulting limiting process which has
continuous trajectories. Once this is achieved, the proof of Proposition 3.8 will quickly follow.

We start with a few observations. We are henceforth tacitly working under the assump-
tions of Proposition 3.8. Let r be the Hölder conjugate of p; the fact that p > 1 (and the fact
that Ω is a standard Borel space, hence separable) ensures that the dual space Lr(R)⊗ Lr(P)
is separable. In light of the uniform bound (3.23), Cantor’s diagonal argument ensures the exis-
tence of a sequence εn ↓ 0 and functions φ : R×Ω→ Rd and ρ : Zd ×Ω→ Rd such that for
any ξ ∈ Lr(R)⊗Lr(P) with compact support in the first coordinate,∫

dt E
(
ξ (t, ·) ·χεn(t,0, ·)

)
−→
n→∞

∫
dt E

(
ξ (t, ·) ·φ (t, ·)

)
(3.32)

and, for any ξ ∈ Lr(P) and any x ∈Rd ,

E
(
ξ ·χεn(0,x, ·)

)
−→
n→∞

E
(
ξ ·ρ(x, ·)

)
. (3.33)

Standard arguments give

φ ∈ Lp,loc(R)⊗Lp(P) and ρ(x, ·) ∈ Lp(P) (3.34)
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for every x ∈Zd . A key point in what follows is:

Lemma 3.9 The process {φ (t, ·) : t ∈ R} admits a version {φ̃ (t, ·) : t ∈ R} which has P-a.s.
continuous sample paths. Moreover, on a set of full P-measure, this version obeys

φ̃ (t, ·) = −
∫ t

0
ds
(

V (s,0, ·)+ (L0ρ)(0, ·) ◦ τs,0 + ∑
z: |z|=1

as(0,z)φ̃ (s, ·) ◦ τ0,z

)
, (3.35)

for all t ∈R.

Proof. Consider the auxiliary process Ξε(t, ·) defined as

Ξε(t, ·) := χε(t,0, ·)−
∫ t

0
ds (Lsχε)(s,0, ·). (3.36)

First note that, since χε(0,0, ·) vanishes, (3.14) and (3.15) yield that

Ξε(t, ·)+
∫ t

0
ds [(ε− ε∆)ϕε ](s,0, ·) = −

∫ t

0
dsV (s,0, ·), (3.37)

Hence

E

∣∣∣∣Ξε(t, ·)+
∫ t

0
dsV (s,0, ·)

∣∣∣∣≤ (2+ 4d)|t|εE|ϕε(0,0, ·)|, (3.38)

for all t. On account of (3.22) and with εn as defined above (3.32), we thus get, for any bounded
interval I ⊂R and with λI denoting the Lebesgue measure on I,∥∥∥∥Ξεn(·, ·)+

∫ ·
0

dsV (s,0, ·)
∥∥∥∥

L1(λI⊗P)

−→
n→∞

0. (3.39)

In particular, −
∫ ·

0 dsV (s,0, ·) is a weak limit in Lp(λI⊗P) of the sequence Ξεn(·, ·).
Now pick any ξ ∈ Lr(R)⊗Lr(P) with compact support in the first variable. We then claim

the validity of

lim
n→∞

∫
dt E

(
ξ (t, ·) ·Ξεn(t, ·)

)
=
∫

dt E

(
ξ (t, ·) ·

[
φ (t, ·)+

∫ t

0
ds
(
(L0ρ)(0, ·) ◦ τs,0 + ∑

z:|z|=1
as(0,z)φ (s, ·) ◦ τ0,z

)])
. (3.40)

Indeed, we first note the rewrite

(Lsχε)(s,0, ·) = (L0χε)(0,0, ·) ◦ τs,0 + ∑
z:|z|=1

as(0,z)
(
χε(s,0, ·) ◦ τ0,z

)
. (3.41)

Abbreviating

ξ̃ (·) :=
∫

dt
∫ t

0
ds ∑

z : |z|=1
a0(0,z)

[
ξ (t, ·) ◦ τ−s,z−ξ (t, ·) ◦ τ−s,0

]
, (3.42)
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the convergence statement (3.33) along with Fubini and the invariance of P under space-time
shifts show∫

dt E

(
ξ (t, ·) ·

[∫ t

0
ds
(
(L0χεn)(0,0, ·) ◦ τs,0

)])
= E

[
ξ̃ (·) ·χεn(0,0, ·)

]
−→
n→∞

E
[

ξ̃ (·) ·ρ(0,0, ·)
]
=
∫

dt E

(
ξ (t, ·) ·

[∫ t

0
ds
(
(L0ρ)(0, ·) ◦ τs,0

)])
,

(3.43)

where to get the second line we also noted that ξ̃ ∈ Lq(λR⊗P), by invariance of P under time-
shifts, Jensen’s inequality, boundedness of as(e) and the fact that ξ has compact support in the t-
variable. A similar computation applies to the term involving χε(s,0, ·) on the right of (3.41).
Indeed, setting

ξ̂ (s, ·) :=
∫

dt
(
1[0,t](s)−1[−t,0](s)

)
∑

z : |z|=1
a0(0,z)

[
ξ (t, ·) ◦ τ0,z−ξ (t, ·)

]
(3.44)

we get ∫
dt E

(
ξ (t, ·) ·

[∫ t

0
ds
(

∑
z : |z|=1

as(0,z)
(
χε(s,0, ·) ◦ τ0,z

))])
=
∫

dsE
[

ξ̂ (s, ·) ·χεn(s,0, ·)
]
−→
n→∞

∫
dsE

[
ξ̂ (s, ·) ·φ (s, ·)

]
=
∫

dt E

(
ξ (t, ·) ·

[∫ t

0
ds
(

∑
z : |z|=1

as(0,z)
(
φ (s,0, ·) ◦ τ0,z

))])
,

(3.45)

using (3.32) instead. In light of (3.36) and (3.41), (3.43–3.45) yield (3.40).
The weak limit in (3.40) being unique (as implied by the Hahn-Banach theorem), (3.39) im-

plies that, on a set of full λR⊗P-measure,−
∫ t

0 dsV (s,0, ·) agrees with the term in square brackets
on the right-hand side of (3.40). It follows that φ̃ defined as

φ̃ (t, ·) := −
∫ t

0
ds
(

V (s,0, ·)+ (L0ρ)(0, ·) ◦ τs,0 + ∑
z: |z|=1

as(0,z)φ (s, ·) ◦ τ0,z

)
, (3.46)

equals φ on a set of full λR⊗P-measure. But this also implies that we can substitute φ̃ for φ in
(3.45) which shows that φ̃ obeys (3.35) λR⊗P-almost everywhere. As φ̃ has P-a.s. continuous
sample paths, a routine use of Fubini’s Theorem shows that (3.35) extends to all t ∈R on a set of
full P-measure. �

We are now ready to complete:
Proof of Proposition 3.8. Letting ρ be as defined in (3.33) and writing φ̃ for the continuous
version of φ as constructed in the proof of Lemma 3.9, we set

χ(t,x, ·) := ρ(x, ·)+ φ̃ (t, ·) ◦ τ0,x (3.47)

and proceed to check the desired properties. The convergence statements (3.28–3.29) follow
directly from (3.32–3.33) while (3.30) is a consequence of (3.16). With the help of an analogue
of (3.40) (formulated for φ̃ ) and (3.30), the equality (3.35) translates into

χ(t,x) = ρ(x)−
∫ t

0
ds
(
V (s,0, ·)+ (Lsχ)(s,x, ·)

)
. (3.48)
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Hereby (3.31) readily follows (with the derivative even in Lebesgue sense). �

Proof of Theorem 3.1. Let χ be as constructed in Proposition 3.8 and set

ψ(t,x, ·) := x+ χ(t,x, ·). (3.49)

Then (3.2) follows from (3.33) while (3.3) from (3.32). The identity (3.4) is a consequence of
(3.18) and the fact that weak convergence in Lp contracts Lp′-norms. The integrability conditions
in (3.5) follow readily from (3.28–3.29). Since Eχε(t,x, ·) = 0 for each ε > 0, this implies also
the last condition in (3.5). �

We finish by a lemma that will be useful in some definitions below:

Lemma 3.10 For each x ∈Zd , there is a random variable C(x, ·) > 0 with P(C(x, ·) < ∞) = 1
such that ∣∣χ(t,x, ·)

∣∣≤C(x, ·)
(

1+ |t|
)
, t ∈R. (3.50)

Proof. Pick r ∈ (0, (2d)−1). Using fact that as(e) ≤ 1 in Lemma 3.9 then shows, for each t ∈R,

E
(

sup
0<s<r

∣∣φ̃ (t + s, ·)− φ̃ (t, ·)
∣∣)≤ cr

1−2dr
(3.51)

where c ∈ (0,∞) is a constant related to the L1-norm of ρ(x, ·) for |x| = 1. Since the increments
of t 7→ φ̃ (t, ·) are also stationary due to (3.30), the ergodic theorem implies

C1(·) := sup
t∈R

|φ̃ (t, ·)|
1+ |t|

< ∞, P-a.s. (3.52)

As χ(t,x, ·) = ρ(x, ·) + φ̃ (t, ·) ◦ τ0,x, cf. (3.47), the claim follows with the choice C(x, ·) :=
|ρ(x, ·)|+C1(·) ◦ τ0,x. �

4. PROOF OF INVARIANCE PRINCIPLE

The goal of this section is to give a proof of the main result, which involves showing that the
corrector constructed in Section 3 is sublinear in a strong (L∞) sense. We proceed by first showing
a corresponding statement on average (i.e., in L1-sense, with respect to the norms introduced in
Section 2), see Proposition 4.1 below. This result is then boosted to a sublinearity result in
L∞-sense in Theorem 4.6, which is proved by obtaining a maximal inequality using a Moser
iteration approach, see Proposition 4.7, whose proof is deferred to Section 5. Conditionally on
Proposition 4.7, the proof of Theorem 1.2 is completed at the end of the present section.

We will occasionally invoke the Maximal Ergodic Theorem for commuting measure preserving
transformations throughout the section. We refer to Krengel [26, Section 6.2] for further details.

4.1 Sublinearity on average.

We begin with an a priori estimate on the L1-norm of the corrector which constitutes a version
of “sublinearity on average.” This will serve as a starting point for the Moser iteration developed
in the next section. Recall the definitions of Bn and ζn from (2.36), (2.37), with ζ satisfying
(2.31–2.33), and the norms ‖ · ‖p,q;B,ζ from (2.8). The desired statement is as follows:
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Proposition 4.1 Let χ be the corrector constructed in Theorem 3.1. Then

lim
n→∞

1
nd+1 ‖χ‖1,1;Bn,ζn = 0, P-a.s. (4.1)

Although we could in principle follow the proof of Proposition 3.3 in [3], we found a different
argument. We begin with two lemmas, both of which are formulated for rectangles of the form

Rn :=
(
[a1n,b1n)×·· ·× [adn,bdn)

)
∩Zd , (4.2)

where a1, . . . ,ad ,b1, . . . ,bd ∈R are numbers that obey ai < bi, i = 1, . . . ,d. Without further men-
tion, we assume in the remainder of Section 4.1 that χ is the object constructed in Theorem 3.1,
and we implicitly work under the assumptions of that theorem.

The starting point of the proof is the following observation:

Lemma 4.2 For any sequence {Rn} as above,

1
nd+1

∫
∞

0
dt

1
n

∫ n

0
ds ζn(t) ∑

x∈Rn

∣∣χ(t,x, ·)−χ(t + s,x, ·)
∣∣ −→

n→∞
0, P-a.s. (4.3)

Proof. The cocycle property gives∫ n

0
ds
∣∣χ(t,x, ·)−χ(t + s,x, ·)

∣∣≤ n−1

∑
k=0

(∫ 1

0
ds
∣∣χ(s,0, ·)

∣∣)◦ τk+t,x (4.4)

and, introducing

f := sup
n≥1

1
nd+1

n−1

∑
k=0

∑
x∈Rn

(∫ 1

0
ds
∣∣χ(s,0, ·)

∣∣)◦ τk,x , (4.5)

the quantity in (4.3) is thus bounded by

1
n

∫
∞

0
dt ζn(t) f ◦ τt,0 . (4.6)

In light of Lemma 2.9, it suffices to show that f ∈ Lp(P) for some p > 1. This follows from
the Maximal Ergodic Theorem for space-time shifts and

∫ 1
0 ds|χ(s,0, ·)| ∈ Lp(P), as implied by

Jensen’s inequality and the middle condition in (3.5). �

For the rest of the proof, we will work with the quantity

χ̃n(t,x, ·) :=
∫

∞

0
du ζn(u)χ(t + u,x, ·), (4.7)

where the integral converges absolutely thanks to Lemma 3.10 and our assumption of integrability
of t 7→ (1+ |t|)ζ (t). We then have:

Lemma 4.3 For any {Rn} as above,

1
nd+2 ∑

x∈Rn

∫ n

0
ds χ̃n(s,x, ·) −→

n→∞
0, P-a.s. (4.8)

For the proof we will need the following fact:
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Lemma 4.4 Suppose p ≥ 1 is such that (3.5) holds. For each ε > 0 there is a measurable
hε : Ω→Rd with hε ∈ Lp(P) such that for all x ∈Zd ,

E

∣∣∣∫ 1

0
dt
(
hε −hε ◦ τt,x−χ(t,x, ·)

)∣∣∣p −→
ε↓0

0. (4.9)

We note that in earlier constructions of the corrector (including the one in [3]) the property
in Lemma 4.4 follows more or less directly. Although we also obtain χ(t,x, ·) as a limit of the
quantities ϕε(0,0, ·)◦τt,x−ϕε(0,0, ·), this limit is only in the weak sense and we do not presently
see a way to boost it to a strong convergence as required above.

An alternative approach would be to regard x 7→ χ(0,x, ·) as an element of the L2-space of
cocycle vector fields with inner product (u,v) := E∑e : |e|=1 a0(e)u(e, ·) · v(e, ·) and show that it
can be approximated by a potential field; i.e., one of the form hε−hε ◦τt,x. Even if the existence of
these approximations could be checked, we would still not know how to proceed as we no longer
have a direct way to convert weighted L2-norms into L1-norms. (Indeed, the energy conversion
applies only to solutions of the inhomogenous heat equation.) Our proof of Lemma 4.4, which we
defer to the Appendix, proceeds by a direct argument inspired (with some necessary corrections)
by derivations in Biskup and Spohn [13].

Proof of Lemma 4.3. Fix p > 1 as appearing above (3.5). The conclusion of Lemma 4.4 holds
and, given ε > 0, let hε be as in (4.9). Define

χ̃n,ε(t,x, ·) :=
∫

∞

0
du ζn(u)

∫ 1

0
ds
[
χ(t + s+ u,x, ·)−

(
hε ◦ τt+s+u,x−hε

)]
(4.10)

where the integrals again converge absolutely by Lemma 3.10 and the assumed integrability con-
ditions on ζ . Abbreviating also

h̃n,ε :=
∫

∞

0
du ζn(u)

∫ 1

0
ds hε ◦ τs+u,0, (4.11)

which converges absolutely by the last clause of Lemma 2.9, it is now easy to check

1
nd+2 ∑

x∈Rn

∫ n

0
ds χ̃n(s,x, ·) = 1

nd+2 ∑
x∈Rn

n−1

∑
t=0

χ̃n,ε(t,x, ·)

+
1

nd+2 ∑
x∈Rn

n−1

∑
t=0

h̃n,ε ◦ τt,x−
|Rn|
nd+1 ‖ζ‖L1 hε(·). (4.12)

Since hε ∈ Lp(P) for p > 1, the same holds true for
∫ 1

0 ds hε ◦ τs,0, and Lemma 2.9 gives us that
supn≥1 |h̃n,ε | ∈ L1(P). The Spatial Ergodic Theorem then shows that the second term on the right
tends to zero as n→ ∞. The same also applies trivially to the last term, and so we just need to
control the first term on the right.

Let F := σ(at(e) : t ∈ R, e ∈ E(Zd)) be the σ -algebra generated by the conductances and
enlarge the probability space to include independent random variables T ,X1, . . . ,Xd , independent
of F , with T uniform on [0,1) and Xi uniform on [ai,bi) for each i = 1, . . . ,d. Writing bXnc to
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abbreviate the vector (bX1nc, . . . ,bXdnc) and denoting |R̄| := ∏
d
i=1(bi−ai), we get∣∣∣∣ 1

nd+2 ∑
x∈Rn

n−1

∑
t=0

χ̃n,ε(t,x, ·)− |R̄|
n

E
(

χ̃n,ε
(
bT nc,bXnc, ·)

∣∣∣F)∣∣∣∣
≤ 1

nd+2 ∑
(x,y)∈E(Rn)

n−1

∑
t=0

∣∣χ̃n,ε(t,y, ·)− χ̃n,ε(t,x, ·)
∣∣≤ 1

n

∫
∞

0
ζn(u) f ◦ τu,0 , (4.13)

where

f := sup
n≥1

1
nd+1 ∑

(x,y)∈E(Rn)

n−1

∑
t=0

∫ 1

0
ds
∣∣∣χ(0,y− x, ·)+ (hε −hε ◦ τ0,y−x)

∣∣∣◦ τs+t,x. (4.14)

and where the last step follows by invoking the definition of χ̃n,ε along with the cocycle property.
The Maximal Ergodic Theorem for space-time shifts gives f ∈ L p̃(P) for some p̃ ∈ (1, p) and
Lemma 2.9 then ensures that (4.13) converges, as n→ ∞, to zero P-a.s. Thus, if we can show

lim
n→∞

1
n

E
(

χn,ε
(
T n,bXnc, ·)

∣∣∣F)= 0, P-a.s. (4.15)

the claim will follow.
The advantage of working in this “continuum” representation is that it makes telescoping ar-

guments more manageable. Indeed, by the cocycle property we can write

χ̃n,ε
(
bT nc,bXnc, ·) =

n−1

∑
k=0

χ̃n,ε

(
bT (k+ 1)c−bT kc,bX(k+ 1)c−bXkc, ·

)
◦ τbT kc,bXkc (4.16)

Now note that bT (k + 1)c− bT kc ∈ {0,1} while bX(k + 1)c− bXkc has `∞-norm bounded by
some r ∈N independent of n. Introducing

gε := sup
n≥1

∑
t=0,1

∑
z : |z|∞≤r

∣∣χ̃n,ε(t,z, ·)
∣∣, (4.17)

and denoting Λk := {0, . . . ,k}×Rk, we thus have

1
n

∣∣∣∣E(χ̃n,ε
(
T n,bXnc, ·)

∣∣∣F)∣∣∣∣≤ 1
n

n−1

∑
k=0

1
kd ∑

(t,x)∈Λk

gε ◦ τt,x. (4.18)

Lemma 2.9 and (3.5) ensure that gε ∈ L p̃(P) for p̃ ∈ (1, p). By the Spatial Ergodic Theorem,
the normalized second sum on the right converges to Egε and so does the Cezaro average over
k = 0, . . . ,n−1. But (2.38), Jensen’s inequality along with the cocycle property and the triangle
inequality for the L p̃-norm show

Egε ≤ ‖gε‖L p̃(P) ≤ c ∑
z : |z|∞≤r

[
E

∣∣∣∫ 1

0
ds
(
hε −hε ◦ τs,x−χ(s,x, ·)

)∣∣∣p]1/p

(4.19)

for some c ∈ (0,∞) depending only on p, p̃, d and ζ . Lemma 4.4 then gives Egε → 0 as ε ↓ 0
thus proving (4.15) as desired. �

As an immediate consequence we get:
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Corollary 4.5 For any {Rn} as above,

1
nd+1

∫
∞

0
dt ζn(t) ∑

x∈Rn

χ(t,x, ·) −→
n→∞

0, P-a.s. (4.20)

Proof. This follows by combining (4.3) with (4.8). �

We are now ready to give:
Proof of Proposition 4.1. We adapt part of the argument from page 227 in Sidoravicius and
Sznitman [36]. (The argument cannot be used directly as it relies on square integrability of the
corrector as well as separate ergodicity.) Denote χ̄B(t, ·) := |B|−1

∑x∈B χ(t,x, ·) and, given L≥ 1,
let {Rn,i : i= 1, . . . ,m(n)} be the enumeration of sets of the form (bn(z/L+[0,1/L)d)c∩Zd with
z ∈ Zd that have a non-empty intersection with Bn. Denote B̃n :=

⋃m(n)
i=1 Rn,i. Then Lemma 2.2

and a routine (by now) use of Cauchy-Schwarz inequality show

‖χ‖1,1;Rn,i,ζn ≤ ‖χ̄Rn,i‖1,1;Rn,i,ζn + c
n
L

(
‖w−1‖1,1;E(Rn,i),ζn

E w,ζn
Rn,i

(χ)
)1/2

. (4.21)

Now sum this over i = 1, . . . ,m(n) and apply Cauchy-Schwarz inequality one more time to get

‖χ‖1,1;Bn,ζn ≤
m(n)

∑
i=1
‖χ̄Rn,i‖1,1;Rn,i,ζn + c

n
L
‖w−1‖1/2

1,1;E(B̃n),ζn
E w,ζn

B̃n
(χ)1/2 . (4.22)

Corollary 4.5 and the fact that m(n) is at most order Ld ensures

1
nd+1

m(n)

∑
i=1
‖χ̄Rn,i‖1,1;Rn,i,ζn −→n→∞

0, P-a.s. (4.23)

Lemma 2.10 in turn gives

sup
n≥1

1
nd ‖w

−1‖1,1;E(B̃n),ζn
< ∞, P-a.s. (4.24)

Since χ solves (3.31) with V bounded, (2.51) and (3.4) also show

sup
n≥1

1
nd E w,ζn

B̃n
(χ) < ∞, P-a.s. (4.25)

The claim now follows from (4.22) by taking n→ ∞ followed by L→ ∞. �

4.2 Sublinearity everywhere and proof of main result.

Recall the definition of the corrector from the previous section. Our next goal is to boost the
L1-sublinearity to an L∞-version. Define the diffusive space-time cylinder

Q(n) :=
{
(x, t) : x ∈ Bn, 0≤ t ≤ n2}. (4.26)

We now claim that the corrector is sublinear on diffusive scale of space and time:

Theorem 4.6 Suppose Assumption 1.1 holds and assume, in addition, (1.12). Then

lim
n→∞

max
(t,x)∈Q(n)

|χ(t,x, ·)|
n

= 0, P-a.s.. (4.27)



28 BISKUP AND RODRIGUEZ

Recalling the notation ||| · |||p,q;B,ζ for the normalized norms from (2.20), the key point of the
proof of this claim is the following proposition valid for general solutions to the heat equation.
We state it in a form which will be sufficient to deduce Theorem 1.2. A more general version of
the following result can be found in Corollary 5.9.

Proposition 4.7 (L1 to L∞ bootstrap) Suppose Assumption 1.1 as well as the moment bound
(1.12) hold. Assume also that (2.31) are valid. There exist functions k,ζ satisfying (2.31)-(2.34)
and constants γ1 ∈ (0,∞) and c,c′ ∈ (1,∞) (all depending on d and the choice of k,ζ ) such that,
if u : R×Zd×Ω→Rd is a (measurable) weak solution to

∂

∂ t
u(t,x, ·)+Ltu(t,x, ·) = Lt f , (4.28)

for some bounded f : R×Zd ×Ω→ R satisfying | f (y)− f (x)| ≤ 1
n for all (x,y) ∈ E(Bn) and

all n≥ 1, then for all r ∈ (2d, ϑ

2 ),

max
(t,x)∈Q(n)

|u(t,x)| ≤ cW (r)γ1 |||u|||γ2(n,u)
1,1;B2n,ζn

(4.29)

where 1≤ γ2(n,u) ≤ c′ and ζn is defined in (2.37) and

W (r) := sup
n≥1

max
m∈[n,2n]

∣∣∣∣∣∣w−1∣∣∣∣∣∣
r,r;E(B2n),ζn

(4.30)

satisfies

W (r) < ∞, for all r ∈ (2d,ϑ /2). (4.31)

Deferring the proof of Proposition 4.7 to Section 5, let us show how it implies our main result.
We begin with:
Proof of Theorem 4.6. Since the corrector obeys the equation (3.31), this is immediate from
Lemma 2.10, Proposition 4.1, Proposition 4.7 and the boundedness of V . �

Next we note the standard fact:

Lemma 4.8 Suppose Assumption 1.1 and, given a sample of a = {at(e) : e ∈ Z(Zd), t ∈ R},
let {Xt : t ≥ 0} be a sample of the random walk. The process t 7→ τt,Xt a on Ω is then Markov
with a unique stationary measure P. Moreover, the process is ergodic in the sense that, for any
function f ∈ L1(P), we have

1
t

∫ t

0
dt f (τt,Xt a) −→t→∞

E f (4.32)

for P-a.e. a ∈Ω and P0-a.e. sample of {Xt : t ≥ 0}.

Proof. The stationarity and reversibility of P is verified easily by a standard generator calculation
and the limit in (4.32) exists by the Ergodic Theorem. The only item where caution is needed is
ergodicity which ensures that the limit value in (4.32) is constant P-a.s., and thus equal to E f .
This boils down to showing that any event A ⊂ Ω which is invariant under the Markov shift
t 7→ τt,Xt a is a zero-one event.
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We build on an argument in Andres [1, Proposition 2.1]. Let A be as above. For each t ≥ 0, we
then have 1A = ∑x∈Zd p0,t(0,x)1A ◦ τt,x P-a.s. and so

0 = 1Ac1A = ∑
x∈Zd

1Ac p0,t(0,x)1A ◦ τt,x . (4.33)

Taking expectation and dropping all but one term from the sum yields

E
(
1Ac p0,t(0,x)1A ◦ τt,x

)
= 0, x ∈Zd , t ≥ 0. (4.34)

Since at(e)≤ 1 implies p0,t(0,0)≥ e−2dt , choosing x = 0 gives E(1Ac1A ◦ τt,0) = 0 for all t ≥ 0.
Applying τ−t,0 under expectation and swapping the roles of A and Ac then shows 1A ◦ τt,0 = 1A
P-a.s. for each t ∈R, i.e., A is time-shift invariant P-a.s.

Next pick a neighbor e of the origin and apply (4.34) to x := e. Injecting the restriction Te < t
into the expectation, we thus get

E
(
1{Te<t}1Ac p0,t(0,e)1A ◦ τt,e

)
= 0. (4.35)

But time-shift invariance of A shows 1A ◦ τt,e = 1A ◦ τ0,e P-a.s. and, on {Te < t}, we have

p0,t(0,e) ≥ e−2dt
∫ t

0
dsas(e) ≥ e−2dt . (4.36)

It follows that E(1{Te<t}1Ac1A ◦ τ0,e) = 0. Taking t → ∞ and using that Te < ∞ P-a.s. (by As-
sumption 1.1(3)) we now again get 1A ◦ τ0,e = 1A P-a.s. Hence A is invariant with respect to all
space-time shifts a.s.; ergodicity of P then implies that P(A) ∈ {0,1} as desired. �

We are now ready to give the:
Proof of Theorem 1.2. Let ψ be the harmonic coordinate constructed in Theorem 3.1 and let {Xt : t ≥
0} be a sample of the random walk. Let Ft := σ(Xs : 0 ≤ s ≤ t). The equation (3.2) then im-
plies that {ψ(t,Xt , ·),Ft}t≥0 is a martingale. Letting v ∈ Rd , the quadratic variation process
of t 7→ v ·ψ(t,Xt , ·) is given by〈

v ·ψ(t,Xt , ·)
〉

t =
∫ t

0
ds f ◦ τs,Xs(a) , (4.37)

where

f (a) := E0
(

∑
z : |z|=1

a0(0,z)
[
v ·ψ(0,z, ·)

]2). (4.38)

In light of (3.4) and Lemma 4.8, the conditions of the Lindeberg-Feller Martingale Functional
Central Limit Theorem are satisfied. Hence t 7→ n−1ψ(tn2,Xtn2 , ·) scales as n→∞ to a Brownian
motion with variance as in (1.14).

In order to complete the proof of convergence of t 7→ n−1Xtn2 to Brownian motion, it suffices
to show that, for P-a.e. realization of the environment,

sup
0≤s≤t

1√
t

∣∣ψ(s,Xs, ·)−Xs
∣∣ −→

t→∞
0, in P0-probability . (4.39)
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This is shown by noting that, for any M ≥ 1 and any ε > 0,

P0
(

sup
0≤s≤t

∣∣ψ(s,Xs, ·)−Xs
∣∣> ε

√
t
)

≤ P0
(

sup
0≤s≤t

∣∣ψ(s,Xs, ·)
∣∣> M

√
t
)
+ 1{max(s,x)∈Q(M

√
t) |χ(s,x,·)|>ε

√
t}. (4.40)

For any fixed M ≥ 1 and ε > 0, Proposition 4.7 ensures that the indicator is zero for t sufficiently
large P-a.s. On the other hand, in the limit as t → ∞ followed by M → ∞, the probability on
the right tends to zero by the above convergence of t 7→ n−1ψ(Xtn2) to Brownian motion. This
implies (4.39).

In order to show that the limiting covariance Σ is non-degenerate suppose that v ·Σv = 0 for
some v∈Rd . Then (1.14) and the cocycle conditions imply Lt(v ·ψ)(t,x, ·) = 0 for all t and x and
thus by the differential equation, see (3.2), the function t 7→ v ·ψ(t,x, ·) = 0 is constant for each
x ∈ Zd . However, Assumption 1.1(3) ensures that t 7→ at(e) is positive eventually and so this
means that v ·ψ(0,x, ·) = 0 P-a.s. If v 6= 0, this violates the sublinearity of χ from Theorem 4.6
and so we must have v = 0 after all. �

5. MAXIMAL INEQUALITY VIA MOSER ITERATION

The aim of this section is give a proof of the maximal inequality for the corrector stated in Propo-
sition 4.7. The proof is based on Moser-iteration technique whose main input is the “one-step
estimate” stated in Proposition 5.2 below. In this section we provide the proof of Proposition 4.7
conditional on the one-step estimate; this estimate is then proved in Section 6.

5.1 Cut-offs and the one-step estimate.

Let us start with the statement of the one-step estimate. This will require working under spa-
tial and temporal mollifiers (or smooth cut-offs), denoted by η and ξ respectively, that will be
assumed to obey the following conditions:

Definition 5.1 Given finite sets B1 ⊂ B2 ⊂Zd , and parameters δ ∈ (0,1), ρ ≥ 1 and M ≥ 1, we
say that the (cut-off) functions κ1,κ2 : [0,∞)×Zd→ [0,1] are (B1,B2)-adapted with parameters
(δ ,ρ ,M) if, for i = 1,2, these functions take the form

κi(t,x) = ξi(t)ηi(x), t ≥ 0, x ∈Zd , (5.1)

with ξi : [0,∞)→ [0,1] and ηi : Zd → [0,1] satisfying

supp(ηi) ⊂ Bi for i = 1,2 and η2(x) = 1 for x ∈ B1, (5.2)

and
ξi ∈C1 for i = 1,2 and ξ1(t) ≤Mξ2(t)ρ , |

.
ξ1(t)| ≤ δMξ2(t)ρ , t ≥ 0. (5.3)

The spatial mollifier ηi should be thought of as a “smooth” version of the indicator of 1Bi .
Note that the conditions in (5.2) imply η1 ≤ η2. An explicit construction of functions ηi and ξi is
provided below in Lemma 5.5.

In order to state the one-step estimate, we need some more notation. Given e ∈ E(Zd) (and
recalling that edges are unoriented), specify one of its endpoints as its initial vertex xe and the
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other as ye (the choice will not matter in the sequel). Then abbreviate

∇ f (e) := f (ye)− f (xe). (5.4)

In what follows, we will write ‖ · ‖`p(K) to denote the `p-norm with respect to the counting mea-
sure, for any K ⊆Zd (or, if functions on edges are considered, K ⊆ E(Zd)) and any p > 0. We
denote by L∞(R+) the set of Lebesgue-a.e. bounded functions supported in [0,∞). Recall also
the notation p̂(α) := α

2
d

d−1 and q̂(β ) := β

2 for the “Sobolev exponents” from (2.23), and the
normalized norms ||| · |||p,q;B,ζ from (2.20). We assume throughout that ζ satisfies (2.31–2.33) and
we are interested in weak solutions to the inhomogenous equation

∂

∂ t
u(t,x)+Ltu(t,x) = Lt f (t,x), t ≥ 0, x ∈Zd . (5.5)

We are only interested in the specific case f (t,x) = x, see (3.31) and (3.11), for which a (weak)
solution to (5.5) has been constructed in Proposition 3.8, but the following results only require
that ‖∇ f‖`∞(E) be finite. The “one-step estimate” is now the content of:

Proposition 5.2 (One-step Moser iteration) Let d ≥ 2 and suppose Assumption 1.1 holds. For
all α ∈ (2,2 d−1

d−2 ), all β ∈ (0,2) and all q > 1 and p defined by

1
p

:=
θ

p̂(α)
+ 1−θ , where θ :=

q̂(β )
q
∈ (0,1) , (5.6)

there is c2 = c2(d,α ,β ,q) ∈ (0,∞) such that the following holds for any weak solution u of
inhomogenous heat equation (5.5): For all finite B1 ⊂ B2 ⊂Zd , all δ > 0, all ρ ∈ [1, p∧q), all
M ≥ 1, all λ1 ≥ 2 and all (B1,B2)-adapted functions κ1,κ2 with parameters (δ ,ρ ,M) we have

|||κ2/λ1
1 u |||λ1 p,λ1q; B1,ζ ≤ (A1,2)

1/λ1 |||κ2/λ2
2 u |||γ

λ2 p,λ2q; B2,ζ , (5.7)

where λ2 := λ1/ρ ,

γ :=

{
1− 2

λ1
, if |||ξ 2ρ

2 |u|λ1 |||1,1;B1,ζ < 1,
1 otherwise

(5.8)

(in particular, γ ∈ [0,1]) and the prefactor A1,2 takes the explicit form

A1,2 := c2(λ
2
1 M)2 ‖ζ‖L1

(
1∨|||w−1 ||| r

2 , s
2 ; B1,ζ

) |B2|
|B1|

[
(Γ+ δ )

(
1

inft∈Σ1 ζ (t)
+ |B1|

2
d

)]
(5.9)

with r,s related to α ,β as in (2.11), Σ1 := supp(ξ1) and

Γ := ‖∇ f‖2
`∞(E)+

∥∥(∇ f )(∇η1)
∥∥
`∞(E)+ ‖∇η1‖2

`∞(E)+ ‖
.
ζ /ζ‖L∞(R+) . (5.10)

Here f : Zd →R is the function on the right of (5.5).

The proof also exhibits the following estimate, which we record for later purposes:

Corollary 5.3 For the setting, notations and under the conditions of Proposition 5.2,∣∣∣∣∣∣κ2
1 |u|λ1

∣∣∣∣∣∣1/λ1

1,∞; B1,ζ ≤ (A1,2)
1/λ1 |||κ2/λ2

2 u |||γ
λ2 p,λ2q ;B2,ζ . (5.11)
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Remark 5.4 The allowed range of α implies that p̂(α) ∈ ( d
d−1 , d

d−2 ) and, in particular, that
p̂(α) > 1. It follows that p defined in (5.6) satisfies p > 1. As a consequence, ρ ∈ (1, p∧ q)
can always be found so that λ2 < λ1 (as will be desired).

The prefactor A1,2 collects all dependencies on the cut-off functions as well as the norm
|||w−1 ||| r

2 , s
2 ; B1,ζ , which we will control via Lemma 2.10. Our choices of parameters will even-

tually ensure that the term in square brackets on the right-hand side of (5.9) is of order unity, and
so A1,2 is basically order-(λ 2

1 M)2. Both λ1 and M will change through iterations, but in such a
way that the overall product of prefactors of the type (A1,2)1/λ1 arising from subsequent iterations
remains bounded.

Proposition 5.2 is where the principal novel ingredients of the present work enter the proof of
Moser iteration; the rest is more or less just an adaptation of the arguments in [3]. Deferring the
proof of Proposition 5.2 to Section 6, we now proceed to discuss these adaptations and give the
proof of Proposition 4.7.

5.2 Iteration.

The fact that λ1 in Proposition 5.2 can be rather arbitrary, and ρ can be set to a quantity in excess
of one (see Remark 5.4), offers the possibility to apply the inequality in (5.7) iteratively to bound
high-(p,q)-norms of the solution to the Poisson equation by low-(p,q)-norms thereof. As we
also need to keep the quantity in (5.10) bounded, this means that the underlying domains, and
thus also the mollifiers, will have to vary throughout the iteration. The discrete nature of the
underlying lattice (and the need to keep the gradients of η bounded) only allows us to run the
iteration a limited number of times, albeit increasing with the size of the initial domain. Another
iterative argument will thus have to be invoked afterwards to convert the high-(p,q)-norm to the
maximum over the space-time box Q(n). This will then readily yield Proposition 4.7.

Let us begin by introducing the needed notation. We will consider underlying domains that
depend on two adjustable real-valued parameters σ and σ ′ which satisfy

1≤ σ
′ < σ ≤ 2. (5.12)

These parameters are introduced only for the sake of the second iteration and they will remain
unchanged throughout the first iteration. Given n ≥ 1, consider a decreasing sequence of boxes
(Bn,k)k≥0 such that

Bn,k := B(0,σkn), where σk := σ
′+ 2−k(σ −σ

′). (5.13)

We then have

Bn := B(0,n) ⊆ Bσ ′n ⊆ Bn,k ⊆ Bn,k−1 ⊆ Bσn ⊆ B2n, k ≥ 0. (5.14)

Next we introduce the cut-off functions (depending implicitly on the choice of σ and σ ′)

κn,k(t,x) := ξn,k(t)ηn,k(x) (5.15)

as follows: For all k ≥ 0, the function ηn,k : Zd → [0,1] satisfies

supp(ηn,k) ⊂ Bn,k, ηn,k = 1 on Bn,k+1 and ‖∇ηn,k‖`∞ ≤ 1
(σk−σk+1)n

. (5.16)
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(This can be achieved by interpolating linearly between Bn,k+1 and Bc
n,k.) Denoting

b(t) :=


1, if t ≤ 0

exp
(

1− 1
1−t2

)
, if t ∈ (0,1)

0, if t ≥ 1,

(5.17)

the function ξn,k : [0,∞)→ [0,1] is defined as

ξn,k(t) := b

(
(t/n2)− τk

∆σ ,σ ′

)
= b

(
t− τkn2

(τk +∆σ ,σ ′)n2− τkn2

)
, (5.18)

where

∆σ ,σ ′ :=
σ −σ ′

2
and τk := σ

′+∆σ ,σ ′
∞

∑
`=k+1

δ` with δ` :=
6

π2 `
−2. (5.19)

As seen from the rewrite in (5.18), ξn,k equals 1 on [0,τkn2] and then drops smoothly to 0 over the
interval [τkn2, (τk +∆σ ,σ ′)n2]. Observe in addition that δ` ∈ [0,1) are such that ∑`≥1 δ` = 1 and
that k 7→ τk is decreasing with τ0 =

σ+σ ′

2 and limk→∞ τk = σ ′. For later purposes we also record
that for all n,k ≥ 0,

ξn,k(t) = 1, for t ≤ σ
′n2 (5.20)

ξn,k(t) = 0, for t ≥ σn2. (5.21)

Note that ηn,k, ξn,k, τk all depend implicitly on the choice of σ ′ and σ satisfying (5.12).
To see that the above choices are reasonable, we note:

Lemma 5.5 For all σ ′,σ satisfying (5.12), all n,k ≥ 1 and all ρ ≥ 1, the functions κn,k, κn,k−1
defined by (5.15), (5.16) and (5.18) are (Bn,k,Bn,k−1)-adapted with parameters ( 1

n2 ,ρ ,Mk), where

Mk := (1∨∆−1
σ ,σ ′‖

.
b‖∞)eρ/δk . (5.22)

Proof. The conditions (5.2) hold on account of (5.16) (in particular, note that ηn,k−1 = 1 on Bn,k).
As for (5.3), first note that ξn,k ∈C∞. It thus remains to show that

ξn,k(t) ≤Mkξn,k−1(t)ρ and
∣∣ .
ξ n,k(t)

∣∣≤ 1
n2 Mkξn,k−1(t)ρ , t ≥ 0. (5.23)

For t ≥ (τk +∆σ ,σ ′)n2 we have ξn,k(t) =
.
ξ n,k(t) = 0 and so these bounds hold trivially. In the

range t ≤ τk−1n2, we have ξ
ρ

n,k−1(t) = 1 and so the first bound is immediate, while the second
follows from ∣∣ .

ξ n,k(t)
∣∣≤ ∆−1

σ ,σ ′n
−2‖

.
b‖∞ . (5.24)

It remains to deal with the case t
n2 ∈ (τk−1,τk +∆σ ,σ ′). For t

n2 in this interval, we observe

1
ξn,k−1(t)ρ

(5.18)
= b

(
(t/n2)− τk−1

∆σ ,σ ′

)−ρ

≤ sup
s∈(0,1−δk)

[
b(s)−ρ

]
= e

ρ

1−(1−δk)
2−ρ

≤ eρ/δk , (5.25)

and so Mkξn,k−1(t) ≥ 1∨∆−1
σ ,σ ′‖

.
b‖∞. The first bound in (5.23) then follows immediately since

ξn,k ≤ 1 while the second is obtained by invoking (5.24) one more time. �
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Lastly, we recall the definition (2.37) of ζn, n ≥ 1, obtained from ζ , cf. (2.31–2.33), by a
(diffusive) rescaling. Let

c3 = c3(ζ ) := 1∨‖ζ‖L1 ∨‖
.
ζ /ζ‖L∞(R+)∨

(
inf

t∈[0,2]
ζ (t)

)−1
. (5.26)

A recursive application of Proposition 5.2 then yields:

Proposition 5.6 (Moser iteration) Suppose Assumption 1.1 and (2.34) hold. For all d ≥ 2, all
α ∈ (2,2 d−1

d−2 ), all β ∈ (0,2), all q > 1 and p as defined in (5.6), there is c4 = c4(α ,β ,q,d) ∈
[1,∞) such that, for all ρ ∈ [1, p∧q), all integers n≥ 1, k > N, where

N := N(ρ) = inf{k ≥ 1; ρ
k > 2}−1, (5.27)

and all weak solutions u of (5.5) with f on the right-hand side satisfying ‖∇ f‖`∞(E) ≤ 1
n , we have

∣∣∣∣∣∣κ2/ρk

n,k u
∣∣∣∣∣∣

ρk p,ρkq; Bn,k ,ζn
≤
[

c5W
(σ −σ ′)4

]∑
k
`=1 ρ−`

e3ρ ∑
k
`=1 `

2ρ−`
∣∣∣∣∣∣κ2

n,0 u
∣∣∣∣∣∣γ̄(n,k)

p′,q′; Bσn,ζn
, (5.28)

where p′ = p′(ρ) = ρN p, q′ = ρNq, c5 := c4(c3)2c2, with c3 given by (5.26) and c2 as in Propo-
sition 5.2,

W := 1∨ sup
n≥1

sup
m∈[n,2n]

|||w−1 ||| r
2 , s

2 ; Bm,ζn (5.29)

and where γ̄(n,k) ∈ (0,1] is defined as

γ̄(n,k) :=
k

∏
`=N+1

γn,`, with γn,` :=

{
1−2ρ−`, if |||ξ 2ρ

n,`−1|u|ρ
` |||1,1;Bn,`,ζn < 1,

1, else.
(5.30)

Proof. Let n≥ 1, k > N be integers. In view of (2.34), ζn satisfies conditions (2.31–2.33), hence
we may apply Proposition 5.2 for the choices ζ := ζn, B1 := Bn,k, B2 := Bn,k−1, so that B1 ⊂
B2 by (5.13), the mollifiers κ1 := κn,k and κ2 := κn,k−1, which are (Bn,k,Bn,k−1)-adapted with
parameters ( 1

n2 ,ρ ,Mk) by Lemma 5.5, and λ1 := ρk, which satisfies λ1 > 2 by (5.27) and since
k > N. Noting that γn,k as defined in (5.30) corresponds precisely to γ in (5.8), the one-step
estimate (5.7) reads∣∣∣∣∣∣κ2/ρk

n,k u
∣∣∣∣∣∣

ρk p,ρkq; Bn,k ,ζn
≤ (An,k)

1/ρk ∣∣∣∣∣∣κ2/ρk−1

n,k−1 u
∣∣∣∣∣∣γn,k

ρk−1 p,ρk−1q; Bn,k−1,ζn
(5.31)

where

An,k := c2ρ
4kM2

k ‖ζn‖L1

(
1∨|||w−1 ||| r

2 , s
2 ; Bn,k ,ζn

)
× |Bn,k−1|
|Bn,k|

[(
Γn,k +

1
n2

)(
1

inft∈Σn,k ζn(t)
+ |Bn,k|

2
d

)]
, (5.32)

with

Γn,k := ‖∇ f‖2
`∞(E)+ ‖(∇ f )(∇ηn,k)‖`∞(E)+ ‖∇ηn,k‖2

`∞(E)+ ‖
.
ζ n/ζn‖L∞(R+) (5.33)

and Σn,k := supp(ξn,k). As we will now demonstrate, An,k is bounded uniformly in n by a quantity
whose growth in k can be controlled.

Clearly, ‖ζn‖L1 = ‖ζ‖L1 ≤ c3, while 1∨|||w−1 ||| r
2 , s

2 ; Bn,k ,ζn ≤W on account of (5.29) and (5.14).
Similarly, |Bn,k−1|/|Bn,k| ≤ |B2n|/|Bn| is bounded uniformly in n and k. Regarding the term in
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the large brackets in (5.32), by the assumption on ∇ f and (5.16), and since ‖
.
ζ n/ζn‖L∞(R+) =

‖
.
ζ /ζ‖L∞(R+)/n2, we obtain, recalling also (5.13) and (5.26),

Γn,k ≤
1
n2

(
1+ ‖

.
ζ /ζ‖L∞(R+)+(σk−σk+1)

−1 +(σk−σk+1)
−2)≤ 4c322(k+1)

n2(σ −σ ′)2 . (5.34)

Finally, (5.12) and (5.21) show Σn,k ⊂ [0,2n2] and so(
inf

t∈Σn,k
ζn(t)

)−1
≤ n2

(
inf

t∈[0,2]
ζ (t)

)−1
≤ c3n2, (5.35)

whilst |Bn,k|
2
d ≤ |B2n|

2
d ≤ cn2. Recalling that Mk ≤ c(σ −σ ′)−1eρk2

, cf. Lemma 5.5 and (5.19),
and noting that there is a numerical constant c such that 22kρ4k ≤ ceρk2

holds for all ρ ≥ 1 and all
k ≥ 0, we thus obtain

An,k ≤ c2(c3)
2c4

W
(σ −σ ′)4 e3ρk2

, (5.36)

where c4 = c4(α ,β ,q,d) ≥ 1 collects the various numerical prefactors in the above estimates.
Substituting (5.36) into (5.31) and using that An,k ≥ 1 while γn,k ≤ 1, the claim (5.28) read-

ily follows by induction over k (starting at k = N + 1), noting also for the very last step that
Bσn/Bn,N ≤ c(d), which can be absorbed by adapting the constant c4, and extending the arising
sums over ` to start at 1 (rather than N + 1; the term in square brackets on the right-hand side of
(5.28) is greater or equal to 1). �

Following up on Corollary 5.3, one also has the following bound:

Corollary 5.7 Under the setting and assumptions of Proposition 5.6, for all n ≥ 1, k > N, all
ρ ∈ [1, p∧q) and all weak solutions u of (5.5), with f on the right satisfying ‖∇ f‖`∞(E) ≤ 1

n ,

∣∣∣∣∣∣κ2
n,k|u|ρ

k ∣∣∣∣∣∣1/ρk

1,∞ ; Bn,k ,ζn
≤
[

c5
We3ρk2

(σ −σ ′)4

]1/ρk ∣∣∣∣∣∣κ2/ρk−1

n,k−1 u
∣∣∣∣∣∣γn,k

ρk−1 p,ρk−1q ;Bn,k−1,ζn
. (5.37)

Proof. We use the same setting as in the proof of Proposition 5.6 but invoke (5.11) instead of (5.7),
and then apply (5.36). �

5.3 Proof of maximal inequality.

Our next task is to “upgrade” the bound (5.28) to an estimate on the maximum of the solution u
over the space-time cylinder Q(n). First we state (in Lemma 5.8) a rather immediate consequence
of Proposition 5.6 which bounds the maximum of u in the space-time cylinder Bσ ′n× [0,σ ′n2]
in terms of the (p′,q′)-norm (for p′,q′ as above) of u cut off outside of a slightly larger cylinder
with spatial base Bσn. Keeping all dependencies on σ ,σ ′ explicit is crucial as these will be
subsequently varied to replace the (p′,q′)-norm by the (1,1)-norm.

Lemma 5.8 Suppose Assumption 1.1 and (2.34) hold. For all d ≥ 2 there is c6 = c6(d,ρ) ∈
(0,∞) such that for all α ∈ (2,2 d−1

d−2 ), all β ∈ (0,2), all q > 1 and p as defined in (5.6), and for
all integers n ≥ 1, all ρ ∈ (1, p∧ q) and all weak solutions u of (5.5) with f on the right-hand
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side satisfying ‖∇ f‖`∞(E) ≤ 1
n we have

max
(t,x)∈[0,σ ′n2]×B

σ ′n

∣∣u(t,x) ∣∣≤ c6

[
c5W

(σ −σ ′)4

] 1
ρ−1 ∣∣∣∣∣∣κ2

n,0 u
∣∣∣∣∣∣γ̄ ′(ρ ,n)

p′,q′; Bσn,ζn
, (5.38)

where p′ = ρN p, q′ = ρNq, κn,0 is defined in (5.15), W is as in (5.29), c5 is the constant from
Proposition 5.6 and γ̄ ′(ρ ,n) := γ̄

(
n, (dlog logn/ logρe)∨(N+1)

)
for γ̄ (·, ·) as defined in (5.30)

and with N = N(ρ) given by (5.27).

Proof. Let k ≥ N + 2, with N = N(ρ) given by (5.27). For any k, the function κ
2/ρk

n,k is equal to
1 on Bn,k+1× [0,τkn2] ⊃ Bσ ′n× [0,σ ′n2], cf. (5.16) and (5.20). Using that supp(ζn) ⊃ [0,σ ′n2]
by (5.12) and (2.31), and applying Corollary 5.7 and Proposition 5.6 (the latter for index k−1 (>
N)), we thus get

max
(t,x)∈[0,σ ′n2]×B

σ ′n

∣∣u(t,x) ∣∣≤ max
(t,x)∈[0,σ ′n2]×B

σ ′n

∣∣ (κ2/ρk

n,k u)(t,x)
∣∣

≤ max
t∈[0,σ ′n2]

[
∑

x∈Bn,k

∣∣(κ2
n,kũρk

)(t,x)
∣∣]1/ρk

(2.21)
≤ |Bn,k|1/ρk ∣∣∣∣∣∣κ2

n,kũρk ∣∣∣∣∣∣1/ρk

1,∞;Bn,k

(5.37)
≤ |Bn,k|1/ρk

[
c5We3ρk2

(σ −σ ′)4

]1/ρk ∣∣∣∣∣∣κ2/ρk−1

n,k−1 u
∣∣∣∣∣∣γn,k

ρk−1 p,ρk−1q;Bn,k−1,ζn

(5.28)
≤ |B2n|1/ρk

[
c5W

(σ −σ ′)4

]∑
k
`=1 ρ−`

e3ρ ∑
k−1
`=1 `

2ρ−`
∣∣∣∣∣∣κ2

n,0 u
∣∣∣∣∣∣γ̄(n,k)

p,q; Bσn,ζn
.

(5.39)

Choosing k := dlog logn/ logρe∨ (N(ρ)+2) ensures that |B2n|1/ρk ≤ c̃(ρ) uniformly in n. The
claim follows upon defining c6(ρ) = c̃(ρ)exp(3 ρ2(ρ+1)

(ρ−1)3 ) by noting that ∑
∞
`=1 `

2ρ1−` = ρ2(ρ +

1)(ρ−1)−3 and ∑
∞
`=1 ρ−` = (ρ−1)−1 for all ρ > 1. �

The replacement of the (p,q)-norm by the (1,1)-norm is the subject of the following lemma,
which is more or less drawn from [3]. The proof of Proposition 4.7 will then quickly follow,
using also Lemma 2.10 to bound W .

Lemma 5.9 For the setting of Lemma 5.8, there are c7 = c7(α ,β ,ρ , p,q,d,c3(ζ )), c8 = c8(ρ , p,q),
and c9 = c9(α ,β ,ρ , p,q,d,c3(ζ )),

max
(t,x)∈[0,n2]×Bn

∣∣u(t,x) ∣∣≤ c7W c8
∣∣∣∣∣∣1[0,2n2] u

∣∣∣∣∣∣γn(u)
1,1; B2n,ζn

. (5.40)

where 1[0,2n2] abbreviates the indicator of t ∈ [0,2n2], and γn(u) satisfies 1 ≤ γn(u) ≤ c9 (and
γn(u) also implicitly depends on the same set of parameters as c9).

Proof. Define σ̄i := 2− 2−i for i ≥ 0, which is increasing in i with σ̄0 = 1 and limi→∞ σ̄i = 2.
Abbreviate

||| f |||∞,i := max
(t,x)∈[0,σ̄in2]×Bσ̄in

∣∣ f (t,x)
∣∣. (5.41)
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Our goal is to estimate |||u|||∞,0 by the right-hand side of (5.40). We will apply (5.38) repeat-
edly with σ ′ := σ̄i−1 and σ := σ̄i. We will write κ

(i)
n,0 for the mollifier with these choices of σ ′

and σ , and let γ̄ ′i := γ̄ ′i (ρ ,n) denote the quantity defined below (5.38) for this pair, recalling
the dependence of this quantity on σ and σ ′ via the cut-off function ξ appearing in (5.30).
(Since n will remain fixed, we will suppress it whenever possible.) Using (2.22) and (2.29)
with θ := θ (p,q,ρ) = 1− 1

p′∨q′ (∈ (0,1)), where p′ = ρN p and q′ = ρNq, we then have for
each i≥ 0, ∣∣∣∣∣∣ (κ (i)

n,0)
2 u
∣∣∣∣∣∣

p′,q′; Bσ̄in,ζn
≤
∣∣∣∣∣∣ (κ (i)

n,0)
2 u
∣∣∣∣∣∣

p′∨q′, p′∨q′; Bσ̄in,ζn

≤
∣∣∣∣∣∣ (κ (i)

n,0)
2 u
∣∣∣∣∣∣1−θ

1,1; Bσ̄in,ζn

∣∣∣∣∣∣ (κ (i)
n,0)

2 u
∣∣∣∣∣∣θ

∞,i

≤ c
∣∣∣∣∣∣1[0,2n2]u

∣∣∣∣∣∣1−θ

1,1; B2n,ζn
|||u |||θ∞,i

(5.42)

for some c = c(p,q,d) ∈ [1,∞), where the second line follows from supp(κ (i)
n,0) ⊂ [0, σ̄in2]×

Bσ̄in ⊂ [0,2n2]×B2n and the fact that |B2n|/|Bσ̄in| ≤ |B2n|/|Bn| is bounded uniformly in n and i.
Inserting (5.42) into (5.38) while noting that σ̄i− σ̄i−1 = 2−i yields, for all i≥ 1,

|||u |||∞,i−1 = max
(t,x)∈[0,σ̄i−1n2]×Bσ̄i−1n

∣∣u(t,x) ∣∣
≤ c
[
24iW

] 1
ρ−1
∣∣∣∣∣∣1[0,2n2]u

∣∣∣∣∣∣(1−θ )γ̄ ′i
1,1; B2n,ζn

|||u |||θ γ̄ ′i
∞,i

(5.43)

for some c ∈ [1,∞) depending on the parameters p, q, and ρ but not on n or i. Iterating (5.43),
we obtain, for all m ≥ 2 and some constant c ∈ [1,∞) depending on the full set of parameters
α ,β ,ρ , p,q,d,c3(ζ ),

max
(t,x)∈[0,n2]×Bn

∣∣u(t,x) ∣∣= |||u |||∞,0

≤
[
cW

1
ρ−1
]1+∑

m
k=1(∏

k
i=1 γ̄ ′i )θ

k[
2

4
ρ−1
]1+∑

m
k=2(∏

k−1
i=1 γ ′i )kθ k

×
∣∣∣∣∣∣1[0,2n2]u

∣∣∣∣∣∣1+∑
m
k=1(∏

k
i=1 γ̄ ′i )(1−θ )k

1,1; B2n,ζn
|||u |||(∏

m
i=1 γ̄ ′i )θ

m

∞,m .

(5.44)

Now, since γ̄ ′i ≤ 1 for all i≥ 1, see (5.30) and below (5.38), and |||u |||∞,m is bounded uniformly in m
(e.g., by the maximum of u over [0,2n2]×B2̄n, which is finite by our assumptions on u) the last
term on the right of (5.44) tends to 1 as m→ ∞. The claim (5.40) follows from (5.44) by letting
m→ ∞ (the sums in the exponents all converge) and letting γn(u) = 1+∑

∞
k=2(∏

k−1
i=1 γ ′i )kθ k. �

We are now ready to prove the desired maximal inequality:

Proof of Proposition 4.7. The claim will follow by applying Lemma 5.9 for suitable choice of the
parameters. Fix d ≥ 2 and ϑ > 4d as appearing in (1.12) and any r ∈ (2d, ϑ

2 ). Let s := r and let
α and β be defined by (2.11) in terms of r and s. Note in particular that β ∈ (0,2) and α < 2 d−1

d−2 ,
as follows plainly from (2.11). Moreover, since r > 2d,

1
α

(2.11)
=
(1

2
+

1
r
− 1

d

) d
d−1

<
1
2

(
1− 1

d

) d
d−1

=
1
2

,

as required by Lemmas 5.8–5.9. Having selected α and β , the parameters p and q are defined by
(5.6) (and are both larger than 1, as noted in Remark 5.4), and we choose ρ = 1

2 (1+ (p∧ q)).
The claim (4.29) is then an immediate consequence of (5.40). The (crucial!) fact that W (r) < ∞
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can be arranged, cf. (4.31), follows from Lemma 2.10 by choosing kt := 2µ(1 + t)−µ with
any µ ∈ (4,2ϑ /r) (note that 2ϑ /r > 4 by our choice of r) and ζ (t) as in Lemma 2.8, with
ν := µ/2. �

6. PROOF OF ONE-STEP ESTIMATE

Ouf final task is the proof of the one-step estimate in Proposition 5.2. The proof hinges on
three ingredients. The first one is the weighted Sobolev inequality proved in Lemma 2.3 which
bounds a suitable norm of f by the weighted Dirichlet form E w

t ( f ). The second ingredient is
a comparison of the weighted Dirichlet form with its “bare” counterpart E a

t ( f ). Lemma 2.11
provides such comparison when the argument is ut , the solution to the Poisson equation (2.46),
inside a box; unfortunately, since we need to consider powers of the solution and invoke different
(smoother) spatial and temporal truncations, we will have to prove the needed bound again. This
is the content of (rather long) Lemma 6.1. The final ingredient is a bound on the resulting “bare”
Dirichlet energy in terms of a suitable norm of the solution. This is done in the second subsection;
the proof of Proposition 4.7 is presented right afterwards.

6.1 Dirichlet energy comparison.

We begin by a comparison of the Dirichlet energies for powers of the solution of the inhomoge-
neous Poisson equation (2.46) mollified by spatial and temporal cut-off functions. While neces-
sarily more involved, the mechanism behind the proofs is similar to that of Lemma 2.11.

Let us introduce some more Dirichlet forms which will recurrently show up in what fol-
lows. Recall E w

t (·) and E w,ζ (·) from (2.9) and (2.10), with weights w as defined in (1.17).
For f : E(Zd)→ R and recalling our notation xe and ye for (arbitrarily ordered) endpoints of
edge e, define

av( f )(e) :=
1
2
(

f (xe)+ f (ye)
)
, e ∈ E(Zd). (6.1)

Using our earlier notation ∇ f (e) := f (ye)− f (xe) for the gradient of f , for all g,h : Zd→R, the
discrete product rule reads

∇(gh) = av(g)∇h+ av(h)∇g. (6.2)

Given η : Zd → [0,1] with finite support and any g : Zd →R, let

E a
t,η2(g) := ∑

e∈E(Zd)

av(η2)(e)at(e)
∣∣∇g(e)

∣∣2 (6.3)

and, similarly to (2.10), for any f : [0,∞)×Zd →R with compact (space-time) support, define

E a,ζ
η2 ( f ) :=

∫
∞

0
dt ζ (t)E a

t,η2( ft). (6.4)

Recall the definition of the norms ‖ · ‖p,q;B,ζ in (2.8). We then have:

Lemma 6.1 (Conversion of Dirichlet forms) Suppose Assumption 1.1 and (2.33) hold and let c1
be the constant from (2.33). There is c10 = c10(d) ∈ (0,∞) such that the following holds: Let u
be a (weak) solution the equation (5.5) with ∇ f bounded uniformly on E := E(Zd). Fix B⊂Zd
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finite and suppose η : Zd → [0,1] obeys suppη ⊂ B. Let ξ : [0,∞)→ [0,1], with the value at t
denoted by ξt , be a C1-function with compact support. Then for all λ ≥ 1,

E w,ζ (ξ η ũλ ) ≤ c1c10λ
2
[
E a,ζ

η2 (ξ ũλ )+ ‖∇ f‖2
`∞(E)

∥∥ξ
2|u|2λ−2∥∥

1,1;B,ζ

+ ‖∇η‖2
`∞(E)

∥∥ξ
2|u|2λ

∥∥
1,1;B,ζ +

∥∥( .
ξ )2|u|2λ

∥∥
1,1;B,ζ

]
, (6.5)

where ũλ := sign(u)|u|λ and where
.
ξ denotes the derivative of ξ .

Remark 6.2 The precise form of (6.5) is tailored to our future purposes, in the sense that the
Dirichlet form E a,ζ (ξ ũλ ) naturally comes out of a later energy estimate, see Lemma 6.4 below.
It is important that these two quantities be matched.

In the proof we will need:

Lemma 6.3 For all a,b ∈R and all λ ≥ 1, with ãλ := sign(a)|a|λ , we have(
|a|2λ−2 + |b|2λ−2)(b−a)2 ≤ 8(b̃λ − ãλ )2. (6.6)

Proof. Suppose first that a and b have the same sign. In this case, (b−a)2 = (|b|− |a|)2 as well
as (b̃λ − ãλ )2 = (|b|λ −|a|λ )2 and so (6.6) can be recast as(

|a|2λ−2 + |b|2λ−2)(|b|− |a|)2 ≤ 8(|b|λ −|a|λ )2. (6.7)

This is proved by setting x := |a|/|b| (assuming |a| ≤ |b|) and noting that 1− xλ ≥ 1− x for
x ∈ [0,1] and λ ≥ 1 (in fact the inequality even holds with 2 instead of 8 on the right-hand side).

Suppose now that a and b have opposite signs. By symmetry, it is enough to consider the case
a≥ 0, b < 0, in which, using that (a+ |b|)2 ≤ 2a2 + 2|b|2,(

|a|2λ−2 + |b|2λ−2)(b−a)2 =
(
a2λ−2 + |b|2λ−2)(a+ |b|)2 ≤ 8(a∨|b|)2λ

≤ 8
(
a2λ + |b|2λ

)
≤ 8
(
aλ + |b|λ

)2
= 8
(
ãλ − b̃λ

)2.
(6.8)

The claim follows. �

Proof of Lemma 6.1. We build on the argument from the proof of Lemma 2.11 which we hereby
invite the reader to inspect first. To start, using the discrete product rule (6.2), the definition of
the weights w in (1.17) along with the inequality (a+ b)2 ≤ 2a2 + 2b2 and the bound av(η)2 ≤
av(η2), and minding that ξ is a function of t alone, we obtain for all t ≥ 0 that

E w
t (ξtη ũλ

t ) = ξ
2
t

∫
∞

t
ds ks−t ∑

e
as(e)

(
∇(η ũλ

t )(e)
)2

≤ 2
∫

∞

t
ds ks−t

[
∑
e

as(e)
(
ξt av(η)∇ũλ

t
)2
(e)+ ξ

2
t ∑

e
as(e)

(
av(ũλ

t )∇η
)2
(e)
]

≤ 2E w
t,η2(ξt ũλ

t )+ 2d‖k‖L1‖∇η‖2
∞ξ

2
t

∥∥|ut |2λ
∥∥
`1(B) ,

(6.9)

where E w
t,η2(·) is the quantity from (6.3) with wt in place of at and where ‖ · ‖L1 abbreviates the

L1-norm on [0,∞). Note that (2.33) implies ‖k‖L1 ≤ c1. In view of (2.10) and (6.4), multiplying
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by ζ (t) on both sides of (6.9) and integrating over t, it thus suffices to show a bound of the form
(6.5) for E w,ζ

η2 (ξ ũλ ) in place of E w,ζ (ξ η ũλ ).
Using that av(η2) ≤ 2av(η)2, we write, for all t ≥ 0,

E w
t,η2(ξt ũλ

t ) =
∫

∞

t
ds ks−t ∑

e

(
asav(η2)

)
(e)
(
ξt∇ũλ

t (e)
)2

≤ 2
∫

∞

t
ds ks−t ∑

e

(
asav(η2)

)
(e)
(
ξs∇ũλ

s (e)
)2

+ 4
∫

∞

t
ds ks−t ∑

e
as(e)

(
ξtav(η)∇ũλ

t −ξsav(η)∇ũλ
s

)
(e)2.

(6.10)

Multiplying the first integral on the right by ζ (t) and integrating over t, we get∫
∞

0
dt ζ (t)

(∫ ∞

t
ds ks−t ∑

e

(
asav(η2)

)
(e)
(
ξs∇ũλ

s (e)
)2
)

=
∫

∞

0
ds E a

s,η2(ξsũλ
s )
(∫ s

0
dt ζ (t)ks−t

)
, (6.11)

which in light of the definition of Kt in (2.32) and (2.33) is at most c1E
a,ζ

η2 (ξ ũλ ). Hence, this
term contributes directly to the first term on the right-hand side of (6.5). Concerning the second
integral on the right of (6.10), the discrete product rule (6.2) implies

ξtav(η)∇ũλ
t −ξsav(η)∇ũλ

s

= −ξtav(ũλ
t )∇η + ξsav(ũλ

s )∇η +
(
ξt∇(η ũλ

t )−ξs∇(η ũλ
s )
)
.

(6.12)

In conjunction with the inequality (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, this yields∫
∞

t
ds ks−t ∑

e
as(e)

(
ξtav(η)∇ũλ

t −ξsav(η)∇ũλ
s

)
(e)2 ≤ 3

[
I(1)t + I(2)t + I(3)t

]
, (6.13)

where

I(1)t :=
∫

∞

t
ds ks−t ∑

e
as(e)ξ 2

t (av(ũλ
t )∇η)(e)2,

I(2)t :=
∫

∞

t
ds ks−t ∑

e
as(e)ξ 2

s (av(ũλ
s )∇η)(e)2,

I(3)t :=
∫

∞

t
ds ks−t ∑

e
as(e)

(
ξs∇(η ũλ

s )−ξt∇(η ũλ
t )
)
(e)2.

(6.14)

We will now show separately that, upon multiplication with ζ (t) and integration over t, each of
the three terms I(1)t , I(2)t , I(3)t in (6.13) is bounded by the right-hand side of (6.5).

Using that as≤ 1, we immediately get I(1)t ≤ 2d‖k‖L1‖∇η‖2
∞ξ 2

t ‖|ut |2λ‖`1(B) for all t ≥ 0. Since
‖k‖L1 ≤ c1, this shows ∫

∞

0
dt ζ (t)I(1)t ≤ 2dc1‖∇η‖2

`∞(E)

∥∥ξ
2|u|2λ

∥∥
1,1;B,ζ . (6.15)
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Some more care is needed to bound
∫

∞

0 dt ζ (t)I(2)t . Exchanging the order of integration and using
(2.33) along with as(e) ≤ 1 again, we obtain∫

∞

0
dt ζ (t)I(2)t =

∫
∞

0
ds
(∫ s

0
dt ζ (t)ks−t

)
∑
e

as(e)ξ 2
s (av(ũλ

s )∇η)2(e)

≤ 2dc1‖∇η‖2
∞

∥∥ξ
2|u|2λ

∥∥
1,1;B,ζ .

(6.16)

It remains to derive a suitable bound on I(3)t which is considerably more involved. First, the
assumption as(e) ≤ 1 and elementary symmetrization arguments yield

I(3)t ≤ 4d
∫

∞

t
ds ks−t ∑

x

(
ξsũλ

s (x)−ξt ũλ
t (x)

)2
η(x)2 (6.17)

with the summation effectively only over a finite set since η has finite support. We now use that u
solves (5.5) along with the fact that ∂t ũλ

t = λ |ut |λ−1∂tut to get

ξsũλ
s (x)−ξt ũλ

t (x) =
∫ s

t
dr

d
dr

(ξrũλ
r (x))

=
∫ s

t
dr

.
ξ rũ

λ
r (x)+

∫ s

t
dr ξrλ |ur(x)|λ−1(Lr f )(x)

−
∫ s

t
dr ξrλ |ur(x)|λ−1(Lrur)(x).

(6.18)

Substituting (6.18) into (6.17), using the Cauchy-Schwarz inequality and the standard inequality
(a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, we thus get

I(3)t ≤ 12d
[

Ât + B̂t + Ĉt
]
, (6.19)

where

Ât :=
∫

∞

t
ds ks−t(s− t)∑

x

(∫ s

t
dr η(x)2(

.
ξ r)

2|ur(x)|2λ

)
,

B̂t :=
∫

∞

t
ds ks−t(s− t)∑

x

(∫ s

t
dr λ

2
η(x)2

ξ
2
r |ur(x)|2λ−2(Lr f )(x)2

)
Ĉt :=

∫
∞

t
ds ks−t(s− t)∑

x

(∫ s

t
dr λ

2
η(x)2

ξ
2
r |ur(x)|2λ−2(Lrur)(x)2

)
.

(6.20)

The following consequence of our basic assumptions on ζ and k will be useful for bounding all
three quantities in (6.20): For any measurable g : R→ [0,∞), the definition of Kt in (2.32) and
condition (2.33) imply∫

∞

0
dt ζ (t)

(∫
∞

t
ds ks−t(s− t)

(∫ s

t
dr g(r)

))
=
∫

∞

0
dr g(r)

(∫ r

0
dt ζ (t)

(∫ ∞

r−t
du ku u

))
≤
∫

∞

0
dr g(r)

(∫ r

0
dt ζ (t)Kr−t

)
≤ c1

∫
∞

0
dr g(r)ζ (r).

(6.21)
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Indeed, applying this with g(r) := (
.
ξ r)

2|ur(x)|2λ (which is indeed non-negative) yields

∫
∞

0
ζ (t) Ât dt ≤ c1

∥∥( .
ξ )2|u|2λ

∥∥
1,1;B,ζ , (6.22)

which in light of λ ≥ 1 is bounded by a corresponding term on the right-hand side of (6.5). For
the term B̂t we use ar(e) ≤ 1 to bound (Lr f )2 ≤ 4d2‖∇ f‖2

`∞(E). Then (6.21) shows

∫
∞

0
dt ζ (t) B̂t ≤ 4d2c1λ

2 ‖∇ f‖2
∞

∥∥ξ
2|u|2λ−2∥∥

1,1;B,ζ . (6.23)

In order to bound Ĉt , we first use the Cauchy-Schwarz inequality, at ≤ 1, η(x)2 ≤ av(η2)(e) and
Lemma 6.3 to get

∑
x

η(x)2|ur(x)|2λ−2(Lrur)(x)2

= ∑
x
|ur(x)|2λ−2

η(x)2
(

∑
e=(x,y)

ar(e)
[
ur(y)−ur(x)

])2

≤ 2d ∑
x
|ur(x)|2λ−2

∑
e=(x,y)

(
av(η2)ar

)
(e)
[
ur(y)−ur(x)

]2
≤ 2d ∑

e=(x,y)

(
av(η2)ar

)
(e)
[
|ur(y)|2λ−2 + |ur(x)|2λ−2](∇ur)

2(e).

≤ 16d ∑
e

(
av(η2)ar

)
(e)(∇ũλ

r )(e)
2 = 16dE a

t,η2(ũλ
r ).

(6.24)

Plugging this in (6.20) and invoking (6.21) then yields

∫
∞

0
dt ζ (t)Ĉt ≤ 16dλ

2
∫

∞

0
dt ζ (t)

(∫
∞

t
ds ks−t(s− t)

(∫ s

t
dr E a

r,η2(ξrũλ
r )
))

≤ 16dc1λ
2
∫

∞

0
dr E a

r,η2(ξrũλ
r )ζ (r) = 16dc1λ

2E a,ζ
η2 (ξ ũλ ).

(6.25)

It follows from (6.19), (6.22), (6.23) and (6.25) that
∫

∞

0 ζ (t)I(3)t dt admits the desired bound. The
proof of (6.5) is complete. �

6.2 Energy estimate.

Our next step is the so-called energy estimate which bounds the Dirichlet energy of powers of
solution to the inhomogeneous Poisson equation (under truncation with respect to space and time)
by a suitable norm thereof. The same calculation also produces a pointwise estimate (in time) of
the `1-norm of the (power of) solution weighted by ζ . The precise statement is as follows:
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Lemma 6.4 (Energy estimate) Suppose Assumption 1.1 and (2.33) hold. There is a numerical
constant c11 ∈ (0,∞) such that for all λ ≥ 1 and for any solution u of (5.5), we have

max
{

sup
t≥0

[
ζ (t)‖(ξtη ũλ

t )
2‖`1(B)

]
, E a,ζ

η2 (ξ ũλ )
}

≤ c11λ 2

[
‖∇ f‖2

`∞(E)

∥∥ξ 2|u|2λ−2
∥∥

1,1;B,ζ +
∥∥(∇ f )(∇η)

∥∥
`∞(E)

∥∥ξ 2|u|2λ−1
∥∥

1,1;B,ζ

+
(
‖∇η‖2

`∞(E)+ ‖
.
ζ /ζ‖L∞(R+)

)∥∥ξ 2|u|2λ
∥∥

1,1;B,ζ +
∥∥∥dξ 2

dt |u|
2λ

∥∥∥
1,1;B,ζ

]
.

(6.26)

Proof. Repeating the argument leading to (5.18) of [3] and using that at ≤ 1 yields an absolute
constant c ∈ (0,∞) such that the bound

−∂t
∥∥(η ũλ

t )
2∥∥

`1(B)+E a
t,η2(ũλ

t )

≤ cλ
2
[
‖∇η‖2

`∞(E)

∥∥|ut |2λ
∥∥
`1(B)+ ‖∇ f‖2

`∞(E)

∥∥|ut |2λ−2∥∥
`1(B)

+
∥∥(∇ f )(∇η)

∥∥
`∞(E)

∥∥|ut |2λ−1∥∥
`1(B)

]
(6.27)

holds for all t ≥ 0 and all λ ≥ 1. Next we observe that, for all s≥ 0,∫
∞

s
dt ζ (t)ξ 2

t
(
−∂t‖(η ũλ

t )
2‖`1(B)

)
= ζ (s)ξ 2

s

∥∥(η ũλ
s )

2∥∥
`1(B)+

∫
∞

s
dt
∥∥(η ũλ

t )
2∥∥

`1(B) ∂t
(
ζ (t)ξ 2

t
)

≥ ζ (s)ξ 2
s

∥∥(η ũλ
s )

2∥∥
`1(B)−‖

.
ζ /ζ‖L∞(R+)

∥∥ξ
2|u|2λ

∥∥
1,1;B,ζ −

∥∥∥dξ 2

dt
|u|2λ

∥∥∥
1,1;B,ζ

.

(6.28)

Multiplying both sides of (6.27) by ζ (t)ξ 2
t , integrating over t from 0 to infinity, invoking (6.28)

with s = 0 and foregoing the term ζ (0)ξ 2
0 ‖(η ũλ

0 )
2‖`1(B), we find that E a,ζ

η2 (ξ ũλ ) is bounded by

the right-hand side of (6.26). Repeating the argument, but this time neglecting the term E a
t,η2(ũλ

t )

in (6.27), and integrating from s to infinity, we infer that ζ (s)‖(ξsη ũλ
s )

2‖`1(B) admits the same
bound, for all s≥ 0. Hereby (6.26) follows. �

6.3 Proof of one-step estimate.

The proof of Proposition 5.2, which we are about to give, combines the Sobolev inequality of
Corollary 2.5 with Lemmas 6.1 and 6.4. The conversion lemma (Lemma 6.1) will play a pivotal
role in recovering the Dirichlet form that the energy estimate gives us information about; namely,
the one naturally associated to the Poisson equation (5.5), cf. Remark 6.2(1).

Proof of Proposition 5.2. Abbreviate λ := λ1/2 and note that λ ≥ 1, as will be desired for appli-
cations of the previous two lemmas. In view of (5.6) and the interpolation inequality (2.29), we
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have

|||κ2/λ1
1 u |||λ1 p,λ1q; B1,ζ = |||κ1/λ

1 u |||2λ p,2λq; B1,ζ =
∣∣∣∣∣∣ (κ1ũλ )2 ∣∣∣∣∣∣ 1

2λ

p,q; B1,ζ

≤
∣∣∣∣∣∣ (κ1ũλ )2 ∣∣∣∣∣∣ θ

2λ

p̂(α), q̂(β ); B1,ζ

∣∣∣∣∣∣ (κ1ũλ )2 ∣∣∣∣∣∣ 1−θ

2λ

1,∞; B1,ζ .
(6.29)

We will now estimate each of the arising norms individually.
We begin with the second norm on the right of (6.29) as its control is easier. The energy

estimate (6.26) from Lemma 6.4 along with supp(ζ ) ⊆ [0,∞) readily yield∣∣∣∣∣∣ (κ1ũλ )2 ∣∣∣∣∣∣
1,∞; B1,ζ ≤ sup

t≥0
|B1|−1∥∥(ξ1(t)η1ũλ

t )
2∥∥

`1(B1)

≤
[

inf
t∈supp(ξ1)

ζ (t)
]−1
|B1|−1 sup

t≥0

{
ζ (t)

∥∥(ξ1(t)η1ũλ
t )

2∥∥
`1(B1)

}
≤ c11λ

2
[

inf
t∈supp(ξ1)

ζ (t)
]−1
|B1|−1

×
[

Γ
∥∥∥ξ

2
1
(
|u|2λ−2 + |u|2λ−1 + |u|2λ

)∥∥∥
1,1;B1,ζ

+
∥∥∥∣∣dξ 2

1
dt

∣∣ |u|2λ

∥∥∥
1,1;B1,ζ

]
,

(6.30)

where Γ is as defined in (5.10). Since the weights κ1,κ2 were assumed to be (B1,B2)-adapted
with parameters (δ ,ρ ,M), (5.3) shows that, for all t ≥ 0,∣∣∣dξ 2

1 (t)
dt

∣∣∣= 2ξ1(t)|
.

ξ1(t)| ≤ 2δM2
ξ2(t)2ρ . (6.31)

With the help of Jensen’s inequality we in turn get that, for k = 0,1,2,

|B1|−1∥∥ξ
2
1 |u|2λ−k

∥∥
1,1;B1,ζ = ‖ζ‖L1

∣∣∣∣∣∣ξ 2
1 |u|2λ−k

∣∣∣∣∣∣
1,1;B1,ζ

≤ ‖ζ‖L1

∣∣∣∣∣∣ξ 2 2λ

2λ−k
1 |u|2λ

∣∣∣∣∣∣1− k
2λ

1,1;B1,ζ ≤ ‖ζ‖L1M2∣∣∣∣∣∣ξ 2ρ

2 |u|
2λ
∣∣∣∣∣∣1− k

2λ

1,1;B1,ζ ,
(6.32)

where in the last step we used that ξ
2 2λ

2λ−k
1 ≤ ξ 2

1 ≤M2ξ
2ρ

2 thanks to ξ1 ∈ [0,1] and (5.3). Substi-
tuting (6.31) and (6.32) into (6.30), we find∣∣∣∣∣∣ (κ1ũλ )2 ∣∣∣∣∣∣

1,∞; B1,ζ ≤ 3c11(λM)2‖ζ‖L1
Γ+ δ

infΣ1 ζ

∣∣∣∣∣∣ξ 2ρ

2 |u|
2λ
∣∣∣∣∣∣γ

1,1;B1,ζ , (6.33)

where we also invoked the definition of γ from (5.8).
We now turn to the first norm in the second line of (6.29). Using the Sobolev inequality from

Corollary 2.5, whose conditions are met for the allowed range of α and β , cf. above (5.6), and
subsequently applying the energy-conversion Lemma 6.1 yields∣∣∣∣∣∣ (κ1ũλ )2 ∣∣∣∣∣∣

p̂(α), q̂(β ); B1,ζ

(2.24)
≤ c2

0|B1|
2
d |||w−1||| r

2 , s
2 ,B1,ζ

E w,ζ (ξ1η1ũλ )

|B1|

(6.5)
≤ c2

0c1c10λ
2|B1|

2
d |||w−1||| r

2 , s
2 ,B1,ζ

[
E a,ζ

η2
1
(ξ1ũλ )

|B1|

+ ‖ζ‖L1

(
Γ
∣∣∣∣∣∣ξ 2

1
(
|u|2λ + |u|2λ−2)∣∣∣∣∣∣

1,1;B1,ζ +
∣∣∣∣∣∣( .

ξ 1)
2|u|2λ

∣∣∣∣∣∣
1,1;B1,ζ

)]
.

(6.34)
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The “bare” Dirichlet energy on the right is now bounded using Lemma 6.4 exactly as above with
the result

E a,ζ
η2

1
(ξ1ũλ )

|B1|
≤ 3c11(λM)2(Γ+ δ )‖ζ‖L1

∣∣∣∣∣∣ξ 2ρ

2 |u|
2λ
∣∣∣∣∣∣γ

1,1;B1,ζ . (6.35)

The remaining terms are estimated directly with the help of (6.32) and the bounds on the mollifiers
in (5.3). This yields∣∣∣∣∣∣ (κ1ũλ )2 ∣∣∣∣∣∣

p̂(α), q̂(β ); B1,ζ

≤ 5c11(λ
2M)2|||w−1||| r

2 , s
2 ,B1,ζ ‖ζ‖L1

[
|B1|

2
d (Γ+ δ )

] ∣∣∣∣∣∣ξ 2ρ

2 |u|
2λ
∣∣∣∣∣∣γ

1,1;B1,ζ (6.36)

In order to covert the last norm to the desired form, we observe that, since η2 = 1 on B1 by
assumption, cf. (5.2), and minding that p/ρ > 1 and q/ρ > 1, we have

|B1|
|B2|

∣∣∣∣∣∣ξ 2ρ

2 |u|
2λ
∣∣∣∣∣∣

1,1;B1,ζ

(5.1)
≤
∣∣∣∣∣∣κ2ρ

2 |u|
2λ
∣∣∣∣∣∣

1,1;B2,ζ

(2.22)
≤
∣∣∣∣∣∣κ2ρ

2 |u|
2λ
∣∣∣∣∣∣ p

ρ
, q

ρ
;B2,ζ = |||κ2/λ2

2 u |||2λ

λ2 p,λ2q;B2,ζ , (6.37)

where we also recalled that λ2 := λ1/ρ = 2λ /ρ . Substituting this into (6.33) and (6.36), and
then these back into (6.29), the claim follows by noting that γ ≤ 1. �

We also need to finish:

Proof of Corollary 5.3. This is due to (6.33) (recalling that 2λ = λ1) and (6.37). �

APPENDIX

This short section collects various calculations that were relegated here from the main text of the
paper. Specifically, we give proofs of Lemma 1.4 and Lemma 4.4.

A.1 Moment comparisons.

We begin by a comparison of the ranges of parameters for negative moments of a0(e) with the
positive moments of Te:
Proof of Lemma 1.4. Let q > 0 be such that E(a0(e)−q) < ∞. (Otherwise there is nothing to
prove.) The assumption of separate ergodicity and the Pointwise Ergodic Theorem then imply

1
t

∫ t

0
ds as(e)−q −→

t→∞
E
(
a0(e)−q). (A.1)

Next fix M > 0 large. Renewal considerations show

1
t

∫ t

0
ds as(e)−q −→

t→∞

1
E(Te∧M)

E

(∫ Te∧M

0
dtat(e)−q

)
. (A.2)

It follows that

E

(∫ Te∧M

0
dt at(e)−q

)
= E(Te∧M)E

(
a0(e)−q). (A.3)
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Next we note that Höler’s inequality shows, for any r > 1,

Te∧M =
∫ Te∧M

0
dt 1≤

(∫ Te∧M

0
dt at(e)dt

)1/r(∫ Te∧M

0
dt at(e)−

1
r−1

) r−1
r

(A.4)

The definition of Te ensures that the first term on the right is at most 1. Raising both sides of
the resulting bound to power r

r−1 and setting r := 1+ 1/q, which is equivalent to 1
r−1 = q and

r
r−1 = q+ 1, then gives

E
(
(Te∧M)q+1)≤E

(∫ Te∧M

0
dt at(e)−q

)
. (A.5)

Plugging in (A.3) and bounding E(Te∧M) by the 1
q+1 -power of E((Te∧M)q+1) shows

E
(
(Te∧M)q+1)≤ [E(a0(e)−q)] q+1

q
. (A.6)

Taking M→ ∞ and invoking the Monotone Convergence Theorem, the claim follows. �

A.2 Approximating corrector by gradients.

Our next task is to complete the proof of Lemma 4.4 showing that the corrector lies in the closed
subspace generated by gradients of Lp-functions. In order to avoid dealing with complicated
summation formulas, we will cast the proof in functional-analytic notation and language.

Fix p ≥ 1 such that the integrability conditions in (3.5) apply. For each k = 1, . . . ,d, consider
the linear operator T̂k : Lp(P)→ Lp(P) defined by

T̂k f := f ◦ τ0,êk , (A.7)

with êk the k-th unit vector in Zd . We also set

T̂d+1 f :=
∫ 1

0
dt f ◦ τt,0 (A.8)

for the corresponding time-shift. The operators T̂1, . . . , T̂d+1 commute and they are all contractions
(by Assumption 1.1). For any ε > 0 and k = 1, . . . ,d + 1, the operator (1+ ε − T̂k)

−1 is well
defined and can be expressed as ∑n≥0(1+ ε)−n−1T̂ n

k . Let P̂k : Lp(P)→ Lp(P) be defined by the
Lp-limit

P̂k f := lim
n→∞

1
n

n−1

∑
`=0

T̂ `
k f (A.9)

which exists by the Pointwise Ergodic Theorem, see [26, p.9, Thm. 2.3]; the fact that the conver-
gence is in Lp follows in standard fashion by uniform integrability. Rewriting T̂ n

k = An+1
k −An

k
with An

k f := ∑
n−1
`=0 T̂ `

k f , simple resummation shows

ε(1+ ε− T̂k)
−1 f = ∑

n≥1

nε2

(1+ ε)n+1
1
n

An
k f . (A.10)

From (A.9) and ∑n≥1
nε2

(1+ε)n+1 = 1, we thus have

ε(1+ ε− T̂k)
−1 f Lp

−→
ε↓0

P̂k f , f ∈ Lp(P). (A.11)

for each k = 1, . . . ,d + 1.
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Next, consider the (vector) valued functions u1, . . . ,ud+1 defined by

uk := χ(0, êk, ·), k = 1, . . . ,d, (A.12)

and

ud+1 :=
∫ 1

0
dt χ(t,0, ·). (A.13)

The cocycle condition then reads

(1− T̂j)uk = (1− T̂k)u j, j,k = 1, . . . ,d + 1, (A.14)

By the cocycle property and (A.9) we also have

P̂kuk = lim
n→∞

χ(0,nêk, ·)
n

, k = 1, . . . ,d + 1. (A.15)

The cocycle property then also gives, for each j 6= k and each t ∈R,

χ(0,nêk, ·) ◦ τt,e j = χ(0,nêk, ·)+ χ(t,e j, ·) ◦ τ0,nêk −χ(t,e j, ·). (A.16)

Upon division by n, the last two terms on the right tend to zero in Lp(P) and so P̂kuk is invariant
under space-time shifts. A completely analogous argument applies to ud+1; in light of the joint
ergodicity of P with respect to the space-time shifts we thus get

P̂kuk = 0, k = 1, . . . ,d + 1. (A.17)

We are now ready to give:
Proof of Lemma 4.4. Define hε by

hε :=
d+1

∑
k=1

ε
k−1

k

∏
j=1

(1+ ε− T̂j)
−1uk. (A.18)

Pick `= 1, . . . ,d + 1 and use (A.14) along with the fact that T̂1, . . . , T̂d+1 commute, minding also
the rewrite 1− T̂` = (1+ ε− T̂`)− ε , to get

(1− T̂`)hε =
d+1

∑
k=1

ε
k−1(1− T̂`)

k

∏
j=1

(1+ ε− T̂j)
−1uk

=
d+1

∑
k=1

ε
k−1(1− T̂k)

k

∏
j=1

(1+ ε− T̂j)
−1u`

=
d+1

∑
k=1

[
ε

k−1
k−1

∏
j=1

(1+ ε− T̂j)
−1− ε

k
k

∏
j=1

(1+ ε− T̂j)
−1
]

u`

= u`− ε
d+1

d+1

∏
j=1

(1+ ε− T̂j)
−1u`,

(A.19)

where the last line follows by noting that the expression on the line before is a telescopic sum.
Since ‖ε(1+ε− T̂j)‖Lp→Lp ≤ 1 for each j = 1, . . . ,d+1, the norm of second term on the last line
is at most that of ε(1+ ε − T̂`)−1u`. But this term converges to P̂̀ u` by (A.11) which vanishes
thanks to (A.17). This implies that, for all `= 1, . . . ,d + 1,

(1− T̂`)hε −→
ε↓0

u`, in Lp(P), (A.20)
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which is now easily checked to give the desired claim. �

Remark A.1 Under the assumption of separate ergodicity — i.e., triviality of P on events A such
that, for at least one k = 1, . . . ,d + 1, we have Tk1A = 1A — we have Pku` = 0 for all k,` =
1, . . . ,d + 1. It then suffices to take hε := (1+ ε − T̂1)u1; cf Biskup and Spohn [13]. However,
unlike erroneously concluded in [13], this does not suffice for P that are only jointly ergodic
where one has to use (A.18) instead.
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[20] J.-D. Deuschel and H. Kösters, The quenched invariance principle for random walks in random environments
admitting a bounded cycle representation, Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 3, 574–591.
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