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A proof of the Gibbs-Thomson formula in the
droplet formation regime

Marek Biskup, ! Lincoln Chayes' and Roman Kotecky?

We study equilibrium droplets in two-phase systems at parameter values cor-
responding to phase coexistence. Specifically, we give a self-contained micro-
scopic derivation of the Gibbs-Thomson formula for the deviation of the pres-
sure and the density away from their equilibrium values which, according to the
interpretation of the classical thermodynamics, appears due to the presence of a
curved interface. The general—albeit heuristic—reasoning is corroborated by a
rigorous proof in the case of the two-dimensional Ising lattice gas.
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1. INTRODUCTION

1.1. The problem

The description of equilibrium droplets for systems with coexisting phases is
one of the outstanding achievements of classical thermodynamics. Standard
treatments of the subject highlight various formulae relating the linear size of
the droplet to a specific pressure difference. One of these, calle@ikoes-
Thomsorformula, concerns the difference between the actual pressure outside
the droplet and the ambient pressure of the system without any droplets. (Or,
in the terminology used in classical textbooks, “above a curved interface” and
“above a planar interface,” respectively.) The standard reasoning behind these
formulee is based primarily on macroscopic concepts of pressure, surface ten-
sion, etc. But, notwithstanding their elegance and simplicity, these derivations
do not offer much insight into the microscopic aspects of droplet equilibrium.
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The goal of the present paper is to give a self-contained derivation of the Gibbs-
Thomson formula starting from the first principles edyuilibrium statistical
mechanics.

While straightforward on the level of macroscopic thermodynamics, an at-
tempt for a microscopic theory of droplet equilibrium immediately reveals sev-
eral technical problems. First of all, there is no obvious way—in equilibrium—
to discuss finite-sized droplets that are immersed ia pnori infinite system.
Indeed, the correct setting is the asymptotic behavior of finite systems that are
scaling to infinity and that contain droplets whose safso scales to infinity
(albeit, perhaps, at a different rate). Second, a statistical ensemble has to be
produced whose typical configurations will feature an equilibrium droplet of a
given linear size. A natural choice is the canonical ensemble with a tiny frac-
tion of extra particles tuned so that a droplet of a given size is induced in the
system. A difficulty here concerns the existence of a minimal droplet size as
will be detailed below. Finally, for the specific problem at hand, the notions of
pressure “above a curved interface” and “above a planar interface” have to be
reformulated in terms of microscopic quantities which allow for a comparison
of the difference between these pressures and the droplet size.

Some of these issues have previously been addressed by the present au-
thors. Specifically, in [4, 5], we studied the droplet formation/dissolution phe-
nomena in the context of the canonical ensemble at parameters corresponding
to phase coexistence and the particle density slightly exceeding the ambient
limiting rarefied density. It was found that, ¥ is the volume of the system
andJN is the particle excess, droplets form when the rédid)@+D/d /v s
of the order of unity. In particular, there exists a dimensionless parameter
proportional to the thermodynamic limit of this ratio, and a non-trivial critical
value A¢, such that, forA < Ag, all of the excess will be absorbed into the
(Gaussian) fluctuations of the ambient gas, whil&if> A, a mesoscopic
droplet will form. Moreover, the droplet will only subsume a fraction < 1
of the excess particles. This fraction gets smalleA atecreases ta ¢, yet the
minimum fractioni, doesnot vanish. It is emphasized that these minimum
sized droplets are a mesoscopic phenomenon: The linear size of the droplet will
be proportional to//@+D « v1/d and the droplet thus occupies a vanishing
fraction of the system. Note that the total volume cannot be taken arbitrary
large if there is to be a fixed-size droplet at all.

The droplet formation/dissolution phenomena have been the subject of in-
tensive study in last few years. The fact tddtd + 1) is the correcexponent
for the scale on which droplets first appear was shown rigorously in [15] (see
also [21]); a heuristic derivation may go back at least to [3]. The existence of a
sharpminimal droplet size on the scal¢'/(@+D was described in [22], more
recently in [4,25] and yet again in [2]. In the context of the 2D Ising system, a
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rigorous justification of the theory outlined in [4] was provided in [5]. We note
that the existence of a minimal droplet size seems to be ultimately related to
the pressure difference “due” to the presence of a droplet as expressed by the
Gibbs-Thomson formula. Indeed, from another perspective (which is more or
less that of [22, 25]), the formation/dissolution phenomena can be understood
on the basis of arguments in which the Gibbs-Thomson formula serves as a
foundation. Finally, we remark that although the generation of droplets is an
inherently dynamical phenomenon (beyond the reach of current methods) it is
possible that, on limited temporal and spatial scales, the equilibrium asymp-
totics is of direct relevance.

The remainder of this paper is organized as follows. In the next subsection
(Section 1.2) we will present an autonomous derivation of the Gibbs-Thomson
formula based on first principles of statistical mechanics. Aside from our own
(modest) appreciation of this approach, Section 1.2 is worthwhile in the present
context because the rigorous analysis develops precisely along these lines. In
Section 2, we will restrict our attention to the 2D Ising lattice gas, define ex-
plicitly the relevant quantities and present our rigorous claims in the form of
mathematical theorems. The proofs will come in Section 3.

1.2. Heuristic derivation

Let us consider a two-phase system at parameter values corresponding to phase
coexistence. We will assume that the two phases are distinguished by their den-
sities and, although the forthcoming derivation is completely general, we will
refer to the dense phase lagiid and to the rarefied phase gas Confining

the system to ad| > 2)-dimensional volumé/, we will consider a canon-

ical ensemble at inverse temperatyteand the number of particles fixed to

the value

N = pgV + (p, — pg)oV. (1.1)

Here, p, and pgq are the bulk densities of the liquid and gas, respectively, and
the particle excess BN = (p, — pg)oV with 6V « V. Letw; denote the
dimensionless interfacial free energy (expressed in multiplgséj, which
represents the cost of an optimally-shaped droplet of unit volume, and let
denote the response function, = %((N — (N))?), which is essentially the
isothermal compressibility. Then, as has been argued in [4], if the parameter
(pe = p)? (V)T

A= :
Z%wl \/

(1.2)

is less than a critical valua. = %(d—;l)%, all of the particle excess will
be absorbed by the background fluctuations, while Aos A, a fraction of
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the excess particles will condense into a droplet. Moreover, the volume of this
droplet will be (in the leading orde), oV, wherel, € [0, 1] is the maximal
solution to the equation

d—1
VA =2A1-2). (1.3)

Note thatia, = 2/(d + 1) as advertised; that is to say, the droplet does not
appear gradually. Furthermore, as is of interest in certain anisotropic situations
where the droplet plays a role of an equilibrium crystal, the droplet has a par-
ticular shape, known as thgulff shapewhich optimizes the overall interfacial
free energy for a given volume.

Gibbs-Thomson I: The densityon the basis of the aforementioned claims, we
can already state a version of the Gibbs-Thomson formula for the difference of
densities “due to the presence of a curved interface.” Indeed, since the droplet
only accounts for a fraction} », of the excess patrticles, the remaind&r—
An)(p,—pg)oV, of these particles reside in the bulk. Supposing that the droplet
subsumes only a negligible fraction of the entire volume,dé.& V, the gas
surrounding the droplet will thus have the density

oV
Pg = pa+ (1= Aa)(p, = pg) - (1+0(D). (1.4)

Hereo(1) is a quantity tending to zero astends to infinity while keeping\
finite (andA > A¢). Invoking (1.2) and (1.3), this is easily converted into

d—1 sw;
d = pg aoV)1/d

p_g = pg+ (1 + 0(1)) (1.5)
Thus, the density of the gas surrounding the droplet will exceed the density
of the ambient gas by a factor inversely-proportional to the linear size of the
droplet. This is (qualitatively) what is stated by the Gibbs-Thomson formula.

In order to make correspondence with physics literature, let us assume
that the droplet is spherical—which is the case for an isotropic surface tension.
Then we have

da-1

Sd)_T and /IA(SV:%rd

d d
wheres is the surface tensior§y is the surface area of a unit sphereRA
andr is the radius of the droplet. Substituting these relations into (1.5), we

will get
pox %(1 +0(1)). (1.7)

w = oS (1.6)

pg=pg+(d—1)

Pe — Pg



A microscopic theory of Gibbs-Thomson formula 5

Of course, all three formulas (1.4), (1.5) and (1.7) represent the leading or-
der asymptotic in Ar. Higher-order corrections go beyond the validity of the
presented argument.

Remark 1.1. We note that equation (1.7) differs from the usual cor-
responding version of the Gibbs-Thomson formula in whichtha&ppearing
above is replaced byy. This is due to the approximation ~ pg which is
justified only in the ideal-gas limit of the rarefied phase.

Pressures above curved/planar interfaceblext we turn our attention to the
Gibbs-Thomson formula for the pressure. Here we immediately run into a
complication; while the density is a well-defined object in finite volume, the
pressure, by its nature, is a macroscopic commodity. Thus, strictly speaking,
thepressureshould be discussed in the context of thermodynamic limits.

In the present context we need to define the “pressure of the gas surround-
ing a droplet.” In order to do so, we will consider two canonical ensembles
with the samenumber of particles given by (1.1), in volum¥sandV + aV,
whereaV « V. From the perspective of equilibrium thermodynamics, these
two situations describe the initial and terminal states of the gas undergoing
isothermal expansion. Standard statistical-mechanical formulas tell us that the
change of the relevant thermodynamic potential (the Helmholtz free energy)
during this expansion is given as the pressure times the difference of the vol-
umesaV. Using Zc(N, V) to denote thecanonical partition function ofN
particles in volumeé/, we thus define the relevant presspieby

o 11 log Zc(pgV + (pp — pg)oV, V + aV)
B aV Zc(pgV + (pp — pg)dV, V)

For finite V, aV, etc., the quantityp, still depends omV. As it turns out,
this dependence (which we will refrain from making notationally explicit) will
annul in any limitV, aV — oo with aV/0V — 0, wheredV denotes the
boundary ofV. However, we must consider a limiting procedure for whith
also does not “disturb” the droplet. This is a slightly delicate subject matter to
which we will return shortly.

Our next goal is to give a mathematical interpretation of the pressure
“above a planar interface.” As it turns out (and as is the standard in all deriva-
tions), here the correct choice is to take simply the pressure of the ambient gas
phase. (See Remark 1.3 for further discussions.) Ugg@:, V) to denote
thegrand canonicapartition function, withu denoting the chemical potential,
this quantity is defined by the (thermodynamic) limit

(1.8)

1 . 1
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Here we have prepositioned the chemical potential to the transitional value,
i.e. u = wui. By well-known arguments, this limit is independent of hdtv
tends to infinity providedV/V tends to zero a¥ — oo.

Since we are ultimately looking for an expression for the differemce
P, INstead of (1.9) we would rather have an expression that takes a form
similar to (1.8). We might try to use the fact that ldg(ut, V) = fpV +
0O(aV), but then the boundary term will be much larger than the actual Gibbs-
Thomson correction. We thus have to develop a more precise representation of
the grand canonical partition function. For simplicity, we will restrict ourselves
to the cases wheY is a rectangular box, in which case we expect to have

log Za(ut, V) = PV + twaidV + O(V @). (1.10)

Hererya) denotes avall surface tensiomvhich depends on the boundary con-
ditions. The error term represents the contribution from lower-dimensional
facets ofV, e.g., edges and corners ¥fin d = 3. Such a representation
can be justified using low-temperature expansions, see [8], and/or by invoking
rapid decay of correlations. Of course, this will be discussed in excruciating
detail in Section 3 of the present paper.

Using the representation (1.10), we can now write

L g 280V +aV) O<a(v FaV)—oV + VT

- |
BPs og ~

N 0T 2o V) ). @)

which supposes that both andV + AV are rectangular volumes.

Our goal is to limitaV to the values for which the error term is negligi-
ble compared with the anticipated Gibbs-Thomson correction. First, suppos-
ing thataV « V, we find that the differencé(V + aV) — 8V is of the or-
deraV,/VYd, Second, assuming that from (1.2) is finite and exceeding.
(which is necessary to have any droplet at all), we kawe- V9/@+D These
two observations show that the contributionag¥ + aV) — oV to the error
term in (1.11) is indeed negligible compared witiy)~1/9. A similar calcu-
lation shows that the the second part of the error tarfd;2/9/aV, on the
right-hand side of (1.11) is negligible compared wv)~1/9 provided that

AV > VT tan, (1.12)

It is easy to check—see formula (1.23)—that (1.12) can be satisfied while
maintainingaV <« oV. This observation will be essential in the forthcom-
ing developments.

The formulas (1.8-1.11) can be conveniently subtracted in terms of the
probability Py (N) that, in the grand canonical ensemble, thereexwctly N
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particles in volumeé/. Explicitly, denoting

_ePrNZe(N, V)
Py(N) = PRV (1.13)

we get

1 Pv1av(pgV + (p, — pg)dV)
— Ps) = — 0
PP = Pe) = 109 oV () — V)

Here we have applied (1.12) to simplify the error term.

+o(v)~Y9). (1.14)

Gibbs-Thomson II: The pressureNow we are in a position to derive the de-
sired Gibbs-Thomson formula for the pressure. A principal tool for estimating
the ratio of the probabilities in (1.14) will be another result of [4] which tells
us that, in the limitv — oo,

d-1
—logPy (pgV + (p, = pg)V) = w1 (V)T (¥} +0(D),  (1.15)
where®’, is the absolute minimum of the function
OA() = AT + AL — 1) (1.16)
on [0, 1]. SincepgV + (p, — pg)dV = pg(V +aV) + (p, — pg)(a V), where

pg AV

pR— (1.17)
¢t Fg

o=1-—
we also have, again in the lint — oo,
d—1
—10gPy v (pgV + (p, — pg)V) = wa(a V) T (@, +0(1)), (1.18)

where we have introduced the shorthaw@:) = a T A.
Supposing thatV « 6V, we can write

s 2V 1 )2+ 0(aV /6V) (1.19)

o= D) —
A(a) A p[ _ pgév

and thus, to the leading orderiV /oV,

pg 1 [d—l* d+1

pr—pg V)| ‘D“TA“‘M)ZM(D} (1.20)
t

= w1
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After some manipulations involving (1.16) and (1.3), the square bracket on the
right-hand side turns out to equ%g—ligl/d + 0(1). Thus we finally derive

—1 wipg
d p,— pg(hadV)Vd

In the case of an isotropic surface tension, formula (1.21) again reduces to

1
7P Z(1+0(1). (1.22)
Pe— pgl
This is the (leading order) Gibbs-Thomson correction; the one which is usually
derived [24, 29] by invokinghermodynamiconsiderations. We note that here

the gas-densityg in the numerator is fully justified, cf Remark 1.1.

d
ﬁ(pv = Px) =

(1+0(1)). (1.21)

pV_poo:(d_l)

Remark 1.2. We note that higher orders iryd—as predicted by the
“exponential” Gibbs-Thomson formula in classical thermodynamics—go be-
yond the validity of the formulas (1.15) and (1.18). In fact, as a closer look at
theV-dependence @iV andoV suggests, these corrections may depend on the
choice of the volume¥ andV +aV and on the boundary condition. We further
remark that both formulas (1.5) and (1.21) have been derived for the situation
when a droplet of the dense phase forms inside the low-density phase. How-
ever, a completely analogous derivation works for a droplet of a low-density
phase immersed in a high-density environment (e.g., vapor bubbles in water).

Remark 1.3. Once we have derived the Gibbs-Thomson formula
(1.21), we can also justify our choice pf, for the pressure “above a planar
interface.” First let us note that, in (1.21),. can be viewed as a convenient
normalization constant—subtracting (1.21) for two different volumes\gay
andV», the quantityp,, completely factors out. Moreover, 1 <« Vs, the
contribution of the droplet itV to such a difference will be negligible. Thus,
in the limit whenV, — oo andV; stays fixed py, — py, tends topy, — p., as
expressed in (1.21). Since also the dropleVirbecomes more and more flat
in this limit, p,, indeed represents the pressure “above a planar interface.”

This concludes our heuristic derivation of the Gibbs-Thomson formula.
We reiterate that all of the above only makes good sense wMelas been
chosen such that

VISG+a « AV « OV ~ ViTa, (1.23)

As is easily checked, these inequalities represent a non-trivial interval of values
of aV. In the next sections, where we will rigorously treat the case of the
two-dimensional Ising lattice gas, the inequality on the right-hand side will
be guaranteed by takimy = noV and then performing the limit¥§ — oo
followed byn — 0.
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2. RIGOROUS RESULTS

2.1. The model

Throughout the remainder of this paper, we will focus our attention otwtbe
dimensional Ising lattice gasThe latter refers to a system where each site of
the square latticB? can be either vacant or occupied by one particle. The state
of each site is characterized by means of an occupation nungbehich is

zero for a vacant site and one for an occupied site. The formal Hamiltonian of
the system can be written as

A== Ny —p > Ny (2.1)
(X,y) X

Here (x, y) denotes a nearest-neighbor pair &hand x plays the role of a

chemical potential. Note that the Hamiltonian describes particles with a hard-

core repulsion and short-range attraction (with coupling constant set to unity).
The Gibbs measure (or Gibbs state) on particle configurations in a finite

volumeA c Z?is defined using the finite-volume version of (2.1) and a bound-

ary condition on the boundary of. Explicitly, let A be the set of sites in

72\ A that have a bond intax and let#, be the restriction of# obtained by

considering only pairéx, y}NA # @ inthe firstsumin (2.1) and sitese A in

the second sum. I, € {0, 1}* is a configuration im andn,, is a boundary

condition (i.e., a configuration on the boundary of A), and if 775 (nA|Naa)

is the Hamiltonian for these two configurations, then the probabilityxofn

the corresponding Gibbs measure is given by

@ BAN(NAINaA)
28 (u, A)

Here, as usualf > 0 is the inverse temperature and the normalization con-
stant,ZG”M’ﬁ(y, A), is the grand canonical partition functionAcorrespond-
ing to the boundary condition;,. We recall that, according to the standard
DLR-scheme [16], the system is phase coexistencé (depending on the
boundary conditions and/or the sequence of volumes) there is more than one
infinite-volume limit of the measures in (2.2). Of particular interest in this
work will be the measure ih x L rectangular volumea c Z?2 with vacant
(i.e.,nsga, = 0) boundary condition. In this case we will denote the object
from (2.2) byP‘L”ﬁ’”.

As is well known, the lattice gas model (2.1) is equivalent to the Ising
magnet with the (formal) Hamiltonian

%:—J ZO')(O'y_hZO')(, (23)
x,y) X

Py (np) = (2.2)
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coupling constand = 1/4, external fielch = ¢ — 2 and the Ising spinss()
related to the occupation variables) via ox = 2ny — 1. The+-symmetry
of the Ising model also allows us to identify the regions of phase coexistence
of the lattice gas model defined by (2.1): There is a vlue 2 log(1 + +/2)
of the inverse temperature such that for- f; andu = ut = 2, there ex-
ist two distinct translation-invariant, extremal, ergodic, infinite-volume Gibbs
states for the Hamiltonian (2.1)—a “liquid” state characterized by an abun-
dance of particles over vacancies and a “gaseous” state, characterized by an
abundance of vacancies over occupied sites. In the Ising-spin language, these
states correspond to the plus and minus states which in the lattice gas language
translate to the states generated by the fully occupied or vacant boundary con-
ditions. We will use(—);} and (—);3 to denote the expectation with respect to
the (infinite-volume) “gaseous” and “liquid” state, respectively.

In order to discuss the Gibbs-Thomson formula in this model, we need to
introduce the relevant quantities. Assumjng= u«: andg > pc, we will begin
by defining the gas and liquid densities:

pg=pg(A) = (No)y and p, = p,(B) = (o)}, (2.4)

whereng refers to the occupation variable at the origin. Note that, by the plus-
minus Ising symmetryino) ; = (1— o) and thusp, + pg = 1. Next we will
introduce the quantity which is related to isothermal compressibility:

= ((Nonx)j — pg).- (2.5)

xeZ?

The sum converges for aff > p. by the exponential decay of truncated
particle-particle correlationg{nny)j — p§l < e Y whered = &(B) <

oo denotes the correlation length. The latter was proved in [12, 28] in the con-
text of the 2D Ising model.

The last object we need to bring into play is the surface tension or the
interfacial free energy. In the 2D Ising model, one can use several equivalent
definitions. Since we will not need any of them explicitly, it suffices if we just
summarize the major concepts as formulated, more or less, in [14,26]: First, for
eachp > f, there is a continuous functian : {n R?: |n| = 1} — (0, o0),
called themicroscopic surface tensiorRoughly speakingzz(n) is the cost
per length of an interface with normal vectothat separates a “gaseous” and
“liquid” region. This allows to introduce the so call&dulff functional# that
assigns to each rectifiable curye= (¢;) in R? the value

#4o) = [ s (2.6)
@
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Heren; is the normal vector tg at the pointy;.

The quantity#3(0D) expresses the macroscopic cost of a drojlet
with boundaryoD. Indeed, as has been established in the course of last few
years [14,19-21, 26, 27], the probability in the measi?(hzf”‘t that a droplet
of “liquid” phase occurs whose shape is “near” that of the3as given, to
leading order, by exp-#3(0D)}. Thus the “most favorable” droplet shape is
obtained by minimizing#(0D) over all D with a given volume. UsingV
to denote the minimizing set withunit volume(which can be explicitly con-
structed [13,17, 30]), we define

wi(B) = Wjp(OW). (2.7)

By well-known properties of the surface tension, we hayés) > 0 oncef >
Sc. We note that, as in the heuristic section—see Remark 1.1—the customary
factor 1/4 is incorporated intay in our definition of the surface tension.

Remark 2.1.  For those more familiar with the magnetic terminology,
let us pause to identify the various quantities in Ising language: First;(if)
is the spontaneous magnetizatiothen we havepg(f) = %(1 — m*(5/4))
andp,(p) = %(1 + m*(p#/4)). Similarly, if y(f) denotes thenagnetic sus-
ceptibility in the Ising spin system, thea(f) = »(f/4)/4. Finally, the quan-
tity w1(f) corresponds exactly to the similar quantity for the spin system at a
quarter of the inverse temperature.

2.2. Known facts

Here we will review some of the rigorous results concerning the 2D Ising lattice
gas in a finite volume and a fixed number of particles. In the language of
statistical mechanics, this corresponds tod¢hronicalensemble. The stated
theorems are transcribes of the corresponding results from [5].

Recall our notatiorPf’ﬁ’” for the Gibbs measure ih x L rectangular
box AL and vacant boundary conditions én . Let (v ) be a sequence of

positive numbers tending to infinity in such a way tbé‘[z/mu tends to a
finite non-zero limit. In addition, suppose that ) is such thapg| AL |+ (p, —

pgivL is a number from{0, 1, ..., |A_[} for all L. For any configuratiorgny)
in AL, let N_ denote the total number of particlesi , i.e.,
NL= D ny. (2.8)
XeEAL

Ouir first theorem concerns the large-deviation asymptotic for the random vari-
ableN_ . The following is a rigorous version of the claim (1.15), which, more
or less, is Theorem 1.1 from [5].
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Theorem A. Let f > pc and let the sequende) and the quanti-

ties pg = pg(B), pr = p/(B), 2 = x(p), andwy = wi(p) be as defined
previously. Suppose that the limit
_ 2 3/2

A= —
2xw1  Looo |[AL|

(2.9)

exists withA e (0, co). Then

1
lim —— log P>2*(N, = pglA —
o e gF. ( L = pglALl + (p, pg)UL)

= — inf @4 2.1
wlOslggl A( ): ( O)

where®, (1) = +/2 + A(1— 2)2.

We proceed by a description of the typical configurations in the condi-
tional measure

PO/ (|NL = pgl ALl + (o, — pgoL), (2.11)

which, we note, actually does not depend on the choice of the chemical po-
tential. Our characterization will be based on the notioReierls’ contours
Given a particle configuration, let us place a dual bond in the middle of each
direct bond connecting an occupied and a vacant site. These dual bonds can be
connected into self-avoiding polygons by applying an appropriate “rounding
rule,” as discussed in [14] and illustrated in, e.g., Fig. 1 of [5]. Given a con-
tour y, let V(y) denote the set of sites enclosedjbyln accord with [5], we
also let diany denote the diameter of the 9éty) in the £, metric onZ?. If T
is a collection of contours, we say that T is anexternalcontour if it is not
surrounded by any other contour frdm

While “small” contours are just natural fluctuations within a given phase,
“large” contours should somehow be interpreted as droplets. It turns out that
the corresponding scales are clearly separated with no intermediate contours
present in typical configurations. The following is essentially the content of
Theorem 1.2 and Corollary 1.3 from [5].

Theorem B. Let f > pc and let the sequende) and the quanti-
ties pg = pg(B), pr = pe(B), = »(B), andwi = wi(pB) be as de-
fined previously. Suppose that the limit in (2.9) exists wkhe (0, o) and
let Ac = 3(3/2)%2. There exists a numbd¢ = K (8, A) < oo such that, for
eache > 0 andL — oo, the following holds with probability tending to one
in the distribution (2.11):

(1) If A < Ag, then all contourg satisfy diany < K logL.
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(2) If A > Ac, then there exists a unique contoygrwith

AaoL(L—e€) < |V(yo)| < AavL(1+¢) (2.12)
and
piavL(l—€) < D ne < piav(l+e), (2.13)
XeV (o)

where/ , is the largest solution to the equation
ANVI(L=0) =1 (2.14)

in [0, 1]. Moreover, all the other external contoyrs# y, satisfy dianmy <
KlogL.

Remark 2.2. We note that, in the casé = A, there is at most one
large external contour satisfying the bounds (2.12-2.13), or no contour be-
yond K logL at all. The details of what exactly happens whenr= A; have
not, at present, been quantified—presumably, these will depend on the precise
asymptotic of the sequenoeg.

Remark 2.3.  One additional piece of information we could add about
the contoury is that its macroscopic shape asymptotically optimizes the Wulff
functional, see (2.6-2.7). While the shape of the unique large contour plays no
essential role in this paper (it appears implicitly in the valug we note that
statements of this sort were the basis of the (microscapidjf construction
initiated in [1, 14] for the case of 2D Ising model and percolation. These 2D
results were later extended in [15, 19-21, 26, 27]. The techniques developed
in these papers have been instrumental for the results of [5], which addresses
the regime that is “critical” for droplet formation. Recently, extensions going
beyond two spatial dimensions have also been accomplished [6, 10, 11]. We
refer to [7] and [5] for more information on the subject.

2.3. Gibbs-Thomson formula(s) for 2D Ising lattice gas

Now we are finally in a position to state our rigorous version of the Gibbs-
Thomson formula for the 2D Ising lattice gas. We will begin with the formula
for the difference of the densities, which is, more or less, an immediate corol-
lary of Theorem B.

Theorem 2.4. Letp > p; and let the sequende, ) and the quanti-
ties pg = pg(B), pr = p/(B), 2 = x(p), andwy = wi(p) be as defined
previously. LetA e (0, co) be as in (2.9). Suppose that> A¢ = 3(3/2)%/2
and leti, be the largest solution of the equation (2.14) in the interval]O
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Let A, | be the set of configuratioriay)xea, thatcontain a unique large exter-
nal contoury;—as described in Theorem B—obeying (2.12-2.13), and whose
particle density in the exterior of,,

1

pext(y0) = ™ o
ext(7o |AL\V(Vo)IX€ALZ\:‘/(yo) '

satisfies the bounds

1 sw; 1
h 12(1_
2 pe— pgIV(o)I¥

€) < pext(yg) — Py

1 2w 1
~ 2 p,— pglV(yo)

|1/2(1 +e). (2.16)

Then, for eacle > 0, we have

Jim PP (ACLINL = pglALT+ (pr = pglor) = 1. (2.17)

Remark 2.5. We note that, up to the& corrections, (2.16) is ex-
actly (1.5) ford = 2. Indeed, by Theorem B we know thi¥ (yq)| =
AavL (1 + o(1)) and the two formulas are identified by noting tléat cor-
responds t@_ in our setting. Due to the underlying lattice, the Wulff droplet
is undoubtedly not circular for any > f; and the better-known form (1.7) of
the (density) Gibbs-Thomson formula does not apply.

In order to state our version of the Gibbs-Thomson formula for the pres-
sure, we will first need to define the pressure “above a curved interface’—not
to mention the planar interface. We will closely follow the heuristic definitions
(1.8-1.11). Let us consider a sequeKag ) of squares ifZ2 satisfying

A/L D AL but A/L # AL (2.18)

forall L. Let Zé’ﬁ(N, A) denote theanonicalpartition function inA with N
particles, inverse temperatyfeand the vacant boundary condition. This quan-
tity is computed by summing the Boltzmann factor,

exp[ B> nxny], (2.19)

(xy)
X,yeA

over all configurationgny) with >, ., nx = N. Then we let

1 1 Z3P (pgl ALl + (9, — pgor, A))

— 0g =S (2.20)
BINCNALL ™ Z2P (pgl ALl + (p, — pg)oL, AL)

pL
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As in the heuristic section, the quantify depends on the sequenags, ),
(vL), inverse temperaturg, and also the boundary condition—all of which is
notationally suppressed.

For the pressure “above a planar interface,” again we will simply use
the pressure of the pure (gaseous) phaseA If= Z2 is a finite set, we
let Zé’ﬁ(u, A) denote theggrand canonicapartition function inA correspond-
ing to the chemical potential and vacant boundary condition. Recalling that
uy = 2, we define

1 . 1 o
P = 5 lim - log &’ (ue, AL, (2.21)

where the limit exists by standard subadditivity arguments.

Suppose that > A and let us consider the evefif, | collecting all
configurations inA that have a unique “large” contogp, as described in
Theorem B, such that, in addition to (2.12-2.13), the volunigy) satisfies
the inequalities

1 pgwi 1
5 l1—6)< - P
2 p; — pg |V(y0)|1/2( ) < B(PL — Px)

Pl 1
pe — pg IV (yo)| Y2

Somewhat informally, the eveiff, | represents the configurations for which
the Gibbs-Thomson formula for pressure holds up te arror. The next theo-
rem shows that, als — oo, these configurations exhaust all of the conditional
measure (2.11):

< % (L+e6). (2.22)

Theorem 2.6. Letp > p; and let the sequende| ) and the quanti-
ties pg = pg(B), pr = p/(B), 2 = x(p), andwy = wi(p) be as defined
previously. LetA e (0, co) be as in (2.9). Suppose that> A¢ = 3(3/2)%?2
and let1, be the largest solution to (2.14) in,[0]. For eache¢ > 0, there
exists a numbe#o > 0 such that if(A| ) is a sequence of squaresZA satis-
fying (2.18) and

[OA] | = [0AL] AL VAL
Jor=0 and Im-——— = 2.23
Looo  |A] \ AL| oL L—I>oo oL G ( )

with n € (0, o], then

lim PP (B LINL = pgl ALL+ (p, — pg)oi) = 1. (2.24)
L—oo
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Remark 2.7.  As before, sincéV (yg)| = AavL (14 0(1)), the equality
(2.24) is a rigorous version of (1.21) for the case at hand. The rate at which
the limit in (2.24) is achieved depends—among other things—on the rate of
the convergence in (2.23). We note that the constraints (2.23) correspond to
the bounds in (1.23). In particular, there is a non-trivial set of sequerices
for which both limits in (2.23) are exactly as prescribed. Finally, the restriction
thaty > 0 in (2.23) is due to the fact that from [5] we have essentially no
control on the rate of convergence in (2.10). Thus, to allow the second limit
in (2.23) to be zero, we would have to do a little extra work in order to clarify
the rate at which the limits in (2.23) and (2.10) are achieved.

3. PROOFS OF MAIN RESULTS
3.1. Proofs of Theorems 2.4 and 2.6

In this section we provide the proofs of our main results. We will commence
with Theorem 2.4:

Proof of Theorem 2.4. The proof closely follows the heuristic cal-
culation from Section 1.2. Fix an > 0 and let us restrict our attention to
particle configurations containing a unique external conjguand satisfying
the bounds (2.12-2.13). Recall the definition (2.8) of the quahlityWe will
show that, under the condition

NL = pglALl + (p, — pg)oL, (3.1)

any such configuration is, for a suitalde > 0, contained in4,, | for all L.
Introduce the quantity

Next(70) = Z Ny. (3.2)

xeALN\V(yg)

The inequalities in (2.13) then directly imply

|Next(70) — (NL — pAavL)| < €pyAnvL. (3.3)
Since we work with a measure conditioned on the event (3.1), we can write
NL — peAavL = pg(IALl = AavL) + (p, — pg)(1 — Za)vL. (3.4)

But|AL|—ZAavL = [AL\V ()4 (IV (yg)| —2avL) and by (2.12), the second
termis no larger thaal ov . Combining the previous estimates, we derive the
bound

|Next(v0) — pgl AL \ V(7o) — (p, — pg)(1 — An)oL| < €Anvr,  (3.5)
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where we also used (inessentially) that+ pg = 1.

The first two terms in the absolute value on the left-hand side represent the
difference betweepex(yg) and pg while the third term is exactly the Gibbs-
Thomson correction. Indeed, dividing (3.5) by \ V(yo)| and noting that,

by definition, Next(79) = pext(yo)IAL \ V (7o), we get

A —2a)oL | €dane
IAL\ Vol ~ 1AL\ V (o)l
Since both the Gibbs-Thomson correction—which arises from the last term
in the above absolute value—and the error term on the right-hand side are

proportional too, /|AL \ V(yg)|, the desired bound (2.16) will follow with
somee > 0 once we show that

(1—2a)oL _1 »w1 1
IAL\V (o)l 2 p,— pg/AavL

To prove (3.7), we note th&t\ . \ V (yo)l/|AL| = 1+ 0(1), which using (2.9)
allows us to write

pext(y0) — pg — (pr — pg) (3.6)

(pe — Pg) (1—|— 0(1)), L —> o0. (3.7)

L 201 A

IAL\V (o)l (o — pg)? /oL

Using (2.14) in the formA(1 — 1) = 1/(4J/74), we get rid of the factor
of A, whereby (3.7) follows. Since th&(1) term in (3.7) is uniformly small
for all configurations satisfying (2.12—-2.13), the bounds (2.16) hold anise
sufficiently large. |

(14+0@Q), L—->oo.  (3.8)

In order to prove our Gibbs-Thomson formula for the pressure, we will
need the following representation of the grand canonical partition function:

Theorem 3.1. Letp > p. and letp, be asin (2.21). There exists a
numberz, ., € R and, for eacl¥ e (1, 00), also a constan€(p,0) < oo
such that

l1og Z&” (11, A) — BPol Al — Toanl@Al| < C(B,6) (3.9)

holds for all rectangular volumes c Z? whose aspect ratio lies in the inter-
val (071, 6).

Clearly, Theorem 3.1 is a rigorous version of the formula (1.10). Such
things are well known in the context of low-temperature expansions, see,
e.g., [8]. Here we are using expansion techniques in conjunction with cor-
relation inequalities to get the claim “down fig.” However, the full argument
would detract from the main line of thought, so the proof is postponed to Sec-
tion 3.2.
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Proof of Theorem 2.6. We will again closely follow the heuristic
derivation from Section 1.2. First we note that, using Theorem 3.1, we have

1 2 (u, A))

ﬂpoo - o
IAL\ ALl Zgﬂ(ﬂt, AL)

|OAL | = |0AL| n 2C(8,0)

< |z . (3.10
=l =A A iapag G0
Introducing the shorthand
PA(N) = Pg’ﬂ”“(an — N), (3.11)
XeA

invoking the assumption on the left of (2.23) and applying (2.20), this allows
us to write
1 Par (pgl ALl + (p, — pgloL _

o AL Py Pe — Pg)vL) +o 1/2

U b
AVAL PO P, (gl ALl + (o = pgon) T o0
(3.12)

AP — Px) =

asL — oo. Now, by Theorem A we have

logPA, (pglALl+ (p,— pgloL) = —w1 (@) +0(1)) /oL, L — oo, (3.13)

whered’; is the absolute minimum ab, (1) for 4 € [0, 1]. As to the corre-
sponding probability foA| , we first note that

polALl + (p, — pgloL = pgl ALl + (p, — pg)aLoL, (3.14)
where A\ A
o =1— Lo IALNALL (3.15)
Pe— Pg oL

By our assumption on the right-hand side of (2.23) converges to a number
given bya =1 — #_@’pgn. Again using Theorem A, we can write
logPa (pgl ALl + (p; = pgur) = —w1(®}s2, +0(D)Va /oL,  (3.16)

asL — oo. A simple calculation—of the kind leading to (1.20)—now
shows that

* * n Py 2
Vadrs,, — ) = - ——+0@), nl0, (3.17)
while (2.23) implies that
Jor 11
o Z(1+01), L - oo (3.18)

IAU\NALL ol
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Plugging these equations, along with (3.13) and (3.16), into (3.12), we have

1 pgwi 1 o(1)
L— Py) = = 1+—+4+0 , 3.19
B(PL — P) 2 s — pg /—AAUL( " (’7)) ( )

where o(1) denotes a quantity tending to zero Bs— oo while O(y) is

a quantity independent df and tending to zero at least as fastiag the
limit » | 0. Equation (3.19) shows that, onteds sufficiently large, a particle
configuration satisfying the bounds (2.12) from Theorem B will also satisfy the
bounds (2.22). The limit (2.24) is then a simple conclusion of TheoremB.

3.2. Representation of the partition function

The goal of this section is to prove Theorem 3.1. As already mentioned, we
will employ two basic techniques: cluster expansion and correlation inequali-
ties. The basic strategy of the proof is as follows. First we pick a large negative
numberug < ut and use cluster expansion to establish a corresponding repre-
sentation for the partition functiozgﬁ(ﬂo, AL). Then, as a second step, we
invoke correlation inequalities to prove a similar representation for the ratio of
the partition functionszgﬁ(,uo, Ap) and Zg’ﬂ(ut, AL). Essential for the sec-
ond step will be the GHS inequality and the exponential decay of correlations
for all p > p.. Combining these two steps, the desired representation will be
proved.

Let p.. (1) denote the pressure corresponding to the chemical potential
which is defined by the limit as in (2.21) wheggis replaced by:. (Through-
out this derivation, we will keep fixed and suppress it notationally whenever
possible.) The first step in the above strategy can then be formulated as follows:

Lemma3.2. Letp > f; and letp,(u) be as defined above. For
eachd € (1, oo) and each sufficiently large negatiug, there exists a number
77 (1o) € R and a constany1 (S, uo, #) < oo such that

|log 23" (uo, A) = Bpsc (o)l Al — 7 (10)|0A|| < C1(B, no.6)  (3.20)

holds for each rectangular volume c Z? whose aspect ratio lies in the inter-
val (71, 0).

To implement the second step of the proof, we need to study the ratio of
the partition functions with chemical potentials and uo. Let A be a finite
rectangular volume iZ? and Iet(—)f\’ﬂ’“ denote the expectation with respect
to the measure in (2.2) with vacant boundary condition. Ngt= >, _\ ny.
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For anyuo < ut we then have

z&" (ue, A 2
Iog% :/ (NA)‘;\’ﬂ’”dﬂ (3.21)
Zé (,UO, AL) MO
and »
B(Paeitt) — Pui0) = / (o) d. (3.22)

“o
where(—)*## denotes the infinite-volume limit (which we are assured exists)
of the state(—)j\’ﬁ”‘. (Note that (3.22) is true witAny infinite-volume Gibbs
state substituted.) Combining (3.21-3.22), we thus get

zgﬂ(ﬂt,AL)e—ﬁpoo(m)|A| _/m
28" (o, AL)e ool J,

To derive the desired representation, we need to show that the integrand is
proportional tgoA|, up to an error which does not dependsdnThis estimate
is provided in the following lemma:

log ((NA)R = |Alng)*##) . (3.23)

0

Lemma3.3. Letf > pcandd € (1,00). There exists a constant
C2(B,0) < oo and a bounded functiory : (—oco, uf]— R such that

[(NAYSPH — | ALING)> P4 — [aA |25 ()] < Ca(B, ), (3.24)

holds for eachu e (—oo, ut] and each rectangular volume ¢ Z? whose
aspect ratio lies in the intervéd 1, 9).

Lemma 3.2 will be proved in Section 3.3 and Lemma 3.3 in Section 3.4.
With the two lemmas in the hand, the proof of Theorem 3.1 is easily concluded:

Proof of Theorem 3.1. Let# € (1, ) and letA be a rectangular
volume whose aspect ratio lies in the inter¢@t?, 8). Fix uq to be so large
(and negative) that Lemma 3.2 holds and@af( o) denote the quantity in the
absolute value in (3.20). For eaghe [uo, 1t], let Q2(u«) denote the quantity
inside the absolute value in (3.24). Let us define

Mt
i = 1100 + [ T3 0du. (3.25)
to

A simple calculation combining (3.20), (3.24) with (3.23) then shows that

Ht
log Z&" (1, A) = PP ()| Al = tganldA ] = Qu(uo)+ [ Qa(p)du. (3.26)
Ho

Using (3.20) and (3.24), we easily establish that the absolute value of the
quantity on right-hand side is no larger th@g, 9) = C1(f, uo, 9) + (ut —
1o)C2(8,6). 1
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3.3. Cluster expansion

Here we will rewrite the grand canonical partition function in terms of a poly-
mer model, then we will collect a few facts from the theory of cluster ex-
pansions and assemble them into the proof of Lemma 3.2. The substance of
this section is very standard—mostly siphoned from [23]—so the uninterested
reader may wish to consider skipping the entire section on a first reading.

We begin by defining the polymer model. Given a configuratignn A,
let us call two distinct sites df? connected if they are nearest-neighbors and
are both occupied in the configurationn. A polymeris then defined as a
connected component of occupied sites. Two polymers are cadieghatible
if their union is not connected. A collection of polymers is called compatible if
each distinct pair of polymers within the collection is compatible. Clearly, the
compatible collections of polymers are in one-to-one correspondence with the
particle configurations. Finally, let us introduce some notation: We \Rrije
P’ if the polymersP andP’ are not compatible and say that the polyrRes
in Aif P C A.

Let P be a polymer containingl (P) sites and occupying both endpoints
of E(P) edges irZ2. We define the Boltzmann weight Bfby the formula

Cpu(P) = fEPIHINE), (3.27)

As is straightforward to verify, the partition functicﬂ.‘g’ﬂ (u, A) can be writ-
ten as

2 M) =" [T cpu(P) (3.28)

P Pe&

where the sum runs over all compatible collectiagAsof polymers inA.

This reformulation of the partition function in the language of compati-
ble polymer configurations allows us to bring to bear the machinery of cluster
expansion. Following [23], the next key step is a definition ofuster, gener-
ically denoted byC, by which we will mean a finite non-empty collection of
polymers that is connected when viewed as a graph with vertices labeled by
polymersP e C and edges connecting pairs of incompatible polymers. (Thus,
if C contains but a single polymer it is automatically a clusterC Kontains
more than one polymer, then any non-trivial division©into two disjoint
subsets has some incompatibility between some pair chosen one from each of
the subsets.) In accord with [23], a clusfeis incompatible with a polyme?,
expressed by + P, if CU {P}is a cluster.

In order to use this expansion, we need to verify the convergence criterion
from [23]. In present context this reads as follows: For sane 0 and any
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polymerP,

Z fﬂ,ﬂ(P,)e(l_H{)N(P/) < N(P) (329)
P’ P/AP

Since¢y, , (P) < W +2PINP) s true, this obviously holds if is sufficiently
large and negative. The main result of [23] then says that each cluster be
given a weight , (C) (which is defined less implicitly in [23]), such that for
all finite volumesA c Z? we have

092" (. A) = " ¢p.u(O). (3.30)
CE(@”A

where@, denotes the set of all clusters arising from polymera irMoreover,
this expansion is accompanied by the bound

> 1p.uO)ENO < NP, (3.31)
C: C#P

whereN (C) denotes the sum dfi (P’) over allP’ constitutingC. With (3.30—
3.31) in hand, we are now ready to prove the first part of the representation

of &% (u, A):

Proof of Lemma 3.2. First, we will introduce a convenient resumma-
tion of (3.30). For each polymét, let .+ (P) be the set of sites constitutiry
Similarly, for each cluste€, let .4 (C) be the union of 4" (P) over allP con-
stituting C. For each finiteA c Z?2, we let

Ipu(N = D a0 (3.32)
C: /' (O)=A

Clearly, the weightg) , are invariant with respect to lattice translations and
rotations, having inherited this property from ,. Moreover, as is easily
checkedys,,(A) = 0 unlessA is a connected set. The new weights allow
us to rewrite (3.30) and (3.31) in the following form:

log2e (. Ay = D Vpu(A), (3.33)
A: ACA
with
D g u(A)] < e (3.34)
A: OcA
[Al=n

for eachn > 0. Here| A] denotes the number of sites i
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Now we are in a position to identify the relevant quantities. First, the
limiting version of the expression (3.33) suggests that the pressure should be
given by the formula

1
Br() = D g ul(A). (3.35)

A: OeA Al

To define the constanf () representing the wall surface tension Hetlenote
the upper half-plane iZ?, i.e., H = {(x1, X2) € Z?: Xo > 0}, and letL be
the “line” in Z2 corresponding to the boundary HF, i.e.,L = {(X1, X2) €
Z?: xo = 0}. Then we define

|ANH] 9g, ,(A)
’ = — : . 3.36
Ty (1) E A TANL] (3.36)
A: OcA
ACLLp

Clearly, in order to contribute tg’ (1), the setA would have to have botANH
and A \ H nonempty. On the basis of (3.34) it can be shown that the sums in
(3.35) and (3.36) converge once (3.29) holds with:a O.

Combining (3.33) with (3.35), we can now write that

logZg . M= 3 ﬁﬁ,mA)

XeA AAXiA
. (3.37)
=AP(0IAl =D, > ﬂﬁ,AA)
XeA AAéeA

Using the fact thatA is a connected set and th@sN A # d andA\ A # @
imply that AN oA # @, the second term on the right-hand side can further be
written as

AN A IANA| 95,.(A)
-2 Ay (A== 2. 2 1A |Aﬁr}wlaA|
A: AgA xedA A: xeA

IANH,| |ANA|

— A A). (3.38
=11 ()19 |+X§A AZX:A|A|(|AHLX| |Aﬂ6A|)ﬁﬁ’“( ). (3.38)

Here Hy denotes the half-plane iri2 that containsA and whose boundary
Lx = 0Hy includes the portion of the boundady that containx. (Remember
that A is a rectangular set and thus its boundéary splits into four disjoint
subsets—the sides of.)

Let Q1(u«) denote the (complicated) second term on the right-hand side
of (3.38). Letss be the collection of all finite connected sdts— Z2. Notice
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that, whenever a sét € <7 intersect$A in only one of its sides anANoA =
AN Ly, then also)oAN A = AN Hy, and the corresponding term in (3.38)
vanishes. It follows that, in order for the satto contribute to thex-th term
of Q1(u), it must contain at least as many sites as igtledistance fronx to
the sides oPA not containingk. Thus, for a giverx € dA, a setA c Z? can
only contribute toQ1(u) if A € & and|A| > dist(x, oA \ Ly).

Since|lAN Al,|JANHg| < |Aland|ANJA|, |AN Lyl > 1 foranyA
contributing toQ1(u), we can use (3.34) to get the bound

|Quw)| < D > [puA)] < D] eI (3 39)

XeoA Aca/, xeA XedA
| Al>dist(x,0A\Lx)

Choosingx > 0, letting G(x) = > oo,e*" < oo, and usingLy, Lo €
[6~1L, 6L] to denote the lengths of the sides@f, we can bound the right
hand side by 6(x) + 2L1e7* 2 + 2L,e7*!1, yielding |Q1(x)| < 8G(x) +
49Le~7-. This in turn can be bounded uniformly in by a constant that
depends only oAl and we thus get the claim of Lemma 3.2

3.4. Correlation bounds
This section will be spent on proving Lemma 3.3. We begin by recalling the

relevant correlation bounds. Let us extend our notatiehj;ﬂ”‘ for the ex-
pectation with respect to the Gibbs measureialso to the cases wheh is
not necessarily finite. (It turns out that, by FKG monotonicity, such a state is
uniquely defined as a limit of finite-volume Gibbs states along any sequence of

finite volumes increasing ta.) We will use the notation
(i ) 2 = (neny) 1 = ) P gy P (3.40)

for the truncated correlation function. This correlation function has the follow-
ing properties:

(1) Foreactu < u’ < yrandA c A’, and allx, y € Z2,

(N ny) P < (g ny) (3.41)
(2) For eachp > p;there exists & = &(f) < oo such that
0 < (ny; ny) X < e XVIe (3.42)

forall u < ug, all A ¢ Z? and allx,y € Z2. Here|x — y| denotes
the{ distance betweex andy.
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Both (1) and (2) are reformulations of well-known properties of the truncated
correlation functions for Ising spins. Namely, (1) is a simple consequence of
the GHS inequality [18], while (2) is a consequence of (1) and the fact that the
infinite-volume truncated correlation functionat= u; decays exponentially
oncep > fc. The latter was in turn proved in [12, 21].

A simple consequence of the above observations is the following lemma:

Lemma 3.4. Letp > .. Then there exist constanig = a1(f) €
(0, 00) andaz = a2(f) € (0, co) such that

O <nx>j\/ﬁ iy (nx>j\ng’/u S ale—azdist(X,A/\A) (343)

holds for allx < ut, all (not necessarily finite) volumes ¢ A’ ¢ Z? and
all x € A.

Proof. See, e.g., formula (2.2.6) from [21]; the original derivation goes
backto [9]. 1

Now we can start proving Lemma 3.3:

Proof of Lemma 3.3. We begin by a definition of the quantity (u).
Let H be the upper half-plane i, see Section 3.3. Then we define

5(w) = > ((neo)s™" = (o)), (3.44)
>1

where(x1, X») is a notation for a generic point ii%. By Lemma 3.4, the sum
converges with a-independent rate (of course, provided< ut).

Let A be a rectangular volume iffi? with aspect ratio in the inter-
val (91, 6). Let us cyclically label the sides dof by numbers 1..., 4, and

defineHy, ..., Hy to be the half-planes i@? containingA and sharing the
respective part of the boundary with Let us partition the sites of into four
setsAy, ..., A4 according to whiclH; the site is closest to. We resolve the

cases of a tie by choosing tii# with the lowestj. Now we can write

(NAYSH — | Ao = ZZ () 34 = ()

j=1xeA;

4
+2. 2, (<”x>§if’” — (no);7""). (3.45)

If it were not for the restrictiorx € A, the second term on the right-hand
side would have the structure needed to apply (3.44). To fix this problem,
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letSj, with j =1, ..., 4, denote the half-infinite slab obtained as the intersec-
tion Hj_; N Hj N Hj4+1, where it is understood théfy = Hy andHs = Hj.
Clearly,Aj c Sjforall j =1,...,4. Then we have

4
> > (g = o))

j=1XxeAj

4
=5 (loAl= > > (g = o). (3.46)

j=1 XeSj(A)NA]

It remains to show that both the first term on the right-hand side of (3.45) and
the second term on the right-hand side of (3.46) are bounded by a constant
independent oft and A with the above properties. As to the first term, we note
that, by Lemma 3.4,

[ = | <@g S, (3:47)

which after summing ovex € Aj gives a plain constant. Concerning the

second contribution to the error, we note tr(la;);ﬁjﬁ’” — (n@%’f’” is again
exponentially small in digk, Z?2 \ Hj). As a simple argument shows, this
makes the sum over € S; \ Aj finite uniformly in A with a bounded aspect

ratio. This concludes the proof. |}

ACKNOWLEDGMENTS

Part of this paper was written when M.B. was visiting Center for Theoreti-
cal Study in Prague. The research of R.K. was partly supported by the grants
GACR 201/03/0478 and MSM 110000001. The research of L.C. was sup-
ported by the NSF under the grant DMS-9971016 and by the NSA under
the grant NSA-MDA 904-00-1-0050. R.K. would also like to thank the Max-
Planck Institute for Mathematics in Leipzig for their hospitality as well as the
A. von Humboldt Foundation whose Award made the stay in Leipzig possible.

REFERENCES

1. K. Alexander, J.T. Chayes and L. Chay@&te Wulff construction and asymptotics of
the finite cluster distribution for two-dimensional Bernoulli percolafi@@mmun. Math.
Phys.131(1990) 1-51.

2. K. Binder,Theory of evaporation/condensation transition of equilibrium droplets in finite
volumesPhysica A319(2003) 99-114.

3. K. Binder and M.H. Kalos(Critical clusters in a supersaturated vapor: Theory and
Monte Carlo simulationJ. Statist. Phy22 (1980) 363-396.



A microscopic theory of Gibbs-Thomson formula 27

4,

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

M. Biskup, L. Chayes and R. KotegkOn the formation/dissolution of equilibrium
droplets Europhys. Lett60:1 (2002) 21-27.

M. Biskup, L. Chayes and R. KotegkCritical region for droplet formation in the two-
dimensional Ising modeCommun. Math. Phys. (to appear).

. T. BodineauT he Wulff construction in three and more dimensj@@mmun. Math. Phys.

207(1999) 197—229.

. T. Bodineau, D. loffe and Y. VelenilRigorous probabilistic analysis of equilibrium crys-

tal shapesJ. Math. Phys41 (2000) 1033-1098.

. C. Borgs and R. Kotegk Surface-induced finite-size effects for first-order phase transi-

tions J. Statist. Phys79(1995) 43-115.

. J. Bricmont, J.L. Lebowitz and C.-E. Pfistem the local structure of the phase separa-

tion line in the two-dimensional Ising systei Statist. Phy26 (1981), no. 2, 313-332.

R. CerflLarge deviations for three dimensional supercritical percolatidsterisque267
(2000) vi+177.

R. Cerf and A. Pisztor®n the Wulff crystal in the Ising modéinn. Probab28 (2000)
947-1017.

J.T. Chayes, L. Chayes and R.H. Schonmé&mxponential decay of connectivities in the
two-dimensional Ising model. Statist. Phy19 (1987) 433-445.

P. CurieSur la formation des cristaux et sur les constantes capillaires de leuesetites

faces Bull. Soc. Fr. Mineral.8 (1885) 145; Reprinted ifEuvres de Pierre Curie
Gauthier-Villars, Paris, 1908, pp. 153-157.

R.L. Dobrushin, R. Kotegkand S.B. Shlosmamulff construction. A global shape from
local interaction Amer. Math. Soc., Providence, RI, 1992,

R.L. Dobrushin and S.B. Shlosman, Prxobability contributions to statistical mechan-
ics, pp. 91-219, Amer. Math. Soc., Providence, RI, 1994.

H.-O. GeorgiiGibbs Measures and Phase Transitipdse Gruyter Studies in Mathemat-
ics, vol. 9, Walter de Gruyter & Co., Berlin, 1988.

J.W. GibbsOn the equilibrium of heterogeneous substar{@&36), In:Collected Works
vol. 1., Longmans, Green and Co., 1928.

R.B. Griffiths, C.A. Hurst and S. Sherma&nncavity of magnetization of an Ising ferro-
magnet in a positive external field. Math. Phys11 (1970) 790-795.

D. loffe,Large deviations for the 2D Ising model: a lower bound without cluster expan-
sions J. Statist. Physi4(1994) 411-432.

D. loffe, Exact large deviation bounds up tq Tor the Ising model in two dimensions
Probab. Theory Rel. Field®02(1995) 313-330.

D. loffe and R.H. SchonmanBobrushin-Koteck-Shlosman theorem up to the critical
temperatureCommun. Math. Phy4.99(1998) 117-167.

B. Krishnamachari, J. McLean, B. Cooper and J. Setf@ilahs-Thomson formula for
small island sizes: Corrections for high vapor densitiehys. Rev. B54 (1996) 8899—
8907.

R. Kotecly and D. PreissCluster expansion for abstract polymer modeommun.
Math. Phys103(1986) 491-498.

L.D. Landau and E.M. Lifshit£Zourse of Theoretical Physicgol. 5: Statistical Physics
Pergamon Press, Oxford-Edinburgh-New York, 1968.



28

25.

26.

27.

28.

29.

30.

Biskup, Chayes and Kotecky

T. Neuhaus and J.S. Hag@b crystal shapes, droplet condensation and supercritical
slowing down in simulations of first order phase transitiohsStatist. Phys. (to appear).
C.-E. Pfisten.arge deviations and phase separation in the two-dimensional Ising model
Helv. Phys. Acte64 (1991) 953-1054.

C.-E. Pfister and Y. Velenikarge deviations and continuum limit in the 2D Ising mqdel
Probab. Theory Rel. Fielde09(1997) 435-506.

R.H. Schonmann and S.B. Shlosm#ylff droplets and the metastable relaxation of
kinetic Ising modelsCommun. Math. Phy<.94(1998) 389-462.

D. TaborGases, Liquids and Solids: And Other States of Md8edt edition), Cambridge
University Press, Cambridge, 1991.

G. Wulff, Zur Frage des Geschwindigkeit des Wachsturms und dedgwfty der Krys-
tallflachen Z. Krystallog. Mineral 34 (1901) 449-530.



